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Abstract

Supervised machine learning methods are increasingly employed in political
science. Such models require costly manual labeling of documents. In this paper
we introduce active learning, a framework in which data to be labeled by human
coders are not chosen at random but rather targeted in such a way that the
required amount of data to train a machine learning model can be minimized. We
study the benefits of active learning using text data examples. We perform
simulation studies that illustrate conditions where active learning can reduce the
cost of labeling text data. We perform these simulations on three corpora that
vary in size, document length and domain. We find that in cases where the
document class of interest is not balanced, researchers can label a fraction of the
documents one would need using random sampling (or ‘passive’ learning) to
achieve equally performing classifiers. We further investigate how varying levels of
inter-coder reliability a↵ect the active learning procedures and find that even with
low-reliability active learning performs more e�ciently than does random
sampling.
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1 Introduction

Supervised machine learning methods have gained increasing attention in political

science research (e.g. Beck, King, & Zeng, 2000; Hill & Jones, 2014; Muchlinski, Siroky,

He, & Kocher, 2016; Cranmer & Desmarais, 2017) and specifically in connection to text

analysis (e.g. Collingwood & Wilkerson, 2012; Grimmer & Stewart, 2013; Drutman &

Hopkins, 2013; Ceron, Curini, Iacus, & Porro, 2014; Workman, 2015; Wilkerson, Smith,

& Stramp, 2015; Wilkerson & Casas, 2017). A core step in many research designs that

involve text is the classification of documents into topical categories. Unsupervised topic

models (Blei, Ng, & Jordan, 2003; Grimmer, 2010; Roberts, Stewart, Tingley, Airoldi, et

al., 2013) have been arguably the goto method for political scientists for that purpose.

In many contexts, supervised models would be more appropriate for the task at hand.

However, supervised learning is costly because labeled data is required to train a

classification model.

In this paper we introduce active learning, a data labeling framework developed in

computer science that can greatly increase the e�ciency of data labeling (Settles, 2012).

We concentrate on text data as a specific application., but active learning can be used

with any kind of data in a supervised context. Much of the cost that comes from

labeling texts is a result of sampling documents for an expert to label when classes are

imbalanced. For example a political scientist may wish to identify texts from a

newspaper corpus that reference a terrorist attack. Because terrorist attacks are rare

events we can expect that a random sample of newspaper articles will contain only a

small number of articles about terrorist attacks, and an expert labeler will spend much

of her time labeling irrelevant documents. In contrast, in active learning approaches, a

learning algorithm suggests which observations the expert should label. With active

learning, this suggestion is made according to a quantitative metric of the expected

performance improvement that could be realized by each of the unlabeled observations

in the data. Choosing data to be labeled in such a way reduces the labeling of

documents that are not informative to the classification algorithm and thereby increases

the e�ciency of costly human labelers. We provide an introduction to the concept and
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an accessible starting point for political scientists who may benefit from this approach to

labeling texts. We do not provide an exhaustive overview or theoretically rigorous

exposition of the large number of varieties of active learning. For those who want to dive

deeper into the theory and literature, see Settles (2012).

We conduct experiments that illustrate circumstances in which active learning

produces the highest e�ciency gains and show how common problems in social

science—such as low inter-coder reliability—may a↵ect active learning.1 We use three

di↵erent text corpora and several classification models to compare active learning to the

default approach to data labeling (random sampling or “passive learning”) and vary the

amount of available training data. Our aim is not to adjudicate among various active

learning algorithms but to show that various approaches all compare favorably to

random sampling. We find that active learning approaches reduce the costs of

supervised learning in many scenarios. Under realistic conditions, active learning can

produce an 8-fold decrease in the size of training data required to achieve the same

performance as with passive learning. We find that in situations where the data are

balanced—that is, the topic or class of interest makes up about half of the

dataset—active learning provides no additional benefits. However, such balanced

problems are relatively rare in political science (Ertekin, Huang, Bottou, & Giles, 2007;

Sun, Wong, & Kamel, 2009). For an additional contribution that, to our knowledge, is

novel even to the computer science literature on the topic, we induce varying levels of

inter-coder (un)reliability. We find that even with fairly low inter-coder agreement,

active learning performs more e�ciently than passive learning, even though both

methods’ performance is reduced by labeling error (Mikhaylov, Laver, & Benoit, 2012).

2 Approaches to Automated Text Analysis

We start by introducing the theoretical background and the variety of methods that fall

under the umbrella of active learning.

1Replication materials are available as Miller et al. (2019)
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2.1 Unsupervised vs. Supervised Learning

Automated text analysis methods can be categorized as supervised or unsupervised

(Grimmer & Stewart, 2013). Supervised models ‘learn’ from a subset of data that is

annotated by experts, while unsupervised models require no annotation, instead learning

from correlations and co-occurrences of text features. While unsupervised models are

important research tools, supervised models are usually a better choice for measuring

topical categories the researcher has defined a priori. Conversely, unsupervised models

are a better choice for discovering the latent topics within large corpora in the absence

of a priori knowledge about the structure of these corpora.

When deciding between supervised and unsupervised models, it is important to

consider the promises and pitfalls of each approach. Unsupervised models are good for

summarization and exploration of large corpora. However if the structure of the problem

is well defined, that is, if there are specific topic categories defined by the researcher,

supervised learning can be more useful than unsupervised strategies. Consider the

example where a researcher is interested to find all social media posts related to a

specific protest movement. In this case the structure of the problem is well defined, that

is, the researcher knows a priori what the classes of interest are (posts relevant to the

movement and posts not relevant to the movement), and given a post, she would be able

to determine the class membership of said post. In contrast an unsupervised method,

such as a topic model, would not be guaranteed to produce a topic that is congruent

with the protest movement class. Furthermore if posts about this movement rarely

occur in the data it is unlikely that a single topic emerges that captures this class. The

supervised method would, therefore, be the more natural choice in such a situation.

Furthermore, as previous research has shown, unsupervised methods often lack

agreed-upon model selection procedures (Wallach, Murray, Salakhutdinov, & Mimno,

2009), are highly unstable with respect to text preprocessing and hyperparameter

choices (Denny & Spirling, 2018; Wilkerson & Casas, 2017), and require a great deal of

human interpretation or post-hoc labeling (Chang, Gerrish, Wang, Boyd-Graber, & Blei,

2009). Conversely, model selection, hyperparameter/preprocessing choices, and model
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evaluation are all straightforward in supervised models.

