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We study the determinants of factor shares in a neoclassical en-
vironment with capital-skill complementarity and endogenous ed-
ucation. In this environment estimates of the elasticity of sub-
stitution between capital and labor that fail to account for human
capital levels will be biased upwards. We develop a model with
overlapping generations, technology-driven neoclassical growth and
ongoing increases in educational attainment. For a class of produc-
tion functions featuring capital-skill complementarity, a balanced
growth path exists and is characterized by an inverse relationship
between the rates of capital- and labor-augmenting technological
progress and the capital share in national income.
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Ever since John Maynard Keynes (1939, p.48) famously touted the stability of the capital and
labor shares in national income as “one of the most surprising, yet best-established, facts in the
whole range of economic statistics,” growth theorists have been fascinated by the determinants
of long-run factor shares and the reasons for their stability. Kaldor (1961) made the constancy
of factor shares first of his six ‘stylized’ facts of economic growth and many economists have
observed the continued stability of these shares well beyond the time of his writing. But, in
recent years, the labor share declined precipitously, as has been documented and discussed by
Elsby et al. (2013), Karabarbounis and Neiman (2014), and many others. Now, the factor
shares may well have stabilized again, with workers receiving a new and smaller slice of the
economic pie.1 These events have revived interest among growth economists in the determinants
of the functional distribution of income.

If income shares are stable for long periods in the face of factor accumulation and (biased)
technical progress, some equilibrating forces must be at work. A unitary aggregate elasticity
of substitution between capital and labor could be one such force, because in a Cobb-Douglas
world, any persistent divergence between the growth rates of the labor force and the capital
stock would be offset by opposing trends in factor returns. But a large body of empirical research
suggests that the elasticity of substitution is not equal to one.2 In Grossman et. al (2017a),
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we suggested another possible equilibrating force: the endogenous response of education to a
rise in the return to schooling could stabilize factor shares in the face of ongoing declines in
the prices of investment goods if the aggregate technology exhibits complementarity between
capital and skills.3

Our previous paper focused on the requirements for balanced growth. We explored a model
with fleeting lifespans and derived necessary and sufficient conditions for constant steady-state
factor shares in the presence of ongoing capital-augmenting technological progress and a non-
unitary aggregate elasticity of substitution between capital and labor. In particular, we iden-
tified a class of aggregate production functions characterized by capital-skill complementarity
that deliver balanced growth. However, our model could not speak to changes in the steady-
state factor shares, because our convenient assumption of fleeting lives severed all links between
these shares and parameters of the growth process.

In this paper, we allow for longer lives, which renders investment in education a forward-
looking decision. In the body of our text, we focus on a model in which all individuals accumu-
late human capital by spending time in school. But our results are not limited to this model
of educational attainment; in the appendix, we establish similar results in a model of discrete
occupational choice with endogenous fractions of the population opting to become skilled.

We begin in Section I by examining the link between equilibrium factor shares, levels of
human capital, and the rental rate for capital in a competitive economy with an aggregate
production function characterized by capital-skill complementarity. In such a setting, a greater
level of human capital goes hand in hand with a greater capital share, whereas an inverse
relationship exists between the rental rate and the capital share whenever the elasticity of
substitution between capital and raw labor falls short of one. In Section II, we introduce
schooling as an intertemporal choice for overlapping generations of the population. In our
setting of “perpetual youth” with a constant hazard rate of death, it is optimal for members of
each generation to attend school fully until they achieve a (time-varying) target level of human
capital, whereupon they enter the work force but continue their education part-time to keep
pace with the growing human-capital threshold. When capital and skills are complementary,
there is an inverse equilibrium relationship between the education target and both the rental
rate on capital and the difference between the interest rate and the growth rate of wages. Taken
together, the results in Sections I and II imply that failing to control for variation in human
capital will lead to upward bias in estimates of the elasticity of substitution between capital
and labor in an economy with capital-skill complementarity.

Finally, in Section III, we close the model and study neoclassical growth driven by exogenous
technological progress. The dynamic equilibrium features ongoing accumulation of physical
and human capital. We establish the existence of a unique balanced growth path when skills
are complementary to capital and human capital enters the aggregate production function
in a particular way. Along this path, the downward pressure on the capital share due to
accumulation of better and cheaper machinery is offset by upward pressure from investments
in skills that are complementary to those machines. In the long run, the human capital target

substantially greater than one, while Herrendorff et. al (2015) find an elasticity of 0.84 and Oberfield and Raval (2020)
estimate it between 0.5 and 0.7 for the U.S. manufacturing sector.

3Acemoglu (2003) proposes yet another equilibrating force: when firms choose between capital-augmenting and labor-
augmenting technological improvements, they may tend toward only the latter in the long run. In his setting, factor shares
evolve during a transition phase with capital-augmenting progress, but stabilize in the steady state due to the eventual
dominance of technical change directed to labor. One difficulty with this story is that quality-adjusted prices of capital
goods have declined signficantly over long periods, suggesting an ongoing process of investment-specific technological
change.



conditional on technology levels is decreasing in the difference between the real interest rate
(which makes workers more impatient) and the growth rate of wages conditional on human
capital (which makes human capital more valuable). A slowdown in productivity growth—be it
capital augmenting or labor augmenting—reduces the interest rate by more than wage growth
whenever the intertemporal elasticity of substitution is below one. Consequently, slower growth
induces human capital accumulation that leads to a higher capital share and a lower labor share.

I. Human Capital and Factor Shares

In this section, we examine the relationship between human capital and the functional dis-
tribution of income in a general, neoclassical production environment. To this end, we write
Y = F (K,L;h), where Y is aggregate output, K and L are physical inputs of capital and labor,
and h is some measure of the human capital embodied in that labor. This formulation admits
various interpretations for h. For example, h might measure the education achieved by the
representative worker, as in Grossman et al. (2017a). Or, h might represent the fraction of the
labor force that is “skilled”, with the remaining fraction being “unskilled”. Then, we could write
a three-factor production function G (K,S,U) as in Krusell et al. (2000), with S and U denoting
inputs of skilled and unskilled labor, respectively, so that F (K,L;h) ≡ G (K,hL, (1− h)L).

We focus on technologies that exhibit constant returns in the physical inputs, K and L, and
that feature capital-skill complementarity. We define capital-skill complementarity in terms of
the effect of capital accumulation on the marginal product of human capital relative to that of
raw labor and invoke

ASSUMPTION 1: F (K,L;h) is homogeneous of degree one in K and L and exhibits capital-
skill complementarity; i.e., ϕ ≡ d log (Fh/FL) /d logK > 0 for all h, L, and K.

