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A Dynamic Model of Optimal Creditor Dispersion

HONGDA ZHONG∗

ABSTRACT

Borrowing from multiple creditors exposes firms to rollover risk due to coordination
problems among creditors, but it also improves firms’ repayment incentives, thereby
increasing pledgeability. Based on this trade-off, I develop a dynamic debt rollover
model to analyze the evolution of creditor dispersion. Consistent with empirical evi-
dence, I find that firms optimally increase creditor dispersion after poor performance.
In contrast, cross-sectionally higher-growth firms can support more dispersed cred-
itors. Frequent debt renegotiation limits firms’ ability to increase pledgeability by
having more creditors. Finally, holding a cash balance while borrowing from multiple
creditors improves firms’ repayment incentives uniformly across all future states.

MANY FIRMS BORROW FROM MULTIPLE creditors.1 Having more creditors
risks coordination problems among them, making it more difficult for firms
to restructure their debt. At face value, this seems to suggest that during
bad times, firms should consolidate their creditors to facilitate renegotiation
of distressed debt and mitigate bankruptcy. Surprisingly, however, empirical
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evidence suggests the opposite—many firms increase the number of lenders
they employ when their performance deteriorates (Farinha and Santos (2002),
Rauh and Sufi (2010)). An obvious explanation for this pattern is that existing
lenders refuse to throw more good money after bad, leaving firms no choice but
to borrow from more creditors. However, one question remains: why would new
creditors be willing to lend while incumbents are rushing for the exit?

To avoid the devastating consequences of coordination failures among cred-
itors, many mechanisms are in place to promote the efficient renegotiation of
distressed debt. However, easier debt renegotiation can potentially alter firms’
repayment incentives, which affect their decisions to issue or refinance debt
early on. Mechanisms that lead to ex post efficient debt renegotiation can also
affect firms’ ex ante choice of creditor dispersion, and as a result, the likelihood
and outcome of renegotiation. Do such mechanisms always help prolong firms’
life as intended?

To shed light on the questions above, creditor dispersion needs to be modeled
as a dynamic variable that evolves endogenously, instead of a one-time choice.
In this paper, I develop a parsimonious dynamic model in which a firm with
insufficient internal resources must finance a long-term project by repeatedly
rolling over short-term debt. The key friction is that the firm cannot commit
to repay its debt at maturity, and thus needs incentives to do so. This lack of
commitment power reduces the firm’s credibility and limits the amount of debt
capital it can raise. A dispersed creditor structure creates coordination prob-
lems, which following bad shocks can result in inefficient liquidation. With a
good shock realization, however, the same coordination problems strengthen
the firm’s repayment incentives by making it harder for the firm to oppor-
tunistically hold up its creditors. The firm optimally readjusts the number of
creditors in each period by trading off the risk of rollover failure against the
benefit of better commitment to pay back its debt.

In contrast to prior literature, which relies largely on static models to ex-
amine creditor structure (e.g., Berglöf and Von Thadden (1994), Bolton and
Scharfstein (1996), and Diamond (2004)), the dynamic debt rollover framework
proposed here is arguably closer to reality. First, many firms use a staggered
debt structure, and rollover failures can be costly (Almeida et al. (2012)). Per-
haps more importantly, debt rollover itself is fundamentally a dynamic con-
cept: the ability to roll over debt today depends on whether the firm’s new
creditors anticipate that they, in turn, can roll over their debt in the future,
which again depends on whether creditors anticipate rollover to be possible
even further in the future. Finally, Roberts and Sufi (2009a) show that 94%
of loans with maturity longer than three years are renegotiated, and Roberts
(2015) shows that a median renegotiated loan receives four renegotiations in
its lifetime. Taken together, these empirical findings suggest that it is impor-
tant to treat debt renegotiation as a dynamic process.

Despite the parsimony of the model, it generates a rich set of predictions,
especially in the time series. First, my model delivers predictions on the num-
ber of creditors a firm has, as well as on the timing of decisions to seek more
creditors or consolidate the existing ones. In the time series, I show that when
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firm performance deteriorates, the number of creditors increases. This is be-
cause the required amount of leverage increases endogenously when firms
perform poorly. To support this higher leverage, firms must expand their pool of
creditors so that future repayments are more credible. In the cross section, I in-
vestigate firms with exogenously different growth rates, and show that better
firms with higher growth rates have larger debt capacity, which allows these
firms to survive more rounds of renegotiation and therefore support more cred-
itors. Hence, unlike in the time series, in the cross section, I find that faster
growing firms can have more creditors on average.

The sharp contrast between the time-series and cross-sectional predictions
reconciles seemingly contradictory empirical findings in prior work. Farinha
and Santos (2002) and Rauh and Sufi (2010) find that both lending relation-
ships and the composition of debt become more dispersed when firm perfor-
mance deteriorates. In contrast, Houston and James (1996) find that firms with
more relationship banks have higher asset growth compared to their single-
bank counterparts. Through the lens of my dynamic model, the evidence in
Farinha and Santos (2002) and Rauh and Sufi (2010) is consistent with the
time-series prediction, whereas the Houston and James (1996) finding is con-
sistent with the cross-sectional prediction.

In addition, the dynamic aspect of my model helps connect an important
stream of theoretical literature with some stylized facts on the relation be-
tween borrowing costs and creditor dispersion. Many classic studies (e.g.,
Berglöf and Von Thadden (1994), Bolton and Scharfstein (1996), and Diamond
(2004)) build on the idea that dispersed creditor structure commits a borrowing
firm to pay back its debt. This channel implies that the required interest rate
should be lower when the debt is more widely held, because the difficulty rene-
gotiating with dispersed creditors makes repayments more credible. However,
Petersen and Rajan (1994, 1995) empirically document a significant positive
relation between the number of creditors and the cost of credit. My model sug-
gests that although borrowing from more creditors does indeed help reduce the
required interest rate, firms do so only when their performance deteriorates,
driving up the observed interest rate in equilibrium.

The dynamic model also allows me to study how renegotiation frequency af-
fects pledgeability—the maximum amount of debt capital a firm can raise. I
find that when a firm can instantaneously renegotiate its debt, it can no longer
pledge any value from a potential better state in the future, even with dis-
persed creditors to strengthen its commitment power.2 This result casts doubt
on the traditional view in many two-period models that dispersed short-term
debt alleviates the commitment problem stemming from renegotiation. In a
fully dynamic world, when there is little time between two rounds of renego-
tiations, the fundamental is unlikely to change and thus highly persistent. To
pledge the extra value from a better state in the following period, the firm
needs to risk inefficient termination should the current (worse) state continue.

2 Because potential debt renegotiation occurs in the model whenever debt matures, the finding
can also be interpreted as one for debt maturity or rollover frequency.



4 The Journal of Finance®

Because of the persistent fundamental, this termination risk becomes almost
a certainty, whereas the benefit of realizing higher commitment power in the
better state becomes vanishingly small. As a result, having dispersed credi-
tors does not improve firms’ ex ante pledgeability when renegotiation becomes
frequent.

Finally, I present a novel role for cash. Together with multiple creditors,
cash creates extra commitment power uniformly across all future states. This
channel is different from the well-known Hart and Moore (1998) intuition for
why firms borrow additional money and hold cash. In Hart and Moore (1998),
where cash cannot be verified and hence cannot be seized by creditors upon
liquidation, holding cash allows the firm to effectively buy back a fraction of
the project (to reduce partial liquidation) when termination is relatively more
inefficient. Unlike in Hart and Moore (1998), in my model cash can be seized
by creditors. Consequently, when there is only one creditor, cash plays no role:
the firm can pay down its debt with cash (simultaneously reducing the face
value and the same amount of cash holding) to achieve the same outcome. In
contrast, when there are multiple creditors, cash is part of the firm’s state-
noncontingent assets, and thus increases the reservation value for each credi-
tor independent of the fundamental realization. A dispersed creditor structure
therefore serves as a multiplier that magnifies the additional pledgeable re-
payment induced by the cash holding.

My paper is related to a large literature on coordination problems among
dispersed creditors. Perhaps the most famous such problem is a bank (cred-
itor) run. Diamond and Dybvig (1983) show that in a static setting, socially
inefficient bank-run equilibria generally exist. Goldstein and Pauzner (2005)
further characterize the probability of a bank run under a global game frame-
work. He and Xiong (2012a) study dynamic runs on staggered corporate debt
and show that a creditor’s decision not to roll over maturing debt poses an
externality on other creditors whose claims have not yet matured.