Despite the many benefits of supervised approaches, their big disadvantage is the

cost of labeling data—and this is likely a reason for the bigger popularity of topic

models in political science (Quinn, Monroe, Colaresi, Crespin, & Radev, 2010). Huge

text corpora are very easily accessible to researchers (e.g. social media data, websites,

legislative documents), but categorizing subsets of them into relevant and non-relevant

categories requires costly manual labeling.

2.2 Active vs. Passive Learning

In most supervised classification procedures, an expert2 labels the class membership of a

fixed set of observations in the data. These observations are usually a random sample

drawn from the full dataset. Expert-labeled data are then used to “train” a learning

algorithm to predict the labels of unlabeled observations in the dataset. We refer to this

mode of data labeling and model training as “passive learning.” While this approach to

classification works quite well in many cases, we see two situations in which the cost of

labeling data “passively” can be prohibitively large:

1. If the distribution of labels or classes in the corpus is imbalanced, that is, if one

label occurs much more often than the other, it can take an enormous amount of

labeled data to get enough information on the minority class for the algorithm to

learn to recover it reliably.

2. If there are many very similar documents, drawing data for labeling at random can

be very ine�cient (a lot of data is needed to learn representations of all relevant

areas of the feature space).

If a concept appears in only 1 percent of documents, to get a sample of 20 relevant

documents, an expert labeler would have to label, in expectation, 2000 documents. Even

with this time-intensive labeling e↵ort, a machine learning algorithm trained on only 20

observations is unlikely to perform well. Equivalently, if there are large clusters of very

2Sometimes referred to as an “oracle,” “labeler,” or “coder.”
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similar documents, then if documents are sampled randomly for labeling the expert

might spend a lot of time assigning labels to documents that are not informative to the

classification algorithm because they di↵er so little in their features.

The computer science literature has consistently demonstrated that in these cases,

active learning can be quite useful (see e.g. Schohn & Cohn, 2000; Dasgupta, Kalai, &

Monteleoni, 2005; Tong & Koller, 2001; Roy & McCallum, 2001; Ertekin et al., 2007). In

an active learning approach to classification, a learning algorithm suggests which

observations the expert should label. This suggestion usually is made according to a

quantitative metric of the expected performance improvement that could be realized by

each of the unlabeled observations in the data. Documents are labeled in an iterative

manner: After each iteration, a new classification model is trained and this model is

queried for documents it is most uncertain about. This way only documents that would

actually help the algorithm to improve its performance are selected for labeling. In the

next section, we explain each step of the active learning procedure in more detail.

3 Active Learning

3.1 General Principles of Active Learning

Given a set of documents with known labels y and a set of features (these can be

bag-of-words features but also document metadata like time stamps or author

information) X, the goal of text classification (or of machine learning in general) is to

learn the function y = f(X) that most accurately maps features to the labels beyond

the specific set (training set) y,X (see e.g. Friedman, Hastie, & Tibshirani, 2001, for an

introduction). For simplicity of exposition we concentrate on binary classification in this

paper (i.e. yi 2 {0, 1}, 8i) but all methods described here are applicable to multi-class

classification (yi 2 {0, 1, ..., k}8i) and continuous outcomes (see below).

There are many di↵erent implementations of the active learning framework. Each

di↵ers in what measure(s) are used to query unlabeled observations for an expert to

label. Before discussing some of these variations in depth in Section 3.3, we give
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intuition on the logic of active learning using the least-complex variant, relying on

logistic regression as the classification model and uncertainty sampling as the querying

strategy (Lewis & Catlett, 1994).

We denote the set of unlabeled documents as U with all documents represented as

XU = {xi|i = 1, ..., N}, with xi as a single document represented by a set of features (for

example word counts or document metadata). Each document xi has a corresponding

true label yi 2 {0, 1} that can be obtained by asking an expert labeler to label it. We

denote the logistic regression model as f(xi, ✓) = 1/(1 + e�x✓). The most basic active

learning algorithm is then:

1. Start with an initial set L of documents XL with known labels yL

2. Train the model f(., ✓) using the available training data yL,XL

3. Produce a predicted probability for each unknown document in unlabeled set U :
ŷ = f(XU , ✓)

4. Use the query function to obtain a new document for labeling:
z = q(ŷ) = argmini |ŷi � 0.5|

5. Obtain a label yz for xz from the expert labeler

6. Add yz and xz to yL and XL, remove xz from XU

7. Repeat Steps 2 - 6 until a stopping criterion is reached

To summarize this algorithm: Starting with a population of documents, each of

which is supposed to be classified, and an initial set of labeled data (this can be chosen

at random or be produced from the domain knowledge of the researcher), a model is

trained to separate the relevant from the non-relevant documents. Each document of the

population is then assigned a predicted probability from the model and the document

with a probability closest to 0.5—that is, the document the model is least certain

about—is selected for annotation. In many cases it makes sense to select not a single

document for labeling but the batch of least certain documents. The procedure is then

repeated by re-training the model with the additional labeled data, querying more

documents, labeling, etc. Usually the procedure is stopped when either the labeling

budget is exhausted or a satisfactory classifier performance is reached (the definition of

satisfactory, of course, depends on the application). Figure 1 displays a visualization of
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the algorithm. The bold line separating the observations in two-dimensional space

corresponds to the 0.5 predicted probability threshold of the regression model. The

active learning algorithm selects observations closest to this decision boundary in each

iteration represented by each panel in the figure.
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Figure 1: From left to right, top to bottom, the first 5 panels visualize the uncertainty
sampling algorithm. Circles represent queries of unlabeled observations. Once an expert
has labeled the data, they are represented by pluses for the positive class and minuses
for the negative class. The last panel shows the ground truth, true labels of all labeled
observations.