In the most common treatment of human capital, output is taken to be a function of aggregate
capital and “efficiency labor,” where the latter is defined as the product of raw labor and
a productivity term reflecting average human capital per worker; see, for example, Uzawa
(1965) and Lucas (1988). In that specification, raw labor and skill are perfect substitutes
and thus capital accumulation impacts their returns similarly. But, following Griliches (1969),
Krusell et al. (2000) have emphasized the empirical relevance of capital-skill complementarity
and the role it has played in determining the evolution of factor rewards. Using their three-
factor production function, G (K,S,U), they associated capital-skill complementarity with a
technology in which capital substitutes more closely for unskilled labor than for skilled labor.
Our definition coincides with theirs when G (·) takes a nested-CES form (as they assume),4 while
extending the definition to a broader range of production technologies and interpretations of
human capital.5

Now suppose that the economy is competitive and capital is hired up to the point where its
marginal product is equal to the rental rate R, or FK (K,L;h) = R. Define θ ≡ RK/Y as the
capital share in national income (so that 1 − θ is the labor share) and σ ≡ (FKFL) / (FFKL)
as the elasticity of substitution between capital and labor for a fixed level of human capital, h.
Then, using the definitions of ϕ, σ, and θ and the first-order condition, FK (K,L;h) = R, it is

4See the appendix for proof of this claim.
5With constant returns to scale, we can allow F (·) to represent the output of a “production unit” that employs K units

of capital and L units of labor with human capital h. Then, aggregate output is the sum of outputs across all production
units. In this manner, we can accomodate non-degenerate distributions of human capital across workers in the labor force.



straightforward to show that6

(1) dθ = (1− σ) θd lnR+ σϕ
Fh
F
dh.

Equation (1) relates changes in the capital share to changes in the rental rate and changes in
the measure of human capital. In the absence of capital-skill complementarity (i.e., if ϕ = 0)
the second term drops out and the capital share rises when the rental rate falls if and only if
σ > 1. The positive relationship between changes in the labor share and changes in the rental
rate (proxied by changes in the relative price of investment) in cross-country data provides
the basis for Karabarbounis and Neiman’s (2014) estimation of an elasticity of substitution
between capital and labor in excess of one and their attribution of approximately half of the
fall in the global labor share in recent years to the fall in the relative price of investment goods
since 1975. However, in addition to the usual concerns about the possible endogeneity of R,
there is the additional issue that their estimation fails to control for growth in educational
attainment, which was widespread in their sample. According to (1), a failure to control for dh
will generate an upward bias in estimates of σ in the presence of capital-skill complementarity
whenever R and h are negatively correlated. As we shall see, such a negative correlation is a
natural outcome in models of optimal human capital accumulation.

II. Determinants of Optimal Education

In Grossman et al. (2017a) we developed a model of growth with endogenous education
and capital-skill complementarity. We were interested there in the necessary and sufficient
conditions for balanced growth, so we invoked a useful shortcut: we assumed that successive
generations of workers survive only for an instant, during which they divide their fleeting time
between work and education to maximize instantaneous income. This shortcut was helpful,
because it circumvented thorny aggregation issues; we know of no overlapping generations
models in which educational attainment grows in a steady state. Unfortunately, by removing
intertemporal considerations from the schooling problem, we severed all links between factor
shares and the growth process, because without forward-looking investment, the parameters of
the static production function fully determine the functional distribution of income.

To study the determinants of long-run factor shares, we require a setting with meaningful,
intertemporal tradeoffs. To this end, we wed a model of overlapping generations à la Yaari
(1965) and Blanchard (1985) with a model of human capital investment à la Ben Porath (1967).
Cohorts born at every instant exist in a state of “perpetual youth.” New generations are born
continuously. While alive, individuals divide their time between schooling and work. The
cumulation of these choices determines each individual’s human capital and thus the supply of
skills in the aggregate.7

Our economy is populated by a unit mass of identical family dynasties.8 The representative
dynasty comprises a continuum of individuals of mass Nt at time t. Each living individual
generates a new member of her dynasty with a constant, instantaneous probability λdt in a
period of length dt and faces a constant instantaneous risk of demise νdt in that same period,

6See the appendix.
7The main text focuses soley on educational attainment. But in the appendix we show that we can achieve similar

results in a model of occupational choice.
8We assume that families maximize dynastic utility, including the discounted well-being of unborn generations. Similar

qualitative results would be attained in a Yaari (1965) economy with (negative) life insurance and no bequests, as developed
in Blanchard and Fischer (1989, ch.3).



with λ > 0, ν ≥ 0. With these constant hazard rates of birth and death, the size of a dynasty
at time t is given by

Nt = e(λ−ν)(t−t0)Nt0 .

Each newborn enters the world devoid of human capital. An individual is endowed at each
instant with a unit of time that she can divide arbitrarily between working and learning. Work
yields a wage at time t that reflects the extant technology and the size of the aggregate capital
stock, as well as the individual’s accumulated human capital, ht. Learning occurs at full-time
school or in continuing education. An individual who devotes a fraction `t of her time to work
and the remaining fraction 1− `t to education accumulates human capital according to

(2) ḣt = 1− `t.

The time constraint implies `t ∈ [0, 1].9

The representative family maximizes dynastic utility,

Ut0 =

∫ ∞
t0

e−ρ(t−t0)Nt
c1−η
t − 1

1− η
dt ,

subject to an intertemporal budget constraint, where ct is per capita consumption by family
members at time t, η is the inverse of the elasticity of intertemporal substitution, and ρ is the
subjective discount rate. As usual, the Euler equation implies

(3)
ċt
ct

=
rt − ρ
η

,

where rt is the real interest rate in terms of consumption goods at time t. To limit the number
of cases and to conform with widespread empirical evidence, we assume that η > 1.10

Considering that there is a continuum of members in every dynasty and that families maximize
dynastic utility, each individual chooses the path of her time allocation {`t} to maximize the
expected present value of earnings. For an individual born at time τ , the problem is

max

∫ ∞
τ

e−
∫ t
τ (rz+ν)dz`twt (ht) dt

subject to hτ = 0, ḣt = 1 − `t, and 0 ≤ `t ≤ 1, where wt (ht) is the wage schedule that relates
compensation at time t to the worker’s human capital. Let µt be the costate variable associated
with human-capital accumulation. Then the first-order conditions imply

9In this formulation, current human capital plays no role in the learning process. However, we could as easily specify

Ḣt = Hς
t (1− `t) , ς ∈ [0, 1] ,

with H0 = 1. This would generate an alternative measure of human capital that is just a monotonic transformation of ht
and that would play the same role as ht in the analysis that follows. For example, if ς = 1,

logHt =

∫ t

0
(1− `z) dz = ht ,

where the second equality follows from the assumption that h0 = 0.
10See, for example, Hall (1988), Campbell (2003) and Yogo (2004) for estimates using macro data, and Attanasio and

Weber (1993) and Vissing and Jorgenson (2002) for estimates using micro data.



(4)
wt (ht) < µt
wt (ht) = µt
wt (ht) > µt

⇒
 `t = 0

`t ∈ [0, 1]
`t = 1

and

(5) µ̇t = (rt + ν)µt − `tw′t (ht) .

In this setting, the optimal schooling problem typically has a simple, bang-bang solution.11

Members of each cohort attend school full-time beginning at birth, until they accumulate human
capital equal to a time-varying threshold, h∗t . Then, the “graduates” enter the labor force, but
they continue on with their education to maintain their human capital equal to the (growing)
threshold. This education strategy implies that all workers in the labor force share a common
level of human capital ht = h∗t , irrespective of their birth dates.

