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Abstract

Cointegration inference is often built on the correct specification for a short-run dynamic

vector autoregression. However, this specification is unknown in prior. A too small lag length

leads to erroneous inference due to size distortion, while using too many lags leads to dramatic

increase in the number of parameters, especially when the dimension of time series is high. In

this paper, we develop a new methodology which adds an error correction term for long-run

equilibrium to a latent factor model for modeling short-run dynamic relationship. Two eigen-

analysis based methods for estimating, respectively, cointegration and latent factors consist of

the cornerstones of the inference. The proposed error correction factor model does not require

to specify the short-run dynamics explicitly, and is particularly effective for high-dimensional

cases when the standard error-correction model suffers from overparametrization. It also in-

creases the predictability over a pure factor model. Asymptotic properties of the proposed

methods are established when the dimension of the time series is either fixed or diverging

slowly as the length of time series goes to infinity. Illustration with both simulated and real

data sets is also reported.
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1 Introduction

Cointegration refers to the phenomenon that there exists a long-run equilibrium among several

distinct nonstationary series, as illustrated in, for example, Box and Tiao (1977). Since the

seminal work of Granger (1981), Granger and Weiss (1983) and Engle and Granger (1987), it has

attracted increasing attention in econometrics and statistics. An excellent survey on the early

developments of cointegration can be found in Johansen (1995).

Up to present, considerable effort has been devoted to the inference on the long-run trend

(cointegration) restrictions in vector autoregression (VAR); see, among others, Engle and Granger

(1987), Johansen (1991), Phillips (1991) for estimation and testing, and Engle and Yoo (1987), Lin

and Tsay (1996) for forecasting. As shown in Engle and Granger (1987), VAR with cointegration

restrictions can be represented as a vector error correction model (VECM) which reflects the

correction on the long-run relationship by short-run dynamics. One of the remarkable features

of VECM is that it identifies clearly the gain in prediction from using the cointegrated variables

over the standard ARIMA approach, as noted by Engle and Yoo (1987), Lin and Tsay (1996) and

Peña and Poncela (2004). However, it is a prerequisite to specify a finite autoregressive order for

the short-run dynamic before the inference can be carried out on the cointegration part of the

model. In many applications, using different orders for the VAR results in different conclusions

on cointegration. Especially when the VAR order is under-specified or the process lies outside

the VAR class, the optimal inference on the unknown cointegration will lose validity (Hualde

and Robinson, 2010). To overcome this shortcoming, information criteria such as AIC, BIC and

HQIC have been applied to determine both the autoregressive order and the cointegration rank.

See, for example, Chao and Phillips (1999) and Athanssopoulos, et al. (2011). While appealing

for practitioners, all these methods are nevertheless subject to pre-test biases and post model

selection inferential errors (Liao and Phillips, 2015). Furthermore VECM is ineffective when the

dimension of time series is high, not least due to the overparametrization of a VAR specification.

Relative to considerable effort on long-run restriction, one may argue that the importance of

short-run structures has not received due attention in the literature on cointegration. On the other

hand, common cyclical movements exist extensively in macroeconomics. For example, Engle and

Kozicki (1993) found common international cycles in GNP data for OECD countries. Issler and

Vahid (2001) reported the common cycles for macroeconomic aggregates and sectoral and regional
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outputs in US. It has been documented that using (short-run) rank restrictions in stationary VAR

can improve short-term forecasting. See, for example, Ahn and Reinsel (1988), Vahid and Isser

(2002) and Athanasopoulos and Vahid (2008), Athanasopoulos et al (2011). Hence it is reasonable

to expect that imposing appropriate short-run structures will improve the model performance in

cointegrated systems. Note that Athanasopoulos et al. (2011) recognized the factor structure in

the short-run dynamics, but did not utilize it in their subsequent inference.

When the dimension of time series is high, VAR models suffer from having too many parame-

ters even with some imposed rank restrictions. Furthermore most the classical inference methods

for cointegration, including Johansen’s likelihood method, will not work or not work effectively

when the dimension is high. See the numerical studies reported in Gonzalo and Pitarakis (1995)

and Ho and Sørensen (1996). Although high-dimensional problems exist extensively in macroe-

conomic and financial data, the development in both theory and methodology in the context of

cointegration is still in its infancy.

We propose in this paper an error correction factor model which is designed for catching the

linear dynamical structure, in a parsimonious and robust fashion, for high-dimensional cointe-

grated series. More specifically the long-run equilibrium relationship among all nonstationary

components is represented by a cointegration vector, i.e. the correction term to equilibrium. This

term is then utilized to improve a factor representation for the short run dynamics for the dif-

ferenced processes. Comparing to the classical VECM, our setting does not require to specify

the short run dynamics explicitly, avoiding the possible erroneous inference on cointegration due

to, for example, a misspecified autoregressive order. Furthermore the high-dimensional short run

dynamics is represented by a latent and low-dimensional factor process, avoiding the difficulties

due to too many parameters in a high-dimensional VAR setting. Comparing to a pure factor

model, the cointegration term improves the modelling and the prediction for short run dynamics.

In terms of inference, we first adopt the eigenanalysis based method of Zhang, Robinson and Yao

(2015) (ZRY, hereafter) to identify both the cointegration rank and cointegration space; no pre-

specification on the short run dynamics is required. We then calculate the regression estimation

for the error correction term, and recover the latent factor process from the resulting residuals

using the eigenanalysis based method of Lam and Yao (2012). Once the latent factor process has

been recovered, we can model separately its linear dynamics using whatever an appropriate time
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series model. Due to the errors accumulated in estimation, fitting a dynamic model for the factor

process turns out to be an error-in-observation problem in, for example, autoregression which

has not been thoroughly investigated, for which we propose a version of corrected Yule-Walker

method. See Section 2.2.3 below.

The proposed methodology is further supported by the newly established asymptotic theory

and numerical evidences. Especially our numerical results corroborate the findings from the

asymptotic theory. In particular, Monte Carlo simulation reveals that the cointegration rank, the

cointegration space, the number of factors and the factor co-feature space can all be estimated

reasonably well with typical sizes of observed samples. Our empirical example on forecasting

the ten U.S. industrial production indices shows that the proposed error correction factor model

outperforms both VECM and vector AR models in post-sample forecasting. This finding is also

robust with respect to the different forecast horizons.

The rest of the paper is organized as follows. We spell out the proposed error correction model

and the associated estimation methods in Section 2. In Section 3 the asymptotic properties for

the estimation methods are established with the dimension of time series both fixed or diverging

slowly, when the length of time series goes to infinity. The proposed methodology is further

illustrated numerically in Section 4 with both simulated and real data sets. Furthermore we

compare the forecasting performance of the proposed error correction factor model to those of

the VECM with cointegration rank determined by Johansen’s procedure and lag length selected

by AIC, and unrestricted VAR in level model. The forecasting performances for real data were

evaluated for different forecast horizons based on the criterion of Clements and Hendry (1993).

2 Methodology

2.1 Error Correction Factor Models

We call a vector process ut weakly stationary if (i) Eut is a constant vector independent of t,

and (ii) E‖ut‖2 < ∞, and Cov(ut,ut+s) depends on s only for any integers t, s, where ‖ · ‖

denotes the Euclidean norm. Denoted by ∇ the difference operator, i.e. ∇ut = ut − ut−1. We

use the convention ∇0ut = ut. A process ut is said to be weakly integrated process with order

1, abbreviated as weak I(1), if ∇ut is weakly stationary with spectral density finite and positive

definite at frequency 0 but ut itself is not. Since we only deal with weak I(1) processes in this
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paper, we simply call them weakly integrated processes.

Let yt be observable p × 1 weakly I(1) process with the initial values yt = 0 for t ≤ 0 and

Var(yt) be full-ranked. Suppose that cointegration exists, i.e., there are r (≥ 1) stationary linear

combinations of yt, where r is called the cointegration rank and is often unknown. The error

correction factor model is defined as

∇yt = Cyt−1 + Bft + εt, (2.1)

where C is a p×p matrix with rank r and Cyt is weakly stationary, ft is an m×1 weakly stationary

process and B is a p×m matrix, εt is a p× 1 white noise with mean zero and covariance matrix

Σε, and uncorrelated with yt−1 and {ft}. Comparing with VECM, (2.1) represents the short-run

dynamics by the latent process ft. Its linear dynamic structure is completely unspecified. Note

that ft does not enter the inference for the error correction term Cyt−1. Model (2.1) is particularly

useful when p is large and m is small, which is often the case with many real data sets, as it leads

to an effective dimension-reduction in modelling high-dimensional time series.

