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community detection with node 
attributes in multilayer networks
Martina contisciani1, eleanor A. power 2 & caterina De Bacco1*

community detection in networks is commonly performed using information about interactions 
between nodes. Recent advances have been made to incorporate multiple types of interactions, thus 
generalizing standard methods to multilayer networks. often, though, one can access additional 
information regarding individual nodes, attributes, or covariates. A relevant question is thus how 
to properly incorporate this extra information in such frameworks. Here we develop a method 
that incorporates both the topology of interactions and node attributes to extract communities in 
multilayer networks. We propose a principled probabilistic method that does not assume any a priori 
correlation structure between attributes and communities but rather infers this from data. this leads 
to an efficient algorithmic implementation that exploits the sparsity of the dataset and can be used 
to perform several inference tasks; we provide an open-source implementation of the code online. 
We demonstrate our method on both synthetic and real-world data and compare performance with 
methods that do not use any attribute information. We find that including node information helps in 
predicting missing links or attributes. it also leads to more interpretable community structures and 
allows the quantification of the impact of the node attributes given in input.

Community detection is a fundamental task when investigating network data. Its goal is to cluster nodes into 
communities and thus find large-scale patterns hidden behind interactions between many individual elements.

The range of application of this problem spans several disciplines. For instance, community detection has 
been used in sociology to analyze terrorist groups in online social  networks1; in finance to detect fraud events 
in telecommunication  networks2; in engineering to refactor software packages in complex software  networks3; 
and in biology to investigate lung  cancer4 and to explore epidemic spreading  processes5. In recent years, the 
variety of fields interested in this topic has broadened and the availability of rich datasets is increasing accord-
ingly. However, most research approaches use only the information about interactions among nodes, in other 
words the network topology structure. This information can be complex and rich, as is the case for multilayer 
networks where one observes different types of interactions. For instance, in social networks, interactions could 
entail exchanging goods, socializing, giving advice, or requesting assistance. Most network datasets, however, 
contain additional information about individuals, attributes which describe their features, for instance their 
religion, age, or ethnicity. Node attributes are often neglected a priori by state-of-the-art community detection 
methods, in particular for multilayer networks. They are instead commonly used a posteriori, acting as candi-
dates for “ground-truth” for real-world networks to measure the quality of the inferred  partition6,7, a practice 
that can also lead to incorrect scientific  conclusions8. It is thus a fundamental question how to incorporate node 
attributes into community detection in a principled way. This is a challenging task because one has to combine 
two types of  information9, while evaluating the extent to which topological and attribute information contribute 
to the network’s  partition10.

To tackle these questions, we develop MTCOV, a mathematically rigorous and flexible model to address 
this problem for the general case of multilayer networks, i.e., in the presence of different types of interactions. 
The novelty of this model relies on a principled combination of the multilayer structure together with node 
information to perform community detection. To the best of our knowledge, MTCOV is the first overlapping 
community detection method proposed for multilayer networks with node attributes. The model leverages two 
sources of information, the topological network structure and node covariates (or attributes), to partition nodes 
into communities. It is flexible as it can be applied to a variety of network datasets, whether directed, weighted, 
or multilayer, and it outputs overlapping communities, i.e., nodes can belong to multiple groups simultane-
ously. In addition, the model does not assume any a priori correlation structure between the attributes and the 
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communities. On the contrary, the contribution of the attribute information is quantitatively given as an output of 
the algorithm by fitting the observed data. The magnitude of this contribution can vary based on the dataset. Even 
if this is not very high (for instance if the attributes are noisy or sparse) the model is nevertheless able to use this 
extra information to improve performance. At the same time, if incorporating attribute information hurts infer-
ence tasks, the model will downweigh this contribution and instead use mostly the topological network structure.

Our method allows domain experts to investigate particular attributes and select relevant community parti-
tions based on what type of node information they are interested in studying. In fact, by choosing the input data, 
we can drive the algorithm to select for communities that are more relevant to the attribute under study. If the 
attribute hurts performance and is consequently downweighted by the algorithm, this can be used as a signal that 
the attribute might not correlate well with any partition, given the remaining topological information available, 
and thus inform the expert accordingly.

We study MTCOV on synthetic multilayer networks, a variety of single-layer node-attributed real networks 
and several real multilayer networks of social support interactions in two Indian villages. We measure perfor-
mance based on prediction tasks and overlap with ground-truth (when this is known). For single-layer networks, 
we compare the performance of MTCOV to state-of-the-art community detection algorithms with node attrib-
utes; for multilayer networks, we test against a state-of-the-art algorithm that does not use any node attribute 
information and measure the extent to which knowing both types of information helps inference. We find that 
MTCOV performs well in predicting missing links and attributes. It also leads to more interpretable community 
structures and allows the quantification of the impact of the node attributes given as input.

To summarize, we present MTCOV, a new method that incorporates both the topology of interactions and 
node attributes to extract communities in multilayer networks. It is flexible, efficient and it has the property of 
quantitatively estimating the contributions of the two sources of information. It helps domain experts to inves-
tigate particular attributes and to better interpret the resulting communities. Moreover, by including relevant 
node attributes, it boosts performance in terms of edge prediction.

Related work. Several methods have been proposed to study community detection in  networks11. In par-
ticular, we are interested in those valid for multilayer  networks12. These generalize single-layer networks in that 
they can model different types of interactions and thus incorporate extra information that is increasingly avail-
able. Among these, we focus on generative models for multilayer  networks13–19, which are based on probabilistic 
modeling like Bayesian inference or maximum likelihood optimization. These are flexible and powerful in terms 
of allowing multiple inference tasks, injecting domain knowledge into the theoretical framework, and being 
computationally efficient. However, the majority of these methods do not consider node attributes as input 
along with the network information. In fact, the few methods developed for community detection in multilayer 
networks with node attributes are based on first aggregating the multilayer network into a single layer, either 
by combining directly the adjacency matrices of each  layer20 or by using similarity matrices derived from them 
along with the node  attributes21,22. In the context of data mining, a similar problem can be framed for learning 
low dimensional representations of heterogeneous data with both content and linkage structure (what we call 
attributes and edges). This is tackled by using embeddings extracted via deep  architectures23, which is rather 
different than our approach based on statistical inference. Our problem bears some common ground with the 
one studied by Sachan et al.24 for extracting communities in online social networks, where users gather based on 
common interests; they adopt a Bayesian approach, but with a rather different goal of associating different types 
of edges to topics of interest. A related but different problem is that of performing community detection with 
node attributes on multiple independent  networks25,26; this differs with modeling a single multilayer network in 
that it assumes that covariates influence in the same way all the nodes in a network but in a different way the 
various networks in the ensemble. For single-layer networks, there has been more extensive work recently on 
incorporating extra information on  nodes9,25,27–34. Among those adopting probabilistic modeling, some incor-
porate covariate information into the prior information of the latent membership  parameters25,35,36, while others 
include covariates in an additive way along with the latent  parameters37,38, so that covariates influences the prob-
ability of interactions independently of the latent membership.