The human capital threshold h∗t equals the education level at which an individual is indifferent
between school and work. The benefit of additional schooling is the present value of human
capital, µt, while the instantaneous cost is the foregone wage, wt. Substituting µt = wt (h∗t ) in
(5) and rearranging terms gives

(6) rt + ν − gw|h∗t ,t =
w′t (h∗t )

wt (h∗t )
,

where gw|h,t is the growth rate of wages (for a given level of human capital, h) at time t. Then,
as we show formally in the appendix, for any aggregate production function F (·) that satisfies
Assumption 1 and that generates an interior choice of h∗t , (6) gives an inverse relationship
between human capital and both the rental rate on capital and the difference between the
interest rate and the growth rate of wages. The former observation underlies our claim at
the end of Section 2 that optimal human capital accumulation implies a negative correlation
between h and R when capital and skill are complementary. Intuitively, when a rise in the rental
rate reduces demand for capital, it also reduces the marginal returns to skill, w′t (h∗t ) /wt (h∗t ).
So, the demand for education also falls. Meanwhile, the latter observation—which does not
require capital-skill complementarity—shows that the growth process also influences human
capital accumulation inasmuch as a high interest rate discourages investment while a high rate
of wage growth makes additional schooling more attractive.

III. Optimal Education and Balanced Growth

To study the determinants of long-run factor shares, we need to close the model. We prefer
to do so in a way that preserves balanced growth, both for reasons of tractability and because
factor shares were stable for decades after WWII and, after a substantial realignment over some
twenty years, seem to have stabilized again.

The task of generating a balanced growth path might seem daunting. First, the presence
of ongoing capital-augmenting technical progress is inconsistent with constant factor shares in
a standard neoclassical setting with a non-unitary elasticity of substitution between capital

11In the appendix, we show that the bang-bang solution is optimal under the technical conditions detailed in Assumption
A1.



and labor; see Uzawa (1961). Yet, Gordon (1990), Greenwood et. al (1997) and others have
documented a significant decline in the relative price of capital, which is suggestive of capital-
augmenting progress. Second, a falling rate of return on capital goes hand in hand with ongoing
human-capital accumulation, which means that different cohorts will target different levels of
education before entering the labor force. Aggregation becomes an immediate technical concern.
Third, growing educational attainment means falling labor force participation and so the growth
rate of labor supply need not be constant. Yet, capital accumulates at a constant rate along
a balanced growth path (BGP). Despite these hurdles, we are able to close our model in a
way that admits balanced growth by building upon the insights in Grossman et.al (2017a).
By combining the technology introduced in that paper with the Yaari-Blanchard model of
overlapping-generations and the Ben Porath (1967) model of educational investment, we are
able to solve for a BGP and to study its properties.

To generate long-run growth, we introduce capital and labor-augmenting technology into the
model of Section I. A firm that hires K units of capital and L units of labor with human capital
h produces

(7) Yt = F (AtK,BtL, h)

units of output at time t, where At now represents the state of disembodied, capital-augmenting
technology and Bt the state of labor-augmenting technology.12 We retain Assumption 1 from
Section I , which imposes capital-skill complementarity and constant returns to scale; the latter
allows us to use (7) also for the aggregate production function. Next we borrow from Grossman
et al. (2017a) the assumption that F (·) falls within a particular class of production functions,
namely:

ASSUMPTION 2: The production function can be written as F (AtK,BtL, h) = F̃
(
e−ahAtK, e

bhBtL
)
,

with a > 0, b > λ ≥ 0, where

(i) f (k) ≡ F̃ (k, 1) is strictly increasing, twice differentiable, and strictly concave for all k;

(ii) limk→0 kf
′ (k) /f (k) < b/ (a+ b).

As we discussed in our earlier paper, this class of production functions makes schooling akin
to capital-using (or labor-saving) technical progress; i.e., an increase in human capital raises
the demand for capital relative to that for raw labor at the initial factor prices. While it may
be tempting to interpret Assumption 2 as positing that human capital reduces the efficiency of
physical capital, the fact that h enters F̃ (·) in two places renders this interpretation specious.
To see this, note that Assumption 2 is formally equivalent to assuming that the production
function can be written as

F (AtK,BtL, h) = (BtL)1−β F
(
AtK, e

bh/βBtL
)β

,

with β = b/ (a+ b). This alternative formulation expresses output as a Cobb-Douglas function
of raw labor and a composite input produced by capital and a measure of worker skills. Then
it is clear that h raises the marginal productivity of physical capital for any K; i.e., human

12Recall from Section II that all workers in the labor force have the same human capital, so we do not need to specify the
output by heterogeneous labor. If workers were to differ in skills, we could subdivide each firm into units with homogeneous
labor and sum the output across these units; see footnote 5.



capital accumulation shifts the K − L isoquants inward while at the same time rotating them
to induce greater demand for capital. Together with Assumption 1 that stipulates capital-skill
complementarity, our restriction on the technology ensures σ < 1, which is in keeping with
the findings of Oberfield and Raval (2020), who estimate σ from a factor-share equation after
controlling for workers’ human capital. Assumption 2.ii ensures that the marginal product of
human capital is positive for all K, L, and h.

Output can be used for consumption or investment. A unit of output produces one unit of
the consumption good or qt units of the investment good at time t, where growth in qt captures
investment-specific technological change, as in Greenwood et al. (1997). Thus,

Yt = Ct + It/qt

and
K̇t = It − δKt ,

where Ct and Kt are aggregate consumption and the aggregate capital stock, respectively, It is
gross investment, and δ is the constant rate of capital depreciation.

Technology evolves exogenously in our model. Let γL = Ḃ/B be the constant rate of
labor-augmenting technological progress, gA = Ȧ/A the constant rate of disembodied capital-
augmenting progress, and gq = q̇/q the constant rate of embodied (or investment-specific)
technological progress. Define γK ≡ gA + gq as the total rate of capital-augmenting technolog-
ical progress. We are interested in the relationship between these parameters that describe the
growth process and the long-run factor shares.

A. Characterizing a Balanced Growth Path

In order to solve for a BGP, we impose some further parameter restrictions.

ASSUMPTION 3: The parameters of the economy satisfy

(i) a > γK ;

(ii) limk→0
kf ′(k)
f(k) > Ω

1+Ω > limk→∞
kf ′(k)
f(k) , where Ω ≡ b−λ

a −
(η−1)(γL+ b−λ

a
γK)+ρ−(λ−ν)

a−γK ;

(iii) (η − 1)
(
γL + b−λ

a γK
)

+ ρ− (λ− ν) > 0.

Assumption 3 ensures the existence of an equilibrium with finite dynastic utility. It also gener-
ates interior choices for continuing education among those that have already joined the labor
force.

A competitive firm takes the rental rate as given. A firm that hires a unit of labor bearing
human capital h at time t will combine that labor with κt (h) units of physical capital, where
κt (h) is given implicitly by

(8) e−ahAtF̃K

[
e−ahAtκt (h) , ebhBt

]
= Rt.

The worker is paid her marginal product, which, with constant returns, is the difference between
revenue and capital costs, or

(9) wt (h) = F̃ (·)− e−ahAtκt (h) F̃K (·) .



Individuals use the wage schedule wt (h), together with their rational expectations of the evo-
lution of wages and the interest rate to make their optimal schooling decisions, summarized in
(6).