If borrowing from multiple lenders is subject to costly runs, why do firms
continue this practice? Many scholars believe that such runs can be a dis-
ciplinary device that enhances ex ante efficiency. Berglöf and Von Thadden
(1994) show that having multiple creditors specialize in lending at different
maturities is a superior structure. Short-term creditors can impose external-
ities on long-term creditors at the debt renegotiation stage, thereby increas-
ing firms’ ex post repayment incentives. The threat of a bank run associated
with dispersed demand deposits can incentivize financial intermediaries to re-
turn the proceeds to depositors (Diamond (2004)) and encourage depositors
to acquire costly information about the banks (Calomiris and Kahn (1991)).
Diamond (2004) demonstrates that dispersed creditors can solve the “passive
lender” problem. A single lender with a large stake has little incentive to ter-
minate a firm because doing so also hurts the lender. Without credible dis-
cipline, the firm may misbehave ex ante. In contrast, when there are multi-
ple creditors, those that take disciplinary actions cast negative externalities
on passive creditors, which increases incentives for lenders to be active ex
post and in turn for the borrower to behave properly ex ante. More recently,
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Zetlin-Jones (2014) examines an environment with multiple intermediaries
and dispersed depositors. These studies share the key insight that the threat of
coordination failures associated with multiple creditors disciplines the firm
and can potentially improve ex ante efficiency. However, these studies vary the
number of creditors exogenously and therefore are silent on the question of
when do firms endogenously change their creditor structure.

Several attempts have been made to endogenize the optimal number of cred-
itors. To my knowledge, Bolton and Scharfstein (1996) is the first attempt and
is closely related to my paper. In their model, the firm can strategically default
and renegotiate debt even when it has the money to honor the repayment.
Upon default, the creditor(s) can inefficiently sell the project to an outside in-
vestor. The benefit of having more creditors is to increase their collective bar-
gaining power against the firm following a strategic default, so that creditors
can extract higher repayments. However, in a fundamental-driven default, the
stronger bargaining power of creditors also makes it less likely for them to
find an outside investor, rendering default more costly. From a different an-
gle, Detragiache, Garella, and Guiso (2000) study an economy in which bank
financing can fail and the quality of the firm’s project is unknown. Having
multiple bank relationships offers more robust financing. However, when all
relationship banks deny credit, having more banks makes the firm worse off
because the uninformed market is more pessimistic about the firm’s quality.
Bris and Welch (2005) consider a “free-riding” problem that reduces an indi-
vidual creditor’s willingness to expend effort on debt collection. As opposed
to the creditor-discipline channel, dispersed creditors reduce their collective
bargaining power under the free-riding problem. A common feature of these
papers is that they are all static: a one-time choice of creditor dispersion. I em-
ploy the idea in Bolton and Scharfstein (1996), but instead bring the trade-off
to a dynamic world.

Related to my model’s implication on renegotiation frequency, several recent
papers study the impact of creditor structure and rollover risk on equilibrium
debt maturity. Cheng and Milbradt (2012) solve for the optimal debt matu-
rity given the trade-off between risk-shifting incentives and rollover failures.
Huang, Oehmke and Zhong (2019) study the optimal number, size, and tim-
ing of repayments when the debtor cannot commit to repay and early termi-
nation is more costly. Brunnermeier and Oehmke (2013) show that excessive
short-term debt may prevail in equilibrium with multiple creditors, despite the
increased rollover risks.

Petersen and Rajan (1995) propose a model that illustrates how exogenous
variation in lenders’ market power affects the quality of the financed firms and
hence their cost of credit. In contrast, I endogenize the variation in bargain-
ing power by modeling the game between the firm and its creditors. For further
research on the number of creditors, Ongena and Smith (2000a) provide a com-
prehensive survey.

Previous literature also examines the effects of debt renegotiation and
rollover from an asset-pricing perspective. Mella-Barral and Perraudin (1997)
and Mella-Barral (1999) study debt pricing when firms can renegotiate and
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service the troubled debt rather than defaulting right away, as in Leland
(1994). He and Xiong (2012b) show that rollover losses as a result of illiquidity
in the debt market can exacerbate a firm’s credit risk. Hege and Mella-Barral
(2005) examine an economy in which a firm can exchange liquidation rights
for coupon concessions on debt. They study how this feature affects the credit
risk premia as the number of creditors changes. With the creditor structure
exogenously fixed, these authors focus on pricing the debt claims given the
possibility of renegotiation or rollover frictions. In contrast, I focus on the op-
timal choice of creditor dispersion.

The rest of the paper is organized as follows. Section I details the dynamic
debt rollover game and Section II characterizes creditor dispersion in equilib-
rium. Section III analyzes the evolution and comparative dynamics of creditor
dispersion and relates these findings to empirical literature. Section IV shows
how exogenous creditor structure and renegotiation frequency affect the debt
rollover outcome. Section V extends the model by allowing the firm to keep
cash and shows how cash holdings interact with creditor structure. Finally,
Section VI concludes.

I. Model Setup

In Sections I.A and I.B, I introduce the baseline model, which features en-
dogenous creditor dispersion in a dynamic debt rollover framework. I then dis-
cuss key modeling assumptions in Section I.C.

A. The Project

Time t is discrete and the discount rate is r > 0. At time t = 0, a risk-neutral
firm with no cash starts a long-term project that needs an upfront investment
I0. The project generates no interim cash flow but rather an observable liq-
uidating dividend Yt at a random project maturity, denoted by τπ .3 At the
beginning of each period t, the project matures with probability π , generat-
ing final dividend Yt . If the project does not mature, then a new fundamental
Yt+1 = Ytzt+1 is realized. While all results are robust to considering more gen-
eral stochastic processes, for simplicity I assume that the fundamental Yt re-
mains at Y0 until a good shock arrives, after which Yt deterministically grows
at a rate of μ > r. The good shock arrives with probability p in each period. For-
mally, the periodic shock zt+1 ∈ {1, 1 + μ} follows a Markov chain with initial
state z1 = 1 and transition probabilities given by{

Prob(zt+1 = 1 + μ|zt = 1 + μ) = 1
Prob(zt+1 = 1 + μ|zt = 1) = p.

With a slight abuse of notation, when zt appears in superscripts, I denote by
G(ood) and B(ad) the states zt = 1 + μ and zt = 1, respectively. At the end of

3 I assume no interim cash flow for simplicity to focus on the key feature of debt rollover.
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Figure 1. Timeline. The sequence of actions and the evolution of the state variables.

period t − 1 (after the realization of zt), the expected value of the final dividend
can be calculated according to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

V G
FB(Yt ) ≡ E

(
Yτπ

(1 + r)τπ+1−t |Yt, zt = 1 + μ

)
= π

1 + r − (1 − π )(1 + μ)
Yt

V B
FB(Yt ) ≡ E

(
Yτπ

(1 + r)τπ+1−t |Yt, zt = 1
)

=
π + (1 − π )p(1 + μ)

π

1 + r − (1 − π )(1 + μ)
1 + r − (1 − π )(1 − p)

Yt .

(1)

The detailed mathematical derivation for (1) is in Appendix A. Denote by
vzt

FBYt (zt = G or B) the linear first-best firm values in (1). Throughout the paper
I assume that 1 + r > (1 − π )(1 + μ), so vG

FB > vB
FB are both finite. If the project

does not mature in period t, it can be sold prematurely for λYt+1. When λ is
sufficiently small, in particular, smaller than the expected value of the project
in a bad state,

λ < vB
FB, (2)

selling the project prematurely is never optimal.

B. Dynamic Debt Rollover Game

To focus on debt rollover, I assume that the firm can only issue one-period
debt to short-lived creditors. Since the project does not generate any interim
cash flow, the firm must repeatedly issue new debt to finance repayments to the
maturing creditors. Figure 1 presents the timeline of the debt rollover game
in each period. The firm enters period t with shock zt , fundamental Yt , total
face value of maturing debt contracts Ft , and Nt ≥ 1 incumbent creditors. For
simplicity, I assume that each creditor holds an equal amount of face value
Ft
Nt

. As discussed in Section I.C, introducing asymmetric debt holdings among
creditors does not materially change the analysis.

In period t, the project first matures with probability π , generating final
dividend Yt . The incumbent creditors split the final dividend equally up to
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the promised face value, each receiving 1
Nt

min(Ft,Yt ).4 The equity receives the
residual max(Yt − Ft, 0). If the project does not mature, then the next period’s
fundamental Yt+1 (or equivalently, the shock zt+1) is realized and is publicly
observed. One of the main frictions in this model is that the firm cannot com-
mit to repaying its creditors, but instead always attempts to renegotiate its
debt. Specifically, the firm meets each creditor sequentially and makes take-
it-or-leave-it offer Si

t to the ith negotiating creditor, who is also the ith lender
providing the loan in the previous period, t − 1. The offer history is public in-
formation.