These works show the impact of adding nodes attributes in community detection a priori into the models to 
uncover meaningful patterns. One might then be tempted to adopt such methods also in multilayer networks 
by collapsing the topological structure into a suitable single network that can then be given in input to these 
single-layer and node-attributed methods as done by Gheche et al.20. However, collapsing a multilayer network 
often leads to important loss of information, and one needs to be careful in determining when this collapse is 
appropriate and how it should be implemented, as shown for community detection methods without attribute 
 information39,40. Thus the need of a method that not only incorporates different types of edges but also node 
attributes.

Results
We test MTCOV’s ability to detect communities in multilayer networks with node attributes by considering 
both synthetic and real-world datasets. We compare against  MULTITENSOR13, an algorithm similar to ours 
but that does not include node attributes. We also test MTCOV’s performance on single-layer networks, as the 
mathematical framework behind MTCOV still applies. Given this potential use and the paucity of algorithms 
suitable for comparison for multilayer networks, such comparisons assess the general utility of MTCOV.

Multilayer synthetic networks with ground-truth. To illustrate the flexibility and the robustness of 
our method, we generate multilayer synthetic networks with different kinds of structures in the various layers 
adapting the protocol described in De Bacco et al.13 to accommodate node attributes. We generate attributes as 
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done in Newman and  Clauset27: we match them with planted communities in increasing ratios varying from 0.3 
to 0.9; these values correspond also to the γ parameters that we fix for MTCOV. Specifically, we generate three 
types of directed networks using a stochastic block  model41, all with C = 2 communities of equal-size unmixed 
group membership and N = 1000 nodes, but with different numbers and kinds of layers, similar to De Bacco 
et al.13. The first network ( G1 ) has L = 2 layers, one assortative ( Wα has higher diagonal entries) and one disas-
sortative ( Wα has higher off-diagonal entries); the second ( G2 ) has L = 4 layers, two assortative and two disas-
sortative and the third ( G3 ) has L = 4 layers, one assortative, one disassortative, one core-periphery ( Wα has 
higher diagonal entries but one of the two is bigger than the other) and one with biased directed structure ( Wα 
has higher off-diagonal entries but one of the two is bigger than the other). We generate ten independent samples 
of each of these types of networks and use all the evaluation metrics described in the “Methods” section in the 
presence of ground-truth. We use the membership inferred by the algorithms using the best maximum likeli-
hood fixed point over 10 runs with different random initial conditions. As shown in Table 1, MTCOV performs 
significantly better than MULTITENSOR on the first and second network. This suggests that incorporating 
attribute information can significantly boost inference, with an increasing benefit for a smaller number of layers. 
Figure 1 shows an example of this result. Notice that G2 requires a smaller match ( γ = 0.5) between attributes 
and communities than G1 ( γ = 0.7) to achieve similar performance. G1 and G2 have similar structure, but the 
second has twice as many layers. Thus, increasing the number of layers may require less contribution from the 
extra information of the attributes, a possible advantage for multilayer networks. This intuition is reinforced by 
noticing not only that the best performance is achieved for γ < 0.9 , but also that both the algorithms perform 
very well in the third network, regardless of the value of the match between attributes and communities. Con-

Table 1.  Performance of algorithms MULTITENSOR and MTCOV on synthetic multilayer networks with 
attributes. We use different matches (one per row, e.g., MTCOV_0.3 denotes a match of 0.3, this is also 
the value we use to fix γ ) between attributes and planted communities on synthetic directed multilayer 
networks. Results are averages and standard deviations over 10 networks samples for each network type Gm , 
m = 1, 2, 3 ; we take the average performance over the incoming and outgoing memberships, i.e., the matrices 
U and V, and the best performances are in boldface. Networks are generated with stochastic block model 
with C = 2 , N = 1000 and average degree k = 4 . Denote Wa , Wd , Wcp and Wbd , the affinity matrices of the 
assortative, disassortative, core-periphery and the biased directed layers respectively. Then, their entries are 
wa
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= 0.03×
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N  . The F1-score, Jaccard, CS and L1 are performance metrics as defined in the 

“Methods” section.

Method

G1 G2 G3

F1-score Jaccard CS L1 F1-score Jaccard CS L1 F1-score Jaccard CS L1

MULTITENSOR 0.512± 0.006 0.344± 0.006 0.585± 0.005 0.492± 0.004 0.514± 0.006 0.346± 0.06 0.614± 0.005 0.490± 0.005 0.999± 0.001 0.998± 0.001 0.991± 0.001 0.063± 0.002

MTCOV_0.3 0.7± 0.2 0.5± 0.2 0.7± 0.1 0.4± 0.1 0.8± 0.2 0.7± 0.2 0.8± 0.1 0.3± 0.2 0.995± 0.002 0.990± 0.004 0.984± 0.002 0.080± 0.004

MTCOV_0.5 0.6± 0.1 0.5± 0.2 0.7± 0.1 0.4± 0.1 0.992± 0.005 0.985± 0.009 0.986± 0.004 0.064± 0.004 0.996± 0.002 0.992± 0.004 0.985± 0.002 0.079± 0.004

MTCOV_0.7 0.988± 0.002 0.976± 0.004 0.977 ± 0.002 0.079± 0.003 1.± 0. 1.000± 0.001 0.991± 0.001 0.062± 0.002 0.994± 0.002 0.988± 0.004 0.982± 0.001 0.087± 0.002