Let us define a BGP as a dynamic equilibrium with constant growth rates of output, con-
sumption, and capital, and with factor income shares that are constant and strictly positive.
A constant growth rate of consumption implies a constant interest rate, by the Euler equation
(3). We conjecture a constant division of time between work and education, `, for those that
have completed full-time school. We prove in the appendix the following lemma that describes
important features of the BGP:

LEMMA 1: Suppose gq, gA and γL are constants and Assumptions1, 2 and 3 are satisfied.
Then there exists a unique BGP characterized by

(10) ` = 1− γK
a

and

(11) zt ≡
e−ah

∗
tAtKt

ebh
∗
tBtLt

= z∗ for all t.

Here, zt adjusts the effective capital-labor ratio at time t (i.e., AtKt/BtLt) for the prevailing level
of human capital of those in the workforce, taking into account the different complementarity
between human capital and each of the primary factors of production. We henceforth refer to
zt as the schooling-adjusted effective capital-to-labor ratio.

Equation (10) implies that the human capital threshold increases linearly with time,

(12) ḣ∗t =
γK
a

.

The optimal schooling strategies are depicted in Figure 1. Here, the lines with unit slope
represent the human capital accumulation by each cohort whilst its members remain full-time
students. Once a cohort’s human capital reaches h∗t , the members devote a fraction γK/a
of their time to continuing education, just like all others that have completed their full-time
schooling.

Let sτ denote years in full-time school (or “educational attainment”) for the cohort born
at time τ . This is the time it takes for them to catch up with the human capital threshold,
i.e., sτ = h∗τ+sτ . With the threshold rising according to (12), h∗τ+sτ = h∗τ + sτγK/a. Thus,
educational attainment also increases linearly,

(13) ṡτ =
γK

a− γK
.

Recalling that a > γK by Assumption 3.i, educational attainment rises in the steady state if
and only if the rate of capital-augmenting technical progress is strictly positive.

Lemma 1 states that the schooling-adjusted effective capital-labor ratio converges to a con-
stant value, z∗, in the long run.13 This is the key to balanced growth in the presence of

13In our working paper with a different title and focus, Grossman et al. (2017b), we used numerical methods to suggest
the presumed stability of the BGP.



Figure 1. Human Capital Accumulation by Birth Cohort

capital-augmenting technological progress and an elasticity of substitution between capital and
labor less than one. As capital accumulates and becomes more productive, the capital share in
national income would tend to fall when σ < 1. However, the capital-skill complementarity im-
plies an increased return to schooling. The extra schooling is capital-using, which puts upward
pressure on the capital share. For the class of production functions described in Assumption 2,
the offsetting forces just balance, and the capital share remains constant.14

Why then is it optimal for active workers to upgrade their human capital continuously so as
to keep zt constant? For an interior choice of ` ∈ (0, 1), the indifference condition (6) must
be satisfied in the steady state, when rt and gw|h∗t ,t are constants. Meanwhile, Assumption 2
implies

(14)
w′t (ht)

wt (ht)
= b− a θ [zt (ht)]

1− θ [zt (ht)]
,

where θ (zt) ≡ ztf ′ (zt) /f (zt) is the capital share. Notice that the capital share depends only on
the schooling-adjusted effective capital-to-labor ratio. So, a choice of h∗t that keeps zt constant
also keeps w′t (h∗t ) /wt (h∗t ) constant, which is consistent with the steady-state requirements of
(6).15

Using the optimal allocation of time, we can now calculate the (constant) growth rates of
the labor force, wages, and output per capita, along with the constant interest rate and capital
share. The aggregate labor force at time t is the product of the fraction of time that the
typical worker devotes to gainful employment and the mass of the surviving population that
has completed its phase of full-time schooling. The measure of individuals that were born at τ
and that are still alive at t is λNτe

−ν(t−τ) = λNte
−(λ−ν)(t−τ)e−ν(t−τ) = λNte

−λ(t−τ). All those

14Put differently, (12) implies that e−ah
∗
tAtqt is constant along a BGP. So, the induced investment in human capital is

just what is needed to offset the exogenous improvement in capital productivity.
15 Note that for (14) to be satisfied with a constant value of zt, we need a sufficiently large range for zf ′ (z) /f (z). We

show in the appendix that Assumption 3.ii guarantees the existence of a solution to (14).



who were born at or before t− h∗t have already entered the labor force. Therefore,

Lt =
(

1− γK
a

)∫ t−h∗t

−∞
λNte

−λ(t−τ)dτ

=
(

1− γK
a

)
Nte

−λh∗t .(15)

It follows from (15) that labor-force participation, Lt/Nt, shrinks at the rate gL − gN =
−λγK/a < 0. Declining labor-force participation mirrors increasing educational attainment,
which requires longer stays in school for successive cohorts.

Next we derive the growth rate of wages. Compensation rises thanks to ongoing technological
progress, as well as ongoing investments in physical and human capital. Using (8) and (9), we
calculate that, along a BGP, the wage paid to each worker in the labor force (who has growing
human capital of h∗t ) increases at rate16

gw = γL +
b

a
γK .

Since factor shares are constant along the BGP, aggregate output is proportional to labor
income, so the growth rate of output per capita can be expressed as

gy = gw + gL − gN

= γL +
b− λ
a

γK .

Combining this expression with Assumption 3.iii implies that the present value of utility is
finite. Also, per capita consumption is proportional to per capita output, so (3) gives the
long-run interest rate,

r = ρ+ ηgy

= ρ+ η

(
γL +

b− λ
a

γK

)
.(16)

Finally, we come to the steady-state factor shares. In the steady state, (6) and (14) imply

γL +
b

a
γK = r + ν −

(
1− γK

a

)(
b− a θ

1− θ

)

16We substitute for the arguments of F̃ (·) and F̃K (·) using z = e−(a+b)h∗
tAtκt (h∗t ) /Bt and note that z is constant

along a BGP. The no-arbitrage condition for capital accumulation implies that Rtqt − q̇t/qt − δ = ιt, and thus, when the

interest rate and the rate of investment-specific technical progress are constant, Ṙt/Rt = −gq . Totally differentiating (8)
and (9) with z constant implies

−gq = gA − aḣ∗t
and

ẇt

wt
= γL + bḣ∗t ,

from which it follows that
ẇt

wt
= γL +

b

a
γK .



or

(17)
θ

1− θ
=
b+ γL − (r + ν)

a− γK
.

Next we substitute for the long-run interest rate, using (16), which gives us a relationship
between the long-run capital share and the primitive parameters of the economy, namely

(18)
θ

1− θ
=
b− λ
a
−

(η − 1)
(
γL + b−λ

a γK
)
− λ+ ν + ρ

a− γK
.

We summarize our characterization of the BGP as follows:

PROPOSITION 1: Suppose the aggregate production function obeys Assumptions 1 and 2, the
parameters satisfy Assumption 3 and gq, gA and γL are constant. Then there exists a unique
balanced growth path along which new cohorts are full-time students until their human capital
reaches a threshold h∗t that grows linearly with time. Once a cohort enters the labor force, its
members devote a constant fraction ` = 1 − γK/a of their time to work and the remainder to
continuing education. Wages grow at constant rate γL + (b/a) γK and per capita income grows
at constant rate γL + (b− λ) γK/a. The long-run real interest rate is given by (16) and the
long-run factor shares are given by (18).