Without loss of generality, we assume in (2.1) B to be an orthogonal matrix, i.e., B′B = Im,

where Im denotes the m×m identity matrix. This is due to the fact that any non-orthogonal B

admits the decomposition B = QU, where Q is an orthogonal matrix and U is an upper-triangular

matrix, and we may then replace (B, ft) in (2.1) by (Q,Uft).

Before ending this section, we illustrate with a simple toy model (i.e. a drunk and a dog

model) the gain in prediction of the proposed error correction factor model over a pure factor

model. Let yt,1 be the position of a drunk at time t, i.e.

y0,1 ≡ 0, yt,1 = yt−1,1 + εt for t = 1, 2, · · · ,

where εt ∼ IID(0, 1). Let yt,2 = yt,1 + zt denote the position of drunk′s dog, as the dog always

wanders around his master (i.e. the drunk), where zt ∼ IID(0, σ2), and {εt} and {zt} are inde-

pendent with each other. Then both yt,1, yt,2 are I(1), and yt,1 is a random walk but yt,2 is not.

Let yt = (yt,1, yt,2)
′. It holds that

∇yt = (0, 1)′ft + (εt, εt)
′, (2.2)
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where ft = zt − zt−1 can be viewed as a latent factor process. Thus (2.2) is a pure factor model.

Now there is a clear cointegration:

zt = (−1, 1)yt = yt,2 − yt,1.

Consequently, the error correction factor model is

∇yt = (0,−1)′zt−1 + (εt, εt + zt). (2.3)

Note that for this simple example, the factor is identical to 0, as both εt and zt are independent

sequences. Using the info available up to time t, the best predictor for ∇yt+1 based on error

correction factor model is ∇̂yt+1 = (0,−1)′zt with the mean squared predictive error:

E(‖∇yt+1 − ∇̂yt+1‖2) = Var(εt+1) + Var(εt+1 + zt+1) = 2 + σ2. (2.4)

On the other hand, the best predictor for ∇yt+1 based on factor model (2.2) is ∇̃yt+1 = (0, 1)′f̂t+1

with the mean squared predictive error:

E(‖∇yt+1 − ∇̃yt+1‖2) = E(‖ft+1 − f̂t+1‖2) + 2Var(εt+1) = E(‖ft+1 − f̂t+1‖2) + 2,

where f̂t+1 is the best predictor for ft+1 based on yt,yt−1, · · · . Since ft = zt − zt−1 is a latent

MA(1) process. The best predictor for ft+1 is the one based on ft and is equal to

f̂t+1 = −E(ftft+1)

E(f2t )
ft = ft/2

with E(‖ft+1 − f̂t+1‖2) = 3σ2/2. Hence

E(‖∇yt+1 − ∇̃yt+1‖2) = 3σ2/2 + 2,

which is greater than E(‖∇yt+1−∇̂yt+1‖2); see (2.4). This shows that adding the error correction

term increases the predictability of factor model (2.2).
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2.2 Estimation

In model (2.1), C is a p × p matrix with the reduced rank r(< p). Hence it can be expressed as

C = DA′2, where D, A2 are two p×r matrices. Furthermore, columns of A2 are the cointegration

vectors, r is the cointegration rank. Although A2 is not unique, the coefficient matrix C is uniquely

determined by (2.1). Once we specify an A2 such that A′2yt−1 is weakly stationary, consequently

D can be uniquely determined. Thus, to fit model (2.1), the key is to estimate r, A2, the factor

dimension m and the factor loading matrix B. Then the coefficient matrix D can be estimated

by a multiple regression, the latent factors ft can be recovered easily, and the forecasting can be

based on a fitted time series model for ft.

To simplify the inference, in the sequel we always assume that Cyt−1 and ft are uncorrelated.

This avoids the identification issues due to possible endogeneity. Note that this condition is always

fulfilled if we replace (C, ft) in (2.1) by (C∗, f∗t ), where

C∗ = {D + BE[ft(A
′
2yt−1)

′][E((A′2yt−1)(A
′
2yt−1)

′)]−1}A′2,

f∗t = ft − E(ft(A
′
2yt−1)

′)[E((A′2yt−1)(A
′
2yt−1)

′)]−1(A′2yt−1).

2.2.1 Estimation for cointegration

While the representation of the cointegration vector A′2yt is not unique, the cointegration space

M(A2), i.e. the linear space spanned by the columns of A2, is uniquely determined by the process

yt; see ZRY. In fact we can always assume that A2 is a half-orthogonal matrix in the sense that

A′2A2 = Ir. Let A1 be a p × (p − r) half orthogonal matrix such that A = (A1,A2) be a p × p

orthogonal matrix. Let xt,i = A′iyt for i = 1, 2. Then xt,2 is a weakly stationary process, and all

the components of xt,1 are weak I(1).

We adopt the eigenanalysis based method proposed by ZRY to estimate r as well as A2. To

this end, let

Ŵ =

j0∑
j=0

Σ̂jΣ̂
′
j ,

where j0 ≥ 1 is a prescribed and fixed integer, and

Σ̂j =
1

n

n−j∑
t=1

(yt+j − ȳ)(yt − ȳ)′, ȳ =
1

n

n∑
t=1

yt.
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We use the product Σ̂jΣ̂
′
j instead of Σ̂j to make sure that each term in the sum is non-negative

definite, and that there is no information cancellation over different lags. Let λ̃1 ≥ · · · ≥ λ̃p be

the eigenvalues of Ŵ, and γ̃1, · · · , γ̃p be the corresponding eigenvectors. Then A2 is estimated

by Â2 = (γ̃p−r+1, · · · , γ̃p), and the cointegration rank is estimated by

r̂ = arg min
1≤l≤p

IC(l), (2.5)

where IC(l) =
∑l

j=1 λ̃p+1−j + (p− l)ωn, and ωn →∞ and ωn/n
2 → 0 in probability (as we allow

ωn to be data-dependent). ZRY has shown that bothM(Â2) and r̂ are consistent estimators for,

respectively, M(A2) and r under some regularity conditions.

Having obtained the estimated cointegration vector Â′2yt−1, the coefficient matrix D can be

estimated using the standard least squares estimation. Let di, i = 1, 2, · · · , p be the row vectors

of D and ∇yt = (∇y1t , · · · ,∇y
p
t )
′. The least square estimator for di is defined as

d̂i = arg min
di

n∑
t=1

(∇yit − diÂ
′
2yt−1)

2, (2.6)

which leads to d̂i =
∑n

t=1∇yti(Â′2yt−1)′
(∑n

i=1(Â
′
2yt−1)(Â

′
2yt−1)

′
)−1

. Consequently, the esti-

mator for the coefficient matrix D can be written as

D̂ =

n∑
t=1

∇yt(Â
′
2yt−1)

′

(
n∑
i=1

(Â′2yt−1)(Â
′
2yt−1)

′

)−1
.

2.2.2 Estimation for latent factors

We adopt the eigenanalysis based method of Lam and Yao (2012) to estimate the factor loading

space M(B) and the latent factor process ft based on the residuals µ̂t ≡ ∇yt − D̂Â′2yt−1,

t = 1, · · · , n.

Ŵµ =

j0∑
j=1

Σ̂µ(j)Σ̂
′
µ(j), (2.7)

where j0 ≥ 1 is a prespecified and fixed integer, and

Σ̂µ(j) =
1

n

n−j∑
t=1

(µ̂t+j − µ̄)(µ̂t − µ̄)′, µ̄ =
1

n

n∑
t=1

µ̂t.
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where j0 ≥ 1 is a prespecified and fixed integer. One distinctive advantage of using the quadratic

form Σ̂µ(j)Σ̂µ(j)′ instead of Σ̂µ(j) in (2.7) is that there is no information cancellation over

different lags. Therefore this approach is insensitive to the choice of j0 in (2.7). Often small

values such as j0 = 5 are sufficient to catch the relevant characteristics, as serial dependence is

usually most pronounced at small lags. See Lam and Yao (2012) and Chang et al. (2015). Let

(γ̂1, · · · , γ̂m) be the orthonormal eigenvectors of Ŵµ corresponding to the m largest eigenvalues.