MTCOV_0.9 0.958± 0.003 0.920± 0.005 0.977 ± 0.001 0.050± 0.002 0.992± 0.002 0.984± 0.004 0.988± 0.001 0.050± 0.002 0.976± 0.003 0.952± 0.006 0.982± 0.002 0.051± 0.003

Figure 1.  Partition of a synthetic multilayer network with attributes. We generated synthetic directed multilayer 
networks using a stochastic block model, that aligns with G1 . To illustrate, here we do the equivalent task on 
a smaller network of size N = 299, C = 2 communities of equal-size unmixed group membership and L = 2 
layers, of which one is assortative (green) and one disassortative (pink); (a) the ground-truth partition; (b–d) 
the communities inferred by three different methods: (b) MULTITENSOR, an algorithm without attributes, 
(c) MTCOV using the network structure and the attributes with the same proportion, i. e. γ = 0.5 and (d) 
MTCOV using mostly the attribute structure, i.e. γ = 0.7 . Colors denote the inferred partition; the attributes 
in (c) and (d) are generated by matching them with true community assignments for the 50% and 70% of the 
nodes respectively, and chosen uniformly at random from the non-matching values; square and triangle denote 
the synthetic dummy attribute (squares are matched with the red group, triangles with the blue) and the size of 
the node shows the nodes matched with the true community (bigger means deterministic match, smaller means 
uniform at random match). We use the matrix U for the membership.
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trary to G2 , G3 has a different structure in each of the 4 layers. This diversity can be even more beneficial than 
having more but correlated layers (as in G1 vs. G2 ). These synthetic tests demonstrate the impact of leveraging 
both node attributes and topological information: when topological structure is not very informative (as in G1 
with only two layers), adding node attributes can significantly help in recovering the communities. In contrast, 
when topological information is more complex (as in G3 where all layers are different), properly combining the 
different layers’ structures can compensate for a limited access to extra information on nodes. Overall, this shows 
the need for methods suited for exploiting various sources of information and the complexity behind multilayer 
networks.

Multilayer social support network of rural indian villages. We demonstrate our model beyond syn-
thetic data by applying it to social support networks of two villages in Tamil Nadu, India, which we call by the 
pseudonyms “Tenpaṭṭi” (Ten) and “Alakāpuram” (Ala)42–44. Data were collected in the form of surveys where 
adult residents were asked to nominate those individuals who provided them with various types of support, 
including running errands, giving advice, and lending cash or other household items. These were collected in 
two rounds, one in 2013 and the other in 2017. Each type of support corresponds to a layer in the network; we 
consider only those layers present in both rounds, for a total of L = 6 layers. After pre-processing the data, by 
considering only those individuals who had at least one outgoing edge and removing self-loops, the resulting 
networks have the size reported in Table 2. In addition, several attributes were collected, which include informa-
tion about age, religion, caste, and education level. Ethnographic observation in these  villages42 and previous 
 analyses43,44 suggest that social relations are strongly structured by religious and caste identity, with these divi-
sions shaping where people live, who they marry, and who they choose to associate with. In other words, they 
suggest a dependence between the attributes Religion and Caste and the mechanisms driving edge formation in 
these social support networks. Motivated by these insights, here we consider the attributes Caste and Religion 
and add them into the model. In addition, we test the importance of variables that we expect to be less informa-
tive, such as gender and age. The latter, being continuous, is also an example of a non-categorical variable. Pro-
vided it has a finite range, as it is the case for age, we can encode it into categorical by binning its values. Here we 
use equal bins of size 5 years.

Without assuming a priori any ground-truth, we measure performance using the AUC and accuracy as 
explained in the “Methods” section. We compare with MULTITENSOR to measure the extent to which adding 
the attributes helps predicting edges and attributes; in addition, in terms of accuracy values, we consider two 
baselines for further comparisons: (1) a uniform at random probability over the number of possible catego-
ries (RP); and (2) the maximum relative frequency of the attribute value appearing more often (MRF). We fix 
hyperparameters using 5-fold cross-validation along with grid-search procedure (see “Cross-validation tests and 
hyperparameter settings” section for more details). We obtain values of γ ∈ [0.2, 0.9] , signalling relevant cor-
relations between attributes and communities. For details, see Supplementary Table S2. Empirically, we observe 
that when γ > 0.5 the algorithm achieves better performance in terms of link and attribute prediction by well 
balancing the log-likelihood of the attribute dimension and the one of the network structure.

For validation, we split the dataset into training/test sets uniformly at random as explained in the “Methods” 
section. Table 3 reports the average results over ten runs for each network, and shows that MTCOV is capable of 
leveraging two sources of information to improve both performance metrics. In fact, our algorithm systemati-
cally achieves the highest accuracy for attribute prediction and the highest AUC for edge prediction (boldface). 
While a good performance in attribute prediction is expected by design as we add this data into the model, the 
fact that it also boosts performance in terms of edge prediction is not granted a priori. Instead, it is a quantita-
tive way to show that an attribute plays an important role in the system. It also demonstrates the potential of 
capturing correlations between two different sources of information, which can have relevant applications, in 
particular when missing information of one kind. Notice in particular the improvement in AUC when using 
caste compared to no attribute given (MULTITENSOR). The other attributes are less informative; in particular 
age has a performance similar to MULTITENSOR in edge prediction, signalling that it does not contribute to 
inform edge formation. Indeed, it has the smallest inferred γ (always < 0.5 ), which gives also worse accuracy 
performance than the baseline, signalling again that this attribute may not be correlated with the community 
structure. All these results show the flexibility of MTCOV in adapting based on the data given in input: if 
warranted, it is able to ignore those attributes that are not correlated with network division and instead find 
communities that are mainly based on the network structure. Next, we test how adding node attributes impacts 
robustness against unbalanced data, where the ratio of positive examples (existing edges) observed in the train-
ing is different than that in the test set. We denote the total probability of selecting an edge in the test as tpe 

Table 2.  Network summary statistics for the four social support networks of Indian villages. Each has 
the same set of 6 layers and Edges are the total over them; 〈k〉 is the average degree per node on the whole 
multilayer network. The columns Caste, Religion, Age and Gender are the number of different categories 
observed in each network for their respective attribute.