If the ith creditor is the first to decline the offer, I assume that the firm can
avoid immediate default by selling the project for λYt+1 in order to honor the
repayment of Ft

Nt
. Selling the project can be broadly interpreted in practice as

downsizing investments, spinning off assets, or conducting fire sales. Since the
company has not yet defaulted, automatic stay or equal treatment among cred-
itors does not apply. Hence, creditor i receives a payoff of min( Ft

Nt
, λYt+1). To

simplify strategic actions, I assume that all subsequent creditors automati-
cally refuse any renegotiation and demand the full face value Ft

Nt
, which is paid

from the total proceeds λYt+1 sequentially until depletion. In addition, credi-
tors j < i that have already accepted the firm’s offers are now at the rear of
the collection queue. Therefore, creditors’ payoff in the event of a renegotiation
failure features “sequential service,” as commonly assumed in the large litera-
ture following Diamond and Dybvig (1983).5 Mathematically, if the ith creditor
declines the offer, the i + kth (k = 0, 1, . . . , Nt − 1) creditor receives repayment

X i+k
t =

⎧⎪⎨⎪⎩
Ft
Nt

if
(
k + 1

) Ft
Nt

≤ λYt+1

λYt+1 − k Ft
Nt

if k Ft
Nt

≤ λYt+1 <
(
k + 1

) Ft
Nt

0 if λYt+1 < k Ft
Nt

,

(3)

with the remaining max(λYt+1 − Ft, 0) going to the firm. Here, I use the con-
vention that if i + k > Nt , it denotes the i + k − Nt

th creditor. The first case in
(3) captures full repayment to a creditor when the resale proceeds λYt+1 are
sufficient to honor this repayment. The second case characterizes the payoff
to the last creditor who exhausts the (remaining) proceeds, with everyone to
follow receiving zero as in the final case.

4 One can alternatively assume arbitrary priority structure among the Nt creditors when the
project matures. The relevant quantity is the total payoff to creditors, min(Ft ,Yt ).

5 Alternatively, I can endow subsequent creditors with strategic actions to accept or decline their
renegotiation offers. In addition, instead of sequential priority, one can assume that the nonnegoti-
ating creditors ( j �= i) have equal priority with respect to the remaining proceeds. The equilibrium
outcome is robust to these modifications. As will soon be clear, the exact same coordination problem
emerges as long as there is an advantage to being the first creditor to reject the offer.
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Since the first rejecting creditor receives min( Ft
Nt

, λYt+1), and the firm has all
of the bargaining power, the renegotiated repayment must be

Si
t = min

(
Ft

Nt
, λYt+1

)
. (4)

Put differently, the firm offers its creditors their outside option: either the
promised face value Ft

Nt
in full or the resale value λYt+1. If all offers are accepted,

then debt renegotiation is successful and the total renegotiated repayment

Nt∑
i=1

Si
t = min (Ft, NtλYt+1) (5)

must be refinanced into the next period.
The newly issued debt contracts maturing in period t + 1 are sequentially of-

fered to Nt+1 new creditors each with face value Ft+1
Nt+1

. The jth creditor ( j ≤ Nt+1)
to receive the debt contract will also be the jth creditor to mature and nego-
tiate in period t + 1. This arrangement can be interpreted as staggered ma-
turity structure within a period. In exchange, the jth creditor lends the firm
Dzt+1, j

t+1 , which is the competitive price of this debt contract, taking into con-
sideration possible premature termination and renegotiation in the future.
Mathematically,

Dzt , j
t (Nt, Ft,Yt ) = 1

1 + r

⎧⎪⎪⎪⎨⎪⎪⎪⎩π
1
Nt

min (Ft,Yt )︸ ︷︷ ︸
project matures

+ (1 − π )Et

⎡⎢⎣ 1ROSj
t︸ ︷︷ ︸

successful rollover

+ (1 − 1RO)X j
t︸ ︷︷ ︸

rollover failure

⎤⎥⎦
⎫⎪⎬⎪⎭, (6)

where 1RO is the indicator function that debt roll over is successful in period
t. The value of an individual debt contract in (6) (maturing in period t in-
stead of t + 1 for notational convenience) has three components: a repayment
of 1

Nt
min(Ft,Yt ) when the project matures with probability π , a renegotiated

repayment of Sj
t if debt rollover is successful, and a termination repayment

X j
t , given by (3), should rollover fail. Using condition (5) and the fact that∑Nt

j=1 X j
t = min(Ft, λYt+1) from (3), I aggregate (6) over all Nt creditors and the
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total market value of debt is

Dzt
t (Nt, Ft,Yt ) = ∑Nt

j=1 Dzt , j
t (Nt, Ft,Yt ) = 1

1+r

⎧⎪⎨⎪⎩π min (Ft,Yt )︸ ︷︷ ︸
project matures

+ (1 − π )Et

⎡⎣1RO min (Ft, NtλYt+1)︸ ︷︷ ︸
successful rollover

+ (1 − 1RO) min (Ft, λYt+1)︸ ︷︷ ︸
rollover failure

⎤⎦⎫⎬⎭.

(7)

The firm chooses the optimal creditor structure (N∗
t+1, F∗

t+1) to maximize total
firm value, which can be recursively expressed as

V zt (Nt, Ft,Yt ) = 1
1+r

⎧⎪⎨⎪⎩ πYt︸︷︷︸
project matures

+ (1 − π )Et[1RO max
Nt+1,Ft+1

V zt+1 (Nt+1, Ft+1,Yt+1)︸ ︷︷ ︸
successful rollover

+ (1 − 1RO)λYt+1︸ ︷︷ ︸
rollover failure

]

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(8)

subject to rolling over the renegotiated payments in (5),

Dzt+1
t+1(Nt+1, Ft+1,Yt+1) = min (Ft, NtλYt+1)︸ ︷︷ ︸

renegotiated payments

. (9)

For simplicity, I assume that the firm refinances the exact amount of re-
payment: the market value of all newly issued debt Dzt+1

t+1 exactly equals the
total renegotiated repayment as in equation (9).6 The upfront investment is fi-
nanced by debt issuance in period 0 to N1 creditors and total face value F1, such
that D1 = I0. Expression (8) is intuitive. The project matures with probability π

generating final dividend Yt . When the project does not mature, debt rollover is
successful if the firm can find a creditor structure (Nt+1, Ft+1) to raise the rene-
gotiated payment of Dt+1 = min(Ft, NtλYt+1). In this case, the firm optimizes
over all feasible creditor structures such that Dt+1 can be raised and receives
the continuation value V zt+1 from the next period; otherwise the project is sold
prematurely for λYt+1. Note that at the refinancing stage of period t, the to-
tal value of debt Dt+1 is fixed and given by (9), and therefore maximizing firm
value (Vt+1) is equivalent to equity value (Vt+1 − Dt+1) maximization.

Finally, when the firm is indifferent between several refinancing strategies,
I assume that it prefers fewer creditors (Nt) first and then a lower face value
(Ft) of debt. This assumption can be microfounded by adding an arbitrarily
small cost to maintain each creditor relationship and to renegotiate down the

6 In Section V, I show that in this baseline setup, the firm never borrows more money than
necessary to refinance the maturing debt and keeps the excess cash inside the firm. Put differently,
condition (9) can be established as a result rather than an assumption.
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maturing debt. When solving the model, I relax the integer restriction on the
number of creditors Nt ≥ 1.

C. Remarks on the Modeling Assumptions

C.1. Creditors’ Payoff in Renegotiation

The payoff structure in the renegotiation game warrants further discussion.
Similar to the sequential-service condition in Diamond and Dybvig (1983), the
payoff function (3) gives priority to creditors whose debt matures sooner. By
declining their renegotiation offers, these creditors can secure (partial) repay-
ment at the cost of other creditors, thereby creating a coordination problem
that is at the heart of the model. The main predictions of the model continue to
hold as long as there is a coordination problem (even for reasons unrelated to
the split of repayment) that is more severe with more creditors. Such coordina-
tion problems are widely documented empirically and can emerge theoretically
as an outcome of an efficient mechanism design.7

One feature that could alleviate the coordination problem in practice is the
legal arrangement known as “avoidable preference,” which allows creditors to
claw back unusual payments made to other “preferred” creditors within the
90 days prior to default. However, the legal actions required to enforce this
rule are expensive. In addition, creditors are arguably not deterred from ac-
cepting “preference” because scrambling to demand repayment is still a dom-
inant strategy. As Countryman (1985) points out, “[I]t seems ridiculous to ex-
pect deterrence [of creditors to accept preferred payments]. [F]irst, a preferred
creditor can retain his preference if the 90 day period elapses before bankrupt-
cy… Second, … preferred creditors can escape all consequences… by simply
surrendering his preference.”