Consequently, we estimate B and ft by

B̂ = (γ̂1, · · · , γ̂m), and f̂t = B̂′µ̂t. (2.8)

Since m is usually unknown and the last p−m eigenvalues of Ŵµ may not be exactly 0 due

to the random fluctuation, the determination of m is required. We propose to select m by using

the ratio-based method of Lam and Yao (2012). In particular, let λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p be the

eigenvalues of Ŵµ. We define an estimator for the number of factors m as follows:

m̃ = arg min
1≤i≤R

λ̂i+1/λ̂i, (2.9)

with m < R < p. In practice we may pick, for example, R = p/2, following the recommendation

of Lam and Yao (2012).

Remark 1. The above ratio estimator of m is not necessarily consistent, though it works fine in

practice. See Lam and Yao (2012), and also Tables 1, 2 and 3 in Section 4.1 below. To establish

the consistency, one can estimate m using the information criterion defined as

m̂ = arg min
1≤i≤p

IC(l),

where IC(l) =
∑p

j=l+1 λ̂j + lωn, is the information criterion and ωn is the turning parameter. It

can be shown as ωn → 0 and ωnn
1/2/p→∞, m̂ is consistent for m.

2.2.3 Fitting linear dynamics for factors

Once we have recovered the factor process f̂t, we can fit an appropriate model to represent its

linear dynamic structure. As an illustration, below we fit ft with a VAR model.

8



Let

ft =
s∑
i=1

Eift−i + et, (2.10)

where Ei, 1 ≤ i ≤ s, are m×m matrices, {et} is a sequence of independent random vectors with

mean zero. In our setting, ft is unobservable, and is estimated by f̂t = B̂′v̂t as in (2.8). It can be

shown that

f̂t = ft + B′εt +

4∑
i=2

ζt,i.

See (6.19) in the Appendix below. If we ignore the term
∑4

i=2 ζt,i, f̂t can be viewed as the

observation of ft with measurement error. Thus, Ei can be estimated through (2.10) but with

errors in observations. Estimation with errors in independent observations has been actively

pursued under various settings. See, for example, Carroll, Ruppert and Stefanski (1995). However,

time series models with measurement errors have not received enough attention. Note that when

f̂t = ft + B′εt, (2.10) can be written as a vector ARMA (VARMA) model for f̂ with the same

AR and MA orders. One could estimate Ei based on this VARMA model, which however is not

attractive as one runs into various known problems, including the lack of identification of VARMA

models and possible flat likelihood functions etc.

It is worth mentioning that the standard least squares estimators

(Ẽ1, · · · , Ẽs) = argminE1,··· ,Es

n∑
t=s+1

||̂ft −
s∑
i=1

Eif̂t−i||2 (2.11)

are not consistent estimators for E1, · · · ,Es when the spectral norm of the covariance of B′εt +∑4
i=2 ζt,i has the same order as that of f̂t. For example, in the simple case when f̂t = ft + B′εt

and s = 1, it can be shown that under some regularity conditions,

√
n · vech[Ẽ′1 − {I− {Var(f1 + B′ε1)}−1Var(B′ε1)}E′1]

d−→ N(0,Σ),

where vech(E) denotes the vector obtained by stacking together the columns of matrix E, and

Σ is a covariance matrix. Thus one would insert a factor to Ẽ′1 to make it consistent, such as

[Var(f1)]
−1[Var(f1 + B′ε1)]Ẽ

′
1. However such an approach is not feasible as the required factor
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depends on unknown quantities. In practice, we use the following consistent estimators instead.

(Ê1, · · · , Ês)
′ =

[
n∑

t=s+1

(f̂ ′t−1, · · · , f̂ ′t−s)′(f̂ ′t−1, · · · , f̂ ′t−s)−M

]−1 [ n∑
t=s+1

f̂t(f̂
′
t−1, · · · , f̂ ′t−s)

]′
, (2.12)

where M = diag(Σ̂Bε(1), · · · , Σ̂Bε(s)) and Σ̂Bε(i) =
∑n

t=s+1 B′εt−iε
′
t−iB. This is in the same

spirit as the corrected Yule-Walker estimator proposed by Staudenmayer and Buonaccorsi (2005)

for AR models with measurement errors. The AR order s may be determined by AIC or BIC

(Fan and Yao (2015), Section 4.2.3).

Combining (2.1), (2.10) and (2.12), we obtain the one-step-ahead and two-step-ahead predic-

tions as follows.

yt+1|t = (I + Ĉ)yt + B̂f̂t+1 = (I + Ĉ)yt + B̂

(
s∑
i=1

Êif̂t+1−i

)
,

yt+2|t = (I + Ĉ)yt+1|t + B̂f̂t+2|t

= (I + Ĉ)2yt + (I + Ĉ)B̂

(
s∑
i=1

Êif̂t+1−i

)
+ B̂

[
s−1∑
i=1

Êif̂t+1−i + Ê1

(
s∑
i=1

Êif̂t+1−i

)]
.

We can deduce the h-step ahead forecast yt+h|t, with h ≥ 3, by recursive iteration.

3 Asymptotic Theory

In this section, we investigate the asymptotic properties of the proposed estimators. For two

matrices B1,B2 of the same size and B′1B1 = B′2B2 = Im, let

D(M(B1),M(B2)) =

√
1− 1

m
tr(B1B1

′B2B′2). (3.1)

Then D(M(B1),M(B2)) ∈ [0, 1], being 0 if and only if M(B1) = M(B2), and 1 if and only

if M(B1) and M(B2) are orthogonal. We consider two asymptotic modes: (i) p is fixed while

n→∞, and (ii) both p and n diverge, but r is fixed.

3.1 When n→∞ and p is fixed

We introduce the regularity conditions first.

Condition 1. The process {x′t2,∇y′t, ε
′
t} is a stationary α-mixing process with mean
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zero, E‖(x′t2,∇y′t, ε
′
t)‖

4γ
∞ <∞ for some constant γ > 1 and the mixing coefficients αt

satisfying the condition
∑∞

t=1 α
1−1/γ
t <∞, where ‖x‖∞ = max(|x1|, · · · , |xn|) for any

x = (x1, · · · , xn)′.

Condition 2. The characteristic polynomial of VAR model (2.10) has no roots on or

outside of the unit circle.

Theorem 1. Let Condition 1 hold.

(a) Let vech(D) = (d1, · · · ,dp)′. As n→∞ and p fixed, it holds that

√
n(vech(D̂)− vech(D))

d−→ N(0,Ω1),

where Ω1 is an rp×rp positive definite matrix and ||Ĉ−C||2 = Op(n
−1/2), and ||·||2 denotes

the spectral norm of a matrix.

(b) Let m be known, then D(M(B̂),M(B)) = Op(n
−1/2).

(c) If Condition 2 and E‖et‖2γ <∞ hold in addition, then

||(Ê1 −E1, · · · , Ês −Es)||2 = Op(n
−1/2).

Theorem 2. Let 1 ≤ m < p and Condition 1 hold. For m̃ defined in (2.9),

lim
n→∞

P ( m̃ ≥ m ) = 1.

3.2 When n→∞ and p = o(nc)

Let zjt ≡ ∇x
j
t , j = 1, · · · , p − r, zt = (z1t , · · · , z

p−r
t )′ and νt = (z′t,x

′
t2)
′. In this subsection, we

extend the asymptotic results in the previous section to the cases when p → ∞ and p = o(nc)

for some c ∈ (0, 1/2). Technically we employ a normal approximation method to establish the

results.

Condition 3.
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(i) Let M be a p × k constant matrix with k ≥ p and c1 ≤ λmin(M) ≤ λmax(M) ≤

c2, where c1, c2 are two positive constants. Suppose that νt = Mvt, all the

components of vt = (v1t , · · · , vkt )′ are independent and with mean zero.