B. Determinants of Long-Run Factor Shares

We are ready to discuss the determinants of the long-run distribution of national income.
We begin with (17), which expresses θ as a function of γK and γL, taking the real interest
rate as given. If, for example, the aggregate economy comprises a continuum of small regional
economies or similar industries that face a common interest rate due to nationwide asset trade,
then (17) would describe the cross-sectional relationship between growth rates of output and
factor shares. From this equation, it is clear that θ would be positively correlated with both
γK and γL in the cross section; regions and industries with faster rates of capital or labor-
augmenting technological progress would have higher shares of their income paid to capital in
an economy with a uniform interest rate.

But in a closed economy (or a global economy), the interest rate is endogenous and responds
to changes in the growth process. Equation (18) informs us about the long-run relationship
between factor shares and rates of technological progress. Recall our assumption that η > 1,
i.e., that the elasticity of intertemporal substitution is less than one. By differentiating the
expression on the-right hand side of (18) and making use of Assumption 2.iii, we establish our
key result:

PROPOSITION 2: When η > 1, an increase in γK or γL raises the long-run labor share, 1−θ.

Proposition 2 states than an acceleration of technological progress of any sort will shift the
distribution of national income from capital to labor. Of course, a productivity slowdown does
just the opposite. Our model thus predicts a negative correlation between the growth rate and
the capital share across steady states.

What accounts for this shift in factor shares? Note first from (16) that, in response to
an exogenous shock to the growth process, the interest rate moves in the same direction as
the growth rate of per capita income. Moreover, with η > 1, the response of the former is



greater than that of the latter. Thus, an acceleration of technological progress that causes gy
to rise will cause r − gy to rise as well. On a BGP, wages grow at rate similar to per capita
income, so r − gw|h also rises. This term appears in the expression for the optimal human
capital threshold (6); whereas an increase in the growth rate of wages makes staying in school
more desirable, a rise in the interest rate makes extended schooling less palatable. In the long
run, the latter effect dominates, so by a combination of (6) and (14), z∗ eventually rises. In
other words, we find that the long-run schooling-adjusted effective capital-to-labor ratio rises
in response to an acceleration of technological progress, once proper adjustment is made for
the optimal response of targeted human capital and the greater complementarity of schooling
with physical capital than with raw labor. Finally, with an elasticity of substitution between
capital and labor less than one, a rise in the schooling-adjusted effective capital-labor ratio
spells a reallocation of income from capital to labor. To avoid possible confusion, note that
although faster productivity growth reduces the steady state human capital target conditional
on technology levels, equation (12) shows that an increase in the rate of capital-augmenting
technological progress γK also raises the rate at which h∗t increases as technology improves.
Conversely, a productivity slowdown that raises the human capital target can also reduce the
long-run growth of schooling.

Recent history has, however, witnessed not an acceleration in technological progress, but
rather a slowdown in productivity growth; see, for example, Gordon (2010, 2016) and Fernald
(2014). Our analysis suggests that a productivity slowdown will contribute to a redistribution
of income from labor to capital in a world of capital-skill complementarity with ongoing gains in
educational attainment. This could be a partial explanation for the recent fall in the global labor
share.17 Indeed, in their study of the functional distribution of income in the United States,
the United Kingdom and France from the late 1800’s until recently, Charpe et al. (2019) find
long cycles in the labor share that are positively correlated with growth in per capita income.

IV. Concluding Remarks

We see three main contributions in this paper.
First, we have shown that education affects the division of national income between capital

and labor in the presence of capital-skill complementarity. When skills and capital are comple-
mentary, the accumulation of embodied human capital raises the marginal return to physical
capital and thus the share of income that accrues to any given stock of machinery and equip-
ment. Moreover, optimal investment in education induces a negative correlation between the
level of human capital and the return to physical capital in the presence of capital-skill com-
plementarity. In such circumstances, using time-series correlation between capital returns and
capital shares will produce upwardly biased estimates of the elasticity of substitution between
capital and labor.

Second, features of the growth process will affect long run factor shares in the presence of
capital-skill complementarity, even if those shares are stable in a steady state. We have shown
that an increase in rates of technological progress will redistribute income from capital to labor
and, conversely, a productivity slowdown will boost the capital share. The effects work through
the endogenous response of investments in schooling. We have made these points in a neoclas-
sical model of growth with competitive goods and factor markets and exogenous technological

17In the appendix, we discuss how to calibrate the model and explore its quantitative properties. We find that, for
plausible calibrations, a productivity slowdown that reduces trend labor productivity growth by one percentage point
increases capital’s income share by several percentage points.The parameter restrictions imposed in Assumption 3 are
satisfied in all our calibrations.



progress. But similar mechanisms exist in models with imperfect competition and endogenous
growth. Many models of automation and robotization feature capital-skill complementarity,
as automated equipment and robots are operated by more-skilled workers while substituting
closely for less-skilled workers. Therefore, the spread of robots in the production process is
bound to affect the distribution of income across skill groups.

Third, we have developed a growth model that admits balanced growth and stable factor
shares, despite ongoing capital-augmenting technical progress, ongoing growth in educational
attainment, ongoing changes in labor force participation, and elasticities of substitution between
factors that differ from one. Moreover, we have done so in a setting with overlapping generations,
where the arrival of new cohorts introduces heterogeneity in schooling choices and labor force
participation that makes aggregation potentially complex. The combination of perpetual youth
à la Yaari (1965) and Blanchard (1985), human capital accumulation à la Ben Porath (1967)
and capital-skill complementarity à la Grossman et. al (2017a) solves the aggregation problem.
This purely technical contribution may prove useful in other contexts.

Our paper suggests several directions for future research. On the theoretical side, one might
wish to move away from the assumption of “perpetual youth” to a more realistic model with
finite lifetimes. However, such a modification would likely threaten existence of a BGP and
would surely complicate dynamics, as is evident from Cass and Yaari (1967), who show that
multiple steady states and complex transition dynamics can emerge even in a simple neoclassi-
cal setting that neglects human capital accumulation. On the empirical side, perhaps the most
pressing need is for estimates of the degree of capital-skill complementarity in aggregate pro-
duction. Not only is such complementarity necessary for our theoretical results, but the degree
of complementarity determines the quantitative importance of the mechanism we highlight as
well as the relationship between human capital accumulation and output that would underpin
a growth-accounting exercise using our production function. We note that, given exogenous
variation in the capital rental rate R and human capital h, equation (1) could be used to si-
multaneously estimate capital-skill complementarity and the elasticity of substitution between
capital and raw labor.
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Proofs from Section I

Capital-skill complementarity

Let G(K,S,U) be a three-factor production function that is homogeneous of degree one in
(K,S,U), twice continuously differentiable and has strictly positive first and second derivatives
in all its arguments. Let σKJ ≡ GKGJ

GGKJ
for J = S,U . We show that Assumption 1 implies

σKU > σKS . For the nested constant elasticity of substitution production function used by
Krusell et al. (2000), σKU > σKS if and only if (equipment) capital is more substitutable with
unskilled labor than with skilled labor.

Assumption 1 requires ϕ > 0 where

(A.1) ϕ ≡ d ln (Fh/FL)

d lnK
=
KFKh
Fh

− KFKL
FL

.