Perhaps most seriously, the avoidable preference rule can create an incentive
for creditors to run. Knowing that payments seized 90 days prior to bankruptcy
can be safely retained, creditors in a distressed firm have an incentive to de-
mand payment (in the model, refuse to accept renegotiation offers) as early as
possible to stay out of the 90-day window.8 Indeed, this concern is a major rea-
son why law experts question the effectiveness of such a policy. For example,
McCoid (1981) argues that “a creditor frequently will … accept the preference
and hope for a success [to retain the payment]… Moreover, … there is a com-
panion incentive to act as early as possible and increase the odds of effecting
the transfer out of the 90-day period.”

7 Using a natural experiment, Hertzberg, Liberti, and Paravisini (2011) show that creditors re-
duce lending when they anticipate that other incumbent creditors will learn negative information
about the firm. Gilson, John, and Lang (1990) and Brunner and Krahnen (2008) show that credi-
tor dispersion adversely affects the probability of a successful workout for distressed firms. From a
theoretical perspective, Calomiris and Kahn (1991), Berglöf and Von Thadden (1994), Bolton and
Scharfstein (1996), Diamond (2004), and Zetlin-Jones (2014) show that coordination failure can
naturally stem from optimal financing contracts.

8 See Zhong and Zhou (2020) for a quantitative analysis of this effect.
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In summary, the simple payoff structure (3) captures the essence of coordi-
nation problems that arise with multiple creditors.

C.2. Uneven Distribution of Face Value among Creditors

Throughout the paper, I assume that the firm must issue debt with identi-
cal face value to all creditors. However, the model’s intuition does not depend
crucially on this assumption. In fact, one can show that a creditor structure
with more asymmetrically distributed face values is similar to having fewer
creditors.

Consider two creditors with face values F1 ≤ F2. To make renegotiation of-
fers acceptable to both creditors, the firm must repay a total of

min(F1, λY ) + min(F2, λY ). (10)

Given a total face value F shared between two creditors, identical face val-
ues (i.e., F1 = F2 = F

2 ) attain the maximum renegotiated repayment in (10):
2 min( F

2 , λY ). This is the case I focus on throughout the paper. The smaller
the F1, the smaller the total repayment. In the extreme case in which F1 = 0,
the repayment in (10) reduces to min(F, λY ), the same as the case with a sin-
gle creditor. Intuitively, renegotiation with a smaller creditor is more difficult,
whereas forcing concession from a larger one is easier. In the limit, if a large
creditor holds almost all of the outstanding debt, the outcome approaches the
single-creditor case.

II. Model Solution

I start by introducing the key quantity—debt capacity—in Section II.A. In
Section II.B, I describe the firm’s refinancing strategy (N∗

t+1, F∗
t+1), which also

governs the evolution of creditor dispersion. The key trade-off associated with
more creditors is the benefit of stronger commitment power for the firm to re-
pay its debt against the cost of higher rollover risk. In equilibrium, the firm
chooses the number of creditors to simultaneously maintain sufficient commit-
ment power and reduce rollover risk.

A. Debt Capacity

Debt capacity is the maximum level of debt that a firm can borrow by choos-
ing some face value Ft+1 and number of creditors Nt+1. Formally, I define debt
capacity DCt+1 = DCzt+1 (Yt+1) as

DCzt+1 (Yt+1) ≡ max
Nt+1,Ft+1

Dzt+1 (Nt+1, Ft+1,Yt+1). (11)
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For a company to roll over its debt successfully (i.e., 1RO = 1 in (6)), the total
renegotiated repayment in (5) must be bounded by the debt capacity,

min (Ft, NtλYt+1) ≤ DCzt+1 (Yt+1). (12)

Using the rollover condition (12), I can rewrite debt capacity DCt = DCzt (Yt )
from (7) and (11) as the invariant function to the problem

DCzt (Yt ) ≡ maxNt ,Ft Dzt (Nt, Ft,Yt )

= 1
1+r

⎧⎪⎨⎪⎩π min(Ft,Yt )︸ ︷︷ ︸
project matures

+ (1 − π )Et[1min(Ft ,NtλYt+1 ) ≤ DCzt+1 (Yt+1 ) min(Ft, NtλYt+1)︸ ︷︷ ︸
successful rollover

+ 1min(Ft ,NtλYt+1 )>DCzt+1 (Yt+1 ) min(Ft, λYt+1)︸ ︷︷ ︸
rollover failure

]

⎫⎪⎬⎪⎭.

(13)

The trade-off associated with more creditors Nt becomes apparent in (13).
On the one hand, having more creditors improves the firm’s commitment
power, that is, the total (renegotiated) repayment—min(Ft, NtλYt+1)—weakly
increases. Recall from (4) that when renegotiation results in a reduction of the
original face value (i.e., when Ft

Nt
> λYt+1), the firm must pay back the resale

value λYt+1 to each creditor. Having more creditors therefore commits the firm
to repay a higher multiple of the resale value in the event of a renegotiation—a
total repayment of NtλYt+1 to all creditors. Instead of renegotiating, the firm
can repay the debt in full (i.e., when Ft

Nt
≤ λYt+1), which is also more likely to

occur with more creditors (Nt). On the other hand, a dispersed creditor struc-
ture risks inefficient termination because a higher renegotiated repayment
min(Ft, NtλYt+1) is less likely to be refinanced (the rollover condition (12) fails
more often). This higher chance of inefficient termination reduces the ex ante
value of debt.

I now introduce a technical assumption purely for expositional purposes:

λ >
1

1 + r
{π + (1 − π )[(1 + μ)p + 1 − p]λ}. (14)

The essence of assumption (14) is to rule out having a single creditor Nt =
1 as an absorbing state, which means that the maximum repayment offered
to a single creditor λYt can be refinanced with a single creditor again in the
next period.9 A violation of (14) creates a region of creditor dispersion (when
N ≥ 1 is sufficiently low) such that firm value is always first-best, in which

9 The right-hand side of (14) is the borrowing capacity from a single creditor (Nt = 1) in
a bad state (zt = 1), which is attained for any face value Ft ≥ (1 + μ)Yt . If the project ma-
tures, min(Ft ,Yt ) = Yt is paid to the creditor. If the project does not mature, since Nt = 1, the
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case the firm’s choice of creditor dispersion becomes irrelevant. The following
proposition analytically characterizes the debt capacity that is linear in Yt .

PROPOSITION 1. (Characterization of debt capacity): The debt capacity in the
good state DCG(Yt ) ≡ κGYt is the first-best value of the project:

κG = vG
FB = π

1 + r − (1 − π )(1 + μ)
. (15)

The debt capacity in the bad state DCB(Yt ) ≡ κBYt is given by

κB = 1
1 + r

⎧⎪⎨⎪⎩ π︸︷︷︸
project matures

+ (1 − π )

⎡⎢⎣ pvG
FB(1 + μ)︸ ︷︷ ︸

successful rollover

+ (1 − p)λ︸ ︷︷ ︸
rollover failure

⎤⎥⎦
⎫⎪⎬⎪⎭. (16)

As a mild additional assumption to (2), I further restrict λ to be small enough
such that κB > λ. This assumption simply states that the resale value can be
refinanced in the bad state. Should this condition fail, no renegotiation is fea-
sible in the bad state, rendering the dynamics uninteresting.

Proposition 1 is intuitive. In the good state, fundamental Yt deterministically
grows at a rate of μ every period. The entire firm value can be pledged to
creditors by choosing a sufficiently dispersed creditor structure—Nt = vG

FB
λ

and
Ft = max(Yt, vG

FB(1 + μ)Yt ). If the project matures, creditors receive the entire
final dividend min(Ft,Yt ) = Yt , otherwise they receive the entire continuation
value of the firm even after renegotiation min(Ft, NtλYt+1) = vG

FB(1 + μ)Yt .
In the bad state, the firm can potentially borrow the maximum amount in

two ways, reflecting the aforementioned trade-off between the benefit of com-
mitment power and the cost of rollover risk. First, the firm can choose a large
pool of creditors Nt = κG

λ
and promise a high repayment Ft = max(Yt, κ

G(1 +
μ)Yt ) to pledge the entire firm value from the good state (i.e., when zt+1 =
1 + μ). However, this high commitment power is a double-edged sword. If the
state remains bad (i.e., zt+1 = 1), the firm is unable to write off a sufficient
amount of the maturing debt and thereby suffers rollover failure, because the
renegotiated repayment (min(Ft, λNtYt ) = κGYt) is greater than the debt ca-
pacity κBYt . In this case, creditors receive a total payoff of λYt. Taken together,
expression (16) gives the ex ante value of debt with this dispersed creditor
structure.