(ii) The process {v′t,∇y′t, ε
′
t} is a stationary α-mixing process with E‖(v′t,∇y′t, ε

′
t)‖2θ∞ <

∞ for some θ > η ∈ (2, 4] and the mixing coefficients αm satisfying

∞∑
m=1

α(θ−η)/(θη)
m <∞. (3.2)

(iii) c3 ≤ λmin(D) ≤ λmax(D) ≤ c4 for some positive constants c3, c4.

Theorem 3. Let m be known. Suppose Condition 3 holds with k = o(n1/2−1/η) and p =

O
(
n1/2−1/η/(log n)2

)
, then the following assertions hold.

(a) max{||D̂−D||2, ||Ĉ−C||2} = Op((pr)
1/2n−1/2 + p1/2k2n−1).

(b) D(M(B̂),M(B)) = Op(pn
−1/2).

(c) ||(Ê1 −E1, · · · , Ês −Es)||2 = Op((pm)1/2n−1/2 + p1/2k2n−1), provided that Condition 2

and E||et||θ <∞ hold in addition.

Theorem 4. Let 1 ≤ m < p, Condition 3 holds with k = o(n1/2−1/η) and p = O
(
n1/2−1/η/(log n)2

)
.

For m̃ defined in (2.9),

lim
n→∞

P ( m̃ ≥ m ) = 1.

Remark 2. All the above asymptotic theorems can be generalized to other stationary noise νt

considered by ZRY.

4 Numerical Studies

In this section, we first evaluate the finite sample performance of the proposed inference procedure

via Monte Carlo simulation. We then illustrate the advantage in forecasting of the proposed error

correction factor model via a real data example.
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4.1 Monte Carlo Simulations

In our simulation, we let yt = Axt, where A = (A1,A2) is an orthogonal matrix which was

drawn elementwisely from U [0, 1] independently first and was then orthogonalized, and xt =

(x′t1,x
′
t2)
′ in which the r components of xt2 are independent Gaussian AR(1) processes with

identical autoregressive coefficient 0.5, and the (p − r) vector xt1 is I(1) according to a factor

augmented AR(1) defined as

xt1 = xt−1,1 + Υft + et. (4.3)

In the above expression, Υ is a (p− r)×m half orthogonal matrix (i.e. Υ′Υ = Im) generated in

the same manner as A, the components of factor ft are independent stationary Gaussian AR(1)

with identical autoregressive coefficient 0.5, and et are independent and N(0, Ip). Then yt satisfies

equation (2.1) with C = 0.5A2A
′
2 and B = A1Υ.

With p = 5, 10, 20, 40, 60, r = 1, 2, 4, 6, 8, 10, and m = 1, 2, 4, 6, 8, 10 (m ≤ p− r), we generate

a time series yt with length n = 100, 200, 400, 800, 1200, 1600, 2000, 2400 and estimate r,C,m and

B. For estimating r, we use the IC criterion (2.5) with the penalty wn = log nλ̃p. The number of

factor m is estimated using the ratio method (2.9). For each setting we replicate the experiment

1000 times.

Tables 1-3 list the relative frequencies of the occurrence of the events (r̂ = r) and (m̃ = m)

in simulation with 1000 replications. We make the following observations from Table 1 which

contains the results with p = 5, 10 and 20. First, with p = 5 or 10, the relative frequencies for

the correct specification for the cointegration rank r and the number of factors m are as high

as 85% even for the sample size n as small as 200. When n increases to 400, those relative

frequencies increase to 100%. Secondly, with fixed n and r the correct estimation rates for m

increases when dimension p increases, a phenomenon coined as the “blessing-of-dimensionality”.

This is consistent with the findings in Lam and Yao (2012) which only dealt with purely stationary

processes. Thirdly, the inference on r tends to be more challenging when p increases. For example,

the relative frequency for correct estimation of r(= 2), when m = 1 and n = 200, decreases from

68.5% to 65.4% with p increasing from 5 to 10. This is in line with the findings in ZRY. Lastly, we

note that the increase in p, r and m would generally demand a larger n to maintain the same level

of estimation accuracy. This is consistent with our theory that requires p = o(nc) for c ∈ (0, 1/2).

Some similar conclusions can be drawn from results reported in Table 2-3. In particular, the

13



inference on the number of factor (when m is relatively small compared to p) is relatively easy

when p = 40 and 60, with a sample size equal to 800. Unreported results for n = 200, 400 also

corroborate the above observation. However, the inference on the cointegration rank is more

difficult when n is small or/and r is large.

To evaluate the performance of the estimation for both cointegration space and factor cofeature

space, we present the boxplots of D(M(Â2),M(A2)) and that of D(M(B̂),M(B)) in Figure 1,

for a few (selected) combinations of p, r and m, with n = 400, 800, 1600, 3200. The overall profile

of the estimation accuracy is similar to those in Tables 1-3. For example, when p increase,

the estimation accuracy of cointegration space becomes worse, while that of factor cofeature

space tends to improve. That is, the “curse-of-dimensionality” in inferring cointegration space is

coupled with the “blessing-of-dimensionality” in estimating the factor cofeature space. It is further

observed that the estimation in general improves as n increases, which confirms our consistency

theory.

Table 1: Relative frequencies (×100) of the occurrences of events r̂ = r (1st entries in parentheses)
and m̃ = m (2nd entries in parentheses) in a simulation with 1000 replications.

p = 5 n = 100 n = 200 n = 400 n = 800
m = 1 r = 1 (92.0, 93.5) (100, 99.3) (100, 99.9) (100, 100)

r = 2 (44.6, 89.3) (68.5, 96.6) (83.7, 99.8) (98.6, 100)

p = 10 n = 200 n = 400 n = 800 n = 1200
m = 1 r = 1 (85.3, 100) (100, 100) (100, 100) (100, 100)

r = 2 (65.4, 100) (82.0, 100) (95.4, 100) (99.6, 100)
m = 2 r = 1 (86.5, 82.2) (100, 97.7) (100, 99.9) (100, 100)

r = 2 (62.4, 83.4) (75.1, 97.8) (94.3, 100) (98.8, 100)

p = 20 n = 400 n = 800 n = 1200 n = 1600
m = 2 r = 2 (85.5, 99.7) (92.8, 100) (96.7, 100) (98.9, 100)

r = 4 (20.5, 95.0) (43.3, 99.8) (68.8, 100) (86.3, 100)
m = 4 r = 2 (82.0, 93.2) (89.5, 99.9) (93.8, 99.9) (96.3, 100)

4.2 A Real Data Example

To further illustrate the proposed approach, we apply the proposed error correction factor model

(ECFM) to the ten U.S. Industrial Production monthly indices in January 1959 — December

2006, extracted from Stock and Watson (2008), namely, products total, final products, consumer

goods, durable consumer goods, nondurable consumer goods, materials, durable goods materials,

nondurable goods materials, manufacturing, and residential utilities. The estimated cointegration

14



Table 2: Relative frequencies (×100) of the occurrences of events r̂ = r (1st entries in parentheses)
and m̃ = m (2nd entries in parentheses) in a simulation with 1000 replications.

