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Abstract

This paper studies semiparametric estimation of a partially linear single index model
with a monotone link function. Our estimator is an extension of the score-type estimator
developed by Balabdaoui, Groeneboom and Hendrickx (2019) for the monotone single index
model, which profiles out the unknown link function by isotonic regression. An attractive
feature of the proposed estimator is that it is free from tuning parameters for nonparamet-
ric smoothing. We show that our estimator for the finite-dimensional components is

√
n-

consistent and asymptotically normal. By introducing an additional smoothing to obtain
the efficient score, we propose an asymptotically efficient estimator for the finite-dimensional
components. Furthermore, we establish the asymptotic validity of a bootstrap inference
method based the score-type estimator, which is also free from tuning parameters. A simu-
lation study illustrates usefulness of the proposed method.

1 Introduction

This paper is concerned with the monotone partially linear single index (PLSI) model

Y = X ′β0 + ψ0(Z
′α0) + ε, E[ε|X,Z] = 0, (1)

where Y ∈ R is a response variable, X ∈ X ⊆ Rk and Z ∈ Z ⊆ Rd are covariates, ε ∈ R is

an error term, α0 and β0 are finite dimensional parameters, and ψ0 : R → R is an unknown

monotone increasing function. For identification, we assume that Z does not contain a constant

and α0 belongs to the d-dimensional unit sphere Sd−1 = {α ∈ Rd : ||α|| = 1}.
Since a seminal work by Carroll et al. (1997), the model (1) (without the monotonicity

assumption about ψ0) has been studied by many authors, including Xia, Tong and Li (1999),
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Yu and Ruppert (2002), Xia and Härdle (2006), Wang et al. (2010), and Ma and Zhu (2013),

among others. The model (1) is very flexible. If α0 is known, it becomes a partially linear model.

If β0 = 0, it becomes a single index model. See, e.g., Wang et al. (2010) for a review on these

models. Estimation of the model (1) typically requires some nonparametric smoothing method

to evaluate the unknown function ψ0, which involves tuning parameters, such as bandwidth and

series length parameters.

In this paper, we consider the situation where ψ0 is known to be monotone. Instead of

assuming certain degree of smoothness as in the above cited papers, we impose a shape restriction

on ψ0, and propose a
√
n-consistent estimator for the parameters (α0, β0) that is free from tuning

parameters. Furthermore, we establish the asymptotic validity of a bootstrap inference method

based the proposed estimator, which is also free from tuning parameters.

A natural approach to incorporate monotonicity into nonparametric estimation is to em-

ploy the isotonic regression technique (see, e.g., Groeneboom and Jongbloed, 2014, for a re-

view). For example, one may consider the least square estimation for the model (1), say

minα,β[minψ∈M
∑n

i=1{Yi − X ′iβ + ψ(Z ′iα)}2], where M the set of monotone increasing func-

tions. In this case, we can apply the isotonic regression technique for each (α, β), and then

minimize the concentrated criterion function with respect to (α, β). However, because of lack of

smoothness of the isotonic regression estimator for ψ0, it is not clear whether such a profile least

square estimator for (α0, β0) will be
√
n-consistent or asymptotically normal. This point was

clarified by Balabdaoui, Groeneboom and Hendrickx (2019) (BGH hereafter) and Groeneboom

and Hendrickx (2018) for single index (and current status) models.

For this problem, BGH and Groeneboom and Hendrickx (2018) developed a novel score

estimation approach for single index models, say Y = ψ0(Z
′α0) + ε. Their basic idea is to

construct a feasible score equation
∑n

i=1 Zi{Yi−ψα(Z ′iα)} = 0 where ψα is estimated by isotonic

regression for given α. Then the estimator for α0 is obtained by the solution of the feasible score

equation. BGH showed that their score estimator for α0 is
√
n-consistent and asymptotically

normal. Furthermore, BGH proposed an asymptotically efficient estimator for α0 by evaluating

an optimal score equation. Groeneboom and Hendrickx (2018) and Groeneboom and Hendrickx

(2017) studied the score-type estimator for current status models and its bootstrap validity,

respectively.

In this paper, we extend the score estimation approach developed by BGH and Groeneboom

and Hendrickx (2018) to the monotone PLSI model in (1). We show that the proposed score-

type estimator for (α0, β0) is
√
n-consistent and asymptotically normal. Also, by estimating

nonparametrically the efficient score function, we derive an asymptotically efficient estimator for

(α0, β0) whose asymptotic variance coincides with the efficient variance matrix in Carroll et al.

(1997). Finally, we establish the validity of a bootstrap inference method based on the score-type

estimator. Similar to the existing papers on (not necessarily monotone) PLSI models cited above,

the extension from single index or current status models to the PLSI model is not a trivial task.

In particular, the presence of linear indices both inside and outside the nonparametric monotone
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function complicates the theoretical development.

This paper complements the literature on score-type estimation for semiparametric models

with isotonic nuisance parameter estimates. Groeneboom and Hendrickx (2018) and BGH argued

that score-type estimation and monotone least square estimation are not equivalent methods;

they showed theoretically and numerically that the score-type estimator behaves at least as good

as (or even better than) the monotone least square in single index models. The present paper

shows analogous advantages continue to hold in PLSI models. Huang (2002), Cheng (2009),

and Yu (2014) studied asymptotic properties of the monotone least square estimator, but it

was unclear whether the score-type estimator could also achieve the
√
n-convergence rate and

semiparametric efficiency. Our paper fills this gap.

Furthermore, the results in this paper can be considered as extensions of the ones for mono-

tone partially linear models (Huang, 2002, and Cheng, 2009). However, since the partially linear

model does not involve unknown parameters (i.e., α0) in the argument of the unknown function

ψ0, the theoretical development is very different from ours.

This paper is organized as follows. In Section 2, we introduce our score-type estimator for

the model (1) and present its asymptotic properties. We also propose an asymptotically effi-

cient estimator for (α0, β0) and bootstrap inference method. Section 3 presents some simulation

evidence to illustrate the finite sample performance of our estimators and bootstrap method.

2 Main results

2.1 Estimation method

Let us first introduce our estimator for the PLSI model in (1). In particular, we extend the score

estimation approach by BGH to estimate the parameters (α0, β0) in (1). Consider a parameter-

ization S from a subset of Rd−1 to Sd−1 such that for each α in a neighborhood of α0 on Sd−1,
there exists a unique γ ∈ Rd−1 satisfying α = S(γ).1 Then the reparameterized model (1) is

written as

Y = X ′β0 + ψ0(Z
′S(γ0)) + ε, E[ε|X,Z] = 0. (2)

To motivate our estimation approach, we tentatively assume that ψ0 is known. In this case, the

population score equation for θ0 = (β′0, γ
′
0)
′ is

E

[(
X

J(γ0)′Zψ′0(Z
′S(γ0))

)
{Y −X ′β0 − ψ0(Z

′S(γ0))}
]

= 0, (3)

1Examples of such parametrization are the spherical coordinate system S : [0, π]d−2 × [0, 2π]→ Sd−1 with

S(γ) = (cos(γ1), sin(γ1) cos(γ2), sin(γ1) sin(γ2) cos(γ3), . . . , sin(γ1) · · · sin(γd−2) cos(γd−1), sin(γ1) · · · sin(γd−2) sin(γ1−2))′,

and the half sphere S : {γ ∈ [0, 1]d−1 : ||γ|| ≤ 1} → Sd−1 with

S(γ) = (γ1, . . . , γd−1,
√

1− γ2
1 − · · · − γ2

d−1)′.
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where ψ′0 is the derivative of ψ0 and J(γ) is the Jacobian of S(γ). Thus, it is natural to construct

an estimator of θ0 by taking an empirical counterpart of (3) and inserting estimators for ψ′0 and

ψ0. However, when we estimate ψ0 by the isotonic regression method, the resulting estimator of

ψ0 is typically discontinuous and it is not clear how to evaluate the derivative ψ′0 without intro-

ducing smoothing parameters. To address this issue, we follow the idea in BGH and Groeneboom

and Hendrickx (2018) and focus on the following modified population score equation

E

[(
X

J(γ0)′Z

)
{Y −X ′β0 − ψ0(Z

′S(γ0))}
]

= 0. (4)

Since the error term ε is orthogonal to any function of (X,Z) under E[ε|X,Z] = 0, (4) is also a

valid score equation, and we construct an estimator for θ0 based on this equation.

In particular, for each θ = (β′, γ′)′, we estimate the monotone function ψ0 by the least squares

ψ̂nθ = arg min
ψ∈M

1

n

n∑
i=1

{Yi −X ′iβ − ψ(Z ′iS(γ))}2, (5)

where M is the set of monotone increasing functions defined on R. The function ψ̂nθ can be

obtained by isotonic regression (see, e.g., Groeneboom and Jongbloed, 2014, for a review). Then

our estimator θ̂ = (β̂′, γ̂′)′ of θ0 is given by the zero-crossing root of the score function2

φn(θ) =
1

n

n∑
i=1

(
Xi

J(γ)′Zi

)
{Yi −X ′iβ − ψ̂nθ(Z ′iS(γ))}, (6)

and α0 is estimated by α̂ = S(γ̂). The reason for the definition based on the zero-crossing is

due to the fact that ψ̂nθ is a discrete function taking finite different values. Thus, we might be

unable to solve φn(θ) = 0 exactly.3 As n → ∞, the zero-crossing solution should become an

exact solution. In practice, we can minimize the square sum of the right hand side of (6) to

obtain a good approximation of the zero-crossing.