Alternatively, the firm could borrow from a smaller pool of creditors Nt = κB

λ

and set a lower face value Ft = max(Yt, κ
B(1 + μ)Yt ). With fewer creditors, debt

renegotiation becomes easier: in the bad state, the total renegotiated repay-
ment of λNtYt = κBYt can still be refinanced. The firm can therefore completely
avoid the inefficient rollover failure. However, easier renegotiation means that

repayment is min(Ft , λYt+1) = λYt+1 regardless of whether debt rollover is successful. Therefore,
the maximum pledgeable income with a single creditor (similar to (13)) is 1

1+r {πYt + (1 − π )[pλ(1 +
μ)Yt + (1 − p)λYt ]}.
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the firm cannot commit to pay the full value of the project in the good state back
to the creditors, reducing pledgeable income. Mathematically, with Nt = κB

λ

creditors, the maximum repayment in the good state is κB(1 + μ)Yt , which is
strictly less than the debt capacity κG(1 + μ)Yt . In this case, the ex ante value
of debt is

κ†BYt ≡ 1
1 + r

{
π + (1 − π )[p(1 + μ) + 1 − p]κB}Yt . (17)

Comparing (17) with (16), one can clearly see that by choosing a more con-
centrated creditor structure, the firm sacrifices commitment power in the good
state (i.e., (1 + μ)Ytκ

B versus (1 + μ)Ytκ
G) for the more efficient outcome in the

bad state (i.e., κBYt versus λYt). The proof of Proposition 1 in Appendix A shows
that κB given by (16) always dominates κ†B in (17).

Similar to (11), it will be useful to define debt capacity with at most N credi-
tors as the maximum level of debt that can be raised from at most N creditors

DCz
N ≡ max

F,N′≤N
Dz(N′, F,Y ) ≡ κz

NY,

where the second identity uses the fact that the value of debt Dz(N, F,Y ) is
homogeneous of degree one in (F,Y ). The following corollary of Proposition 1
characterizes κz

N .

COROLLARY 1: In the good state, the debt capacity with at most N creditors is
given by

κG
N = 1

1 + r

[
π + (1 − π )(1 + μ)λ min

(
N,

vG
FB

λ

)]
.

In the bad state, the debt capacity with at most N creditors is given by

κB
N =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

1+r {π + (1 − π )[p(1 + μ) + 1 − p]λN} if N ≤ κB

λ

max
(

π + (1 − π )[p(1 + μ)N + 1 − p]λ
1 + r

, κ†B
)

if κB

λ
< N < κG

λ

κB if κG

λ
≤ N.

In the good state, the firm can set a face value Ft = max(Yt, min(Nλ, vG
FB)(1 +

μ)Yt ). When the project matures, this face value allows the firm to pledge
the entire final dividend (1 + μ)Yt . Otherwise, the firm repays the maximum
amount that can be enforced by N creditors Nλ(1 + μ)Yt , up to the first-best
firm value vG

FB(1 + μ)Yt . In the first case of the bad state where N ≤ κB

λ
, the

firm always survives renegotiation and the face value of max(Yt, Nλ(1 + μ)Yt )
maximizes the value of debt. In the second case where the maximum N ∈
( κB

λ
, κG

λ
), there are two possibilities similar to the aforementioned trade-off

between (16) and (17). The firm can choose to pledge the maximum enforce-
able repayment with N creditors from the good state by setting face value
Ft = max(Yt, Nλ(1 + μ)Yt ), and risk termination in the subsequent bad state.
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Alternatively, the firm can choose to limit the number of creditors to κB

λ
and

thereby ensure successful debt rollover in both states. The maximum value of
debt in this alternative is given by κ†BYt in (17). In the final case, when creditor
dispersion can be large enough, the entire debt capacity can be achieved.

I end this subsection with a brief discussion of the possibility of multiple
equilibria. As is common in many dynamic games, in general the equilibrium is
not unique. In this model, multiplicity can emerge from two potential sources.
First, there might be equilibria with time-dependent strategies. I rule out these
strategies by focusing on Markov perfect equilibria. Second, debt capacities
DCz(Y ) have a self-fulfilling feature. Specifically, the fixed-point problem in
(13) that determines debt capacities may have multiple solutions. Low debt
capacity tomorrow reduces the odds of a successful debt rollover, resulting in
low debt capacity today, and vice versa. Despite this theoretical possibility,
the stochastic process specified in Section I guarantees the unique solution
characterized by Proposition 1.

B. The Dynamic of Creditor Dispersion

We are now ready to characterize the key equilibrium variables of interest,
namely, the firm’s refinancing strategy (N∗

t+1, F∗
t+1), which also governs the evo-

lution of creditor dispersion. I start by exploring the model’s linearity in Yt and
reduce the exogenous state variables to zt . Next, I collapse the two endogenous
state variables (Nt, Ft ) into a single one: firm’s market leverage dz

t , which is
defined as

dzt
t

(
Nt, ft

) ≡ Dzt (Nt, Ft,Yt )
Yt

, (18)

where ft = Ft
Yt

is the normalized face value, or book leverage. Similarly, I nor-
malize total firm value:

vzt
t

(
Nt, ft

) = V zt (Nt, Ft,Yt )
Yt

.

Following the normalization, the condition for successful debt rollover (i.e.,
1RO = 1) in (12) can be simplified to

min
(
ft, Ntλzt+1

) ≤ κzt+1zt+1.

From (7) and (9), the firm’s leverage satisfies

dzt
t

(
Nt, ft

) = 1
1+r

⎧⎪⎨⎪⎩π min
(
ft, 1

)︸ ︷︷ ︸
project matures

+ (1 − π )Et

⎡⎢⎣ 1ROdzt+1
t+1zt+1︸ ︷︷ ︸

successful rollover

+ (1 − 1RO) min
(
ft, λzt+1

)︸ ︷︷ ︸
rollover failure

⎤⎥⎦
⎫⎪⎬⎪⎭.

(19)
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The firm’s optimization problem in (8) and (9), which determines its refinanc-
ing strategy (N∗

t+1, f ∗
t+1), becomes

vzt
t

(
dzt

t

) = 1
1+r {π

+ (1 − π )Et[1RO maxNt+1, ft+1 vzt+1
t+1

(
dzt+1

t+1

)
zt+1 + (1 − 1RO)λzt+1]

} (20)

such that the firm must refinance the renegotiated leverage

dzt+1
(
Nt+1, ft+1

) = min
(

ft

zt+1
, Ntλ

)
. (21)

The next proposition captures the essence of the firm’s refinancing strategy.
The analytical expressions for (N∗

t+1(dzt+1
t+1 ), f ∗

t+1(dzt+1
t+1 )) as functions of the state

variables (zt+1, dt+1) are relegated to Appendix A.

PROPOSITION 2. (Refinancing strategy): The firm always chooses the most
concentrated creditor structure such that the total (renegotiated) repayment
min(Ft, NtλYt+1) can be refinanced. Mathematically, the optimal N∗

t+1 is the
smallest N such that

κ
zt+1
N ≥ dzt+1

t+1 . (22)

The good state (zt+1 = 1 + μ) is tedious, because this state is absorbing and
the problem becomes deterministic. The project is never prematurely termi-
nated and firm value is therefore always first-best. As a result, the firm is
indifferent with respect to creditor structure and by assumption will refinance
from the least number of creditors Nt . At the end of this section, I discuss why
this trivial outcome in the good state continues to hold under more general
fundamental processes.