p = 40 n = 800 n = 1200 n = 1600 n = 2000

m = 2 r = 2 (72.8, 100) (94.7, 100) (100, 100) (100, 100)
r = 4 (64.0, 99.9) (99.5, 100) (99.3, 100) (99.7, 100)
r = 6 (86.4, 93.8) (95.2, 98.9) (96.2, 99.7) (97.5, 100)
r = 8 (53.8, 100) (77.4, 100) (82.2, 100) (89.6, 100)

m = 4 r = 2 (73.3, 100) (89.5, 100) (99.9, 100) (100, 100)
r = 4 (66.8, 99.9) (99.3, 100) (99.5, 100) (99.2, 100)
r = 6 (75.1, 99.5) (88.3, 100) (89.5, 100) (91.0, 100)
r = 8 (27.1, 99.7) (59.0, 100) (64.4, 100) (75.9, 100)

m = 6 r = 2 (72.7, 99.6) (86.2, 100) (99.6, 100) (100, 100)
r = 4 (69.2, 96.5) (98.6, 99.4) (98.3, 100) (98.4, 100)
r = 6 (65.6, 99.7) (83.1, 100) (86.1, 100) (88.8, 100)
r = 8 (16.9, 98.7) (41.3, 100) (50.8, 100) (62.4, 100)

m = 8 r = 2 (73.7, 99.9) (81.1, 100) (99.8, 100) (100, 100)
r = 4 (71.0, 89.1) (98.3, 99.2) (98.2, 99.9) (98.0, 100)
r = 6 (60.8, 98.7) (82.1, 99.9) (82.1, 100) (87.0, 100)
r = 8 (12.7, 83.7) (37.0, 96.5) (45.3, 98.5) (52.6, 99.6)

rank is r̂ = 5, and the number of factor is m̃ = 1. We also fit the data with a vector error correction

model (VECM) using Johansen’s trace test to determine the cointegration rank r for each given

autoregressive order between 1 and 8, and then using the Akaike Information Criterion (AIC)

to select the optimal autoregressive order 6. The corresponding estimated cointegration rank

is also 5. Hence both the fitted models suggest the same cointegration rank 5, while VECM

represents the short-run dynamics in terms of a ten-dimensional vector AR(6) process (with 6

10 × 10 autocoefficient matrices), and, in contrast, the newly proposed ECFM captures this

dynamics in a univariate latent factor process, achieving a massive reduction in the number of

parameters required. The difference between the cointegration space estimated by our ECFM and

that produced by Johansen’s method is computed as

D(M(Â2),M(Ã2))
2 = 1− 1

5
tr{Â2Â

′
2(Ã2(Ã

′
2Ã2)

−1Ã2)
′} = 0.0157,

where columns of Â2 denote the loadings of the five cointegrated variables identified by our

method and those of Ã2 by Johansen’s. This suggests that the estimated cointegration spaces by

both approaches be effectively equivalent.

We further examine the forecasting performance of the proposed ECFM. To this end, we
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Table 3: Relative frequencies (×100) of the occurrences of events r̂ = r (1st entries in parentheses)
and m̃ = m (2nd entries in parentheses) in a simulation with 1000 replications.

p = 60 n = 1200 n = 1600 n = 2000 n = 2400

m = 2 r = 2 (20.8, 100) (34.3, 100) (97.3, 100) (100, 100)
r = 4 (16.2, 100) (87.3, 100) (100, 100) (99.9, 100)
r = 6 (63.4, 100) (99.1, 100) (99.5, 100) (99.5, 100)
r = 8 (88.4, 100) (98.9, 100) (97.5, 100) (97.1, 100)
r = 10 (72.0, 100) (92.4, 100) (89.7, 100) (89.6, 100)

m = 4 r = 2 (19.8, 100) (23.3, 100) (94.3, 100) (99.9, 100)
r = 4 (16.7, 100) (78.4, 100) (100, 100) (100, 100)
r = 6 (59.3, 100) (97.7, 100) (99.1, 100) (98.7, 100)
r = 8 (80.1, 100) (95.3, 100) (92.7, 100) (92.5, 100)
r = 10 (51.0, 100) (77.8, 100) (73.4, 100) (71.5, 100)

m = 6 r = 2 (20.4, 100) (29.6, 100) (86.6, 100) (99.5, 100)
r = 4 (13.4, 100) (72.5, 100) (99.8, 100) (100, 100)
r = 6 (58.9, 100) (97.2, 100) (98.6, 100) (98.1, 100)
r = 8 (73.3, 100) (91.7, 100) (87.0, 100) (87.0, 100)
r = 10 (29.9, 100) (62.5, 100) (59.2, 100) (57.2, 100)

m = 8 r = 2 ( 20.7, 100) (24.9, 100) (79.3, 100) (99.3, 100)
r = 4 (33.2, 100) (70.1, 100) (99.5, 100) (99.7, 100)
r = 6 (59.3, 100) (95.6, 100) (98.8, 100) (98.2, 100)
r = 8 (67.9, 100) (89.9, 100) (84.3, 100) (85.4, 100)
r = 10 (23.7, 99.7) (54.0, 100) (50.9, 100) (51.6, 100)

m = 10 r = 2 (20.3, 100) (21.2, 100) (76.6, 100) (98.5, 100)
r = 4 (33.8, 100) (65.8, 100) (99.4, 100) (100, 100)
r = 6 (60.0, 100) (94.7, 100) (98.7, 100) (98.3, 100)
r = 8 (61.6, 100) (87.6, 100) (84.7, 100) (85.4, 100)
r = 10 (18.6, 99.9) (49.5, 100) (48.0, 100) (48.2, 100)

compare the out-of-sample forecasting performance of our ECFM with those of (i) unrestricted

VAR in log-levels with lag length selected by the standard Schwarz criterion, and (ii) VECM

with cointegration rank chosen by Johansen’s procedure (trace test with 5% critical values) and

lag length selected by AIC. For each of the last 10% of data points, we fit the models using the

data upto its previous month and forecast the values using the three fitted models. Following

Athanasopoulos et al. (2011), we measure the forecast accuracy using traditional trace of the

mean-squared forecast error matrix (TMSFE) and the determinant of the mean-squared forecast

error matrix |MSFE| at each forecast horizon h = 1, · · · , 16. We also calculate the generalized

forecast error second moment (GFESM), i.e., the determinant of the expected value of the outer

product of the vector of stacked forecast errors of all future times up to the horizon of interest, of

Clements and Hendry (1993). GFESM is invariant to elementary operations that involve different

16



Figure 1: Boxplot of D(M(Â2),M(A2)) (left panel) and D(M(B̂),M(B)) (right panel), 400 ≤
n ≤ 3200
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Table 4: Percentage improvement in forecast accuracy measures: US IP indices
Horizon (h) ECFM versus VAR in level VECM(AIC+J) versus VAR in level ECFM versus VECM(AIC+J)

TMSFE MSFE GFESM TMSFE MSFE GFESM TMSFE MSFE GFESM

1 55.5 99.5 27.4 28.1 91.6 14.3 38.2 94.8 15.2
4 66.6 97.8 77.6 46.5 90.3 58.7 37.5 78.0 45.6
8 78.3 89.8 88.0 48.2 74.2 69.0 58.1 60.7 61.4
12 81.9 94.5 89.0 51.3 72.5 70.4 62.7 80.2 63.0
16 82.6 95.4 90.8 58.1 69.2 71.1 58.5 85.4 68.4

variables, and also to elementary operations that involve the same variable at different horizons.

The forecasting comparison results are presented in Table 4.

It is observed from Table 4 that both ECFM and VECM provide more accurate forecasts than

the VAR in level model. For example, for 12 month ahead forecast, ECFM achieves improvement

in TMSFE, |MSFE| and GFESM by, respectively, 81.9%, 94.5%, 89.0%, compared to VAR in level

model. The improvement from using VECM over VAR is obvious though less substantial than

that of ECFM. The direct comparison between EDFM and VECM in the right panel of Table 4

shows superiority of EDFM in forecasting across all the forecasting horizons.

5 Conclusions

We conclude the paper with two open questions.

First, in order to apply the result of Zhang, Robinson and Yao (2015), the dimension p cannot

be too large (i.e. not greater than O(n1/4)). It would be interesting and more challenging to

consider the cases with larger p. Note that the rank of the matrix C is r. One possible solution is

to replace the first step in the procedure via sparse shrinkage technique by solving the following

optimal problem:

Ĉ = argminC∈Rp×p

{
n∑
t=1

||∇yt −Cyt−1||2 + λn|||C|||s1

}
, (5.4)

where ||C||s1 =
∑p

j=1 λj(C), and λ1(C), λ2(C), · · · , λp(C) denote the singular values of C.

Secondly, since in this paper our purpose is in prediction and inference for the cofeatures, we

can impose the condition that Cyt−1 and ft are uncorrelated; see the beginning of Section 2.2.