Remark 1. [Technical intuition for the difference between the score estimation and least square

approaches] Our discussion is based on Groeneboom and Hendrickx (2018, pp. 1419-1420). Let

Γn(θ) be some objective function for θ and Γ(θ) is its population counterpart. The M-estimator

is defined as a maximizer of Γn(θ). The
√
n-consistency of the estimator is typically derived

from a quadratic expansion Γ(θ)− Γ(θ0) ≤ −c||θ − θ0||2 for some c > 0 in a neighborhood of θ0
combined with the approximation to the objective function

Γn(θ)− Γn(θ0) = Γ(θ)− Γ(θ0) +Op(n
−1/2||θ − θ0||) + op(||θ − θ0||2) +Op(n

−1), (7)
2We say that θ∗ is a zero-crossing of a real-valued function ζ : Θ→ R if each open neighborhood of θ∗ contains

points θ1, θ2 ∈ Θ such that ζ(θ1)ζ(θ2) ≤ 0. This definition can be extended to a vector of functions, where a
zero-crossing vector has each of its component to be a zero-crossing in the corresponding dimension.

3Similar to other estimators by BGH or Groeneboom and Hendrickx (2018), our zero-crossing estimator θ̂ may
not be unique. Indeed there are many flat parts in φn(θ), and the intersection of φn(θ) and zero could be an
interval. In this case, any point on this interval will satisfy the results in Theorems 1 and 3 below.
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uniformly over a shrinking neighborhood of θ0. However, when we apply this argument to the

(profile) least square objective function 1
n

∑n
i=1{Yi − X ′iβ − ψ̂nθ(Z

′
iS(γ))}2, it seems to have

an extra term of order Op(n−2/3) in (7) due to discontinuity of ψ̂nθ in θ (although there is no

rigorous proof). If there is such an extra term, we expect that the least square estimator for θ will

not achieve
√
n-consistency.4 On the other hand, it turns out that our score (or Z-) estimating

equation φn(θ) can be approximated by φn(θ) = φ′(θ0)(θ − θ0) + Op(n
−1/2) uniformly over a

shrinking neighborhood of θ0, where φ′(θ0) is the derivative of the population counterpart of

φn(θ) displayed in (4). In short, the difference between the score estimation and least square

approaches is due to different orders of the remainders in the Z- and M-estimation approaches

in this setup.

Remark 2. [Comparison with smoothing approach] Let us take Xia and Härdle (2006) as an

example for the conventional smoothing approach to estimate the PLSI model (without mono-

tonicity on ψ0) and compare with our estimation approach. A common feature is that both

methods estimate the nonparametric function ψ0 with fixed θ, and then optimize or solve for θ̂

in a two step or recursive strategy. The main difference is that we use the isotonic regression to

estimate the monotone function ψ0, but Xia and Härdle (2006) employ a weighted local linear

regression to estimate ψ0 for each fixed θ. Our score-type estimation method does not require

any tuning parameter to estimate ψ0, while a smoothing parameter is innate in Xia and Härdle

(2006). The technical arguments are very different as well. Our consistency and asymptotic

normality proofs below heavily rely on properties of the monotone function class and associated

empirical processes. On the other hand, the argument in Xia and Härdle (2006) is to show how

the linear regression for θ0 averages out the estimation errors from the local linear regression for

ψ0 based on the U-statistic theory to achieve the
√
n-consistency of their estimator for θ0.

2.2 Asymptotic properties of estimator

We now investigate asymptotic properties of the estimator θ̂. Let Ik be the k×k identity matrix,

‖·‖ be the Euclidean norm, B(a0, A) = {a : ‖a− a0‖ ≤ A} be a ball around a0 of radius A, and

T0 =

[
Ik 0

0 J(γ0)
′

]
, Vx,z =

(
x− E[X|z′S(γ0)]

z − E[Z|z′S(γ0)]

)
,

Vx,z,ψ′ =

(
x− E[X|z′S(γ0)]

{z − E[Z|z′S(γ0)]}ψ′0(z′S(γ0))

)
.

We impose the following assumptions.

Assumption.

A1 The spaces X and Z are convex with non-empty interiors, and satisfy X ⊂ B(0, R) and

Z ⊂ B(0, R) for some R > 0.
4We note that even for single index models, the convergence rate and asymptotic distribution of the least

square estimator, arg minγ
{

minψ∈M
1
n

∑n
i=1{Yi − ψ(Z′iS(γ))}2

}
, is an open problem.
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A2 There exists K0 > 0 such that |ψ0(u)| < K0 for all u ∈ {z′α : z ∈ Z, α ∈ Sd−1}.

A3 There exists δ0 > 0 such that the function ψθ(u) = ψα,β(u) = E[Y − X ′β|Z ′α = u] is

monotone increasing on Iα = {z′α, z ∈ Z} for each θ ∈ B(θ0, δ0).

A4 For W = X or Z, the mapping u 7→ E[W |Z ′α = u] defined on Iα is bounded and has a finite

total variation.

A5 There exist c0 > 0 and M0 > 0 such that E[|Y −X ′β|m|Z = z] ≤ m!Mm−2
0 c0 for all integers

m ≥ 2, each θ ∈ B(θ0, δ0) and almost every z ∈ Z (according to the true distribution).

A6 Cov[(β0− β)′X +Z ′(S(γ0)− S(γ)), (β0− β)′X +ψ0(Z
′S(γ0))|Z ′S(γ)] 6= 0 almost surely for

each θ 6= θ0.

A7 B = T0
∫
Vx,zV

′
x,z,ψ′dP0(x, z)T

′
0 and BE = T0

∫
Vx,z,ψ′V

′
x,z,ψ′dP0(x, z)T

′
0 are non-singular.

A1 and A2, which are similar to the assumptions A1 and A2 in BGH, impose boundedness

on the support of covariates and the monotone function ψ0. These conditions are used to control

the entropy of the function classes that characterize (6). We note that Xia and Härdle (2006)

and Wang et al. (2010) imposed similar conditions. A3, which is an adaptation of BGH’s

A3, requires monotonicity of ψθ in a neighborhood of θ0. This assumption is used to establish

the consistency of the estimator ψ̂nθ(z′α) for each θ ∈ B(θ0, δ0). For example, A3 is satisfied

with ψ0(2
−1/2z1 + 2−1/2z2) = (2−1/2z1 + 2−1/2z2)

3 and Z1, Z2 ∼ U [0, 1] as in p. 12 of BGH.

A4 is imposed to control the entropy of function classes to achieve the
√
n-convergence rate.

This assumption can be derived from BGH’s A4 and A5. A5 is a modified version of BGH’s

A6. This assumption is introduced to show that max
θ∈B(θ0,δ0)

sup
z∈Z

ψ̂nθ(z
′α) = Op(log n), which is

used to obtain an entropy result associated with the
√
n-convergence rate. A5 is satisfied if

the conditional distribution Y −X ′β|Z belongs to some exponential family.5 A6 and A7 are to

ensure the consistency and existence of limiting variances of the simple score and efficient score

estimators, respectively. A6 is related to BGH’s A7 after taking expansion of S(γ0)−S(γ) around

γ = γ0.

Under these assumptions, the asymptotic properties of the simple estimator θ̂ are presented

as follows.

Theorem 1. Suppose Assumptions A1-A7 hold true. Then θ̂ exists with probability approaching

one, θ̂ p→ θ0, and
√
n(θ̂ − θ0)

d→ N(0,Π),

where Π = B−1T0ΣT
′
0(B

−1)′, Σ = Var(VX,Zε), and VX,Z is Vx,z evaluated at (x, z) = (X,Z).
5LetW be an integrable random variable with the density w 7→ h(w, ϑ2) exp{ϑ−1

2 w`(ϑ1)−ϑ−1
2 B(`(ϑ1))}, where

ϑ1 is the mean, ϑ2 is a dispersion parameter, ` is a real valued function with a strictly positive first derivative on
an open interval, B is a real valued function, and h is a normalizing function. Balabdaoui, Durot and Jankowski
(2019, Proposition 9.2) showed that there exist c > 0 and M > 0 such that E[|W |m] ≤ m!Mm−2c for all integers
m ≥ 2. This proposition can be adapted to provide primitive conditions for A5 on the conditional distribution
Y −X ′β|Z = z, where the parameters ϑ1 and ϑ2 may vary with z.
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This theorem says that our score-type estimator θ̂ for the monotone PLSI model is
√
n-

consistent and asymptotically normal without any tuning parameter.6 The asymptotic variance

Π can be estimated by (i) replacing P0 with the empirical measure Pn, (ii) replacing γ0 with its

estimator γ̂, (iii) replacing ψ′0 with ψ̂′nh,θ in (9) below, (iv) replacing ε with the residuals based

on our estimator, and (v) replacing the conditional expectations with kernel estimators.7 Our

result can be considered as an extension of BGH for the monotone PLSI model. Technically a

major difference from BGH is the treatment on the mapping ψθ(·), which involves an additional

term from the linear component X ′β (i.e., the second term of (10) in Appendix). Most entropy

results in our proof are modified to accommodate this additional term.

We note that the estimator θ̂ is derived from the modified population score equation in (4)

instead of the original one in (3). Consequently, the asymptotic variance Π of θ̂ is not the efficient

variance for the PLSI model. If we allow one tuning parameter, we can evaluate the efficient

score function in (3) as

ξnh(θ) =
1

n

n∑
i=1

(
Xi

J(γ)′Ziψ̂
′
nh,θ(Z

′
iS(γ))

)
{Yi −X ′iβ − ψ̂nθ(Z ′iS(γ))}, (8)

where

ψ̂′nh,θ(u) =
1

h

∫
K

(
u− x
h

)
dψ̂nθ(x), (9)

is an estimator for the derivative of ψθ (defined in A3) with a kernel function K and bandwidth

h. Let θ̃ = (β̃′, γ̃′)′ be the zero-crossing of (8).8 For this estimator, we add the following

assumptions.

Assumption.

A8 ψθ(z
′α) is twice continuously differentiable on Iα = {z′α, z ∈ Z} for each θ ∈ B(θ0, δ0).

A9 K(·) is a symmetric twice differentiable kernel function with compact support [−1, 1]. Fur-

thermore, h � n−1/7.

A8 is an additional condition to control the entropy for classes of functions to achieve the
√
n-consistency of θ̃. A9 contains assumptions for the kernel function K and bandwidth h to

evaluate ψ̂′nh,θ in (9). The condition h � n−1/7 is also imposed in BGH.