The more interesting case is when the fundamental is still bad, that is,
zt+1 = 1. The intuition is clear from the firm’s optimization problem (8) and
(9). The number of creditors is the mechanism through which the firm allocates
realized repayments across future states. On the one hand, firms can choose
a more dispersed creditor structure and therefore cannot easily renegotiate
repayments regardless of the fundamental realization. This feature results in
more equalized repayments across states. For instance, when λNt+1Yt+1 ≥ Ft+1,
it is impossible for the firm to renegotiate and the required repayment (i.e.,
the promised face value min(Ft+1, λNt+1Yt+1zt+2) = Ft+1) is a constant indepen-
dent of zt+2. Equivalently, the associated leverage dt+2 = Ft+1

Yt+2
is most hetero-

geneous across the two states, and higher when zt+2 = 1. On the other hand,
when the firm chooses a more concentrated creditor structure, renegotiation
becomes easier, and the realized repayment is higher in the good state. For
example, if λNt+1(1 + μ)Yt+1 ≤ Ft+1, then the firm can renegotiate the repay-
ment to λNt+1Yt+2 in both states, which is higher if zt+2 = 1 + μ. The required
leverage dt+2 = λNt+1Yt+2

Yt+2
= λNt+1 is identical in both states.
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In equilibrium, the firm finds it optimal to allocate as much repayment
as possible to the good state, because the entire first-best firm value can be
pledged to creditors without rollover risk (recall Proposition 1). The resulting
lower repayment in the bad state (or equivalently lower leverage) improves
the firm value since it facilitates subsequent debt rollover. Hence, the firm
maximizes the repayment inequality across states by borrowing from as few
creditors as possible. As a corollary of the firm’s refinancing strategy in Propo-
sition 2, I next qualitatively characterize the evolution of creditor structure
over time.

COROLLARY 2: The number of creditors decreases in a good state and in-
creases in a bad state. Mathematically, N∗

t+1 ≤ N∗
t if zt+1 = 1 + μ and N∗

t+1 ≥ N∗
t

if zt+1 = 1.

From Proposition 2, we know that the evolution of creditor dispersion Nt is
driven by the leverage process dt in equilibrium. In the good state, fundamen-
tal Yt grows deterministically by 1 + μ every period. The value of debt in (13)
can be rewritten recursively as

DG
t = 1

1 + r

⎧⎪⎨⎪⎩π min (Ft,Yt )︸ ︷︷ ︸
project matures

+ (1 − π )DG
t+1︸ ︷︷ ︸

project does not mature

⎫⎪⎬⎪⎭.

The proof in Appendix A shows that DG
t grows by less than 1 + μ per pe-

riod. To gain intuition, consider the example of risk-free debt issuance (DG
t ≤

1
1+rYt or equivalently dG

t ≤ 1
1+r ). In this case, the market value of debt DG

t+1 =
Ft = (1 + r)DG

t grows only by the discount rate 1 + r < 1 + μ. The fundamen-
tal grows more rapidly than the value of debt, and therefore both leverage
dG

t+1 = (1+r)Dt
(1+μ)Yt

= 1+r
1+μ

dG
t and the number of creditors Nt+1 decrease in the good

state.10

In the bad state, the relevant case is that the firm survives even when the
bad state persists in the next period. Conditional on survival, the value of debt
can be recursively written as

DB
t = 1

1 + r

⎧⎪⎨⎪⎩π min (Ft,Yt )︸ ︷︷ ︸
project matures

+ (1 − π )

⎡⎢⎣ pDG
t+1︸ ︷︷ ︸

state switches to good

+ (1 − p)DB
t+1︸ ︷︷ ︸

state stays bad

⎤⎥⎦
⎫⎪⎬⎪⎭.

Over time, the value of debt must increase, that is, DB
t+1 > DB

t , to compensate
for both the time discount 1

1+r and possible default upon project maturity if Ft >

Yt . Since the fundamental Yt does not change in the bad state, both leverage
dt+1 and creditor dispersion Nt+1 increase.

10 When the debt is not risk free, the value of debt Dt+1 needs to grow by more than 1 + r to
compensate for the default risk: project maturing leads to a repayment Yt strictly less than the
promised face value Ft . The proof in Appendix A shows that even in this case, Dt+1 < (1 + μ)Dt
and leverage still decreases.
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Figure 2. Typical sample paths. This figure plots a set of typical sample paths of creditor
dispersion N∗

t conditional on the fundamental state zt switching to good in periods 2, 3, 4, 5, and 6.
The number of creditors increases prior to the arrival of the good shock and decreases afterward.
If the good shock arrives in or after period 6, the firm is terminated when the debt matures in
period 5. (Color figure can be viewed at wileyonlinelibrary.com)

Figure 2 depicts the main features of Proposition 2 and Corollary 2. In the
figure, I plot the evolution of creditor dispersion for a firm with the following
parameters: state-switching probability p = 0.3, maturing intensity π = 0.1,
resale value λ = 0.6, discount rate r = 0.3, growth rate μ = 0.39, and initial
leverage D1

Y1
= 0.95 ∗ λ

1+r . Different curves in the figure represent different sam-
ple paths of Nt conditional on whether the good shock arrives in periods 2, 3, 4,
5, and 6. I choose the initial leverage such that the first debt contract matur-
ing in period 1 is risk free and the sample paths are most typical. The firm in
this example starts in a bad state (zt = 1). Since there is no growth in the bad
state, the face value of debt Ft and leverage dt increase gradually. To support
this higher leverage, the firm must increase creditor dispersion Nt and commit
a larger fraction of its total value to its lenders. This effect is captured by the
steadily increasing solid dark line in Figure 2. If the bad state persists for suf-
ficiently long, the firm exhausts its debt capacity and faces termination. In this
example, debt rollover fails in period 5 following a bad state realization z6 = 1.
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Otherwise, if the state turns good (zt = 1 + μ) at some point prior to period
6, the fundamental Yt grows and leverage decreases. Consequently, the firm
consolidates creditors gradually, captured by the dashed curves in the figure.

It is worth noting that the firm’s ability to pledge its entire firm value in
the good state relies on the specification that the good state (zt = 1 + μ) is
absorbing. This specification greatly simplifies the exposition of the model. In
general, if a good state can also switch to a bad one, then a firm in a good
state can still suffer subsequent rollover failures. Therefore, total firm value
in the good state is no longer first-best and becomes dependent on the amount
of leverage in this state. Hence, there is a trade-off between expected rollover
risk in the good and bad states, and the firm may choose to limit repayment
in the good state by having more creditors. Although an analytical solution is
not generally available with the additional theoretical complication, numerical
analysis suggests that the predictions in Proposition 2 and Corollary 2 are
robust: firms increase creditor dispersion when the fundamental deteriorates
and vice versa.

III. Creditor Dynamics and Firm Characteristics

In the time series, Proposition 2 and Corollary 2 show that creditor disper-
sion is negatively related to a firm’s fundamental shocks zt : a firm increases
creditor dispersion following bad shocks. In this section, I analyze the compar-
ative dynamics of creditor dispersion with respect to the firm’s growth rate μ,
or with a slight abuse of language, the “cross section” of creditor dispersion. In
contrast to the time-series findings, a firm’s average creditor dispersion over
its lifetime can be positively correlated with the firm’s quality: a high-growth
firm can have more creditors on average. This result is developed in Section
III.A. The sharp contrast between the time-series and cross-sectional analysis
highlights the importance of using a dynamic model to analyze firms’ creditor
structure. These predictions also help reconcile the seemingly contradictory
empirical findings and link them to classic theories on creditor dispersion, as
discussed in Section III.B.

A. Comparative Dynamics with Respect to Growth Rate

Consider a firm with an exogenously higher growth rate μ. Since this firm
is of better quality, both its first-best value and debt capacity are higher.
The same debt contract issued by this higher-growth firm is more valuable,
due to the weakly higher (renegotiated) repayment in the good state (i.e.,
min(Ft+1, Nt+1λ(1 + μ)Yt+1) from condition (5)). In addition, the higher debt ca-
pacity makes it less likely to suffer rollover failures. Consequently, this firm
can choose a smaller number of creditors and still achieve the same leverage.
The required leverage and creditor dispersion therefore increase (decrease)
more slowly (rapidly) in a bad (good) state. The following result as a corollary
to Propositions 1 and 2 summarizes these properties.
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COROLLARY 3: Consider two firms with different growth rates μ2 > μ1.
1. The firm with a higher growth rate μ2 has higher borrowing capacity in

both states: κz|μ2 > κz|μ1 for z = G, B.
2. Suppose both firms need to refinance the same leverage (dt+1 = Dt+1

Yt+1
) into

period t + 1. Then the higher-growth firm chooses fewer creditors: N∗
t+1|μ1 ≥

N∗
t+1|μ2 .