The algorithm can be easily adapted for use with nominal outcomes of more than

two categories or continuous outcomes. For multi-class classification, one way of

accommodating such outcomes would be to select the new document using entropy as a

measure of classifier uncertainty.3 Given a classification model that produces predicted

probabilities for each class an observation could fall in, the entropy over these predicted

probabilities is a measure of uncertainty of the classifier about this observation. For the

case of continuous outcomes, a measure of the variance of the predicted value can be

used to assess classifier uncertainty.4 To reiterate, these options for accommodating

other outcomes are examples for the case of uncertainty sampling. For other query

3E.g. Shannon-entropy, which is defined as E(X) = �
Pn

i=1 p(xi)logp(xi) where X is the set of
predicted probabilities over n possible classes.

4For example, when using a linear regression model as the classifier, the uncertainty about an obser-
vation’s prediction is given by: V ar(ŷ) = �̂2Xu(t(X)X)�1Xu where X represents the features of the
training data up to the current iteration and Xu represents the features of the so-far unlabeled data.
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methods, slightly di↵erent approaches may need to be considered (see e.g. Körner &

Wrobel, 2006; Settles, 2012, for more detailed guidance in such situations).

The strategy of actively selecting data to label intuitively reduces the number of

labeled observations that are necessary to achieve a level of performance in the two

situations described above. In the case of imbalanced classes, the model has initially

little information about rare classes, given that the initial y most likely contains few

observations belonging to the rare class. The model will be less certain about this class

and therefore produce more samples for labeling from that class (this is assuming that

there is some information about the class membership in the provided features X).

In the second case, where many documents in XU are very similar, intuition on the

potential benefits can be gained from step 3 in the algorithm above. Given three

observations x1,x2,x3 with the distances the feature space:

d(x1,x2) ⌧ d(x1,x3) ⇡ d(x2,x3). If x1 is labeled, the model will produce a predicted

probability closer to 0.5 for x3 as compared to x2 since it is very di↵erent from what the

model has ‘seen’ in previous iterations. Because, x3 will provide more information than

x2, the expert labeler will be presented with x3, thereby reducing ine�ciency in the

labeling.

3.2 Varieties of Active Learning

There is a large variety of ways to implement the active learning framework described in

Section 3.1. Implementations can di↵er in several regards depending on the application:

availability of unlabeled samples, the type of sample that is queried, the model and

outcome, and the querying algorithm. These choices have produced a very large

technical literature and make the choice for practical applications di�cult. In this

section, we will briefly describe the choices a researcher has, without going into technical

depth (see Settles, 2012, for an excellent in-depth review of the varieties of active

learning).

Availability of Samples: Depending on the data source, documents for

annotation may be available in di↵erent forms. In the procedure described in Section 3.1
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there exists a pool of documents from which single documents can be selected for

querying and classification (pool-based sampling). In other applications, not all

documents are available at any time but they are made available as a stream, for

example in stream-based APIs such as the Twitter Streaming API. In this case, the

active learning algorithm has to decide in real time which samples to select from the

ones available at a certain time point (stream-based selective sampling) (e.g. Freund,

Seung, Shamir, & Tishby, 1997). Finally, some authors have suggested producing a

synthetic sample, that is constructed in such a way that the model learns best from it

after it was labeled (query synthesis) (Angluin, 1988). This strategy can lead to

multiple problems for text analysis in practice. Most importantly, a synthetically

generated document will be di�cult to label for an expert coder.

Model: In principle any classification or regression model can be used in an active

learning approach. Some querying methods have specific requirements for the model.

For instance, the uncertainty sampling strategy used in step 4 in the illustration above

requires the model to produce a measure of uncertainty (for example a predicted

probability), not just a discrete class prediction. There are also active learning varieties

for quantitative outcomes. Uncertainty, in this case, is usually operationalized through

the variance in the prediction of each unlabeled sample, so applications, in this case, are

relatively straightforward.5

3.3 Querying Strategies

How to measure the potential information gain for the model from an unlabeled instance

is probably the component of active learning that received the largest amount of

attention. Besides the uncertainty sampling querying strategy described in Section 3.1,

there are a variety of methods to obtain unlabeled documents from the model. They can

be roughly grouped into three groups (Settles, 2012): 1) Algorithms that rely on the

uncertainty of one or multiple classifiers about unlabeled samples (uncertainty based);

5Though regression—statistical learning approaches with quantitative outcomes—may be of interest
to researchers, we focus on qualitative outcomes in this paper, as text classification is more frequently
the objective of social scientists. All the methods discussed in this paper however can be applied for
regression. For specific guidance for regression problems, see Settles (2012).
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2) algorithms that are based on estimating the expected model performance given a

label was made available for unlabeled samples (model performance based); and 3)

algorithms that exploit clustering or other structure in the data (structure based). The

three most commonly used algorithms are margin sampling, query by committee and

expected model change. We review these in more detail. We refer the reader to the

literature for more details on clustering approaches (see e.g. Settles, 2012, for a more

extensive review).

Margin sampling and uncertainty sampling are the algorithms most commonly used.

We additionally discuss expected model change since it represents a di↵erent class of

algorithms that are not focused on uncertain observations but rather try to optimize

what the researcher might care about directly, the performance of the model. The

details of how exactly we deploy these algorithms in our simulation studies is discussed

in more detail in Section 4.2.

As is the case with other choices in machine learning such as the classification model

or the method of tuning parameter optimization, it is di�cult to make predictions about

expected performance a priori, before interacting with the data.6 It is therefore not

possible to give direct guidance to researchers which of the querying algorithms is

expected to perform best for the task at hand. This is the case because the function

that is approximated by the classifier for text classification is highly complex, and the

reasons for performance of various classifiers is not well understood. For practical

applications it is therefore recommended to explore the robustness of an active learning

approach by also investigating the performance of several querying strategies.

However there are other criteria besides robustness that applied researchers should

consider when choosing a querying strategy. The various querying algorithms can vary

drastically in their computational complexity and their ease of implementation. For

instance, uncertainty sampling is a very simple approach that is easy to implement and

computationally not very demanding. Predicting a label for each unlabeled observation

is computationally much less demanding than, for example, estimating a new model for

6This problem is sometime referred to as the “no free lunch theorem” and formalized in Wolpert
(1996).

11



every unlabeled observation, as is the case for the expected model change algorithm.

This can become quite expensive as the number of observations in a dataset increases.

For the “query by committee” approach, it is necessary to train a committee of several

classifiers, making this approach considerably more expensive than other approaches

that require only a single model.