The asymptotic properties of the estimator θ̃ are presented as follows.
6Due to discontinuity in ψ̂nθ, we can only guarantee the existence of θ̂ with probability approaching one.

Similar to other zero-crossing estimators using isotonic regression, its existence for a given sample size is an open
question.

7For example, the conditional expectation µ(z) = E[X|z′S(γ0)] in Vx,z and Vx,z,ψ′ can be estimated by

µ̂(z) =

∑n
i=1K

(
Z′

iS(γ̂)−z
′S(γ̂)

b

)
Xi∑n

i=1K
(
Z′

iS(γ̂)−z
′S(γ̂)

b

) ,

where K is a kernel function (e.g., Gaussian and Epanechnikov) and b is a bandwidth.
8Similar to θ̂, the zero-crossing estimator θ̃ may not be unique. If the intersection of ξnh(θ) and zero is an

interval, any point on this interval satisfies the result in Theorem 2.
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Theorem 2. Suppose Assumptions A1-A9 hold true. Then θ̃ exists with probability approaching

one, θ̃ p→ θ0, and
√
n(θ̃ − θ0)

d→ N(0,ΠE),

where ΠE = B−1E T0ΣT
′
0(B

−1
E )′, Σ = Var(VX,Z,ψ′ε), and VX,Z,ψ′ is Vx,z,ψ′ evaluated at (x, z) =

(X,Z).

If we additionally assume Var(ε|X,Z) = Var(ε) = σ2 (i.e., the error term ε is homoskedastic),

then Σ can be written as Σ = σ2
∫
Vx,z,ψ′V

′
x,z,ψ′dP0(x, z). Therefore, the asymptotic variance

becomes ΠE = B−1E , which coincides with the efficient variance matrix derived in Carroll et al.

(1997) and Xia and Härdle (2006). The asymptotic variance ΠE can be estimated in the same

manner as Π.

2.3 Bootstrap inference

One advantage of the proposed estimator θ̂ is that it is free from tuning parameters, such as

bandwidths and series lengths. On the other hand, since its asymptotic variance Π involves

conditional means, inference using estimation of Π requires some smoothing method. To obtain

an inference procedure which is free from tuning parameters, we propose a bootstrap method to

approximate the distribution of the score-type estimator θ̂. Groeneboom and Hendrickx (2017)

established the bootstrap validity of their score estimator for the parametric part in a current

status model. We extend their result to the monotone PLSI model.

Let θ̂∗ be the bootstrap counterpart of θ̂ defined in Section 2.1 based on resamples from the

empirical distribution of {Yi, Xi, Zi}ni=1. The validity of the bootstrap approximation is obtained

as follows.

Theorem 3. Suppose Assumptions A1-A7 hold true. Then

sup
t∈Rk+d−1

|P ∗{
√
n(θ̂∗ − θ̂) ≤ t} − P0{

√
n(θ̂ − θ0) ≤ t}|

p→ 0,

where P ∗ is the bootstrap distribution conditional on the data.

The bootstrap confidence interval and standard error can be obtained by this result. Note

that computation of θ̂∗ and the resulting bootstrap inference are free from tuning parameters.

3 Simulation

In this section, we conduct a simulation study to illustrate the finite sample performance of the

proposed estimators.
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3.1 Simple score and efficient score estimators

We consider the following partial linear model:

Y = Xβ0 + ψ0(Z
′α0) + ε,

ψ0(u) = u3, β0 = 1, α′0 = (1, 1)/
√

2 ≈ (0.7071, 0.7071),

where X ∼ N(0, 1) and ε ∼ N(0, 1). For Z, we consider two data generating processes: (i)

Z ∼ U [1, 2]2 (in Table 1) and (ii) Z ∼ N(0, I2) with the 2× 2 identity matrix (in Table 2). The

sample sizes are n = 100, 500, and 1000. The number of Monte Carlo replications is 1000. Tables

1 and 2 present the Monte Carlo averages (µ̂β, µ̂α1 , µ̂α2) and variances (σ̂2β, σ̂
2
α1
, σ̂2α2

) (multiplied

by n) of the estimates (β̂, α̂1, α̂2) and (β̃, α̃1, α̃2) for Cases (i) and (ii), respectively.

In the tables, SSE is the simple score estimator obtained by solving the zero-crossing of (6),

and ESE is the efficient score estimator obtained by solving the zero-crossing of (8). SSE_L and

ESE_L are the Lagrange versions of SSE and ESE suggested by BGH and Groeneboom (2018).9

All these methods are implemented by the Hooke-Jeeves algorithm to search a minimizer of the

sum of squared score components. In the reported simulation results, we follow BGH and use the

true values as starting values. Preliminary simulation suggests that the results are not sensitive

to local changes for the starting values. For comparison, we include monotone least square

methods (LSE in the tables). We also include the smoothing method by Xia and Härdle (2006)

into our comparison (S_LSE in the tables). Xia and Härdle (2006) showed that the optimal

bandwidth for their methods is of order n−1/5. BGH showed that the optimal bandwidth for

their efficient estimator is of order n−1/7, and suggested to use h = r̂n−1/7, where r̂ is the range

of Z ′α, as bandwidth. Here we follow BGH’s practice. We choose r̂n−1/7 as bandwidth for ESE

and r̂n−1/5 for S_LSE.

The theoretical asymptotic variances are calculated for SSE, ESE, and S_LSE. Both ESE

and S_LSE achieve semiparametric efficiency and therefore they should have the same limit. The

asymptotic variance of LSE is unknown in the literature (see, Balabdaoui, Durot and Jankowski,

2019, for a detail). It can be shown that for both settings, Z ∼ U [1, 2]2 and Z ∼ N(0, I2),
we have E[X|z′α] = 0 and E[Z|z′α] =

√
2
2 z
′α(1, 1)′. The asymptotic variances of (β̂, α̂) and

(β̃, α̃) (the estimators without reparameterization) can be obtained with Lemma 7 in BGH and

numerical integral. In particular, we have
√
n{(β̂′, α̂′)′−(β′0, α

′
0)
′} d→ N(0, V ) and

√
n{(β̃′, α̃′)′−

9More precisely, the estimator SSE_L is obtained by a zero-crossing of

φLn(θ) =

[
1
n

∑n
i=1Xi{Yi −X

′
iβ − ψ̂nα(Z′iα)}

1
n

(1− α′α)
∑n
i=1Xi{Yi −X

′
iβ − ψ̂nα(Z′iα)}

]
,

and ESE_L is defined analogously.
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(β′0, α
′
0)
′} d→ N(0, VE), where

Case (i) : V =


1 0 0

0 0.0324 −0.0324

0 −0.0324 0.0324

 , VE =


1 0 0

0 0.0315 −0.0315

0 −0.0315 0.0315

 .

Case (ii) : V =


1 0 0

0 0.0555 −0.0555

0 −0.0555 0.0555

 , VE =


1 0 0

0 0.0185 −0.0185

0 −0.0185 0.0185

 .

Tables 1 and 2 show that the estimation biases are reasonably small for the both estimators

even for n = 100. For the single index part (α̂1 and α̂2), ESE performs better than SSE in terms

of efficiency, which is in accordance with the implication of Theorems 1 and 2. As the sample

size increases, SSE_L and ESE_L become almost identical to SSE and ESE, respectively. LSE

performs differently in two cases. In Table 2, LSE performs better than SSE but worse than

ESE. In Table 1, LSE performs worse than SSE.

In general, all the variances of SSE and ESE are approaching to their theoretical limits.

It seems that the approaching rates are faster in Case (i) than those in Case (ii). S_LSE is

approaching the limit in Case (i), but stays away from the limit in Case (ii). Note that Case (ii)

violates the assumption that the support of Z is compact required in both Xia and Härdle (2006)

and our estimators. Therefore, some irregular behaviors of those estimators might be expected

in Case (ii). Nevertheless, SSE and ESE seem to be more stable even if the support of Z is not

compact.

Overall, the simulation results are encouraging to support our estimation strategy.
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Table 1: Simulation results for Case (i) Z ∼ U [1, 2]2

Methods n µ̂β µ̂α1 µ̂α2 σ̂2β σ̂2α1
σ̂2α2

SSE

100 0.9982 0.7068 0.7068 1.3401 0.0415 0.0416
500 0.9982 0.7068 0.7073 1.0277 0.0364 0.0364
1000 1.0002 0.7069 0.7073 1.1306 0.0322 0.0322
∞ 1 0.7071 0.7071 1 0.0324 0.0324

ESE

100 0.9984 0.7067 0.7069 1.3743 0.0404 0.0404
500 0.9983 0.7068 0.7073 1.0252 0.0360 0.0359
1000 1.0001 0.7069 0.7073 1.1310 0.0319 0.0319
∞ 1 0.7071 0.7071 1 0.0315 0.0315
100 0.9982 0.7072 0.7064 1.3425 0.0420 0.0421

SSE_L 500 0.9982 0.7068 0.7073 1.0296 0.0363 0.0363
1000 1.0002 0.7069 0.7073 1.1288 0.0323 0.0323
∞ 1 0.7071 0.7071 1 0.0324 0.0324
100 0.9982 0.7070 0.7066 1.3502 0.0408 0.0410

ESE_L 500 0.9982 0.7069 0.7072 1.0262 0.0361 0.0360
1000 1.0001 0.7069 0.7073 1.1336 0.0318 0.0318
∞ 1 0.7071 0.7071 1 0.0315 0.0315
100 0.9972 0.7074 0.7058 1.3967 0.0703 0.0699

LSE 500 0.9984 0.7067 0.7073 1.0330 0.0754 0.0752
1000 1.0002 0.7069 0.7072 1.1253 0.0740 0.0739
∞ 1 0.7071 0.7071 n/a n/a n/a
100 1.0022 0.7071 0.7065 1.2891 0.0441 0.0443