Village Year Nodes Edges 〈k〉 Caste Religion Age Gender

Alakāpuram
2013 419 4,161 20 14 3 11 2

2017 441 5,578 25 13 3 12 2

Tenpaṭṭi
2013 362 3,374 19 11 2 11 2

2017 346 3,806 22 9 2 12 2
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and consider values tpe ∈ {0.001, 0.004, 0.015, 0.03} denoting under-representation (0.001), equal (0.004), and 
over-representation (values 0.015 and 0.03) compared to the uniform at random selection (empirically we find 
tpe = 0.004 ). In these tests, we hold out 20% of the entries of A biasing their selection using the tpe values; in 
addition, we give as input the whole design matrix X (attributes) and measure link prediction performance. We 
observe that MTCOV is significantly more robust than the algorithm that does not use any attribute informa-
tion, regardless of the value of γ . In fact, even though performance deteriorates as we decrease the number of 
positive examples in the training set (i.e., higher tpe), MTCOV is less impacted by this, as shown in Fig. 2 (results 
reported in Supplementary Table S3). Notice in particular performance discrepancies when using the attribute 

Table 3.  Prediction performance on real multilayer networks with attributes. Results are averages and 
standard deviations over 10 independent trials of cross-validation with 80–20 splits selected uniformly at 
random (i.e., tpe = 0.004 ); the best performances are in boldface. Datasets are described in Table 2. RP is 
the performance of uniform random probability and MRF the one of the maximum relative frequency, see 
“Methods” section for details.

Attribute Method

ACC URA CY for attribute prediction AUC for link prediction

Ala 2013 Ala 2017 Ten 2013 Ten 2017 Ala 2013 Ala 2017 Ten 2013 Ten 2017

MULTITENSOR 0.771± 0.009 0.835± 0.006 0.758± 0.005 0.81± 0.01

Caste

RP 0.07 0.08 0.10 0.11

MRF 0.556± 0.009 0.57± 0.01 0.32± 0.01 0.33± 0.02

MTCOV 0.80± 0.05 0.77 ± 0.05 0.69± 0.09 0.74 ± 0.07 0.837 ± 0.009 0.858± 0.008 0.829± 0.006 0.82± 0.01

Religion

RP 0.33 0.33 0.50 0.50

MRF 0.837± 0.008 0.843± 0.006 0.696± 0.008 0.679± 0.008

MTCOV 0.96± 0.02 0.95± 0.03 0.76± 0.08 0.80± 0.05 0.813± 0.007 0.83± 0.01 0.81± 0.02 0.80± 0.01

Age

RP 0.09 0.08 0.09 0.08

MRF 0.135± 0.005 0.126± 0.007 0.126± 0.005 0.128± 0.008

MTCOV 0.11± 0.03 0.11± 0.02 0.13± 0.04 0.10± 0.03 0.80± 0.01 0.823± 0.008 0.783± 0.009 0.80± 0.01

Gender

RP 0.50 0.50 0.50 0.50

MRF 0.584± 0.009 0.58± 0.01 0.56± 0.01 0.55± 0.01

MTCOV 0.61± 0.05 0.65± 0.04 0.58± 0.08 0.71± 0.08 0.79± 0.02 0.831± 0.009 0.80± 0.01 0.81± 0.01

Figure 2.  Probabilistic link prediction with biased edge sampling. Results are AUC values of MTCOV and 
MULTITENSOR on four social support networks in different held-out settings. Here tpe indicates the total 
probability of selecting one edge (positive example) in the test set. We consider Caste, Religion, Age and Gender 
attributes; results are averages and standard deviations over 10 independent runs.
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Caste in the difficult regimes ( tpe ∈ {0.015, 0.03} ): MTCOV’s performance deteriorates only a little, while using 
the other attributes or no attribute makes performance significantly worse, with AUC down to 0.6 from a value 
higher than 0.8 for easier regimes. Moreover, notice that attributes with the same scaling parameter value can 
give different prediction results, underlying the necessity to consider both the value of the estimated γ and the 
quality of the attribute to quantify its importance. This could explain why Caste provides always better results, 
given by the fact that its categories are more heterogeneous (i.e., more information) than Religion and Gender. 
The robustness of MTCOV is also confirmed by analyzing the performances on a trial-by-trail basis, each trial 
being a random sample of the held-out entries. As we show in Fig. 3, MTCOV better predicts links in 89% of 
the trials and never goes below the threshold of 0.5, the baseline random choice. These results demonstrate how 
adding another source of information helps when observing a limited amount of network edges.

Qualitative analysis of a social support network. To demonstrate our MTCOV model beyond prediction tasks 
and highlight its potential for interpretability, we show as an example its qualitative behavior on the real network 
of Alakāpuram in 2017 (see Table 2). Specifically, we compare the communities extracted by our algorithm and 
those inferred by MULTITENSOR. To ease comparison, we fix the same number of groups to C = 4 for both 
algorithms and measure how caste membership distributes across communities, and fix γ = 0.8 as obtained 
with cross-validation. Figure 4 shows the magnitude of each individual’s inferred outgoing memberships ui in 
each group. While the communities identified by MTCOV and MULTITENSOR show substantial similarities, 
MTCOV generally classifies castes more consistently into distinct communities, as we show in Figs. 4 and 5. To 
make a quantitative estimate of the different behaviors, we measure the entropy of the attribute inside each com-
munity Hk = −

∑Z
z=1 fz log fz/ log(Z) , where fz is the relative frequency of the z-th caste inside a group k, and 

the denominator is the entropy of a uniform distribution over the Z castes, our baseline for comparison. Values 
of Hk close to 1 denote a more uniform distribution of castes, whereas smaller values denote an unbalanced 
distribution with most of the people belonging to a few castes. We find that MTCOV has smaller entropies over 
the groups, with two groups having the smallest values, whereas MULTITENSOR has the highest, showing its 
tendency to cluster individuals of different castes into the same group. In addition, we observe that MTCOV 
has a more heterogenous group size distribution which seems to be correlated with caste. Notably, the algo-
rithms differ in how they place two caste groups that live in hamlets separated from the main village (the Hindu 
Yātavars and CSI Paraiyars). With MULTITENSOR, they are grouped together, while with MTCOV, the Hindu 
Yātavars are joined up into a community with Paḷḷars and Kulālars. While MULTITENSOR is clearly picking 
up the structural similarities of the two hamlets, this division makes little sense socially and culturally. In con-
trast, the way in which MTCOV defines a community which spans caste boundaries (MTCOV C1) aligns with 
ethnographic knowledge of the relations between these castes. Finally, we remark that there might be multiple 
meaningful community divisions in the network, and the fact that MTCOV’s partition seems to better capture 
the distributions in the attribute caste does not mean than one algorithm is better than the other. In fact, there 
might be other hidden topological properties that MULTITENSOR’s partition is picking up by being agnostic to 