3.3.1 Margin sampling

The algorithm used in section 3.1 to demonstrate the fundamental principle of active

learning is called uncertainty sampling. That is, the algorithm queries the observations

for which it is most uncertain about their label. Logistic regression, however, might not

be the model of choice for text classification. Support vector machines (SVM) is a very

commonly applied model for text classification. The simple margin algorithm detailed in

Tong & Koller (2001) is a special case of uncertainty sampling.7 Essentially the

algorithm, similar to the logistic regression algorithm above, uses an uncertainty

measure to query new observations for labeling by an expert labeler. Because the

objective of the SVM model is to find a hyperplane that optimally separates classes in

the feature space, observations that are closest to that hyperplane represent observations

that the SVM is most uncertain of. For the simple margin classifier, at each iteration,

an SVM model is trained and observations closest to the hyperplane are returned to an

expert for labeling (as visualized in Figure 1 for the two-dimensional case).

3.3.2 Query by Committee

The query by committee approach follows principles similar to the uncertainty sampling

strategy. However instead of relying on the uncertainty of a single model, uncertainty is

measured using disagreements in classification decisions among a committee of models

(Seung, Opper, & Sompolinsky, 1992).

For the query by committee approach to active learning, a committee of models,

7Though Tong & Koller (2001) find that the simple margin algorithm is not optimal in maximally
reducing the “version space,” and o↵er several superior alternatives, it still works quite well and is useful
as an example due to its simplicity.
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C = {✓(1), ..., ✓(C)}, is trained on the current labeled set L. Each classifier in this

committee represents a di↵erent hypothesis for how the version space8 should be

partitioned. Classifiers in the committee make predictions for each of the documents in

the unlabeled set U . The m documents where the committee disagrees the most are

returned to the expert to label. This disagreement is usually computed using vote

entropy9 or Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951).

In the original formulation Seung et al. (1992) uses perceptron learners, but there is

no clear agreement on how to best choose a set of models for the committee. Some

formulations of query by committee make use of ensemble methods such as bagging

(Freund & Schapire, 1997) and boosting (Abe & Mamitsuka, 1998) to form committees.

Others choose a diverse set of ensemble classifiers (Melville & Mooney, 2004). In a

review of the literature Settles (2012) suggests that there is no clear guideline for size

and model choice. The committee only needs to satisfy two conditions: 1) models in the

committee must represent di↵erent regions of the version space; and 2) there must be

some disagreement among committee members.

3.3.3 Expected Model Change

While margin sampling and query by committee select unlabeled observations based on

an uncertainty measure, another class of active learning approaches seek to quantify the

potential informational gain of each candidate unlabeled observation. These methods

query the unlabeled observations that would result in the greatest change to the current

model (expected model change), the greatest reduction of generalization error (expected

error reduction) or the greatest reduction in output variance (variance reduction), if we

knew its label (Settles, 2012; Roy & McCallum, 2001). These approaches are

computationally expensive as they require that a model be fit for each candidate

observation in the unlabeled set. For text classification problems, it is common that the

8Version space refers to the area defined by all potential class partitions of data that are consistent
with the current labeled training data (Mitchell, 1982).

9Vote entropy is defined as V E = �
CP
i

V (yi)
C log V (yi)

C where yi 2 {0, 1}, V (yi) is the number of votes

that label receives, and C is the committee size.
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set of unlabeled observations is quite large, a potential drawback of this approach

(Settles & Craven, 2008).

The expected model change approach as originally formulated by Settles, Craven, &

Ray (2008) selects unlabeled observations with the largest expected gradient length, the

average length of the gradient of the loss function `✓ obtained by adding the training

tuple hx, ŷi, predictors x from the unlabeled set U and ŷ, the expected label given the

current model to labeled set L. Unlabeled observations are queried according to

argmax
x

P✓(yi|x)kr`✓(L [ hx, ŷi)k. This essentially chooses the unlabeled observations

that, if labeled, would maximally change the output of the model. Other slight variants

of this approach have proven e↵ective in many domains (Freytag, Rodner, & Denzler,

2014).

3.4 Biased Training Data, Generalization Error and

Inter-Coder Reliability

The fundamental principle of active learning is to produce training datasets that are

biased to include documents that the classification model is uncertain about. That is,

the dataset used to train the classification model is not representative of the total

corpus. This can have consequences for several aspects of the coding process.

Estimates of generalization error (that is, how well the classification model will

perform on the general corpus) obtained from the training data can be biased or

inconsistent estimates of the true generalization error. While we cannot claim to know

the direction of bias in generalization error estimates in all circumstances, it has been

established that it is a biased estimate in an active learning setting (Baram, Yaniv, &

Luz, 2004). If precise estimates of generalization error are required or a choice between

multiple active learning methods based on unbiased estimates of generalization error is

desired, part of the labeling budget has to be spent on labeling data that has been

selected randomly (Ali, Caruana, & Kapoor, 2014). In our simulation study we explore

the gravity of this problem by comparing estimates of generalization error obtained from

labeled data that was actively sampled with unbiased estimates.
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Expert labelers are most likely presented with cases that are more di�cult to label.

This is a problem that has been, to our knowledge, omitted from the computer science

literature.10 This could, in turn, lead to the complication that the error rate of the

expert labelers is likely to be higher as compared to randomly selected labeled data. An

additional point to consider is that estimates of inter-coder reliability, analogous to the

generalization error, cannot be extrapolated to the general corpus. In simulations

described in detail below, we simulate varying levels of inter-coder reliability to

investigate to what extent labeling error influences the performance of active learning

and random sampling approaches.

4 Simulation Study

To investigate the performance, e�ciency and practical applicability of active learning

we conduct a simulation study on three selected text datasets, varying query strategy,

class balance and inducing error in the labeling process (inter-coder reliability). In this

section we detail our data, simulation design, and implementation.

4.1 Data

We use three corpora that vary by text length and text style. By varying the text

domain, we hope to demonstrate that active learning works across many of the domains

relevant to political scientists. We use a corpus of tweets, a corpus of Wikipedia talk

page entries and a corpus of news articles from news website Breitbart. These corpora

vary in document size from small, to medium, to large, respectively. The style of writing

in each also varies, with social media, specialized/academic writing, and news articles

respectively.