S_LSE 500 1.0005 0.7069 0.7072 1.2213 0.0362 0.0361
1000 1.0023 0.7069 0.7072 1.2053 0.0348 0.0348
∞ 1 0.7071 0.7071 1 0.0315 0.0315
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Table 2: Simulation results for Case (ii) Z ∼ N(0, I2)
Methods n µ̂β µ̂α1 µ̂α2 σ̂2β σ̂2α1

σ̂2α2

SSE

100 0.9981 0.7035 0.7075 1.3620 0.2310 0.2301
500 1.0001 0.7065 0.7074 1.1481 0.1087 0.1086
1000 0.9998 0.7079 0.7062 1.0532 0.0932 0.0937
∞ 1 0.7071 0.7071 1 0.0555 0.0555

ESE

100 0.9988 0.7049 0.7080 1.4422 0.0943 0.0940
500 1.0000 0.7069 0.7072 1.1333 0.0356 0.0355
1000 0.9999 0.7075 0.7067 1.0531 0.0309 0.0310
∞ 1 0.7071 0.7071 1 0.0185 0.0185
100 0.9981 0.7037 0.7072 1.3625 0.2352 0.2347

SSE_L 500 1.0000 0.7065 0.7074 1.1467 0.1090 0.1091
1000 0.9998 0.7079 0.7062 1.0548 0.0936 0.0941
∞ 1 0.7071 0.7071 1 0.0555 0.0555
100 0.9974 0.7054 0.7074 1.4086 0.0967 0.0973

ESE_L 500 1.0000 0.7070 0.7071 1.1357 0.0355 0.0355
1000 0.9999 0.7075 0.7066 1.0589 0.0310 0.0311
∞ 1 0.7071 0.7071 1 0.0185 0.0185
100 0.9978 0.7063 0.7061 1.3306 0.1269 0.1281

LSE 500 1.0001 0.7071 0.7069 1.1441 0.0815 0.0815
1000 0.9998 0.7077 0.7064 1.0595 0.0726 0.0729
∞ 1 0.7071 0.7071 n/a n/a n/a
100 1.0052 0.7058 0.7034 6.2528 0.3584 0.3599

S_LSE 500 0.9972 0.7067 0.7065 7.0103 0.3560 0.3589
1000 1.0022 0.7069 0.7068 6.9869 0.3878 0.3878
∞ 1 0.7071 0.7071 1 0.0185 0.0185

3.2 Bootstrap

As mentioned in Section 2.3, the purpose of our bootstrap method is to obtain an inference

method that is free of tuning parameters. Therefore, we focus on SSE here, since ESE requires

at least one tuning parameter. Since the results are analogous, we only consider Case (ii) above.

Most notations in Table 3 are as defined in the previous subsection. Results for SSE are replicated

from Table 2. SSE_b is the bootstrap counterpart of the estimator by SSE, and the number of

the bootstrap replications is 500.

Table 3 shows that as the sample size increases, the distribution of SSE_b approaches to

that of SSE, which is in accordance with the implication of Theorem 3.

Table 3: Simulation results for bootstrap counterparts
Methods n µ̂β µ̂α1 µ̂α2 σ̂2β σ̂2α1

σ̂2α2

SSE
100 0.9982 0.7068 0.7068 1.3401 0.0415 0.0416
500 0.9982 0.7068 0.7073 1.0277 0.0364 0.0364
1000 1.0002 0.7069 0.7073 1.1306 0.0322 0.0322

SSE_b
100 1.0599 0.7078 0.7059 1.2614 0.0488 0.0507
500 0.9729 0.6970 0.7170 1.0354 0.0286 0.0270
1000 0.9952 0.7092 0.7049 1.1236 0.0359 0.0364
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A Proof of Theorem 1

Notation: We use the following notation. Let ||Gn||F = supf∈F |
√
n(Pn − P0)f |, || · ||B,P0 be

the Bernstein norm under a measure P0,

HB(ε,F , || · ||B,P0) = logN[](ε,F , || · ||B,P0),

be the entropy of the ε-bracketing number of the function class F under || · ||B,P0 , and

Jn(δ) = Jn(δ,F , || · ||B,P0) =

∫ δ

0

√
1 +HB(ε,F , || · ||B,P0)dε.

A.1 Proof of existence and consistency

For fixed α and β (γ is also fixed by the uniqueness of reparameterization S(·), so is θ). Let

ψθ(u) = E[Y −X ′β|Z ′α = u], which can be written as (by E[ε|Z] = 0)

ψθ(u) = E[ψ0(Z
′α0)|Z ′α = u] + (β0 − β)′E[X|Z ′α = u]. (10)

A similar argument to Theorem 5 of BGH implies that θ̂ exists with probability approaching

one. We now show the consistency of θ̂. Since θ̂ = θ̂n is estimated in a compact set, there exists

a subsequence {θ̂nk}k∈N of {θ̂n}n∈N almost surely converging to some point θ∗ = (β∗′, γ∗′)′. By

Proposition 4 in BGH combined with θ̂nk
as→ θ∗, we have∫ {

ψ̂nk θ̂nk
(z′S(γ̂nk))− ψθ∗(z′S(γ∗))

}2
dP0(z)

p→ 0.

Also by Proposition 9 in supplementary material of BGH (hereafter BGH-supp), the zero-crossing

θ̂ becomes a root of the continuous limiting function, i.e.,

φnk(θ̂nk)
p→ φ(θ∗) = 0,

as k → ∞, where φ(θ) =
∫ ( x

J(γ)′z

)
{y − x′β − ψθ(z

′S(γ))}dP0(x, y, z), and the equality

follows from the definition of zero-crossing and the continuity of ψθ(·). Then we have
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0 = (θ0 − θ∗)′φ(θ∗)

= (θ0 − θ∗)′
∫ (

x

J(γ∗)′z

){
x′β0 + ψ0(z

′S(γ0))− x′β∗

−{E[ψ0(Z
′S(γ0))|z′S(γ∗)] + (β0 − β∗)′E[X|z′S(γ∗)]}

}
dP0(x, z)

=

(
β0 − β∗

γ0 − γ∗

)′ ∫ (
x− E[X|z′S(γ∗)]

J(γ∗)′{z − E[Z|z′S(γ∗)]}

){
(β0 − β∗)′{x− E[X|z′S(γ∗)]}

+ψ0(z
′S(γ0))− E[ψ0(Z

′α0)|z′S(γ∗)]

}
dP0(x, z)

= E
[
Cov[(β0 − β∗)′X + (γ0 − γ∗)′J(γ∗)′Z, (β0 − β∗)′X + ψ0(Z

′S(γ0))|Z ′S(γ∗)]
]

= E
[
Cov[(β0 − β∗)′X + Z ′(S(γ0)− S(γ∗)) + o(γ0 − γ∗), (β0 − β∗)′X + ψ0(Z

′S(γ0))|Z ′S(γ∗)]
]

= E
[
Cov[(β0 − β∗)′X + Z ′(S(γ0)− S(γ∗)), (β0 − β∗)′X + ψ0(Z

′S(γ0))|Z ′S(γ∗)]
]

+ o(γ0 − γ∗),

where the second equality follows from (10), the third equality follows from the law of iterated

expectations, the fifth equality follows from an expansion of S(γ0) around γ0 = γ∗, and the last

equality follows from A1. Therefore, by A6, 0 = (θ0 − θ∗)′φ(θ∗) holds true only if θ∗ = θ0, and

the consistency of θ̂ follows.

A.2 Proof of asymptotic normality

The proof is split into several steps.

Step 1: Derive a decomposition of φn(θ̂)

For each θ = (β′, γ′)′, let ui = z′iS(γ) and {unj ,θ}kj=1 be the subsequence of {ui}ni=1 representing

all the jump points of ψ̂nθ(·). By the construction of ψ̂nθ(·) (see, Lemmas 2.1 and 2.3 in Groene-

boom and Jongbloed, 2014), we have
∑nj+1−1

i=nj
{yi − x′iβ − ψ̂nθ(ui)} = 0 for each j = 1, . . . , k,

which means
k∑
j=1

mj

nj+1−1∑
i=nj

{yi − x′iβ − ψ̂nθ(ui)} = 0, (11)

for any weights {mj}kj=1. As in BGH, we define for W = X or Z,

Ēn,θ[W |u] = Ēn,θ[W |z′S(γ)] =


E[W |Z ′S(γ) = unj ] if ψθ(u) > ψ̂nθ(unj ) for all u ∈ (unj , unj+1)

E[W |Z ′S(γ) = s] if ψθ(u) = ψ̂nθ(s) for some s ∈ (unj , unj+1)

E[W |Z ′S(γ) = unj+1 ] if ψθ(u) < ψ̂nθ(unj ) for all u ∈ (unj , unj+1)

(12)

for u ∈ [unj , unj+1) with j = 1, . . . , k (if j = k, set unj+1 = max
i
uni). By (11), it holds

∫
Ēn,θ̂[W |z

′S(γ)]{y − x′β̂ − ψ̂nθ̂(z
′S(γ̂))}dPn(x, y, z) = 0, (13)
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for W = X and Z. Thus, φn(θ̂) can be decomposed as

φn(θ̂) = Tn

∫
V x,z
I,n {y − x

′β̂ − ψ̂nθ̂(z
′S(γ̂)}dPn(x, y, z) + Tn

∫
V x,z
II,n{y − x

′β̂ − ψ̂nθ̂(z
′S(γ̂)}dPn(x, y, z)

:= Tn(I + II), (14)

where Tn =

[
Ik 0

0 J(γ̂)′

]
,

V x,z
I,n =

(
x− E[X|z′S(γ̂)]

z − E[Z|z′S(γ̂)]

)
, V x,z

II,n =

(
E[X|z′S(γ̂)]− Ēn,θ̂[X|z

′S(γ̂)]

E[Z|z′S(γ̂)]− Ēn,θ̂[Z|z
′S(γ̂)]

)
.