Figure 3.  Trial-by-trial probabilistic link prediction with biased edge sampling. The values of AUC for MTCOV 
and MULTITENSOR are shown on the vertical axis and the horizontal axis respectively. The brightness 
represents the hardness of the settings in terms of biasing the edge sampling in the training. From bottom to top: 
tpe = 0.03 (hard, dark color), tpe = 0.015 , tpe = 0.004 (random), tpe = 0.001 (easy, light color). Points above 
the diagonal, shown in shades of red, are trials where MTCOV is better performing than MULTITENSOR. The 
fractions for which each method is superior are shown in the plot legend. We use the attribute Religion.
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Figure 4.  Attributes and inferred communities. Nodes of the social support network of Alakāpuram in 2017 are 
colored by: (a) the attribute Caste (with colors as shown in Fig. 5); inferred communities by (b) MTCOV and (c) 
MULTITENSOR. Darker values in the grey scales indicate higher values of the entry of the membership vector 
ui.

Figure 5.  Partition of the attribute Caste inside each community detected by MTCOV and MULTITENSOR 
in the social support network of Alakāpuram in 2017. The category Other contains small categories having less 
than five individuals. The label on top of each bar is the value of the entropy of the variable Caste inside the 
corresponding community. Note that nodes can have mixed membership, here we build a group k by adding 
to it all nodes i that have a non-zero k-th entry uik . The number of nodes is N = 441 , corresponding to the 
maximum value of the y-axis plotted.



8

Vol:.(1234567890)

Scientific RepoRtS |        (2020) 10:15736  | https://doi.org/10.1038/s41598-020-72626-y

www.nature.com/scientificreports/

caste membership. The choice of which algorithm to use should be made based on the final goal of the applica-
tion at hand. 

Results on single-layer networks. Our model can be used for single-layer networks as well. For these 
we can compare against two state-of-the-art algorithms, both probabilistic generative models but different in 
their assumptions:  CESNA9 which considers overlapping communities and posits two independent Bernoulli 
distributions for network edges and node attributes; and the model proposed by Newman and  Clauset27 (NC) for 
non-overlapping communities, a Bayesian approach where the priors on the community memberships depend 
on the node attributes. CESNA, similarly to our model, assumes conditional independence of the two likeli-
hoods and introduces a regularization parameter between them; it uses block-coordinate ascent for parameters’ 
estimation, while NC uses an EM algorithm for parameters’ estimation, similarly to what we do here. We test 
MTCOV against them on both synthetic and real single-layer networks with node attributes, with and without 
ground-truth. We transform directed networks to undirected because both CESNA and NC do not distinguish 
for edge directionality. Results on synthetic data show that MTCOV and NC have similar performance in cor-
rectly classifying nodes in their ground-truth communities and both are better than CESNA; the main differ-
ence is that MTCOV is more stable and has less variance for high attribute correlation, in particular in the hard 
regime where classification is more difficult. We leave details in the Supplementary Section S4. For single-layer 
real networks, we use datasets with ground-truth candidates and node attributes: the ego-Facebook network 
(facebook)45, a set of 21 networks built from connections between a person’s friends where potential ground-
truth are circles of friends hand-labeled by the ego herself; the American College football network (football)46, a 
network of football teams playing against each other, where a ground-truth candidate is the conference to which 
each team belongs; and a network of political blogs (polblogs)47 where potential ground-truth communities are 
divided by left/liberal and right/conservative political parties, see Supplementary Section S4 for details. For each 
network, we run a 5-fold cross-validation procedure combined with grid-search for fixing the hyperparameter 
γ (see “Cross-validation tests and hyperparameter settings” section for details; note that in this case we use the 
ground-truth value of C, hence γ is the only hyperparameter left to be tuned). For facebook we find that the 
average over the 21 networks is γ = 0.15 , which signals a low correlation between the covariates and the com-
munities, whereas for the football and polblogs networks we obtain much higher values of γ equal to 0.6 and 0.75 
respectively. MTCOV has better performance in terms of F1-score and Jaccard similarity across the majority of 
datasets, as shown in Table 4. This is also supported by a trial-by-trial comparison shown in Fig. 6 for F1-score 
(similar results are obtained for Jaccard), where we find that MTCOV is more accurate in 59% and 90% of the 
cases than NC and CESNA, respectively.

Discussion
We present MTCOV, a generative model that performs overlapping community detection in multilayer networks 
with node attributes. We show its robustness in adapting to different scenarios, and its flexibility in exploiting the 
attributes that are more informative while ignoring those that are less correlated with the network communities. 
Our method is capable of estimating quantitatively the contribution given by the attributes and incorporating 
them to improve prediction performance both in terms of recovering missing attributes and in terms of link 
prediction. This allows domain experts to investigate particular attributes and select relevant community parti-
tions based on what type of node information they are interested in investigating. There are valuable possible 
extensions of this work. One example is to incorporate modeling of more complex data types for the attributes, 
for instance combinations of discrete and continuous attributes, or other types of extra information, like time-
varying network elements, whether the attributes, node, edges or combinations of these. From a technical point 
of view, when the topological and attribute datasets are very unbalanced in size, this might impact their rela-
tive likelihood weight and thus inference. One should then consider automating the process of rescaling them 
accordingly, as a pre-processing step to be incorporated into the model. Similarly, hyperparameter selection 
would benefit from an automatized routine when more than one performance metric is considered. The rela-
tions between attributes and communities could be transferred across networks to predict missing information 
when having access to similar but incomplete datasets. We show examples of these here, where we studied two 
snapshots of the same village networks across time. While we leave these questions for future work, we provide 
an open source version of the code.

Table 4.  Performance of methods MTCOV, NC and CESNA on three datasets, according to two different 
measures used in the Eq. (16). The results are averages and standard deviations over ten independent runs and 
the best outcomes are bolded.