Statement 2 in Corollary 3 suggests that firms with higher asset growth
increase creditor dispersion more slowly and therefore should have fewer cred-
itors on average, similar to the time-series predictions in Corollary 2. (Recall
that firms reduce creditor dispersion following good shocks.) However, this is
only half of the story. With the dynamic aspect of creditor dispersion, this pre-
diction may be reversed. Statement 1 in Corollary 3 suggests that firms with
higher asset growth have higher borrowing capacity and can therefore support
a larger amount of creditors without rollover failure. Specifically, the high-
growth μ2 firm can survive with κB|μ1

λ
< N ≤ κB|μ2

λ
creditors in the bad state,

while the low-growth μ1 firm would have suffered a rollover failure. This chan-
nel implies that the time-series average number of creditors (defined in (23)
below) could be higher for high-growth firms, even though it may take longer
for these firms to expand the borrowing pool to any given size.11

I conclude this subsection with a numerical example that demonstrates the
two opposing channels discussed above. The parameters in the example are
(p, π, λ, r) = (0.3, 0.1, 0.6, 0.3), and I vary the growth rate μ between 0.32 and
0.44. As μ changes, the first-best value of the project changes too. To en-
sure that all firms start equally indebted and that their creditor structure is
equally dispersed, I set the initial leverage to d1 = π+(1−π )[p(1+μ)+1−p]λ

1+r , which
is the highest leverage with a single creditor, N∗

1 = 1.12 In this example, I fo-
cus on the bad state in which the number of creditors gradually increases. In
Figure 3, I plot the dynamics of creditor dispersion N∗

t for firms with μ = 0.32,
0.36, 0.39, and 0.41 conditional on the state staying bad. The trajectories for
higher-growth firms are longer (as predicted by statement 1 in Corollary 3),
and flatter on the common domain (as predicted by statement 2 in Corollary 3).
The number of periods the firm can survive in a bad state ranges from T = 2
(for μ = 0.32) to T = 16 (for μ = 0.44), as plotted in the left panel of Figure 4.

11 In Appendix B, I present a static version of the model, which also predicts that the number of
creditors in a high-growth firm increases less rapidly (statement 2 in Corollary 3). However, this
static model cannot capture the dynamic intuition: a high-growth firm can survive longer due to
its larger debt capacity (statement 1 in Corollary 3).

12 Note that the selected d1 is the debt capacity with a single creditor on the right-hand side of
(14). I do not choose lower initial leverage because even though the firm also has a single creditor
in this case, the choice of leverage can be arbitrary and therefore lacks discipline. I can instead
choose a higher d1 such that N∗

1 > 1 is the same (there is indeed a one-to-one mapping between d1
and N∗

1 in this case). The qualitative result is exactly the same. Therefore, the maximum leverage
with N∗

1 = 1 is a natural starting point.
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Figure 3. Creditor dynamics for firms with different growth rates. This figure plots the
evolution of creditor dispersion Nt for firms with growth rates μ = 0.32, 0.36, 0.39, and 0.41. The
number of creditors increases more slowly for firms with higher growth rates. In addition, higher-
growth firms can survive longer and support a larger number of creditors. (Color figure can be
viewed at wileyonlinelibrary.com)
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Figure 4. Average creditor dispersion for firms with different growth rates. The left
panel plots the number of periods that a firm can survive in the bad state with different growth
rates (μ = 0.32, 0.33, 0.34, …0.44). The right panel plots the average number of creditors E(N∗

t )
given by (23) for firms with different growth rates.



A Dynamic Model of Optimal Creditor Dispersion 23

Next, for each firm with a given μ, I calculate the probability-weighted-
average number of creditors,

E
(
N∗

t

) =
τL∑

t=1

p(1 − p)t−1(1 − π )t∑τL
t=1 p(1 − p)t−1(1 − π )t N∗

t , (23)

where τL is the time of rollover failure if the state remains bad for sufficiently
long. The weight p(1 − p)t−1(1 − π )t is the unconditional probability that the
state turns good in period t and the project does not mature in or before period
t. This average E(N∗

t ) proxies for the empirically observed number of creditors
if firms enter the sample in the period when the good shock realizes, for ex-
ample, when the fundamental is good enough to be documented by some data
vender. To study how the growth rate μ affects the average creditor dispersion
E(N∗

t ), I calculate (23) for μ = 0.32, 0.33, . . ., and 0.44, and plot the results in
the right panel of Figure 4. The average number of creditors broadly increases
as the growth rate μ increases. The driving effect is that higher-growth firms
have larger debt capacity κB, which enables them to support more creditors and
survive longer, as suggested by statement 1 in Corollary 3. However, whenever
μ increases without affecting the longevity of the firm, one can easily prove
that the average dispersion decreases, reflecting statement 2 in Corollary 3: Nt
increases more slowly in higher-growth firms. For example, in the left panel
of Figure 4, when μ ∈ {0.32, 0.33, 0.34}, μ ∈ {0.35, 0.36}, or μ ∈ {0.37, 0.38}, the
firm can survive two, three, and four periods, respectively. Within each set, the
average creditor dispersion E(N∗

t ) decreases with μ as shown in the right panel
of Figure 4.

B. Empirical Relevance

The model’s predictions relate to the empirical literature in three respects.
First, the model predicts that firms often renegotiate their debt before declar-
ing bankruptcy, which is supported by the empirical evidence in Roberts and
Sufi (2009a, 2009b) and Roberts (2015). These authors show that in the event
of a technical default, instead of an immediate termination of the lending re-
lationship, 62.6% of borrowers receive waivers from creditors, 32.2% of loan
contracts are renegotiated, and only 4.4% of loan contracts are terminated. In
aggregate, 94% of the loans with maturity longer than three years are rene-
gotiated, and the median renegotiated loan receives four renegotiations in its
lifetime. In addition, related to the theoretical prediction that renegotiation
lowers the debt that the firm carries forward, Roberts and Sufi (2009a) show
that borrowers reduce net debt issuance following renegotiation.

Second, the sharp contrast between the time-series (see Corollary 2) and
the cross-sectional (see Corollary 3) predictions reconciles seemingly contra-
dictory empirical findings. On the one hand, the time-series prediction of cred-
itor dispersion is consistent with empirical evidence in Farinha and Santos
(2002) that firms are more likely to abandon a single-creditor structure when
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historical performance declines.13 More recently, Rauh and Sufi (2010) show
that as credit quality deteriorates, firms introduce more heterogeneous debt
capital. Specifically, fallen angels (firms downgraded from investment grade
to speculative grade) move from having only senior unsecured debt to secured
bank debt and subordinated bonds, which are more difficult to renegotiate. On
the other hand, echoing the cross-sectional prediction that firms with higher
growth can support more creditors, Houston and James (1996) find that firms
with multiple relationship banks have significantly higher asset growth com-
pared with their single-bank counterparts.

Third, the dynamic aspect of my model also helps connect some stylized
facts on the cost of borrowing with the theoretical idea that creditor dispersion
strengthens repayment incentives. Indeed, many classic papers (e.g., Berglöf
and Von Thadden (1994), Bolton and Scharfstein (1996), and Diamond (2004))
build on the idea that dispersed creditor structure commits the borrowing
firm to pay back its debt. This channel implies that the required interest rate
should be lower when the firm’s debt is more dispersedly held, because the
difficulty inherent in renegotiating with dispersed creditors makes repayment
more credible. However, Petersen and Rajan (1994, 1995) empirically docu-
ment a significant positive association between a firm’s number of creditors
and its cost of credit. My model suggests that although borrowing from more
creditors should reduce the required interest rate, firms do so only when their
performance deteriorates, driving up the observed interest rate in equilibrium.

PREDICTION 1: If λ(1 + μ) ≥ 1, or λ(1 + μ) < 1 and N∗
t+1 ≥ 1

λ(1+μ) , the opti-

mal number of creditors N∗
t+1 and the interest rate F∗

t+1
Dt+1

covary positively in
equilibrium.

The regularity conditions rule out a tedious special case that, together with
the proof of this prediction, is discussed in Appendix A. In equilibrium, lever-
age dt+1 determines the number of creditors N∗

t+1 as in (22): more creditors
are needed to support higher leverage. Furthermore, firm leverage increases
as the fundamental stays bad, driving up the cost of borrowing. Therefore,
the optimal creditor dispersion and the equilibrium interest rate are positively
correlated.

IV. Model Implications

In this section, I offer two new insights based on my dynamic model. First,
a large body of literature on debt assumes either a representative creditor or
an exogenous number of creditors. Why is it important that firms dynamically
choose creditor dispersion over time? In Section IV.A, I show that when the
number of creditors is exogenously fixed, meaningful renegotiation can never
occur in the bad state—the state in which debt renegotiation is most valuable.