1. Twitter: This corpus is comprised of 24,420 tweets collected from a random

sample of German Twitter users. The sample of tweets is a subset of a larger

random sample of all Tweets authored by about 80,000 users. Each tweet was

10Zhao, Sukthankar, & Sukthankar (2011) studies the implications of labeling errors on the performance
of active learning algorithms but not the other way around
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labeled as being about the refugee topic or not by German-speaking CrowdFlower

workers. Of the twenty-four thousand tweets about 700 are labeled as being about

the topic. The dataset is used by Linder (2017) to study public reactions to

refugee allocation in the German refugee crisis.

2. Wikipedia: This corpus of 159,571 Wikipedia talk page comments includes

annotations of di↵erent kinds of toxic comments. The database was released as

part of a machine learning competition, “Toxic Comment Classification Challenge”

on the website Kaggle that is sponsored by ConversationAI, a team organized by

Jigsaw and Google to build “tools to help improve online conversation.” The goal

of this competition is to classify the types of toxic comments using the provided

expert annotations. For our simulations, we chose the label “toxic” because it has

the most support of all represented classes. “Toxic” comments are aggressive

comments, violent comments, personal attacks, etc. that do not contribute to a

healthy and productive discussion on talk pages.

3. Breitbart: This corpus of 174,847 news articles represents the population of

articles on the Breitbart news website. These articles each come with meta tags

that are chosen by Breitbart authors and editors. For this dataset, we use the

label “Muslim identity,” which indicates whether a specific reference to Muslim

identity was made in the article tags. This corpus is used to measure how moral

and emotional frames in news media can increase support for violence against

out-groups in Javed & Miller (2018). To make the simulations computationally

more feasible we randomly sampled a subset of 25,000 articles for this study.

Even though we use datasets that realistically reflect data that are used in political

science research, we must point out that data in a simulation study can never be a

representative basis on which to make with certainty general statements about the

performance of di↵erent machine learning algorithms on other tasks or in other data.

The combination of possible data features or structure, of tasks’ possibly diverse

objectives and of algorithms’ flexibility makes it impossible to generalize reliably.
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4.2 Design and Implementation

We conduct two simulation studies. The first study compares the performance of active

learning with three di↵erent querying strategies to passive learning on the datasets

described above. In the second simulation study, we investigate whether and how error

in the labeling process a↵ects active and passive learning di↵erentially.

Each study simulates the data labeling process in an iterative manner. At each

iteration a batch of documents is selected—using the querying algorithm for active

learning or random sampling for passive learning—and added to the training data

available to the classifier at that iteration. We draw 20 documents at each iteration and

stop once we have processed 25% of documents in the corpus or all positive samples are

labeled. We refer to one labeling process completed in this manner as a run. In most

cases we repeat each run 50 times in order to obtain Monte Carlo estimates of the

performance statistics of the various algorithms.11

Figure 2 illustrates the design of a single iteration of the simulation. Before each run,

the data are randomly split up into a dataset that is available for labeling and training

and a held-out test set. The data that are available for training at each iteration are

used to train a SVM classification model which is evaluated at each iteration on the

held-out test set.

In addition to training the classifier at each iteration, a model and feature selection

step is conducted. Using 5-fold cross-validation and randomized parameter search

(Bergstra & Bengio, 2012), the tuning parameters of the SVM as well as the best feature

set are selected at each step.12

11Because of prohibitive computational cost, for the EMC algorithm, we only repeat each run 10 times.
For the main experiment for Wikipedia and Breitbart, we repeat the experiment 15 times. For the
inter-coder reliability experiment for query by committee, we repeat the experiment 30 times.

12The main tuning parameter of the SVM is the C parameter. It is draw from a exponential distribution
with � = 50. For the feature set, we cross-validate over word n-grams of size 1 to 3 and character n-grams
of size 3 to 5. Appendix Figures 6 to 9 display the choices resulting from this procedure in our experiment.
As discussed in more detail above, model selection (algorithm and tuning parameters) with active learning
is non-trivial. Ali et al. (2014) discuss the problem, that the observations selected with active learning
are highly biased, therefore making generalization error estimates obtained from this training data (e.g.
via cross-validation) invalid. Labeled observations are chosen to maximize the uncertainty of the classifier
which leads to the performance of the classifier on this sample being much lower than on a true random
sample from the population. In our experiments, we choose to still apply a standard model selection step
because we did not intend to make generalization error estimates at each step. We also believed that this
approach kept as many factors constant as possible between conditions.
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Figure 2: Design of the simulation study. In each iteration of the algorithm model tun-
ing parameters and text feature sets are selected via cross validation on the training
data available from previous iterations. The best performing classification model is then
evaluated on a held-out test dataset.

In order to demonstrate the performance of the various algorithms under realistic

conditions, we artificially induce various degrees of class imbalance into the datasets.

We create new datasets with di↵erent levels of class imbalance by over- and

undersampling the positive class from the original corpora. We use the following

positive class proportions: 0.01, 0.05, 0.10, and 0.50.

We compare four algorithms for selecting documents to label: active learning with

margin sampling, active learning with query by committee, active learning with

expected model change and randomly sampled labeled data. See Section 1.6 in the

Appendix for the details of how we implemented various querying strategies. At each

iteration after having selected the next 20 training instances we train the same SVM

model for the final evaluation. We chose this procedure to compare the quality of the
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selection of training data while keeping the classification algorithm constant rather than

confounding it with the performance of the classification model. For the query by

committee algorithm, however, this means that a di↵erent model is used in the final

classification step than in the querying step (margin sampling and expected model

change are both based on SVMs in our implementation). This means that the query by

committee algorithm might potentially perform better if the query algorithm and

classifier for evaluation would match. This design does allow us to investigate whether

the active learning algorithm is still providing benefits to the researchers, even when a

di↵erent final classification model is used with the training data obtained. Having to

“lock in” one specific classifier for a project might be a significant disincentive to using

active learning, therefore assessing whether an actively sampled set of training data is

superior to a randomly sampled one independently of the classification model is an

important question for the practical applicability of the method.13

In addition to the main simulation study, we conduct an additional study, exclusively

on the Twitter data, to test how varying levels of inter-coder reliability can a↵ect the

performance of active learning approaches. We induce random error in labeling

assignment in the training data while leaving the held-out data used to evaluate

performance unchanged, simulating coder error. We simulate varying levels of

inter-coder reliability using the following algorithm:

For each level of inter-coder reliability ai 2 {0.7, 0.8, 0.9, 0.95}:
1. For each label yj in the training set y, generate a uniform random number uj 2 [0, 1];

2. If uj � ai, flip the label yj from 1 to 0 or vice versa (y0j = |yj � 1|) resulting in
transformed labels y0;

3. Sample observations to ‘label’ using the maximal margin sampling algorithm with
input y0 and corresponding feature set X

For the inter-coder reliability simulations we apply the margin sampling algorithm as

well as the query by committee algorithm in order to evaluate if they could be a↵ected

di↵erentially by the introduced noise.