Method

F1-score Jaccard similarity

facebook football polblogs facebook football polblogs

MTCOV 0.5± 0.1 0.86± 0.03 0.8± 0.2 0.4 ± 0.1 0.82± 0.04 0.8± 0.2

NC 0.48± 0.08 0.82± 0.06 0.95± 0.09 0.36± 0.08 0.75± 0.08 0.9± 0.1

CESNA 0.46± 0.09 0.7± 0.0 0.6± 0.0 0.33± 0.08 0.6± 0.0 0.4± 0.0
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Methods
We adapt recent ideas from the generative model behind  MULTITENSOR13, a multilayer mixed-membership 
model based on a Poisson tensor  factorization48, to incorporate node attributes in a principled manner. It can 
take in input directed and undirected networks, allowing different topological structures in each layer, including 
arbitrarily mixtures of assortative, disassortative and core-periphery structures. We move beyond MULTITEN-
SOR by incorporating node covariates via introducing a proper likelihood term that accounts for this extra 
information. We use the formalism of maximum likelihood estimation: we combine the structural and the node 
information into a global likelihood function and provide a highly scalable Expectation-Maximization algorithm 
for the estimation of parameters.

Model description and notation. Consider a multilayer network of N nodes and L layers. This is a set 
of graphs G = {G(α)

(

V ,E (α)
)

}1≤α≤L defined on a set V of N vertices shared across L ≥ 1 layers, and E (α) 
is the set of edges in the layer α . Each layer α ∈ {1, . . . , L} is a graph G(α)(V ,E (α)) with adjacency matrix 
A(α)

= [a
(α)
ij ] ∈ R

N×N , where a(α)ij  is the number of edges of type α from i to j; here we consider only positive 
discrete entries; for binary entries, E =

∑

i,j,α a
(α)
ij  is the total the number of edges. Alternatively, we can consider 

a 3-way tensor A with dimensions N × N × L . In addition, for each node i ∈ V consider the vector of covari-
ates Xi ∈ R

1×K (alternatively called also attributes or metadata), where K is the total number of attributes. Here, 
for simplicity we focus on the case of K = 1 and categorical covariates with Z different categories. However, we 
can easily generalize to more than one covariate by encoding each possible combination of them as a different 
value of one single covariate. For example, for two covariates being gender and nationality, we can encode Xi 
being one covariate with possible values female/American, male/Spanish and so forth. One could also consider 
real-valued covariates by cutting them into bins. Nevertheless, a future expansion should include the possibility 
to work with any type of metadata.

A community is a subset of vertices that share some properties. Formally, each node belongs to a com-
munity to an extent measured by a C-dimensional vector denoted membership. Since we are interested in 
directed networks, for each node i we assign two such vectors, ui and vi (for undirected networks we set u = v ); 
these determine how i forms outgoing and incoming links respectively. Each layer α has an affinity matrix 
W (α)

= [w
(α)
kl ] ∈ R

C×C which describes the density of edges between each pair (k, l) of groups. Each community 
k ∈ {1, . . . ,C} is linked to a category z ∈ {1, . . . ,Z} by a parameter βkz , that explains how much information of 
the z-th category is used to create the k-th community. To summarize, we consider two types of observed data: 
the adjacency tensor A = {A(α)

}1≤α≤L and the design matrix X = {Xi}i∈{1,...,N} ; the first contains information 
about the networks topology structure, the latter about the node covariates. In addition, we have the model 
parameters that we compactly denote as Θ = {U ,V ,W ,β}.

The goal is to find the latent parameters Θ using the data A and X. In other words, given an observed multilayer 
network with adjacency tensor A and design matrix X, our goal is to simultaneously infer the node’s membership 
vectors ui and vi ∀i ∈ {1, . . . ,N} ; the affinity matrices W (α) , ∀α ∈ {1, . . . , L} , and the matrix β = [βkz] ∈ R

C×Z , 
which captures correlations between communities and attributes. A visual overview of the proposed model is 
shown in Fig. 7. We consider a probabilistic generative model where MTCOV generates the network and the 

Figure 6.  Trial-by-trial performance in F1-score. We compare MTCOV on the y-axis, with on the x-axis (left) 
NC and (right) CESNA. Markers denote the datasets: squares for facebook, triangles for football and circles for 
polblogs. Points above the diagonal, shown in red, are trials where MTCOV is more accurate than the other. The 
fractions for which each method is superior are shown in the plot legend.
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attributes probabilistically, assuming an underlying structure consisting of C overlapping communities. We 
adopt a maximum likelihood approach where, given the latent parameters Θ , we assume that the data A and X 
have independent likelihoods; in other words, we assume that A and X are conditionally independent given the 
latent parameters Θ . In addition, we assume that the memberships U and V couple the two datasets, as they are 
parameters shared between the two likelihoods; whereas the W and β are specific to the adjacency and design 
matrix respectively. We describe separately the procedures for modeling the topology of the network and the 
node attributes and then we show how to combine them in a unified log-likelihood framework.

Modeling the network topology. In modeling the likelihood of the network topology, we adopt the 
ideas behind MULTITENSOR: we assume that the expected number of edges of type α from i to j is given by 
the parameter:

We then assume that each entry a(α)ij  of the adjacency tensor is extracted from a Poisson distribution with 
parameter M(α)

ij  . This is a common choice for network  data49–51 as it leads to tractable and efficient algorithmic 
implementations, compared for instance with other approaches that use Bernoulli random  variables9,27; it also 
allows the flexibility of treating both binary and integer-weighted networks. We further assume that, given the 
memberships and affinity matrices, the edges are distributed independently; this is again a conditional inde-
pendence assumption.

We can then write the likelihood of the network topology as:

which leads to the log-likelihood LG(U ,V ,W) for the structural dimension:

where we have neglected constants that do not depend on the parameters.

Modeling the node attributes. In modeling the likelihood of the attributes, we assume that this extra 
information is generated from the membership vectors; this captures the intuition that knowing a node’s com-

(1)M
(α)
ij =

C
∑

k,l=1

uikvjlw
(α)
kl .

(2)PG(A|U ,V ,W) =

N
∏
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L
∏

α=1

e
−M

(α)
ij

(

M
(α)
ij

)A
(α)
ij

A
(α)
ij !