Let L = S + U and h = S/L. Then we can write F (K,L, h) = G(K,hL, (1 − h)L), which is
equivalent to F (K,S + U, S/(S + U)) = G(K,S,U). Differentiating yields

σKU − σKS =
FK
F

FL − hFh/L
FKL − hFKh/L

− FK
F

FL + (1− h)Fh/L

FKL + (1− h)FKh/L
,

=
FKFLFh
LF

1

GKUGKS

(
FKh
Fh
− FKL

FL

)
,

which is positive if and only if ϕ > 0.

Derivation of equation (1)

Let k = K/L. Output is homogeneous of degree one in K and L by Assumption 1, meaning
that the optimal capital use equation can be written as R = FK(k, 1, h). Differentiating yields

(A.2) dk =
FK
FKK

d lnR− FKh
FKK

dh.

Likewise, the capital share is given by θ = Rk/F (k, 1, h) and differentiating implies

dθ = θd lnR− θFh
F
dh+

θ(1− θ)
k

dk.



.
Using (A.2) to substitute for dk then gives

dθ = θ

[
1 + (1− θ) FK

kFKK

]
d lnR− θ

[
Fh
F

+ (1− θ) FKh
kFKK

]
dh.

Noting that the homogeneity of F implies kFKK = −FKL and using equation (A.1) for ϕ, we
can rearrange this expression to obtain equation (1).

Proofs from Section II

Optimal education: derivation of equation (6)

Let F̂ (k, h) = F (k, 1, h) denote the production function in intensive form where k = K/L.
Let κt(h) be the units of physical capital that are combined with a unit of labor bearing human
capital h at time t. Optimal capital use requires

(A.3) F̂k(κt(h), h) = R,

and since competitive producers make zero profits, the wage schedule is given by

(A.4) wt(h) = F̂ (κt(h), h)−Rκt(h).

Differentiating these expressions and suppressing the arguments of F̂ (κt(h), h) yields

(A.5)

κ′t(h) = − F̂kh
F̂kk

,
∂κt(h)

∂t
= gR

F̂k

F̂kk
,

w′t(h) = F̂h,
∂wt(h)

∂t
=
∂F̂

∂t
− gRκt(h)F̂k,

where gR denotes the growth rate of R. Note also that using the intensive form production
function we can write: θ = κt(h)F̂k/F̂ ; σ = −F̂k(1− θ)/(κt(h)F̂kk); ϕ = κt(h)F̂kh/F̂h − θ/σ.

Each individual chooses her labor supply path to maximize the expected present value of
lifetime earnings. Consider an individual with human capital ht at time t and labor supply
path `τ for τ ≥ t. Let ˜̀

τ be an alternative labor supply path defined by

˜̀
τ =


`τ + ε, τ ∈ [t, t+ ∆] ,

`τ − ε, τ ∈ (t+ ∆, t+ 2∆] ,

`τ , τ > t+ 2∆.

where ε ∈ R and ∆ > 0. The individual’s human capital under labor supply path ˜̀
τ is given by

h̃τ =


hτ − ε(τ − t), τ ∈ [t, t+ ∆] ,

hτ − ε (t+ 2∆− τ) , τ ∈ [t+ ∆, t+ 2∆] ,

hτ , τ ≥ t+ 2∆.



Note that this labor supply perturbation does not affect the individual’s human capital outside
the interval (t, t+ 2∆).

Let S be the difference between the individual’s expected present value of earnings under ˜̀
τ

and under `τ . We have

S =

∫ t+2∆

t
e−

∫ τ
t (rs+ν)ds

[
˜̀
τwτ (h̃τ )− `τwτ (hτ )

]
dτ,

=

∫ t+∆

t
e−

∫ τ
t (rs+ν)ds {`τ (wτ [hτ − ε(τ − t)]− wτ [hτ ]) + εwτ [hτ − ε(τ − t)]} dτ

+

∫ t+2∆

t+∆
e−

∫ τ
t (rs+ν)ds {`τ (wτ [hτ − ε (t+ 2∆− τ)]− wτ [hτ ])− εwτ [hτ − ε (t+ 2∆− τ)]} dτ,

where the second equality uses the expressions for ˜̀
τ and h̃τ above. Expressing the functions

in the integrands as Taylor series around t, computing the integrals and dropping terms that
are o(∆2) implies that for ∆ close to zero

(A.6) S ≈ ε∆2

[
(rt + ν)wt(ht)− w′t(ht)−

∂wt(ht)

∂t

]
.

The intuition for this expression is as follows. When ε > 0, switching from labor supply path `τ
to ˜̀

τ means working more today and less tomorrow. The benefit of this switch is (rt+ν)wt(ht),
which equals the increase in the expected present value of earnings from bringing forward the
time at which labor income is received. The costs of delaying schooling are: w′t(ht), which

gives the decline in earnings from having lower human capital tomorrow, and; ∂wt(ht)
∂t , which

is positive when wages are increasing over time. Since human capital accumulation and labor
supply are both linear in `t, agents for whom the benefits of delaying schooling exceed the costs
will choose to work full-time, while agents for whom the costs are greater will devote all their
time to schooling.

Agents are indifferent between working and learning if and only if the right hand side of (A.6)
equals zero for all ε, which requires

(A.7) S̃t(ht) ≡ (rt + ν)wt(ht)− w′t(ht)−
∂wt(ht)

∂t
= 0.

We now make the following assumption

ASSUMPTION A.1: The production function and parameters of the economy are such that
for all t
(i) There exists h∗t > 0 such that S̃t(h

∗
t ) = 0;

(ii) Γt(h
∗
t ) > 0 for all k where

Γt ≡
1

F̂

[(
F̂h +

∂F̂

∂t
− gRκt(h∗t )F̂k

)
F̂h

F̂ − κt(h∗t )F̂k
− F̂hh +

F̂ 2
kh

F̂kk
− ∂F̂h

∂t
− gR

F̂kF̂kh

F̂kk

]
.

Assumption A.1.i imposes that a solution to equation (A.7) exists. This is a relatively weak



restriction. To see why, note that S̃t(ht) is continuous in ht whenever the production function is
continuously differentiable in k, h and t. Then if a solution does not exist, either all individuals
work full-time with `t = 1 or all individuals are in full-time education with `t = 0. It is
straightforward to impose sufficient conditions to rule out such equilibria. For example, if
individuals with no human capital produce no output then wt(0) = 0, meaning that working
full-time cannot be optimal for newborn agents. In addition, if the economy has a positive
capital stock and the marginal product of capital is unbounded as the capital input approaches
zero, then it cannot be optimal for all agents to be in full-time education.

Assumption A.1.ii is a second order condition for educational choice that ensures the solution
to equation (A.7) is unique. To show this we differentiate S̃t(ht) given by (A.7). Using equations

(A.3)–(A.5) and setting ht = h∗t yields S̃′t(h
∗
t ) = F̂Γt(h

∗
t ). Thus, the gradient of S̃t(ht) is positive

if S̃t(ht) = 0.
This single-crossing property guarantees that equation (A.7) has a unique solution ht = h∗t .