Step 2: Show II = op(n
−1/2) + op(θ̂ − θ0)

Note that the term II can be decomposed as

II =

∫
V x,z
II,n{y − x

′β̂ − ψ̂nθ̂(z
′S(γ̂))}d(Pn − P0)(x, y, z)

+

∫
V x,z
II,n{y − x

′β̂ − ψθ̂(z
′S(γ̂))}dP0(x, y, z) +

∫
V x,z
II,n{ψθ̂(S(γ̂))− ψ̂nθ̂(z

′S(γ̂))}dP0(x, y, z)

:= IIa + IIb + IIc.

First, we consider IIa. Note that Lemma 13 of BGH-supp and Lemma 1 imply the following

(15) and (16), with probability approaching one:

HB(ε, F̃a, || · ||B,P0) ≤ C1

ε
, (15)

for some C1 > 0, where F̃a = (C2 log n)−1Fa with some C2 > 0 and Fa is defined in (41) below.

Also, there exists a constant C3 > 0 such that

||f̃ ||B,P0 ≤ C3(log n)n−1/3, (16)
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for all f̃ ∈ F̃a. Let δn = C3(log n)n−1/3 and IIa,j be the j-th component of IIa. For any positive

constants A and ν, there exist positive constants K1, B1, and B2, such that K = K1 log n and

P{|IIa,j | > An−1/2} = P

{
|IIa,j | > An−1/2, sup

θ∈B(θ0,δ0)
sup
z∈Z
|ψ̂nθ(z)| ≤ K

}
+
ν

2

≤ P

{
||Gn||Fa > A, sup

θ∈B(θ0,δ0)
sup
z∈Z
|ψ̂nθ(z)| ≤ K

}
+
ν

2

≤
E[||Gn||Fa | supθ∈B(θ0,δ0) supz∈Z |ψ̂nθ(z)| ≤ K]

A
+
ν

2

=
1

AC2 log n
E[||Gn||F̃a | sup

θ∈B(θ0,δ0)
sup
z∈Z
|ψ̂nθ(z)| ≤ K] +

ν

2

.
1

AC2 log n
Jn(δn)

(
1 +

Jn(δn)√
nδ2n

)
+
ν

2

.
log n

A
(δn + 2B

1/2
1 δ1/2n )

(
1 +

δn + 2B
1/2
1 δ

1/2
n√

nδ2n

)
+
ν

2

.
1

A
(log n)3/2n−1/6

(
1 +

B2

(log n)3/2

)
+
ν

2

. ν, (17)

for all n large enough, where the first equality follows from Lemma 8 in BGH-supp, the first

inequality follows from the definition of Fa (in (41)), the second inequality follows from the

Markov inequality, the second equality follows from the definition of F̃a, the first wave inequality
(.) follows from van der Vaart and Wellner (1996, Lemma 3.4.3) and the definition of δn,

the second wave inequality follows from (15) and Equation (.2) in BGH-supp, the third wave

inequality follows from δn . δ
1/2
n and the definition of δn. Therefore,

IIa = op(n
−1/2). (18)

Next, we consider IIb. Note that (see Lemma 17 in BGH-supp)

∂

∂αj
E[ψ0(Z

′α0)|Z ′α = z′α]

∣∣∣∣
α=α0

= {zj − E[Zj |Z ′α = z′α0]}ψ′0(z′α0), (19)

for j = 1, . . . , d. Using an expansion around γ̂ = γ0 with (19) and E[ψ0(Z
′S(γ0))|z′S(γ0)] =

ψ0(z
′S(γ0)), we have

E[ψ0(Z
′S(γ0))|z′S(γ̂)] = ψ0(z

′S(γ0)) + (γ̂ − γ0)′J(γ̂)′{z −E[Z|z′S(γ0)]}ψ′0(z′S(γ0)) + op(γ̂ − γ0).
(20)
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Then we have

IIb =

∫
V x,z
II,n

{
(β0 − β̂)′{x− E[X|z′S(γ̂)]}

+ψ0(z
′S(γ0))− E[ψ0(Z

′α0)|z′S(γ̂)]

}
dP0(x, z)

=

∫
V x,z
II,n

{
(β0 − β̂)′{x− E[X|z′S(γ̂)]}

−(γ̂ − γ0)′J(γ0)
′{z − E[Z|z′S(γ0)]}ψ′0(z′S(γ0)) + op(γ̂ − γ0)

}
dP0(x, z)

= −
∫
V x,z
II,n

(
x− E[X|z′S(γ0)]

J(γ0)
′{z − E[Z|z′S(γ0)]}ψ′0(z′S(γ0))

)′
dP0(x, z)

(
β̂ − β0
γ̂ − γ0

)
+ op(γ̂ − γ0)

= op(θ̂ − θ0), (21)

where the first equality follows from E[ε|X,Z] = 0 and (10), the second equality follows from

(20), and the last equality comes from
∫
V x,z
II,ndP0(x, z) = op(1) and boundedness of the functions

x− E[X|z′S(γ0)] and J(γ0)
′{{z − E[Z|z′S(γ0)]}ψ′0(z′S(γ0))}.

Finally, we consider IIc. Since E[W |z′S(γ)] has totally bounded derivative for W = X and

Z by A4, there exists C0 > 0 such that

|E[W |Z ′S(γ) = u]− Ēn,θ[W |Z ′S(γ) = u] ≤ C0|ψθ(u)− ψ̂nθ(u)|, (22)

for each θ ∈ B(θ0, δ0) and u ∈ Iα. By this, we obtain

||IIc|| = ||
∫
V x,z
II,n{ψθ̂(z

′S(γ̂))− ψ̂nθ̂(z
′S(γ̂))}dP0(x, z)||

.
∫
{ψθ̂(z

′S(γ̂))− ψ̂nθ̂(z
′S(γ̂))}2dP0(z)

= Op((log)2n−2/3) = op(n
−1/2), (23)

uniformly in θ ∈ B(θ0, δ0), where the second equality follows from Proposition 4 in BGH. Com-

bining (18), (21), and (23), we conclude that

II = op(n
−1/2) + op(θ̂ − θ0). (24)

Step 3: Decompose I

The term I can be decomposed as

I =

∫
V x,z
I,n {y − x

′β̂ − ψθ̂(z
′S(γ̂)}dP0(x, y, z) +

∫
V x,z
I,n {y − x

′β̂ − ψθ̂(z
′S(γ̂)}d(Pn − P0)(x, y, z)

+

∫
V x,z
I,n {ψθ̂(z

′S(γ̂))− ψ̂nθ̂(z
′S(γ̂))}dPn(x, y, z) (25)

:= Ia + Ib + Ic.
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In the following steps, we show that

TnIa = −T0
∫
Vx,zV

′
x,zψ′dP0(x, z)T

′
0(θ̂ − θ0) + op(θ̂ − θ0), (26)

TnIb = T0

∫
Vx,z{y − x′β0 − ψ0(z

′S(γ0)}d(Pn − P0)(x, y, z)

+op(θ̂ − θ0) + op(n
−1/2), (27)

Ic = op(n
−1/2). (28)

Step 4: Show (26)

Ia =

∫
V x,z
I,n

{
(β0 − β̂)′{x− E[X|z′S(γ̂)]}

+ψ0(z
′S(γ0))− E[ψ0(Z

′α0)|z′S(γ̂)]

}
dP0(x, z)

=

∫
V x,z
I,n

{
(β0 − β̂){x− E[X|z′S(γ̂)]}

−(γ̂ − γ0)′J(γ0)
′{z − E[Z|z′S(γ0)]}ψ′0(z′S(γ0)) + op(γ̂ − γ0)

}
dP0(x, z)

= −
∫
Vx,zV

′
x,z,ψ′dP0(x, z)T

′
0

(
β̂ − β0
γ̂ − γ0

)
+ op(γ̂ − γ0), (29)

where the the first equality follows from E[ε|X,Z] = 0 and (10), and some rearrangement, the

second equality follows from (20), and the last equality follows from the definition of Vx,z,ψ′ and

the fact that for W = X or Z, we have E[W |z′S(γ̂)] − E[W |z′S(γ0)] = Op(γ̂ − γ0). Now, (26)

follows by

Tn − T0 = Op(γ̂ − γ0). (30)

Step 5: Show (27)

Decompose

TnIb = Tn

∫
V x,z
I,n {y − x

′β̂ − ψθ̂(z
′S(γ̂)}d(Pn − P0)(x, y, z)

= (Tn − T0)
∫
V x,z
I,n {y − x

′β̂ − ψθ̂(z
′S(γ̂)}d(Pn − P0)(x, y, z)

+T0

∫
V x,z
I,n {x

′β0 − x′β̂ + ψ0(z
′S(γ0))− ψθ̂(z

′S(γ̂))}d(Pn − P0)(x, y, z)

+T0

∫
(V x,z
I,n − Vx,z){y − x

′β0 − ψ0(z
′S(γ0)}d(Pn − P0)(x, y, z)

+T0

∫
Vx,z{y − x′β0 − ψ0(z

′S(γ0)}d(Pn − P0)(x, y, z)

:= (Tn − T0)Ib1 + T0Ib2 + T0Ib3

+T0

∫
Vx,z{y − x′β0 − ψ0(z

′S(γ0)}d(Pn − P0)(x, y, z).
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First, consider Ib1. Note that Lemma 13 BGH-supp and Lemma 2 imply the following (31) and

(32):

HB(ε,Fb1, || · ||B,P0) ≤ C1

ε
, (31)

for some C1 > 0, where Fb1 is defined in (43). Also, there exists a constant C2 > 0 such that

||f ||B,P0 ≤ C2, (32)

for all f ∈ Fb1. Let Ib1,j be the j-th component of Ib1. For any A > 0, there exists a positive

constant C such that

P{|Ib1,j | > An−1/2} ≤ 1

A
E[||Gn||Fb1 ] .

1

A
Jn(C2)

(
1 +

Jn(C2)√
nC2

2

)
.
C

A
,

for all n large enough, where the first inequality follows from the definition of Fb1 and the Markov

inequality, the first wave inequality follows from van der Vaart and Wellner (1996, Lemma 3.4.3),

and the second wave inequality follows from (31), (32), and Equation (.2) in BGH. Thus, we

have

Ib1 = Op(n
−1/2). (33)

Next, consider Ib2. Let Ib2,j be the j-th component of Ib2. For any positive constants A, ν,

and η, there exist positive constants C ′, C3, C4, and C5 such that

P{|Ib2,j | > An−1/2} ≤ 1

A
E[||Gn||Fb2 |Bη] +

ν

2
.