13Lewis & Catlett (1994) and Lu & Bongard (2009) find that active learning produces more informative
samples than passive learning, even if the final learning algorithm is not known in advance.
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4.3 Results

Figure 3 displays the classification performance on the held out test set for all three

datasets for the first simulation study (no error in the labeling process). Each row of

Figure 3 represents a level of class imbalance. “Balance: 0.01” means that there are 1%

relevant labels and 99% non-relevant labels. In the columns are the three di↵erent

datasets. The lines in the plots are generalized additive model fits across replications of

the same conditions. The di↵erent lines show the classifier performance for the several

labeling algorithms, that is, active learning with the margin, query by committee and

expected model change algorithms and passive learning with randomly annotated data.

All Figures display the performance of the model (defined as the F1-score14) for di↵erent

amounts of available training data (ranging from 20 documents to 5000 documents).

Note that there are di↵erent amounts of training data in the di↵erent balance levels.

This is due to the fact that, for example, for a balance of 0.5, the total data set size is

constrained to two times the number of relevant documents in the corpus. The original

Twitter data, for example, has about 3% relevant tweets, which means that creating a

balanced dataset reduces the total size of the data considerably.

The gains in performance and reduction in cost resulting from the active learning

approach are clearly visible in the imbalanced conditions. The model trained on the

randomly labeled data often does not achieve the same performance as the active

learning models, even with a quarter of the total corpus being labeled.15 The best active

learning algorithms reach their best performance very quickly with little increase in

performance when adding additional training data. To quantify the gains achieved

through active learning, Table 1 displays the average number of training samples that

are required to achieve an F1-score of 0.1 for active learning with the margin algorithm

and passive learning, as well as the ratio of the two. Depending on the balance of the

data and the data set, passive learning requires the same amount of data (balanced data

14The F1-score is a very common performance measure in machine learning. It is defined as the
harmonic mean of precision and recall. Precision and recall results are presented separately in Figures 1
and 2 in the Appendix.

15Expected model change performs worse than random sampling does in the Twitter data with balance
0.01 once there are more than about 3500 labeled training observations.
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Figure 3: F1 score for experiments. The panel columns correspond to the datasets, the
rows to the di↵erent levels of class imbalance. Dots represent single replications of the
experiment, smoothed lines are fits (and standard errors) of a generalized additive model.

Wikipedia) or up to almost eight times the amount of training data (Twitter data with

1% relevant documents). The relationship of the performance di↵erential with the

balance of the data is striking. With 1% of the data being relevant the di↵erence is

dramatic, while for the balanced data, there is virtually no di↵erence in performance.

We also observe significant di↵erences between the various querying algorithms.

Across all datasets and balance conditions, the margin algorithm performs best followed

by query by committee and expected model change. Expected model change seems to
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Data Set Balance # Samples Active # Samples Passive Ratio
Breitbart 0.01 316.09 805.60 2.55

0.05 77.50 142.04 1.83
0.10 54.17 56.00 1.03
0.50 20.00 20.80 1.04

Twitter 0.01 295.60 2305.92 7.80
0.05 95.92 407.40 4.25
0.10 73.33 212.80 2.90
0.50 24.40 23.63 0.97

Wikipedia 0.01 314.44 1922.22 6.11
0.05 103.46 379.69 3.67
0.10 69.60 162.42 2.33
0.50 23.20 21.80 0.94

Table 1: Number of training samples required to reach an F1-Score of 0.1 for active and
passive learning.

produce no added performance compared to randomly annotated data. These results

demonstrate that the choice of query algorithm can significantly impact the performance

a researcher can expect from their classifier. As discussed in the theoretical sections, as

is the case in many machine learning applications, it is di�cult to choose a priori which

algorithm will perform best for a given problem. In this sense the results of the di↵erent

querying algorithms from this simulation study should not be interpreted as guarantees

that generalize for any other application in text classification, but rather, as a

demonstration that the choice of querying algorithm can matter and researchers should

consider experimenting with di↵erent algorithms. Furthermore the query by committee

algorithm had the disadvantage of the mismatch of classifier that was used to evaluate

and the model involved in the query step.

The length and style of the documents seem to matter as well. The di↵erence

between the active and random labeling strategies is less evident for the Breitbart

corpus than for the other two. The Twitter corpus, which is comprised of the shortest

documents, show the largest di↵erences.

To illuminate further why the active learner performs so much better in the

imbalanced conditions, we zoom in on the 1% relevant data condition and additionally

display the number of positive (or minority class) documents in the training data. These

results are displayed in Figure 4. In this figure, each dot represents the average F1-score
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Figure 4: Performance by number of labeled examples for classifiers trained with active
and passive learning (with class balance 0.01). Dots represent the average classifier per-
formance across replications. Dot size is proportional to the average number of positively
labeled observations in the training sample across replications.

across experimental replications. The size of the dots represents the average number of

positively labeled documents in the training data. The following pattern can be

observed: The active learning algorithm acquires positively labeled documents (that is,

documents belonging to the minority) much faster than the random learner. While the

proportion of positive sample increases linearly—proportionally increasing with the size

of the training data—for the random learner, the active learner acquires almost all its

positive samples within the first 1000 training data samples. This explains the

performance di↵erence: The active learner has much more information on the minority

class much earlier, allowing it to perform better more quickly. This is additionally

evident when inspecting precision and recall separately (see Figures 1 and 2 in the

Appendix). The availability of a more balanced training set (that is, more observations

of the minority class), leads to drastically improved recall which in turn is pushing the
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F1-Score which is composed of precision and recall.