However, for some applications the main concern may be on the original C and ft. Since Cyt−1

and ft may be correlated with each other, the inference method proposed in this paper will lead to

inconsistent estimators. It would be interesting to consider the inference based on some iterative
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equations as in Bai (2009), i.e., estimate {C,F,B} via the least squares objective function defined

as

SSR(C,F,B) =
n∑
t=1

(∇yt −Cyt−1 −Bft)
′(∇yt −Cyt−1 −Bft) (5.5)

subject to the constraint B′B = Im.

6 Appendix: Technical proofs

Lemma 5. Under Condition 1 or conditions of Theorem 3, we have

1

n

n−1∑
t=1

(Â′2yty
′
tÂ2 −A′2yty

′
tA2) = op(1). (6.1)

Proof. We first show the case with fixed p. Since {∇yt} is α mixing with mixing coefficients αm

satisfying

∞∑
m=1

α1−1/γ
m <∞, (6.2)

it follows from Theorem 3.2.3 of Lin and Lu (1997) that there exists a p-dimensional Gaussian

process g(t) such that

y[nt]/
√
n

d−→ g(t), on D[0, 1]. (6.3)

From (6.3) and the continuous mapping theorem, it follows that

1

n2

n∑
t=1

yty
′
t

d−→
∫ 1

0
g(t)g′(t) dt. (6.4)

Further, by E||xt2||2γ <∞ for some γ > 1, we have

max
1≤t≤n

||xt2 − Ext2||/
√
n = op(1), and

1

n

n∑
t=1

||xt2 − Ext2|| = Op(1). (6.5)

Combining (6.3) and (6.5) (see Lemma 7 of ZRY) yields

1

n3/2
||

n∑
t=1

ytx
′
t2||2 = op(1). (6.6)

On the other hand, by ∇xt1 = A′1∇yt, we know (∇xt1,xt2) is also α mixing with mixing coeffi-
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cients satisfying (6.2). As a result, by the proof of Theorem 1 in ZRY,

||Â2 −A2||2 = Op(1/n). (6.7)

By (6.4), (6.6) and (6.7), we have

|| 1
n

n−1∑
t=1

(Â′2yty
′
tÂ2 −A′2yty

′
tA2)||2

= ||(Â2 −A2)
′
∑n−1

t=1 yt(A
′
2yt)

′

n
+

∑n−1
t=1 (A′2yt)y

′
t

n
(Â2 −A2)

+(Â2 −A2)
′
∑n−1

t=1 yty
′
t

n
(Â2 −A2)||2

= ||(Â2 −A2)
′
∑n−1

t=1 ytx
′
t2

n
+

∑n−1
t=1 xt2y

′
t

n
(Â2 −A2) + (Â2 −A2)

∑n−1
t=1 yty

′
t

n
(Â2 −A2)

′||2
= op(1). (6.8)

Next, consider the case p = o(nc). Let ςt be a k-dimensional I(1) process such that ∇ςt = vt.

By Remark 2 of ZRY, we know that Condition 3 (i) and Remark 3 of ZRY hold for ςt. Let

M1,M2 be k × (p − r) and k × r matrices such that M given in (i) of Condition 3 satisfying

M′ = (M1,M2). Let F(t) = (F 1(t), · · · , F k(t))′ be defined as in ZRY and ς̄ = 1
n

∑n
t=1 ςt, then

|| 1

n2

n∑
t=1

(xt1 − x̄1)(xt1 − x̄1)
′ −M′

1

∫ 1

0
F(t)F′(t) dtM1||2

= ||M′
1

(
1

n2

n∑
t=1

(ςt − ς̄)(ςt − ς̄)′ −
∫ 1

0
F(t)F′(t) dt

)
M1||2 = op(1). (6.9)

By Remark 3 of ZRY, we have λmin

(∫ 1
0 F(t)F′(t) dt

)
≥ 1/k in probability. Since c1 ≤ λmin(M) ≤

λmax(M) ≤ c2, it follows λmin

(
M′

1

∫ 1
0 F(t)F′(t) dtM′

1

)
≥ 1/k in probability. Further, for any

given j ≥ 0,

|| 1
n

n−j∑
t=1

(xt+j,2 − x̄2)(xt2 − x̄2)
′ − Cov(xt+j,2,xt2)||2

= ||M′
2

( 1

n

n∑
t=1

[(vt+j − v̄)(vt − v̄)′ − Cov(vt+j ,vt)]
)
M2||2 = op(1), and (6.10)

|| 1

n3/2

n−j∑
t=1

(xt+j,1 − x̄2)(xt2 − x̄2)
′||2 = ||M′

1

(
1

n3/2

n∑
t=1

(ςt+j − ς̄)(vt − v̄)′

)
M2||2

= Op(k/n
1/2), (6.11)

where vt is given in (i) of Condition 3.

By (6.9)–(6.11), similar to the proof of Theorem 3 in ZRY, it can be shown that when k =
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o(n1/2−1/η),

||Â2 −A2||2 = Op(p
1/2k/n). (6.12)

Similar to (6.9), there exists a k-dimensional Gaussian process w(t) such that

|| 1

n2

n∑
t=1

yty
′
t −A1M

′
1

∫ 1

0
w(t)w′(t) dtM1A

′
1||2 = op(1) (6.13)

and similar to (6.11), we can show (6.6) holds provided k/n1/2 → 0 as n → ∞. Thus, by (6.12)

and (6.13), we also have (6.8) and complete the proof of Lemma 5.

Lemma 6. Under Condition 1,

|| 1√
n

n∑
t=1

∇yty
′
t−1(Â2 −A2)||2 = op(1),

and under the conditions of Theorem 3,

|| 1√
n

n∑
t=1

∇yty
′
t−1(Â2 −A2)||2 = Op(p

1/2k2/n1/2). (6.14)

Proof. When p is fixed, similar to (6.6), we have

1

n3/2
||

n∑
t=1

∇yty
′
t−1||2 = op(1).

As a result, it follows from (6.7) that

|| 1√
n

n∑
t=1

∇yty
′
t−1(Â2 −A2)||2 = op(1). (6.15)

When p tends to infinity as n→∞, using the same idea as in (6.11), we can show

1

n3/2
||

n∑
t=1

∇yty
′
t−1||2 = Op(k/n

1/2). (6.16)

Thus, by (6.12) and p ≤ k = o(n1/2), it follows that

|| 1√
n

n∑
t=1

∇yty
′
t−1(Â2 −A2)||2 = Op(p

1/2k2/n1/2).

Thus, we have Lemma 6.

Lemma 7. Let Σ = E{(f ′t−1, · · · , f ′t−s)′(f ′t−1, · · · , f ′t−s)}. Under Condition 1 , for any given posi-
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tive integer s,

1

n

[ n∑
t=s+1

(f̂ ′t−1, · · · , f̂ ′t−s)′(f̂ ′t−1, · · · , f̂ ′t−s)−M
]

p−→ Σ (6.17)

and under the condition of Theorem 3, in probability

1

n

[ n∑
t=s+1

(f̂ ′t−1, · · · , f̂ ′t−s)′(f̂ ′t−1, · · · , f̂ ′t−s)−M
]
> 0, (6.18)

where M is defined in Section 2.2.3 and ” > 0” in (6.18) denotes the matrix is positive definite.

Proof. By some elementary computation, we have

f̂t = [ft + B′εt] + [(B̂−B)′(Bft + εt)] + [B̂′(D− D̂)xt2] + [B̂′D̂(A2 − Â2)
′yt−1]

≡
4∑
i=1

ζt,i. (6.19)

Next, we first show (6.17) holds for fixed p. By law of large numbers for α-mixing process, we get

1

n

[ n∑
t=s+1

(ζ′t−1,1, · · · , ζ′t−s,1)′(ζ′t−1,1, · · · , ζ′t−s,1)−M
]

p−→ Σ. (6.20)

On the other hand, by (6.33) (see below), we have

||B̂−B||2 = Op(n
−1/2), (6.21)

which combining with (6.20) gives

|| 1
n

n∑
t=s+1

(ζ′t−1,2, · · · , ζ′t−s,2)′(ζ′t−1,2, · · · , ζ′t−s,2)||2 = op(1). (6.22)

Similarly, by (6.29) (see below) and (6.7), we have

4∑
i=3

|| 1
n

n∑
t=s+1

(ζ′t−1,i, · · · , ζ′t−s,i)′(ζ′t−1,i, · · · , ζ′t−s,i)||2 = op(1). (6.23)

Combining (6.20)–(6.23) yields that

1

n

n∑
t=s

[(f̂t−1)
′, · · · , (f̂t−s)′]′[(f̂t−1)′, · · · , (f̂t−s)′]

=
1

n

n∑
t=s+1

(
4∑
i=1

ζ′t−1,i, · · · ,
4∑
i=1

ζ′t−s,i)
′(

4∑
i=1

ζ′t−1,i, · · · ,
4∑
i=1

ζ′t−s,i)

=
1

n

n∑
t=s+1

(ζ′t−1,1, · · · , ζ′t−s,1)′(ζ′t−1,1, · · · , ζ′t−s,1) + op(1)
p−→ Σ
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and (6.17) follows.