1

A
Jn(C ′η)

(
1 +

Jn(C ′η)√
n(C ′η)2

C3

)
+
ν

2

.
1

A
C4η

1/2

(
1 +

C5(1 + η1/2)
√
n(C ′η)3/2

C3

)
+
ν

2
, (34)

for all n large enough, where the event Bη is defined in Lemma 3. The first inequality follows

from Lemma 3, the definition of Fb2 in (45), and the Markov inequality, the first wave inequality

follows from van der Vaart and Wellner (1996, Lemma 3.4.2) and Lemma 3 (by choosing C ′ and

η as therein), C3 is a constant envelope of Fb2, and the second wave inequality follows from

Lemma 3 and Equation (.2) in BGH-supp. Since we can choose η arbitrarily small, it holds

Ib2 = op(n
−1/2). (35)

Finally, consider Ib3. This is similar to the case of Ib1 but with one difference, V x,z
I,n − Vx,z =

op(1). Therefore we can use the same methods as for Ib2 to find a upper bound of the L2-norm

(as we did in the proof of Lemma 3 and (34).) Thus, we have

Ib3 = op(n
−1/2). (36)

Combining (33), (35), and (36) with (30), we obtain (27).
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Step 6: Show (28)

Decompose

Ic =

∫
V x,z
I,n {ψθ̂(z

′S(γ̂))− ψ̂nθ̂(z
′S(γ̂))}dP0(x, y, z)

+

∫
V x,z
I,n {ψθ̂(z

′S(γ̂))− ψ̂nθ̂(z
′S(γ̂))}d(Pn − P0)(x, y, z)

:= Ic1 + Ic2,

For Ic1, the law of iterated expectation yields

Ic1 = E

[
E

[(
X − E[X|Z ′S(γ̂)]

Z − E[Z|Z ′S(γ̂)]

)∣∣∣∣∣Z ′S(γ̂)

]
{ψθ̂(Z

′S(γ̂))− ψ̂nθ̂(Z
′S(γ̂))}

]
= 0. (37)

Now consider Ic2. For any positive constants A and ν, there exist positive constants C1, C2, and

C ′ such that

P{|Ic2| > An−1/2} ≤ C1

A
(log n)1/2η1/2n

(
1 +

C1(log n)3/2η
1/2
n√

nη2n

)
+
ν

2

≤ C2

A
(log n)n−1/6 +

ν

2
≤ ν,

for all n large enough and ηn = C ′(log n)n−1/3, where the first inequality follows by Lemma

4 and a similar argument to (34), and the second inequality follows from the definition of ηn.

Thus, we have Ic2 = op(n
−1/2), and obtain (28).

Step 7: Conclusion

From Steps 1-6, we obtain

0 = φn(θ̂)

= −T0
∫
Vx,zV

′
x,z,ψ′dP0(x, z)T

′
0(θ̂ − θ0)

+T0

∫
Vx,z{y − x′β0 − ψ0(z

′S(γ0)}d(Pn − P0)(x, y, z) + op(n
−1/2) + op(θ̂ − θ0).

With B defined in A7, the central limit theorem implies

√
n(θ̂ − θ0) =

√
nB−1T0

∫
Vx,z{y − x′β0 − ψ0(z

′S(γ0)}d(Pn − P0)(x, y, z)

+op(1 +
√
n(θ̂ − θ0)) (38)

d→ N(0,Π).
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A.3 Lemmas

In this subsection, we use the following notations:

MRK = {monotone non-decreasing functions on [−R,R] and bounded by K},

GRK = {g : g(z) = ψθ(α
′z), z ∈ Z, (ψ, θ) ∈MRK × B(θ0, δ0)},

DRKv = {d : d(z) = g1(z)− g2(z), (g1, g2) ∈ G2RK , ||d(z)||P0 ≤ v},

HRKv = {h : h(ỹ, z) = ỹd1(z)− d2(z), (d1, d2) ∈ D2
RKv, (ỹ, z) ∈ R×Z}. (39)

A.3.1 Lemma for IIa

Let Wj be the j-th component of X or Z. Then decompose

{E[Wj |z′S(γ̂)]− Ēn,θ̂[Wj |z′S(γ̂)]}{y − xβ̂ − ψ̂nθ̂(z
′S(γ̂))}

= {E[Wj |z′S(γ̂)]− Ēn,θ̂[Wj |z′S(γ̂)]}{y − xβ̂}

−{E[Wj |z′S(γ̂)]− Ēn,θ̂[Wj |z′S(γ̂)]}ψ̂nθ̂(z
′S(γ̂))

:= d1(z){y − xβ̂} − d2(z). (40)

Let

Fa =
{
f : f(x, y, z) = d1(z){y − xβ̂} − d2(z), (x, y, z) ∈ X × R×Z

}
, (41)

be a function class of the integrand of IIa. To control the term IIa, we use the following lemma.

Lemma 1. For some K ′ ' log n and positive constant v, it holds

Fa ⊂ HRK′v,

with probability approaching one.

Proof. We use the following facts.

a) By A4, E[Wj |z′S(γ̂)] is a bounded function with a finite total variation.

b) Ēn,θ̂[Wj |z′S(γ̂)] is a discrete version of E[Wj |z′S(γ̂)] takes finite different values from it, so

it is also bounded and has a finite total variation.

c) By Lemma 8 in BGH-supp, maxθ̂∈B(θ0,δ0) supz∈Z |ψ̂nθ̂(z
′S(γ̂))| = Op(log n). Thus, there

exists K = K1 log n such that ψ̂nθ̂ ∈MRK with probability approaching to 1.

d) By Proposition 4 in BGH and (22), ||E[Wj |z′S(γ̂)] − Ēn,θ̂[Wj |z′S(γ̂)]||2 ≤ C1(log n)n−1/3

for some C1 > 0.

e) The addition or multiplication of two functions with finite total variations is a function

with a finite total variation.
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Then by Jordan’s decomposition and a), b), d), and e), there exist a positive constant C0 larger

than twice the bound of E[Wj |z′S(γ̂)] and v1 = C1(log n)n−1/3 such that

d1(·) ∈ DRC0v1 , (42)

with probability approaching 1. Additionally, c) and d) imply d2(·) ∈ DRK′v with K ′ = K2 log n

for a large enough constant K2 > 0 and v = C2(log n)2n−1/3 for some C2 > 0. Now, since v1 . v

and C0 . K ′, setting ỹ = y − xβ̂ in the definition of HRKv in (39) yields the conclusion.

A.3.2 Lemma for Ib1

Let Wj (and wj) be the j-th component of X or Z (x or z), ỹ = y − xβ̂ as in Lemma 1, and

Fb1 =
{
f : f(wj , y, z) = {wj − E[Wj |z′S(γ̂)]}{ỹ − ψθ̂(z

′S(γ̂)}, (wj , y, z) ∈ Wj × R×Z
}
, (43)

be a function class of the j-th component of the integrand of Ib1. To control the term Ib1, we

use the following lemma.

Lemma 2. For some positive constants C and v, it holds

Fb1 ⊂ HRCv,

with probability approaching 1.

Proof. We use the following facts.

a) wj is bounded by [−R,R].

b) By A4, E[Wj |z′S(γ̂)] is a function bounded by [−R,R] and has a finite total variation.

c) By A1, A3, and (10), ψθ̂ is a bounded monotone function.

Let d1(z′S(γ̂)) = E[Wj |z′S(γ̂)] and d2(z′S(γ̂)) = E[Wj |z′S(γ̂)]ψθ̂(z
′S(γ̂)). Any function in Fb1

can be expressed as

{wj − E[Wj |z′S(γ̂)]}{y − x′β̂ − ψθ̂(z
′S(γ̂)}

= wj{y − x′β̂ − ψθ̂(z
′S(γ̂)}+ d1(z

′S(γ̂))(y − x′β̂)− d2(z′S(γ̂)). (44)

By b) and c), we have

d1(·) ∈ DRC0v1 ,

for C0 defined in (42), which is larger than twice the bound of E[Wj |z′S(γ̂)], and some v1, which

is larger than the L2-norm of a constant function R (the upper bound in A1) on a compact

support. Additionally, we have

d2(·) ∈ DRC1v2 ,
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for some positive constants C1 and v2. Therefore, by setting ỹ = y − xβ̂ in the definition of

HRKv in (39), the second and third terms in (44) satisfy

d1(z
′S(γ̂))(y − x′β̂)− d2(z′S(γ̂)) ∈ HRC1v1 .

With similar steps we have:

wj{y − x′β̂ − ψθ̂(z
′S(γ̂)} ∈ HRC′1v′1 ,

for some positive constants C ′1 and v′1. By choosing C ≥ max(C1, C
′
1) and v ≥ max(v1, v

′
1), the

conclusion follows.

A.3.3 Lemma for Ib2

Let

Fb2 =
{
f : f(wj , x, z) = {wj−E[Wj |z′S(γ̂)]}{x′β0−x′β̂+ψ0(z

′S(γ0)−ψθ̂(z
′S(γ̂)}, (wj , x, z) ∈ Wj×X×Z

}
,

(45)

be a function class of the integrand of Ib2,j , the j-th component of Ib2. To control the term Ib2,

we use the following lemma.

Lemma 3.