,

(3)LG(U ,V ,W) =
∑

i,j,α

[

A
(α)
ij log
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uikvjlw
(α)
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Figure 7.  Graphical model representation of the algorithm MTCOV. A is the adjacency tensor, X is the design 
matrix and W ,U ,V ,β are the latent parameters Θ . The membership matrices U and V couple the two datasets, 
and this is highlighted by the stronger thickness; whereas W and β are specific to the adjacency tensor and 
design matrix respectively. Here we present an example with binary adjacency matrix A, but the model is valid 
for more general weighted networks.
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munity membership helps in predicting the value of the node’s attribute. This assumption has also been made 
in other models for single-layer attributed  networks9 where one wants to enforce the tendency that nodes in the 
same community (for assortative structures) are likely to share common attributes. Different  approaches37,38 
assume instead independence between attributes and membership, which follows a different idea of observing 
an interaction between individuals if either they belong to the same community (for assortative structures) or 
they share an attribute or both.

Then, we model the probability of observing the z-th category for the attribute covariate of node i as the 
parameter:

where βkz is the probability of observing a particular category z together with a community k; thus 
πi = (πi1 . . . ,πiZ) is a Z-dimensional vector such that πiz ∈ [0, 1] and 

∑Z
z=1 πiz = 1,∀i . For convenience, we 

consider one-hot encoding for xi = (xi1, . . . , xiZ) , the realization of the random variable Xi : xiz = 1 if node i has 
attribute corresponding to category z, 0 otherwise and 

∑Z
z=1 xiz = 1 ; the original design matrix XN×1 is thus 

translated into a binary matrix XN×Z.
We then assume that each entry Xi of the design matrix is extracted from a multinomial distribution of 

parameter πi , which yields the likelihood of the covariates:

In order to satisfy the sum constraint 
∑Z

z=1 πiz = 1 , we impose the normalizations 
∑Z

z=1 βkz = 1 , valid ∀k and 
∑C

k=1 uik =
∑C

k=1 vik = 1 , valid ∀i . Such constraints are a particular case for which the general constraint for the 
multinomial parameter is satisfied. Although they are not the only choices, they allow us to give a probabilistic 
meaning to the components of β and the memberships U and V. As done for the network’s edges, we assume 
conditional independence for the attributes on the various nodes. This leads to the log-likelihood LX(U ,V ,β) 
for the attribute dimension:

Note, we assume that the attributes have values that can be binned in a finite number Z of unordered categories 
and the attributes do not need to be one-dimensional. Indeed, we can encode each combination of more attributes 
as a different value of one-dimensional “super-attribute”. The model will not be affected, but the computational 
complexity might increase.

inference with the eM algorithm. Having described how the model works and its main assumptions and 
intuitions, we now turn our attention to describe how to fit the parameters to the data, in other words, how to per-
form inference. We assume conditional independence between the network and attribute variables, thus we can 
decompose the total log-likelihood into a sum of two terms L (U ,V ,W ,β) = LG(U ,V ,W)+LX(U ,V ,β) . 
However, in practice, we can improve parameters’ inference performance by better balancing the contributions 
of the two terms as their magnitude can be on different scales, thus the risk of biasing the total likelihood 
maximization towards one of the two terms. For this, we introduce a scaling parameter γ ∈ [0, 1] that explicitly 
controls the relative contribution of the two terms. The total log-likelihood is then:

Varying γ from 0 to 1 lets us interpolate between two extremes: analyzing the data purely in terms of the network 
topology or purely in terms of the attribute information. One can either fix this a priori based on the goal of 
the application, closer to 0 for link prediction or closer to 1 for attribute classification, or this can be treated as 
a hyperparameter that must be estimated, whose optimal value is obtained by fitting the data via tuning tech-
niques (for instance cross-validation). This approach provides a natural quantitative measure for the dependence 
between the communities and the two sources of information. Notice that one can rescale a priori each likeli-
hood term individually in order to control even more their magnitudes, and then add it to Eq. (7). This choice 
should be made based on the dataset at hand. Here we consider rescaling LG and LX only in studying the social 
support networks of Indian villages, as we have enough data for estimating the normalization coefficients; see 
Supplementary Section S3.1 for details.

We wish to find the Θ = (U ,V ,W ,β) that maximizes Eq. (7). In general, this is computationally difficult, but 
we make it tractable by adopting a variational approach using an Expectation-Maximization (EM)  algorithm52, 
similar to what done by De Bacco et al.13, but extended here to include attribute information. Namely, we intro-
duce two probability distributions: hikz and ρ(α)

ijkl  . For each i, z with Xiz = 1 , hizk represents our estimate of the 

(4)πiz =
1

2

C
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probability that the i-th node has the z-th category, given that it belongs to the community k. On the other hand, 
for each i, j,α with A(α)

ij = 1 , ρ(α)
ijkl  is the probability distribution over pairs of groups k, l.

Using Jensen’s inequality log x̄ ≥ log x for each log-likelihood term gives:

These lower bounds hold with equality when

thus maximizing LX(U ,V ,β) is equivalent to maximizing LX(U ,V ,β , h) ; similarly for LG(U ,V ,W) and 
LG(U ,V ,W , ρ) (this was also the same result derived by De Bacco et al.13). Overall, we aim at maximizing 
L (U ,V ,W ,β , h, ρ) = (1− γ )LG(U ,V ,W , ρ)+ γ LX(U ,V ,β , h) , in analogy with what was done before. 
These maximizations can be performed by alternatively updating a set of parameters while keeping the others 
fixed. The EM algorithm performs these steps by alternatively updating h, ρ (Expectation step) and Θ (Maximi-
zation step); this is done starting from a random configuration until L (Θ , h, ρ) reaches a fixed point. Calcu-
lating Eq. (10) represents the E-step of the algorithm. The M-step is obtained by computing partial derivatives 
of L (Θ , h, ρ) with respect to the various parameters in Θ and setting them equal to zero. We add Lagrange 
multipliers � =

(

�
(β), �(u), �(v)

)

 to enforce constraints:

For instance, focusing on the update for βzk , setting the derivative with respect to it in Eq. (11) to zero and enforc-
ing the constraint 