Now, we turn to show the case with p varying with n. Since p = o(n1/2), (6.20) still holds.

Note that 1
n

∑n
t=s(ζ

′
t−1,i, · · · , ζ′t−s,i)′(ζ′t−1,i, · · · , ζ′t−s,i) ≥ 0 for i = 1, · · · , 4. For the proof of

(6.18), it is enough to show for all 1 ≤ i 6= j ≤ 4,

|| 1
n

n∑
t=s+1

(ζ′t−1,i, · · · , ζ′t−s,i)′(ζ′t−1,j , · · · , ζ′t−s,j)||2 = op(1). (6.24)

We only give i = 1, j = 4 in details, other cases can be shown similarly. Since yt = Axt and

νt = Mvt, it follows that

ζt,1 = B′(∇yt −Dxt−1,2) = B′Aνt −B′(D + A2)xt−1,2 = B′AMvt −B′(D + A2)M
′
2vt−1.

Thus, by the fact that for any −s− 1 ≤ j ≤ s+ 1,

||
n∑
t=1

t∑
s=1

vsvt+j ||2 = Op(kn) (6.25)

and (6.12), it can be shown that the left-hand side of (6.24) is of order Op(p
1/2k2/n) = op(1),

where (6.25) follows by the weak convergence of each element of n−1
∑n

t=1

∑t
s=1 vsvt+j . Thus,

we have (6.18) and complete the proof of Lemma 7.

Proof of Theorem 1. Let bi, i = 1, · · · , p be the rows of B. Lemmas 5 and 6 implies that for

any 1 ≤ i ≤ p,

√
n(d̂i − di) =

(
1√
n

n∑
t=1

(bift + εit)y
′
t−1A2

)(
1

n

n∑
i=1

(A′2yt−1)(A
′
2yt−1)

′

)−1
+ op(1)

=

(
1√
n

n∑
t=1

(bift + εit)x
′
t−1,2

)(
1

n

n−1∑
i=0

xt2x
′
t2

)−1
+ op(1). (6.26)

Since {xt2} is α mixing with mixing coefficients satisfying (6.2), it follows that

1

n

n−1∑
i=0

xt2x
′
t2

p−→ E(xt2x
′
t2) =: Π. (6.27)

On the other hand, by central limit theory (CLT) for α-mixing process {(bift + εit)x
′
t−1,2, 1 ≤ i ≤

p}, there exists a pr × pr matrix Λ such that

1√
n

(
n∑
t=1

(b1ft + ε1t )x
′
t−1,2, · · · ,

n∑
t=1

(bpft + εpt )x
′
t−1,2

)
d−→ N(0,Λ). (6.28)

Thus, by (6.27) and (6.28), we have

√
n(vech(D̂)− vech(D))

d−→ N(0,Π−1ΛΠ−1). (6.29)
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Further, by (6.29) and (6.7), it is easy to show that

||Ĉ−C||2 = ||(D̂−D)A′2 + D̂(Â′2 −A′2)||2 = Op(n
−1/2).

Next, we show (b) of Theorem 1. Observe that

µ̂t = ∇yt − D̂Â′2yt−1 = (∇yt −Dxt−1,2)− (D̂−D)[(Â2 −A2)
′yt−1 + xt−1,2]−D(Â2 −A2)

′yt−1,

which means that

1

n

n−j∑
t=1

[
µ̂t+jµ̂

′
t − E(∇yt+j −Dxt+j−1)(∇yt −Dxt−1)

′]
=

1

n

n−j∑
t=1

[
(∇yt+j −Dxt+j−1)(∇yt −Dxt−1)

′ − E(∇yt+j −Dxt+j−1)(∇yt −Dxt−1)
′]

+(D̂−D)

(
1

n

n−j∑
t=1

[(Â2 −A2)
′yt+j−1 + xt+j−1,2][(Â2 −A2)

′yt−1 + xt−1,2]
′

)
(D̂−D)′

+D(Â2 −A2)
′

(
1

n

n−j∑
t=1

yt+j−1y
′
t−1

)
(Â2 −A2)D

′

− 1

n

n−j∑
t=1

(∇yt+j −Dxt+j−1,2){[y′t−1(Â2 −A2) + x′t−1,2](D̂−D)′ + y′t−1(Â2 −A2)D
′}

− 1

n

n−j∑
t=1

{(D̂−D)[(Â2 −A2)
′yt+j−1 + xt+j−1,2] + D(Â2 −A2)

′yt+j−1}(∇yt −Dxt−1,2)
′

+
1

n

n−j∑
t=1

[(Â2 −A2)
′yt+j−1y

′
t−1 + xt+j−1,2y

′
t−1](Â2 −A2)D

′

+
1

n

n−j∑
t=1

D(Â2 −A2)
′[yt+j−1y

′
t−1(Â2 −A2) + yt+j−1x

′
t−1,2](D̂−D)′. (6.30)

By (6.7), (6.29) and the law of large numbers, it can be shown that the spectral norm of the last

six terms of the right-hand side in (6.30) is Op(n
−1). Further, by CLT of α mixing process, we

have that the first term of the right-hand side of (6.30) is Op(n
−1/2). Thus,

1

n

n−j∑
t=1

[
µ̂t+jµ̂

′
t − E(∇yt+j −Dxt+j−1)(∇yt −Dxt−1)

′] = Op(n
−1/2). (6.31)

Similarly, we can show

∣∣∣∣∣∣ 1
n

n−j∑
t=1

µ̄µ̂′t

∣∣∣∣∣∣
2

= Op(n
−1),
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which combining with (6.31) implies

||Σ̂µ(j)−Σµ(j)||2 = Op(n
−1/2), (6.32)

where Σµ(j) = E(∇yt+j −Dxt+j−1)(∇yt −Dxt−1)
′. Since j0 is fixed, it follows from (6.32) that

||Ŵµ −
j0∑
j=1

Σµ(j)Σ′µ(j)||2 = Op(n
−1/2). (6.33)

Note that D(M(B̂),M(B)) = Op(||Ŵµ −
∑j0

j=1 Σµ(j)Σ′µ(j)||2) (see for example, Chang, Guo

and Yao (2015)), we have (b) of Theorem 1 as desired.