The better performance of active learning is mostly driven by this increased recall.

In some instances when precision is higher for active learning than for random

annotation, the results are mixed. In some cases in our simulations, the active learning

algorithms produce even lower precision. The slightly reduced precision is likely due to

the same mechanism: in very imbalanced situations where the algorithm has very little

training data on the minority class, it is likely to simply predict the majority class for

most observations—which can produce very high precision and very low recall.

Therefore as the classifier gains more information on both classes false positives become

more likely, reducing the overall precision. The reduction in precision is minor however

and dwarfed by the increase in recall. For researchers that for some reason specifically

want to improve precision this could be a concern.16

Figure 5: Active learning and passive learning performance on the Twitter dataset with
di↵erent levels of simulated inter-coder reliability.

Figure 5 displays the inter-coder reliability results that were obtained by running the

experiment with varying probability of error in the label assignment for the imbalanced

16It should be noted, however, that in cases where precision is crucial, a di↵erent loss-function or
classification threshold could be used to trade-o↵ recall for precision.
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condition (0.01) on the Twitter data. As expected, the overall performance of the

classifier is a↵ected by the amount of noise introduced into the training data by the

simulated low coder reliability. Active learning outperforms random sampling even when

the assignment of labels to the data is noisy. This holds for both the query by

committee and margin algorithms. The margin algorithm seem to be a↵ected more by

additional samples added to the training data after the initial one to two hundred. We

speculate that this has to do with the balance in the available training data. As shown

above in Figure 4, the algorithm gets most of the minority class samples early (that is,

within the first 1000 labeled observations). Therefore most of the additional labeled

samples added to the training later are from the majority class and most labels for the

minority class are results of the error process. That is, errors that are introduced in this

later data a↵ect only one class. This increase in false positives leads to a relatively

significant decline in precision (see Figure 3 in the Appendix). The query by committee

algorithm seems less susceptible to this decrease in precision even though not immune.

In Figure 6 we explore the topic of generalization error further. Each panel mirrors

the panels in Figure 3. Since we are discussing the results in terms of error the y-axis

displays 1 minus the F1-score. The red dashed line is the performance of the margin

algorithm on the held out sample, and is identical to the corresponding line in Figure 3.

The blue line displays the average of the average F1-scores obtained from cross

validating the model on the available labeled data. That is, the blue line represents the

estimate of the generalization error as it would be available to a researcher that does not

have an unbiased ground-truth test set whereas the red line represents the true

generalization error. We emphasize that, above, we established that active learning

outperforms random sampling of the training data. In this section we only discuss the

estimation of generalization error to the population of samples. The results in Figure 6

demonstrate that the estimated generalization error in the labeled data set is indeed

di↵erent from the unbiased estimate. In the more balanced conditions the the error

estimated from the labeled data tends to over estimate the error, whereas in the

imbalanced conditions it tends to under estimate the error.
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Figure 6: Comparison of generalization error (in terms of F1 score) in training and test set
for active learning with margin querying strategy. Results are from the Twitter dataset.

The lack of a precise estimate of generalization error is a disadvantage that has to be

weighed against the improved performance of active learning. We expect that in most

cases improved performance would be valued higher than confidence about the exact

performance. But if a precise estimate of generalization error is required, we recommend

researchers use part of their labeling budget to label randomly selected samples. This

portion of the data can then be used to estimate this error.

There may be concern that the hyperplane fit in each iteration of the margin

algorithm might get stuck in a suboptimal version space. To investigate this we ran
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simulations varying the percent of each batch that is sampled randomly: 25%, 50% or

75% of documents were sampled randomly and the remaining sampled from proximity

to the hyperplane. Including some purely random selection allows more exploration of

the feature space and prevents the active learner from restricting its queries to a

submanifold of our feature space. Performance was about the same across conditions,

which suggests that, at least in the Twitter data, trapping suboptimal submanifolds are

not a large concern.17 Additionally, these simulations demonstrate that much of the gain

in classifier performance is coming from the few observations in each batch that are

closest to the hyperplane: decreasing the batch size may increase the e�ciency of active

learning if it is computationally feasible to do so.

5 Discussion

In this paper, we introduce the active learning paradigm and illustrate when it can be

useful for labeling texts. We conduct several simulations with three datasets, varying

the class balance, document length and sample type. We find that that the active

learning approach—when compared to random sampling—reduces the costs of

supervised learning in many realistic scenarios. Much of the extra cost with random

sampling is due to the random approach’s ine�cient selection of documents to label

when classes are imbalanced. Random sampling can produce very imbalanced training

data that have too much information on some part of the feature space and not enough

on others. For imbalanced datasets we find that passive learning methods can require up

to 8 times as much training data to achieve the same performance as active learning.

We also find that these results hold even in the presence of noise in the labeling process.

The results, especially with regard to the balance of the dataset, confirm theoretical

expectations that the active learning algorithms help to reduce ine�ciency in labelling.

We also demonstrate that the choice of querying method can a↵ect the amount of labels

required to achieve a specific level of classification performance. Given that general

17See Appendix Figure 5 for a visualization of performance at the di↵erent proportions of random
observations per batch.
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statements about the potential performance of di↵erent querying algorithms are di�cult

to make, we recommend that researchers experiment with di↵erent methods. Overall,

active learning produces a biased training dataset that produces classification results

that are better or at least as good as random sampling on out-of-sample data.

This bias in the training set, however, leads to some potential limitations that

applied researchers should be aware of: relying solely on the actively sampled training

data prohibits accurate estimation of the true generalization performance of the model.

This can be a major concern in academic settings, where the error rate of the machine

learning model is relevant to the confidence in substantive results that are based on the

predictions of said model. However, this problem can easily be circumvented by

dedicating a small amount of the labeling budget to a held out random sample that is

exclusively used to estimate out-of-sample performance.

Not knowing the true performance of the model complicates model selection as well.