It also implies that S̃t(ht) < 0 for all ht < h∗t and S̃t(ht) > 0 for all ht > h∗t . Consequently,
individuals with human capital below the threshold h∗t prefer to study today and work tomorrow,
while the opposite is true for individuals with human capital above h∗t . Since labor supply is
bounded on the interval [0, 1] it follows that optimal labor supply is given by `t = 0 if ht < h∗t
and `t = 1 if ht > h∗t .

Setting ht = h∗t and rearranging equation (A.7) gives equation (6) in the paper. Taking the
total derivative of this expression for given t and using equations (A.3)–(A.5) together with the
definitions of ϕ, σ and θ yields

(A.8) dh∗t = − 1

Γt

σϕ

1− θ
Fh
F
d lnR+

1− θ
Γt

(
dgw|h∗t ,t − drt − dν

)
,

where dgw|h∗t ,t denotes the change in the growth rate of wages evaluated at h∗t . Equation (A.8)
shows that whenever there is capital-skill complementarity as defined in Assumption 1 (meaning
ϕ > 0) and the technical conditions in Assumption A.1 hold, an increase in the rental rate of
capital R reduces the optimal human capital threshold h∗t . Moreover, even in the absence of
capital-skill complementarity, the human capital threshold is increasing in the growth rate of
wages, but decreasing in the real interest rate and the risk of death.

Optimal human capital in a model of occupational choice

Suppose there are two types of labor – skilled and unskilled – and h denotes the fraction of
the labor force that is skilled. Formally, let S denote the skilled labor force and U the unskilled
labor force. Then L = S + U and human capital h = S/L. Let wU denote the unskilled wage
and wS = ψwU the skilled wage, where ψ denotes the skill premium. For this economy the
wage schedule wt(h) satisfies

(A.9) wt(h) =
wUU + wSS

L
= wU [1 + h (ψ − 1)] ,

implying that w′t(h) = wU (ψ − 1).
Competitive firms hire capital and labor taking the rental rate and the wage schedule as given,

implying that equations (A.3)-(A.5) hold. Using the wage schedule in (A.9) to differentiate
(A.3), (A.4) together with the expression for w′t(h) in (A.5) we obtain



(A.10) dh = − 1

Γ̃t

σϕ

1− θ
d lnR− 1

Γ̃t

1

1 + h(ψ − 1)

dψ

ψ − 1
,

where

Γ̃t ≡
1

F̂h

(
F̂ 2
kh

F̂kk
− F̂hh

)
,

and we assume Γ̃t > 0 for all t to ensure that the second order condition for profit maximization
holds. Thus, the relative demand for skilled labor is declining in the skill premium ψ and also
decreasing in the capital rental rate R whenever there is capital-skill complementarity.

Equation (A.10) gives demand for human capital conditional on the skill premium. However,
when individuals choose whether or not to invest in becoming skilled, the skill premium also
affects occupational choice. Suppose all newborns are unskilled, but have the opportunity
to become skilled workers by attending school for ζ periods. Apart from this change to the
education technology, the economy is as specified in Section II.

To maximize dynastic utility, each individual chooses the occupation that offers the highest
expected present value of lifetime earnings. We restrict attention to equilibria where at each
instant some, but not all, unskilled individuals choose to become skilled. This requires that
unskilled individuals are indifferent over whether or not to attend school. Skilled agents earn
nothing for ζ periods and then receive the skilled wage, while unskilled agents always earn the
unskilled wage. Therefore, the indifference condition at time τ is∫ ∞

τ
e−

∫ t
τ (rz+ν)dzwUt dt =

∫ ∞
τ+ζ

e−
∫ t
τ (rz+ν)dzψtw

U
t dt,

where the left hand side is the expected present value of earnings of an unskilled worker and
the right hand side is the expected present value of earnings of an individual that chooses to
become skilled. Differentiating the indifference condition with respect to τ yields

(A.11) wUτ = e−
∫ τ+ζ
τ (rz+ν)dzψτ+ζw

U
τ+ζ .

Thus, the unskilled wage at time τ equals the expected present value of the skilled wage at time
τ + ζ, which is when skilled agents who start schooling at τ join the labor force.

Let gUw (t, ζ) = wUt /w
U
t−ζ denote growth in the unskilled wage between t−ζ and t and r(t, ζ) =

e
∫ t
t−ζ(rz+ν)dz be the inverse of the discount factor used to value time t earnings at time t − ζ.

Then differentiating (A.11) with τ = t− ζ gives

dψt
ψt

=
dr(t, ζ)

r(t, ζ)
−
dgUW (t, ζ)

gUW (t, ζ)
,

and using this expression to substitute for dψt in (A.10) yields

(A.12) dht = − 1

Γ̃t

σϕ

1− θ
d lnR+

1

Γ̃t

1

1 + ht(ψt − 1)

ψt
ψt − 1

[
dgUw (t, ζ)

gUw (t, ζ)
− dr(t, ζ)

r(t, ζ)

]
.



Equation (A.12) is analogous to equation (A.8) from the baseline model. As in the baseline
model, an increase in the capital rental rate reduces equilibrium human capital h whenever
there is capital-skill complementarity. In addition, h is increasing in the growth rate of unskilled
wages, but decreasing in the compound interest rate during the period when individuals attend
school. This shows that the qualitative results concerning the determinants of optimal human
capital derived in Section II continue to hold in a model of occupational choice with endogenous
supplies of skilled and unskilled labor.

Proofs from Section III

Proof of Lemma 1 and Proposition 1

Imposing the functional form in Assumption 2 and noting that optimal capital use satisfies
equation (8), a firm that hires labor with human capital ht at time t has capital share θ [zt(ht)]

where θ(z) ≡ zf ′(z)/f(z) and zt(h) ≡ e−(a+b)h Atκt(h)
Bt

. Moreover, equation (8) implies zt is
strictly decreasing in ht and Grossman et al. (2017a) show that θ(z) is strictly decreasing in z.
It follows that θ [zt (ht)] is strictly increasing in ht.

Differentiating the wage schedule in (9) yields

1

wt(h)

∂wt(h)

∂t
= γL + (gA − gR)

θ [zt (h)]

1− θ [zt (h)]
,

and substituting this expression together with equation (14) into equation (A.7) gives

S̃t(ht) =

(
rt + ν − b− γL + (a+ gR − gA)

θ [zt (ht)]

1− θ [zt (ht)]

)
wt(ht).

Now, assume that for all t there exists h∗t > 0 that solves S̃t(h
∗
t ) = 0 and that a+gR−gA > 0,

which ensures S̃′t(h
∗
t ) > 0 because θ [zt (ht)] is strictly increasing in ht. We prove below that

these assumptions hold on a balanced growth path (BGP). Then Assumption A.1 is satisfied.
It follows that h∗t defines a human capital threshold such that at time t all individuals with
human capital below h∗t are in full-time education and all individuals with human capital above
h∗t work full-time.

Next, suppose the economy is on a BGP. The no arbitrage condition for capital accumulation
implies that on a BGP where the interest rate is constant gR = −gq. Therefore, on a BGP
a+gR−gA = a−γK , which is strictly positive by Assumption 3.i. It follows that a+gR−gA > 0
on a BGP as assumed above.