Now, we turn to show (c). By (6.19), we get

n∑
t=s+1

[̂f ′t−1, · · · , f̂ ′t−s]′ [̂ft −
s∑
i=1

Eif̂t−i]
′

=

n∑
t=s+1

[
f ′t−1 + ε′t−1B, · · · , f ′t−s + ε′t−sB

]′
[e′t + ε′tB]

−
n∑

t=s+1

[
f ′t−1 + ε′t−1B, · · · , f ′t−s + ε′t−sB

]′
[
s∑
i=1

ε′t−iBE′i]

+

n∑
t=s+1

[
f ′t−1 + ε′t−1B, · · · , f ′t−s + ε′t−sB

]′
[

4∑
j=2

(ζt,j −
∑
i=1

Eiζt−i,j)]
′

+
n∑

t=s+1

4∑
j=2

[ζ′t−1,j , · · · , ζ′t−s,j ]′[et + B′εt −
s∑
i=1

EiB
′εt−i +

4∑
j=2

(ζt,j −
∑
i=1

Eiζt−i,j)]
′

=:

4∑
i=1

∆ni. (6.34)

By (6.7), (6.21) and (6.29), we can show that for any given positive integer s,

||∆n3||2 + ||∆n4||2 = Op(
√
n). (6.35)

On the other hand, since for any 1 ≤ i, j ≤ s and l 6= i, vech{(ft−i + Bεt−i)(e
′
t + ε′tB), ft−iε

′
t−jB,

B′εt−iε
′
t−lB} is a α mixing process with finite 2γ-moment and mixing coefficients satisfying (6.2),

it follows from the CLT of α mixing process (see for example Corollary 3.2.1 of Lin and Lu) that

for some matrix Γ1,

1√
n

n∑
t=s+1

vech{(ft−i + Bεt−i)(e
′
t + ε′tB), ft−iε

′
t−jB, B′εt−iε

′
t−lB}

d−→ N(0,Γ1). (6.36)

Set Ω =
[∑n

t=s+1(f̂
′
t−1, · · · , f̂ ′t−s)′(f̂ ′t−1, · · · , f̂ ′t−s)−M

]
. By the definition of Êi, i = 1, 2, · · · , s,
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we have 
Ê′1 −E′1

...

Ê′s −E′s

 = Ω−1




∑n
t=s f̂t−1(f̂t −

∑s
i=1 Eif̂t−i)

′

...∑n
t=s f̂t−s(f̂t −

∑s
i=1 Eif̂t−i)

′

+M


E′1
...

E′s

 .

 (6.37)

Thus, by Lemma 7 and (6.34)–(6.36), we have conclusion (c) and complete the proof of Theorem

1.

Next, we first develop bounds for the estimated eigenvalues λ̂j , j = 1, 2, · · · p.

Lemma 8. Let λj , j = 1, · · · , p be the eigenvalues of Wv. Under Condition 1 or conditions of

Theorem 3,

|λ̂m − λm| = Op(pn
−1/2) and |λ̂m+1| = Op(pn

−1/2). (6.38)

Proof. By (b) of Theorem 1 and (b) of Theorem 3, we have for any 1 ≤ i ≤ p,

|λ̂i − λi| ≤ ||Ŵv −Wv||2 = Op(pn
−1/2) and λm+1 = · · · = λp = 0.

This gives Lemma 8 as desired.

Proof of Theorem 2. It is enough to show that

lim
n→∞

P{m̃ < m} = 0. (6.39)

Suppose m̃ < m is true, then by Lemma 8, there exists a positive constant c1 such that

lim
n→∞

P{λ̂m̃+1/λ̂m̃ ≥ c1} = 1, and lim
n→∞

P{λ̂m+1/λ̂m < c1/2} = 1.

This implies that

lim
n→∞

P{λ̂m̃+1/λ̂m̃ > λ̂m+1/λ̂m} = 1,

which contradicts the definition of m̃. Thus, (6.39) holds.

Proof of Theorem 3. Since p = o(n1/2) and {xt2} is a α mixing process with mixing coefficients

satisfying (3.2), it follows that (6.27) also holds for this case. Further, note that for any 1 ≤ i ≤ p
and 1 ≤ j ≤ r, applying CLT of mixing process to {(bift+ εit)x

j
t−1,2}, which is a α mixing process

with coefficients satisfying (3.2), we get

|
n∑
t=1

(bift + εit)x
j
t−1,2| = Op(

√
n),
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which implies

|| 1
n

n∑
t=1

(Bft + εt)x
′
t−1,2||2 = Op(n

−1/2(pr)1/2). (6.40)

Thus, by Lemmas 5 and 6,

||D̂−D||2 =

∥∥∥∥∥∥
(

1

n

n∑
t=1

∇yty
′
t−1Â2

)(
1

n

n∑
i=1

Â′2yt−1y
′
t−1Â2

)−1
−D

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
(

1

n

n∑
t=1

∇ytx
′
t−1,2

)(
1

n

n−1∑
i=0

xt−1,2x
′
t−1,2

)−1
−D

∥∥∥∥∥∥
2

+Op(p
1/2k2/n)

=

∥∥∥∥∥∥
(

1

n

n∑
t=1

(Bft + εt)x
′
t−1,2

)(
1

n

n−1∑
i=0

xt−1,2x
′
t−1,2

)−1∥∥∥∥∥∥
2

+Op(p
1/2k2/n)

= Op(n
−1/2(pr)1/2 + p1/2k2/n), (6.41)

this combining with (6.12) yields

||Ĉ−C||2 = ||(D̂−D)A′2 + D̂′(Â′2 −A′2)||2 = Op(n
−1/2(pr)1/2 + p1/2k2/n). (6.42)

Thus, (a) of Theorem 3 follows from (6.41) and (6.42).

Next, we show (b). It is easy to see that

‖ 1

n2

n−j∑
t=1

yt−1y
′
t−1‖2 = Op(p). (6.43)

Thus, by (6.12), (6.41) and (iii) of Condition 3, it can be shown that || · ||2 norm of the last

six terms of the right-hand side in (6.30) are of order o(pn−1/2), provided k = o(n1/2) and

p = O(n1/4). On the other hand, applying CLT of α mixing process to the first term of the

right-hand side of (6.30), we get for any given j, this term is of order Op(pn
−1/2). Similarly, we

can show n−1
∑n−j

t=1 µ̄µ̂
′
t = Op(n

−1/2p). Thus,

||Σ̂µ(j)−Σµ(j)||2 = Op(n
−1/2p). (6.44)

Since j0 is fixed, it follows from (6.44) that

||Ŵµ −
j0∑
j=1

Σµ(j)Σ′µ(j)||2 = Op(n
−1/2p). (6.45)

Note that D(M(B̂),M(B)) = Op(||Ŵµ −
∑j0

j=1 Σµ(j)Σ′µ(j)||2) (see for example, Chang, Guo

and Yao (2015)), we have (b) of Theorem 3 as desired.

In the following, we give the proof of (c). Let ∆ni, i = 1, 2, 3, 4 be defined as in (6.34). By
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conclusions (a), (b) of Theorem 3 and (6.12), we can show that

||∆n3 + ∆n4||2 = Op

(
n1/2(pr)1/2[n−1/2(pr)1/2 + p1/2k2/n+ pn−1/2] + p1/2k2

)
. (6.46)

On the other hand, applying CLT of α mixing to the elements of vech{(ft−i + Bεt−i)(e
′
t +

ε′tB), ft−iε
′
t−jB, B′vt−iε

′
t−lB, l 6= i, 1 ≤ i, j ≤ s}, we get

||∆n1 + ∆n2 −M ||2 = Op((pmn)1/2). (6.47)

Combining equations (6.46)–(6.47) with Lemma 7 and p = o(n1/2) yield

||(E1, · · · ,Es)||2 = O(p1/2k2n−1 + pm1/2n−1/2), (6.48)

this gives (c) and completes the proof of Theorem 3.

Proof of Theorem 4. By Lemma 8, Theorem 4 can be shown similarly as for Theorem 2. There-

fore, we omit the detailed proofs.

Proof of Remark 1. Since the proofs are similar, we only show the case with fixed p in details.

It follows from the definition of m̂ that

p∑
j=m̂+1

λ̂j + m̂ωn ≤
p∑

j=m

λ̂p+1−j +mωn. (6.49)

Suppose that m̂ > m, it follows from (6.49) that

(m̂−m)ωn ≤
m̂∑

j=m+1

λ̂j ≤ (m̂−m)λ̂m+1. (6.50)

Since ωn/n
−1/2 →∞, it follows from Lemma 8 that equation (6.50) holds with probability zero.

This gives that

lim
n→∞

P{m̂ > m} = 0. (6.51)

On the other hand, if m̂ < m, equation (6.49) yields

(m− m̂)λ̂m ≤
m∑

j=m̂+1

λ̂j ≤ (m− m̂)ωn. (6.52)

Lemma 8 implies λ̂m ≥ λm/2 > 0. Thus, by (6.52) and ωn → 0 as n→∞, we have

lim
n→∞

P{m̂ < m} = 0. (6.53)

Equation (6.51) together with (6.53) give the consistency of m̂ as desired.
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