∑Z
z=1 βkz = 1 gives �(β)k = γ

∑

i,z xizhizk ; plugging this back finally gives:

which is valid for γ  = 0 . Doing the same for the other parameters yields (see Supplementary Section S1 for 
details):

where Eq. (15) is valid for γ  = 1 . The EM algorithm thus consists in randomly initializing the parameters Θ 
and then repeatedly alternating between updating h and ρ using Eq. (10) and updating Θ using Eqs. (12)–(15) 
until L (Θ , h, ρ) reaches a fixed point. A pseudo-code is given in Algorithm 1. In general, the fixed point is a 
local maximum but we have no guarantees that it is also the global one. In practice, we run the algorithm several 
times, starting from different random initializations and taking the run with the largest final L (Θ , h, ρ) . The 
computational complexity per iteration scales as O(M C2

+ NCZ) , where M is the total number of edges summed 
across layers. In practice, C and Z have similar order of magnitude, usually much smaller than the system size 
M; for sparse networks, as is often the case for real datasets, M ∝ N , thus the algorithm is highly scalable with 
a total running time linear in the system size. An experimental analysis of the computational time is provided 
in the Supplementary Section S2.

Notice that, although we started from a network log-likelihood LG(U ,V ,W) similar to the one proposed in 
the MULTITENSOR  model13, the only update preserved from that is the one of wkl in Eq. (15). The updates for uik 
and vik are instead quite different; the main reason is that here we incorporated the node attributes, which appear 
both explicitly and implicitly (through h) inside the updates. In addition, here we enforce normalizations like 
∑

k uik = 1 , not enforced in MULTITENSOR. This implies that our model restricted to γ = 0 , i.e., no attribute 
information, does not correspond exactly to MULTITENSOR. This also implies that, upon convergence, we can 
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directly interpret the memberships as soft community assignments (or overlapping) without the need of post-
processing their values; in words, uik represent the probability of node i to belong to the outgoing community k, 
similarly for vik and an incoming membership. This distinction is necessary when considering directed networks. 
If one is interested in recovering hard memberships, where a node is assigned to only one community, then one 
can choose the community corresponding to the maximum entry of u or v.

evaluation metrics. We adopt two different criteria for performance evaluation, based on having or not 
having access to ground-truth values for the community assignments. The first case applies to synthetic-gener-
ated data, the second to both synthetic and real-world data. We explain performance metrics in detail below.

Ground‑truth available. In the presence of a known partition, we measure the agreement between the set of 
ground-truth communities C ∗ and the set of detected communities C using metrics for recovering both hard 
and soft assignments. For hard partitions, the idea is to match every detected community with its most similar 
ground-truth community and measure similarity δ(C ∗

i ,Cj) (and vice versa for every ground-truth community 
matched against a detected community) as done by Yang et al.9. The final performance is the average of these 
two comparisons:

where here we consider as similarity metric δ(·) the F1-score and the Jaccard similarity.
In both cases, the final score is a value between 0 and 1, where 1 indicates the perfect matching between 

detected and ground-truth communities. For soft partitions, we consider two standard metrics for measuring 
distance between vectors as done by De Bacco et al.13, such as cosine similarity (CS) and L1 error, averaged over 
the nodes:

(16)
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where ui is the C-dimensional vector containing the i-th row of U, representing the detected membership and 
similarly for u0i  for the ground-truth U0 . The factor 1/2 ensures that the L1 distance ranges from 0 for identical 
distributions to 1 for distributions with disjoint support. Similarly to the what done for hard partitions, we match 
the ground-truth and detected communities by choosing the permutation of C groups that gives the highest 
cosine similarity or smallest L1 distance.

Ground‑truth not available. In the absence of ground-truth, these metrics cannot be computed, and one must 
resort to other approaches for model evaluation. Here we consider performance in prediction tasks when hiding 
part of the input datasets while fitting the parameters, and in particular on the extent to which partial knowledge 
of network edges helps predict node attributes and vice versa. Thus we consider a measure for link-prediction 
and one for correct retrieval of the attributes. For link-prediction, we used the AUC statistic, equivalent to the 
area under the receiver-operating characteristic (ROC)  curve53. It represents the probability that a randomly 
chosen missing connection (a true positive) is given a higher score than a randomly chosen pair of unconnected 
vertices (a true negative). Thus, an AUC statistic equal to 0.5 indicates random chance, while the closer it is to 
1, the more our model’s predictions are better than chance. We measure the probability of observing an edge as 
the predicted expected Poisson parameters of Eq. (1). For the attribute, instead, we use the accuracy as a qual-
ity measure. For each node, we compute the predicted expected multinomial parameter πi using Eq. (4). We 
then assign to each node the category with the highest probability, computing the accuracy as the ratio between 
the correctly classified examples over the total number of nodes. As baselines, we compare with the accuracy 
obtained with a random uniform probability and the highest relative frequency observed in the training set.

cross-validation tests and hyperparameter settings. We perform prediction tasks using cross-val-
idation with 80–20 splits: we use 80% of the data for training the parameters and then measure AUC and accu-
racy on the remaining 20% test set. Specifically, for the network topology, we hold out 20% of the triples (i, j,α) ; 
for the attributes, we hold out 20% of the entries of the categorical vector.

Our model has two hyperparameters, the scaling parameter γ and the number of communities C. We estimate 
them by using 5-fold cross-validation along with grid search to range across their possible values. We then select 
the combination ( ̂C, γ̂ ) that returns the best average performance over the cross-validation runs. Standard cross-
validation considers performance in terms of a particular metric. However, here we have two possible ones which 
are qualitatively different, i.e., AUC and accuracy. Depending on the task at hand, one can define performance as 
a combination of the two, bearing in mind that the values of ( ̂C, γ̂ ) at the maximum of either of them might not 
coincide. Here we select ( ̂C, γ̂ ) as the values are jointly closer to both the maximum values. In the experiments 
where one of the two hyperparameters is fixed a priori, we run the same procedure but vary with grid search 
only the unknown hyperparameter.

Data availability
The code used for the analysis and to generate the synthetic data is publicly available and can be found at https 
://githu b.com/mcont isc/MTCOV .

code availabilty
An open-source algorithmic implementation available at https ://githu b.com/mcont isc/MTCOV .
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