For any positive constant η, we define the event Bη as

Bη =

{
sup

x,z∈X×Z,θ̂∈B(θ0,δ0)
|x′β0 − x′β̂ + ψ0(z

′S(γ0))− ψθ̂(z
′S(γ̂))| ≤ η

}

1. For some C > 0, it holds HB(ε,Fb2, || · ||P0) ≤ C
ε .

2. For any positive constants ν and η, it holds P (Bη) ≥ 1− ν
2 for all n large enough.

3. In case of the event Bη, there exists C ′ > 0 such that ||f ||2 ≤ C ′η for all f ∈ Fb2.

Proof. Both E[Wj |z′S(γ̂)] and ψ0(z
′S(γ0)) − ψθ̂(z

′S(γ̂)) are bounded functions with finite total

variations. Thus, they should have entropy of order C1
ε for some C1 > 0. Also, both wj and

(x′β0 − x′β̂) are bounded. Thus, they should have entropy of order C2
ε for some C2 > 0 (see,

Example 19.7 in van der Vaart, 2000). Combining these results, the statement (1) follows. The

consistency of θ̂ and Lemma 19 of BGH-supp imply the statement (2). The statement (3) follows

from the definition of Fb2.

A.3.4 Lemma for Ic2

Let

Fc2 =
{
f : f(wj , z) = {wj−E[Wj |z′S(γ̂)]}{ψθ̂(z

′S(γ̂))− ψ̂nθ̂(z
′S(γ̂))}, (wj , z) ∈ Wj×Z

}
, (46)
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be a function class of the integrand of Ic2,j , the j-th component of Ic2. To control the term Ic2,

we use the following lemma.

Lemma 4.

1. For some C > 0, it holds HB(ε,Fc2, || · ||P0) ≤ C logn
ε with probability approaching 1.

2. There exists a C ′ > 0 such that ||f ||P0 ≤ C ′(log n)n−1/3 for all f ∈ Fc2.

Proof. We use the following facts.

a) wj is bounded by [−R,R].

b) By A4, E[Wj |z′S(γ̂)] is a function bounded by [−R,R] and has a finite total variation.

c) By A1, A3, and (10), ψθ̂ is a bounded monotone function.

d) By Lemma 8 in BGH-supp, supz∈Z |ψ̂nθ̂(z
′S(γ̂))| = Op(log n). Therefore there exists K =

K1 log n such that ψ̂nθ̂ ∈MRK with probability approaching to 1.

So, in the case that ψ̂nθ̂ ∈MRK :

1) {ψθ̂(z
′S(γ̂))− ψ̂nθ̂(z

′S(γ̂))} is bounded by K +R with a finite variation.

2) E[Wj |z′S(γ̂)]{ψθ̂(z
′S(γ̂)) − ψ̂nθ̂(z

′S(γ̂))} is bounded by R(K + R) with a finite variation,

and the function class has an entropy of order C1 logn
ε for some C1 > 0.

3) From Lemma 10 of BGH-supp (by taking wj as β in that lemma) and 1) above, the function

class of wj{ψθ̂(z
′S(γ̂))− ψ̂nθ̂(z

′S(γ̂))} has an entropy of order C2 logn
ε for some C2 > 0.

From 2) and 3), the conclusion follows.

B Proof of Theorem 2

Existence and consistency of θ̃ can be shown similarly as in Appendix A.1. The rest of the proof

is split into several steps.

Step 1: Derive a decomposition of ξnh(θ̃)

In the same spirit of Step 1 of Appendix A.2, we introduce a piecewise constant function ρ̄n,θ.

Let {unj}kj=1 be all the jump points of the monotone LSE ψ̂nθ(u). We define for u ∈ [unj , unj+1)

24



(if j = k, set unj+1 = max
i
uni)

ρ̄n,θ(W |u) = ρ̄n,θ(W |Z ′S(γ))

=



ρ̄n,θ(X|u) =


E[X|Z ′S(γ) = unj ] if ψθ(u) > ψ̂nθ(unj ) for all u ∈ (unj , unj+1),

E[X|Z ′S(γ) = s] if ψθ(u) = ψ̂nθ(s) for some s ∈ (unj , unj+1),

E[X|Z ′S(γ) = unj+1 ] if ψθ(u) < ψ̂nθ(unj ) for all u ∈ (unj , unj+1),

ρ̄n,θ(Z|u) =


E[Z|Z ′S(γ) = unj ]ψ

′
θ(unj ) if ψθ(u) > ψ̂nθ(unj ) for all u ∈ (unj , unj+1),

E[Z|Z ′S(γ) = s]ψ′θ(s) if ψθ(u) = ψ̂nθ(s) for some s ∈ (unj , unj+1),

E[Z|Z ′S(γ) = unj+1 ]ψ′θ(unj+1) if ψθ(u) < ψ̂nθ(unj ) for all u ∈ (unj , unj+1).

Similar to (22), we have for each θ ∈ B(θ0, δ0)

|E[Z|Z ′S(γ) = u]ψ′θ(u)− ρ̄n,θ(Z|u)| ≤ C0|ψθ(u)− ψ̂nθ(u)|. (47)

Similar to (13), we have∫
ρ̄n,θ̃(W |z

′S(γ)){y − x′β̃ − ψ̂nθ̃(z
′S(γ̃))}dPn(x, y, z) = 0,

for W = X and Z. Thus, ξnh(θ̃) can be decomposed as

ξnh(θ̃) = Tn

∫
V x,z
I,nh,ψ′{y − x

′β̃ − ψ̂nθ̃(z
′S(γ̃)}dPn(x, y, z) + Tn

∫
V x,z
II,n{y − x

′β̃ − ψ̂nθ̃(z
′S(γ̃)}dPn(x, y, z)

:= Tn(IE + IIE), (48)

where Tn =

[
Ik 0

0 J(γ̃)′

]
,

V x,z
I,nh,ψ′ =

 x− E[X|z′S(γ̃)]

zψ̂′
nh,θ̃

(z′S(γ̃))− E[Z|z′S(γ̃)]ψ′
θ̃
(z′S(γ̃))

 , V x,z
I,n,ψ′ =

(
x− E[X|z′S(γ̃)]

[z − E[Z|z′S(γ̃))]ψ′
θ̃
(z′S(γ̃))

)
,

Vx,z,ψ′ =

(
x− E[X|z′S(γ0)]

[z − E[Z|z′S(γ0))]ψ
′
0(z
′S(γ0))

)
, (49)

V x,z
II,n =

(
E[X|z′S(γ̃)]− ρ̄n,θ̃(X|z

′S(γ̃))

E[Z|z′S(γ̃)]ψ′θ(z
′S(γ̃)− ρ̄n,θ̃(Z|z

′S(γ̃))

)
.

Note: Tn and V x,z
II,n are redefined for θ̃ in Appendix B.
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Step 2: Show IIE = op(n
−1/2) + op(θ̃ − θ0)

Decompose

IIE =

∫
V x,z
II,n{y − x

′β̃ − ψ̂nθ̃(z
′S(γ̃))}d(Pn − P0)(x, y, z)

+

∫
V x,z
II,n{y − x

′β̃ − ψθ̃(z
′S(γ̃))}dP0(x, y, z) +

∫
V x,z
II,n{ψθ̃(z

′S(γ̃))− ψ̂nθ̃(z
′S(γ̃))}dP0(x, y, z)

:= IIEa + IIEb + IIEc .

First, we consider IIEa . By A8, ψ′θ(z
′S(γ̃)) is uniformly bounded with a bounded total variation.

Therefore, E[Z|z′S(γ̃)]ψ′θ(z
′S(γ̃)) is also uniformly bounded with a bounded total variation, and

all the arguments in Step 2 of Appendix A.2 can be applied to show IIEa = op(n
−1/2).

Next, we consider IIEb . For the redefined V x,z
II,n, we still have

∫
V x,z
II,ndP0(x, z) = op(1) and

boundedness of the functions x−E[X|z′S(γ0)] and J(γ0)
′{{z−E[Z|z′S(γ0)]}ψ′0(z′S(γ0))}. Thus

the same argument as in in Step 2 of Appendix A.2 yields IIEb = op(θ̃ − θ0).
Finally, we consider IIEc . By (22) and (47), the same argument in Step 2 of Appendix A.2

implies IIEc = op(n
−1/2). Combining these results, we obtain IIE = op(n

−1/2) + op(θ̃ − θ0).

Step 3: Decompose IE

Note that

IE = Tn

∫
V x,z
I,nh,ψ′{y − x

′β̃ − ψ̂nθ̃(z
′S(γ̃)}dPn(x, y, z)

=

∫
V x,z
I,nh,ψ′{y − x

′β̃ − ψθ̃(z
′S(γ̃)}dP0(x, y, z) +

∫
V x,z
I,nh,ψ′{y − x

′β̃ − ψθ̃(z
′S(γ̃)}d(Pn − P0)(x, y, z)

+

∫
V x,z
I,nh,ψ′{ψθ̃(z

′S(γ̃))− ψ̂nθ̃(z
′S(γ̃))}dPn(x, y, z)

:= IEa + IEb + IEc

In the following steps, we show that

TnI
E
a = −T0

∫
Vx,z,ψ′V

′
x,zψ′dP0(x, z)T

′
0(θ̃ − θ0) + op(θ̃ − θ0), (50)

TnI
E
b = T0

∫
Vx,z,ψ′{y − x′β0 − ψ0(z

′S(γ0)}d(Pn − P0)(x, y, z)

+op(θ̃ − θ0) + op(n
−1/2), (51)

IEc = op(n
−1/2). (52)
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Step 4: Show (50)

Decompose

IEa =

∫
V x,z
I,n,ψ′{y − x

′β̃ − ψθ̃(z
′S(γ̃)}dP0(x, y, z)

+

∫ (
0

z ˆ[ψ′nh,θ̃(z
′S(γ̃))− ψ′

θ̃
(z′S(γ̃))]

)
{y − x′β̃ − ψθ̃(z

′S(γ̃)}dP0(x, y, z)

:= IEa1 + IEa2.

By a similar argument as in (29), we have

IEa1 = −
{∫

Vx,z,ψ′V
′
x,z,ψ′dP0(x, z)

}
T ′0(θ̃ − θ0) + op(θ̃ − θ0). (53)

and

IEa2 = −

{∫ (
0

z{ψ̂′nh,θ̃(z
′S(γ̃))− ψ′

θ̃
(z′S(γ̃))}

)
V ′x,z,ψ′dP0(x, z)

}
T ′0(θ̃ − θ0) + op(θ̃ − θ0).