If no randomly sampled data are available, the model cannot be optimized for prediction

on out-of-sample data. Furthermore it is unknown whether the training data that were

selected through active learning are optimal for other classification models as well. This

may lead to concerns that the researcher has to commit to a specific classification model

already at the labeling stage of the research project. It is important to note, however,

that the evaluations in our simulation study were done on a randomly selected held-out

dataset. That is, given our results and a large literature in computer science, applied

researchers can expect that the active learning model performs better or at least as well

in practice, even if additional e↵ort would be required to obtain an unbiased estimate of

the performance. Regarding the second concern about “lock-in” on a specific model, our

results on query by committee suggest that active learning methods can outperform

random sampling even in situations where a di↵erent final learning model is used with

the training data.

It should be noted that the limitations that apply to “classical” machine learning for

text classification apply to active learning as well. For instance, a classifier can only be

as good as the training data it is based on. In cases where the language pertaining to
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the relevant class of documents changes (concept drift) the performance of the classifier

can decrease drastically if applied to data from di↵erent time points. Furthermore, the

classification methods that are used should be appropriate to the data at hand. For

instance, if the data has known dependency structures like clusters or time-series

structure, more appropriate classification algorithms might be used that do not assume

a collection of independent observations.

A concern specific to active learning is that there may be an interaction between

structure in the data and the dependence in samples. That is, in a case where the initial

set of labeled data is an odd sample that only contains documents from one time period

or cluster, could it happen that the model is led astray by this structure and never

obtains data that is informative for other clusters? The results for the data in our

experiments alleviates this concern. No guarantees can be made that generalize for all

applications, but one can argue that active learning is a priori better suited to explore

the relevant sections of the data. For instance if the initial sample is from a specific

cluster or time period in the data, the active learner may be more likely to explore other

clusters in the data because the observations there are di↵erent from the observations in

the “known” cluster and therefore the model is less certain about them.18

Our results demonstrate that in many scenarios, active learning can provide large

e�ciency gains for supervised text analysis methods in political science (or machine

learning applications in general). These e�ciency gains are most dramatic when classes

are highly imbalanced. Having imperfect coder reliability does not eliminate the

e�ciency advantage that active learning has over random sampling. We hope our

findings will serve to promote the use of supervised learning approaches for automated

text analysis by making the process less costly and less time-intensive for researchers.

18There are also algorithms that are built precisely on this intuition of using clustering structure in the
data to explore it e�ciently (Nguyen & Smeulders, 2004)
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1 Appendix

1.1 Precision Results

Figure 1: Precision score for experiments. The panel columns correspond to the datasets

the rows to the di↵erent levels of class imbalance. Dots represent single replications of the

experiment, smoothed lines are fits (and standard errors) of a generalized additive model.
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1.2 Recall Results

Figure 2: Recall score for experiments. The panel columns correspond to the datasets the

rows to the di↵erent levels of class imbalance. Dots represent single replications of the

experiment, smoothed lines are fits (and standard errors) of a generalized additive model.
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1.3 Precision and Recall for Inter-coder Reliability Experiment

Figure 3: Active learning and passive learning performance on the Twitter dataset with

di↵erent levels of simulated inter-coder reliability.
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Figure 4: Active learning and passive learning performance on the Twitter dataset with

di↵erent levels of simulated inter-coder reliability.
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1.4 Active learning with partially randomly sampled data

Figure 5: Performance on the held out data of active learning with margin querying

strategy and additional randomly selected training data. Each line displays results for a

di↵erent level of randomness. Results are from the Twitter dataset.
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1.5 Pre-processing Choices

Figure 6: Distribution of n-gram sizes as chosen by the cross validation procedure across

text corpora.
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Figure 7: Distribution of token normalization technique as chosen by the cross validation

procedure across text corpora.
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Figure 8: Distribution of token weight technique as chosen by the cross validation proce-

dure across text corpora.
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Figure 9: Distribution of token type technique as chosen by the cross validation procedure

across text corpora.
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1.6 Algorithms

1.6.1 Margin algorithm

1. Let L represent the set of labeled observations with predictors XL and labels yL.

2. Train a regularized support vector machine (SVM) with L2 penalty

3. The class-separating hyperplane learned above h ⇢ Rp
is defined by h = {x̃ :

x0w + b = 0}

4. Calculate the distance between each unlabeled observation in U and the class sep-

arating hyperplane h learned in the previous step

5. Return a query set of the m (batch size) unlabeled observations closest to the

hyperplane (m can be chosen to suit the specific coding task)

6. The expert labels each queried document.

7. Repeat Steps 2 - 6 with new labeled observations until a stopping criterion is reached.

1.6.2 Query by Committee

1. Let L represent the set of labeled observations with predictors XL and labels yL.

2. Define a committee: C = ✓(1), ..., ✓(C)1

3. Using each model, predict the outcome all unlabeled observations ŷ

4. Calculate the vote entropy for each unlabeled observation V E = �
CP
i

V (yi)
C log V (yi)

C

where yi 2 {0, 1}, V (yi) is the number of votes that label receives, and C is the

committee size.

5. Return a query set of the m (batch size) unlabeled observations with the largest

vote entropy V E.

6. The expert labels each queried document.

7. Repeat Steps 2 - 6 with new labeled observations until a stopping criterion is reached.

1For our simulations, we use 9 di↵erently specified linear models (A naive bayes classifier and multiple
models with di↵erent regularization choices: 2 logistic regression classifiers, 3 support vector machines,
and 3 perceptron classifiers). When models have hyperparameters to tune, we choose the best perform-
ing classifier of 2 randomly specified models (hyperparameters drawn from exponential distributions at
di↵erent scales) using cross-validated F1 score.
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1.6.3 Expected Model Change

1. Let L represent the set of labeled observations with predictors XL and labels yL.

2. Train a regularized support vector machine (SVM) with L2 penalty, f(XL), using

labeled observations L

3. Using the model, predict the outcome all unlabeled observations ŷ

4. For each unlabeled observation:

(a) Add the training tuple hxi, yii from U to the labeled set L
(b) Retrain an SVM model with L+hx,ŷi

= L [ hx, ŷi
(c) Calculate a score for the model output change s = sum(`✓(L+hx,ŷi

; ✓)) where `✓
is the square loss function defined as 1 for f(XL) 6= f(XL[hx,ŷi) and 0 otherwise.

5. Return a query set of the m (batch size) unlabeled observations with the largest

model change score s.

6. The expert labels each queried document.

7. Repeat Steps 2 - 6 with new labeled observations until a stopping criterion is reached.
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