Setting S̃t(h
∗
t ) = 0 implies the human capital threshold on a BGP satisfies

(A.13)
θ [zt (h∗t )]

1− θ [zt (h∗t )]
=
b+ γL − (r + ν)

a− γK
,

showing that zt(h
∗
t ) = z∗ must be constant on a BGP which proves equation (11) in Lemma 1.

Differentiating (8) with respect to time while holding zt(h
∗
t ) constant then yields

ḣ∗t =
γK
a
.

Therefore, in order to keep their human capital rising at the same rate as h∗t , individuals that
are in the labor force must choose labor supply ` = 1 − γK/a as claimed in equation (10) of



Lemma 1.
At time t any individuals with human capital above h∗t work full-time. Consequently, on a

BGP it is not possible for individuals to have human capital above h∗t since h∗t is growing over
time. Given this observation, the remaining properties of the unique BGP can be derived as
in the discussion following Lemma 1 in the paper. In particular, equation (16) gives the real
interest rate on the BGP and substituting (16) into (A.13) gives (18), which determines the
BGP value of θ. Assumption 3.iii ensures the discount rate is sufficiently large that dynastic
utility is finite on the BGP. Finally, since gR = −gq and the real interest rate r satisfies (16),
Assumption 3.ii guarantees that, as assumed above, for all t there exists h∗t > 0 that solves
S̃t(h

∗
t ) = 0.

This completes the proof that there exists a unique BGP. In our working paper Grossman et
al. (2017b) we analyze the stability of the BGP and show that the BGP is locally saddle-path
stable in a calibrated version of the model.

Proof of Proposition 2

Differentiating equation (18) with respect to γK yields

1

(1− θ)2

∂θ

∂γK
= − η − 1

a− γK
b− λ
a
−

(η − 1)(γL + b−λ
a γK)− λ+ ν + ρ

(a− γK)2
.

The first term on the right hand side is negative when η > 1 since Assumption 2 imposes b > λ.
The second term on the right hand side is negative by Assumption 3.iii which guarantees finite
utility on the BGP. It follows that an increase in γK reduces θ or, equivalently, that a reduction
in γK reduces labor’s share of income.

Differentiating equation (18) with respect to γL yields

1

(1− θ)2

∂θ

∂γL
= − η − 1

a− γK
,

which is negative if and only if η > 1. Thus, a reduction in γL increases θ and lowers labor’s
share of income.

Quantitative Exploration

We present the results of calibrating the model and quantifying the impact on factor shares
of a one percentage point reduction in trend growth of labor productivity. For a complete
description of the calibration and quantitative analysis see our working paper Grossman et al.
(2017b).

We rely on the empirical literature to set some of our parameters and choose others to match
moments from the U.S. historical experience as detailed in Table A1. Conveniently, steady
state factor shares can be calculated without assuming a functional form for F̃ (·). However,
we have no firm basis for specifying the magnitude of the capital-skill complementarity that is
reflected in the parameter a in F̃

(
e−ahAtK, e

bhBtL
)
. Given our other moments, this parameter

would be pinned down if we knew the bias of technical progress in the pre-slowdown period.
However, the Diamond-McFadden “Impossibility Theorem” tells us that we cannot identify this
from time series data. Consequently, we pursue two different approaches to calibrating a. First,
we introduce plausible but ad hoc assumptions about the bias in technical progress along the
initial BGP. Then, we employ cross-sectional data for U.S. regions and industries in a crude
attempt to estimate a directly.



Table A1—Targeted Moments and Parameters

Parameter/Moment Value
Birth rate λ 2.16%
Death rate ν 0.95%
Internal Rate of Return on schooling ι 10%
Capital share θ 0.35

Growth in labor productivity γL + b
aγK 0.024

Increase in schooling ṡτ =
γ
K

a−γK 0.088

Intertemporal elasticity of substitution 1
η 0.5

Table A2—Response of Capital Share to Productivity Slowdown: Ad Hoc Examples

γK = γL = 1.1%⇒ a = 0.132, b = 0.164

γK γL

Growth in
per capita

Income

Annual
Increase in
Schooling

Interest
Rate

Capital
Share

Baseline 1.1% 1.1% 2.2% 0.09 10.0% 0.35
γL ↓ 1.1% 0.1% 1.2% 0.09 8.0% 0.383
γK ↓ 0.3% 1.1% 1.4% 0.02 8.3% 0.39

gq = 2.0%, gA = γL = 0.4%⇒ a = 0.293, b = 0.251

γK γL

Growth in
per capita

Income

Annual
Increase in
Schooling

Interest
Rate

Capital
Share

Baseline 2.4% 0.4% 2.2% 0.09 10.0% 0.35
γL ↓ 2.4% -0.6% 1.2% 0.09 8.0% 0.365
γK ↓ 1.2% 0.4% 1.3% 0.04 8.2% 0.368

Table A2 shows the quantitative results when we make ad-hoc assumptions about the bias
of technical progress. For the top panel, we assume that technical change in the pre-slowdown
period was factor neutral, so that γK = γL. For the lower panel, we assume that the ob-
served average decline in investment goods prices of 2% per year represents the full extent
of investment-specific technical change, and that the disembodied technological progress was
factor neutral (gA = γL). In both cases we report the new steady state following a perma-
nent one percentage point slowdown in labor productivity growth caused by a decline in either
labor-augmenting or capital-augmenting technical progress. We see that the increase in capital’s
share of national income following a productivity slowdown varies between 1.5 and 4 percentage
points.

Our second approach to calibrating the model estimates a from the association between labor
shares and wage growth across states and industries in the US, details are given in Grossman
et al. (2017b). We find an inverse relationship between the average labor share in the state-
industry and the average rate of wage growth, as would be predicted by our model assuming
that the US has an integrated national capital market. Our preferred estimate implies a = 0.19.

In Table A3, we repeat the exercise of simulating the effects of a one percentage point slow-
down in annual labor-productivity growth. In this case, the values of γK and γL in the baseline



Table A3—Response of Capital Share to Productivity Slowdown: Estimates of Capital-Schooling Comple-

mentarity using Cross-Sectional Data

Central Estimate of a: a = 0.19, b = 0.195

γK γL

Growth in
per capita

Income

Annual
Increase in
Schooling

Interest
Rate

Capital
Share

Baseline 1.5% 0.8% 2.2% 0.09 10.0% 0.35
γL ↓ 1.5% -0.2% 1.2% 0.09 8.0% 0.373
γK ↓ 0.6% 0.8% 1.3% 0.03 8.2% 0.378

calibration are those needed for the model to match the annual increase in schooling, the cap-
ital share, the rate of return on education, and the growth rate of labor productivity in the
pre-slowdown period. Again, we simulate the slowdown in labor-productivity growth as being
the result of either a deceleration of capital-augmenting technological progress or of labor-
augmenting technological progress.

We find that a one percentage point slowdown in trend productivity growth can account for
a sizeable shift in income from labor to capital. With the parameters reflected in the table,
the capital share rises between two and three percentage points. In our working paper we
also analyze the sensitivity of the quantitative results and argue that once we admit a reason-
able amount of capital-skill complementarity (as captured by the parameter a), a productivity
slowdown can account for a substantial redistribution of income from labor to capital for all
plausible values of the other parameters.