From ψ̂′
nh,θ̃

(z′S(γ̃))− ψ′
θ̃
(z′S(γ̃)) = op(1), V ′x,z,ψ′ = Op(1), and the compact supports of x and z,

it holds IEa2 = op(θ̃ − θ0). Thus, we obtain (50).

Step 5: Show (51)

Decompose

TnI
E
b = Tn

∫
V x,z
I,n,ψ′{y − x

′β̃ − ψθ̃(z
′S(γ̃)}d(Pn − P0)(x, y, z)

+Tn

∫  0

z{ψ̃′
nh,θ̃

(z′S(γ̃))− ψ′
θ̃
(z′S(γ̃))}

 {y − x′β̃ − ψθ̃(z′S(γ̃)}d(Pn − P0)(x, y, z)

:= TnI
E
b1 + TnI

E
b2.

By similar steps as in Step 5 of Appendix A.2 combined with A8, we can derive

TnI
E
b1 = T0

∫
Vx,z,ψ′{y − x′β0 − ψ0(z

′S(γ0)}d(Pn − P0)(x, y, z) + op(θ̃ − θ0) + op(n
−1/2). (54)

By Lemma 23 in BGH-supp, the analysis for TnIEb2 is similar to the one for Ib3 in Step 5 of

Appendix A.2. Therefore, we have TnIEb2 = op(n
−1/2), and (51) is obtained.
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Step 6: Show (52)

Decompose

IEc =

∫
V x,z
I,nh,ψ′{ψθ̃(z

′S(γ̃))− ψ̂nθ̃(z
′S(γ̃))}dP0(x, y, z)

+

∫
V x,z
I,nh,ψ′{ψθ̃(z

′S(γ̃))− ψ̂nθ̃(z
′S(γ̃))}d(Pn − P0)(x, y, z)

= IEc1 + IEc2.

For IEc1, note that

IEc1 =

∫
V x,z
I,n,ψ′{ψθ̃(z

′S(γ̃))− ψ̂nθ̃(z
′S(γ̃))}dP0(x, y, z)

+

∫  0

z{ψ̂′
nh,θ̃

(z′S(γ̃))− ψ′
θ̃
(z′S(γ̃))}

 {ψθ̃(z′S(γ̃))− ψ̂nθ̃(z
′S(γ̃))}dP0(x, y, z)

=

∫  0

E[Z|u]
{

1
h

∫
K
(
u−x
h

)
dψ̂nθ̃(x)− ψ′

θ̃
(u)
}  {ψθ̃(u)− ψ̂nθ̃(u)}dP0(u), (55)

where the last equality follows from a similar argument in (37), a change of variables u = z′S(γ̃),

and the definition of ψ̂nh,θ̃(u). We know E[Z|u] = O(1) and
∫
{ψθ̃(u) − ψ̂nθ̃(u)}2dP0(u) =

Op((log n)2n−2/3) by Proposition 4 in BGH. Also note that

1

h

∫
K

(
u− x
h

)
dψ̂nθ̃(x)− ψ′

θ̃
(u)

=
1

h

∫
K

(
u− x
h

)
d(ψ̂nθ̃(x)− ψθ̃(x)) +

1

h

∫
K

(
u− x
h

)
dψθ̃(x)− ψ′

θ̃
(u)

= − 1

h2

∫
K ′
(
u− x
h

)
(ψ̂nθ̃(x)− ψθ̃(x))dx+

1

h

∫
K

(
u− x
h

)
dψθ̃(x)− ψ′

θ̃
(u), (56)

where the second equality follows from integration by parts and A9. With small h, 1
h2

∫
K ′
(
u−x
h

)
(ψ̂nθ̃(x)−

ψθ̃(x))dx ∼ 1
h(ψ̂nθ̃(u)−ψθ̃(u)). And 1

h

∫
K
(
u−x
h

)
dψθ̃(x)−ψ′

θ̃
(u) is a typical bias term of a kernel

estimator, which is of order h2 by A9. Plugging (56) into (55), the Cauchy-Schwarz inequality

and A9 imply

IEc1 = Op((log n)2n−2/3) ·Op(n1/7) +Op((log n)n−1/3) ·Op(n−2/7) = op(n
−1/2). (57)

For IEc2, A8 and Lemma 23 in BGH-supp imply that both zψ̂′
nh,θ̃

(z′S(γ̃)) andE[Z|z′S(γ̃)]ψ′
θ̃
(z′S(γ̃))

are bounded with finite total variation. By a similar argument to Step 6 of Appendix A.2, we

have IEc2 = op(n
−1/2). Combined with (57), we obtain (52).
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Step 7: Conclusion

From Steps 1-6 above, we obtain

0 = ξnh(θ̃)

= −T0
∫
Vx,z,ψ′V

′
x,z,ψ′dP0(x, z)T

′
0(θ̃ − θ0)

+T0

∫
Vx,z,ψ′{y − x′β0 − ψ0(z

′S(γ0)}d(Pn − P0)(x, y, z) + op(θ̃ − θ0) + op(n
−1/2).

With BE defined in A7, the central limit theorem implies

√
n(θ̃ − θ0) =

√
nB−1E T0

∫
Vx,z,ψ′{y − x′β0 − ψ0(z

′S(γ0)}d(Pn − P0)(x, y, z)

+op(1 +
√
n(θ̃ − θ0))

d→ N(0,ΠE).

C Proof of Theorem 3

Here we adapt the relevant proof in Groeneboom and Hendrickx (2017) (hereafter GH) to the

monotone partially linear single index model. Let φ∗n(·) be the score function in the bootstrap

sample. By definition (6),

φ∗n(θ̂∗) =

∫ (
x

J(γ̂∗)′z

)
{y − x′β̂∗ − ψ̂∗nθ̂∗(z

′S(γ̂∗))}dP̂n(x, y, z),

where P̂n is the empirical measure. Suppose

φ∗n(θ̂∗) = −B(θ̂∗ − θ0) + T0

∫
Vx,z{y − x′β0 − ψ0(z

′S(γ0)}d(P̂n − Pn)(x, y, z) (58)

+T0

∫
Vx,z{y − x′β0 − ψ0(z

′S(γ0)}d(Pn − P0)(x, y, z) + oPM (n−1/2 + (θ̂∗ − θ0)).

where PM is defined in p. 3450 of GH. Then with φ∗n(θ̂∗) = 0 and (38), we have

√
n(θ̂∗ − θ̂) =

√
nB−1T0

∫
Vx,z{y − x′β0 − ψ0(z

′S(γ0)}d(P̂n − Pn)(x, y, z) + oPM (1 +
√
n(θ̂∗ − θ0))

d→ N(0,Π),

and the conclusion follows by Theorem 1.

It remains to prove (58). Similarly to Proposition 4 in BGH and (6.21) in GH, we can obtain

the L2-rate as

sup
θ

∫
{ψ̂∗nθ(z′S(γ))− ψθ(z′S(γ)}2dP̂n(x, y, z) = OPM (n−2/3).
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Define

T ∗n =

[
Ik 0

0 J(γ̂)∗′

]
, V x,z

I∗,n =

(
x− E[X|z′S(γ̂∗)]

z − E[Z|z′S(γ̂∗)]

)
, V x,z

II∗,n =

(
E[X|z′S(γ̂∗)]− Ēn,θ̂[X|z

′S(γ̂∗)]

E[Z|z′S(γ̂∗)]− Ēn,θ̂[Z|z
′S(γ̂∗)]

)
,

where Ē∗n,θ[W |u] is similarly defined as in (12). With similar arguments in Steps 1 and 2 in

Section (A.2), we can show that

φ∗n(θ̂∗) = T ∗n

∫
V x,z
I∗,n{y − x

′β̂∗ − ψ̂∗nθ̂∗(z
′S(γ̂∗))}dP̂n(x, y, z) + oPM (n−1/2 + (θ̂∗ − θ0)). (59)

For the first term of (59),

T ∗n

∫
V x,z
I∗,n{y − x

′β̂∗ − ψ̂∗nθ̂∗(z
′S(γ̂∗))}dP̂n(x, y, z)

= T ∗n

∫
V x,z
I∗,n{y − x

′β̂∗ − ψ̂∗nθ̂∗(z
′S(γ̂∗))}d(P̂n − Pn)(x, y, z)

+T ∗n

∫
V x,z
I∗,n{y − x

′β̂∗ − ψ̂∗nθ̂∗(z
′S(γ̂∗))}dPn(x, y, z)

:= T ∗nI
∗ + T ∗nII

∗.

T ∗nI
∗ is the bootstrap version of TnIb in (27). Therefore, with a similar arguments in Step 5 of

Section (A.2), we have

T ∗nI
∗ = T0

∫
Vx,z{y − x′β0 − ψ0(z

′S(γ0)}d(P̂n − Pn)(x, y, z) + oPM (n−1/2 + (θ̂∗ − θ0)). (60)

T ∗nII
∗ is actually the first item of (14), TnI, evaluated at θ̂∗. It can be decomposed as in (25).

With similar argument from Step 3 to Step 6 in Section (A.2), we have

T ∗nII
∗ = −T0

∫
Vx,zV

′
x,z,ψ′dP0(x, z)T

′
0(θ̂
∗ − θ0)

+T0

∫
Vx,z{y − x′β0 − ψ0(z

′S(γ0)}d(Pn − P0)(x, y, z) + oP (n−1/2 + (θ̂∗ − θ0))

= −B(θ̂∗ − θ0) + T0

∫
Vx,z{y − x′β0 − ψ0(z

′S(γ0)}d(Pn − P0)(x, y, z) (61)

+oPM (n−1/2 + (θ̂∗ − θ0)),

where the last equality follows from the definition of B and the fact that any item of order

oP (n−1/2 + (θ̂∗ − θ0)) will be of order oPM (n−1/2 + (θ̂∗ − θ0)).
Combining (59), (60), and (61), we have (58).
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