Next, it is commonly accepted that dispersed debt ownership alleviates
firms’ commitment problems and thereby increases their debt capacity (e.g.,

13 The performance measures include liquidity, cash flow, leverage, and so on.
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Berglöf and Von Thadden (1994), Bolton and Scharfstein (1996), Hart and
Moore (1998), Diamond (2004)). However, it is unclear how effective this mech-
anism is when commitment problems become severe in a dynamic world. In
particular, if firms can frequently renegotiate their debt, will dispersed cred-
itors still lead to extra pledgeability by allowing firms to borrow against bet-
ter outcomes in the future? I address this question in Section IV.B. Perhaps
surprisingly, I find that when renegotiation is frequent, a dispersed creditor
structure no longer increases firms’ pledgeability: the debt capacity in the bad
state converges to the resale value λYt , which can be attained in the limit by
having only a single creditor.

A. Impossibility of Renegotiation with Exogenous Creditor Dispersion

To facilitate the discussion in this section, I extend the baseline model in
Section I to allow for more frequent renegotiation. Specifically, I assume that
each period lasts �t < 1, and the firm needs to roll over one-period debt with
�t maturity until the project matures. The firm can renegotiate the repayment
each time the debt matures.14 In each period, the project matures with proba-
bility π�t, a bad state switches to a good one with probability p�t, the discount
rate is r�t, and the growth rate of the fundamental process Yt is μ�t. All other
model ingredients are the same as in Section I. When �t = 1, this specification
is exactly the same as in the baseline model.15

Similar to (1), the first-best firm value in the good state after the �t-
modification is

v̂G
FB = π�t

(1 + r�t) − (1 − π�t)(1 + μ�t)
= π

r − μ + π + πμ�t
. (24)

When �t → 0, this first-best value approaches its continuous-time limit π
r−μ+π

.
To ensure finite values, I assume r > μ − π in this section.

The main objective of this subsection is to characterize the debt capacity
with any exogenously fixed number of creditors, that is, Nt ≡ N for all t and
some constant N, and to show that no meaningful renegotiation can exist in
equilibrium. The key difference relative to the baseline model is that the firm
cannot adjust the number of creditors over time. Therefore, the renegotiated
repayment min(Ft, NλYt+1) must be refinanced by the same number of credi-
tors N. Hence, similar to but different from (12) in the baseline model, debt
rollover is successful whenever

min (Ft, NλYt+1) ≤ D̂C
zt+1

N (Yt+1), (25)

14 Alternatively, the firm can have multiple renegotiations before maturity. The results are the
same qualitatively, with added mathematical complexity because renegotiation dates and maturity
dates are different.

15 One can also use the continuous-time analogue of the variables, for example, maturing inten-
sity 1 − e−π�t , discount factor e−r�t , state-switching intensity 1 − e−p�t , and growth rate eμ�t − 1.
When �t is small, these numbers converge to the linearization that I use in the main text.
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where the debt capacity D̂C
zt+1

N (Yt+1) with exogenously fixed N is given by

D̂C
zt

N (Yt ) = maxFt
1

1+r

⎧⎪⎨⎪⎩π min(Ft,Yt )︸ ︷︷ ︸
project matures

+ (1 − π )Et[1min(Ft ,NλYt+1 )≤D̂C
zt+1
N (Yt+1 )

min(Ft, NλYt+1)︸ ︷︷ ︸
successful rollover

+ 1min(Ft ,NλYt+1 )>D̂C
zt+1
N (Yt+1 )

min(Ft, λYt+1)︸ ︷︷ ︸
rollover failure

]

⎫⎪⎪⎬⎪⎪⎭.

(26)

The linear debt capacity D̂C
zt

N (Yt ) = κ̂
zt
NYt is characterized in the following

proposition. Compared with Corollary 1 in the baseline model, when credi-
tor dispersion Nt is exogenously fixed, debt capacity in the bad state is always
achieved by having premature termination.

PROPOSITION 3. (Debt capacity with exogenous creditor dispersion): Suppose
Nt ≡ N for all t and v̂G

FB ≥ 1. Then debt capacity is given by

κ̂G
N = 1

1 + r�t

[
π�t + (1 − π�t)(1 + μ�t)λ min

(
N,

v̂G
FB

λ

)]
(27)

and

κ̂B
N = 1

1 + r�t

{
π�t + (1 − π�t)

[
p�t min

(
v̂G

FB, λN
)

(1 + μ�t)
))

(28)

((+ (1 − p�t) λ]} . (28)

The rationale for the debt capacity in the good state is conceptually iden-
tical to that for Corollary 1. The firm can commit to pay back Nλ(1 + μ�t)Yt
up to the entire first-best firm value v̂G

FB(1 + μ�t)Yt . The added complication
with N being exogenously fixed is that this repayment can be refinanced by
having N creditors again, a point I verify in Appendix A. Since the fundamen-
tal following a good-state realization is deterministic, renegotiation is largely
inconsequential.16

The bad state is more interesting. When the firm cannot adjust creditor dis-
persion N, the debt capacity is always achieved by having rollover failure in
the bad state even with concentrated creditor structure (small N). This result
is counterintuitive. Recall from Corollary 1 in the baseline model that when

16 Renegotiation only occurs in the special case in which λN(1 + μ�t) < 1 and the firm sched-
ules a repayment Ft ∈ (λN(1 + μ�t)Yt ,Yt] in order to pledge the final dividend when the project
matures.
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N is small enough (N ≤ κB

λ
), debt rollover is always successful: the renegoti-

ated repayment of λNYt ≤ κBYt can always be refinanced. Why is renegotiation
no longer possible when the number of creditors is exogenously fixed? This
is because, to raise the renegotiated payment, the firm must increase creditor
dispersion to make future repayments more credible (recall Corollary 2). When
this option is infeasible, the firm has no choice but to suffer rollover failure in
the bad state. Put differently, the renegotiated payment with N creditors can-
not be refinanced by N creditors again, that is, λNYt > κ̂B

NYt . As a result, there
is no meaningful renegotiation in the bad state when the number of creditors
is exogenously fixed, a consequence of the dynamic nature of the model.

It is worth pointing out that many bankruptcy procedures designed to coor-
dinate creditors may backfire.17 While promoting the efficient outcome in the
bankruptcy state, these procedures also reduce firms’ commitment power ex
ante. In the model, imposing an efficient ex post renegotiation is equivalent to
having a single creditor exogenously. The calculation of debt capacity in (28)
shows that no meaningful renegotiation can occur in the bad state even with a
single creditor, and hence firms are terminated sooner. This is an unintended
side effect when ex post coordination failure is eliminated.

B. Vanishing Debt Capacity with Frequent Renegotiation

In this subsection, I study the effect of renegotiation frequency on the debt
rollover process. If renegotiation rarely occurs, then the commitment friction
disappears and the first-best firm value can be restored. Therefore, in the re-
mainder of this section, I focus on the limiting case �t → 0 as it proxies for fre-
quent renegotiation. When a firm only borrows from a single creditor, Nt = 1,
the maximum repayment if the project does not mature in period t is λYt+�t,
which approaches λYt when the period length is very short, �t → 0. Because
in the limit both the discount rate and the probability that the project ma-
tures are negligible, the debt capacity with a single creditor approaches λYt.18

Proposition 4, which is also the main result of this section, shows that when
debt renegotiations are frequent, having dispersed creditors becomes irrele-
vant: the debt capacity associated with any number of creditors approaches
λYt as well.

PROPOSITION 4. (Renegotiation frequency): The debt capacities in the bad
state converge to the resale value uniformly as renegotiation becomes very fre-
quent. Mathematically, for any exogenously fixed N,

lim
�t→0

κ̂B
N = λ.

17 Well-known procedures include the automatic stay clause, Chapter 11 reorganization, and
the aforementioned “avoidable preference” clause.

18 See equation (28) with �t → 0 for exogenously fixed Nt ≡ 1 or Corollary 1 with r, π , p, and
μ → 0 for endogenous Nt = 1.
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In addition, when �t is sufficiently small, the total debt capacity in the bad
state is given by

κB = 1
1 + r�t

{
π�t + (1 − π�t)

[
p�tκG(1 + μ�t) + (1 − p�t)λ

]}
, (29)

which also approaches λ as �t → 0.

The debt capacity in (29) inherits the baseline version (16). To understand
the intuition of Proposition 4, recall that the benefit of having dispersed credi-
tors is to allow the firm to borrow against the potential value improvements in
the next period if the good shock arrives. In doing so, the firm risks termination
should the bad state persist. When renegotiation becomes extremely frequent
(�t → 0), the probability of the fundamental switching to a good state (p�t)
converges to zero. Consequently, the upside benefit materializes with a negli-
gible probability and the downside rollover risk almost certainly occurs. As a
result, the debt capacity in (28) and (29) converges to λ, the debt capacity with
a single creditor.

I would like to emphasize that the essence of Proposition 4 crucially relies
on the dynamic nature of debt rollover. In the simplified static model in Ap-
pendix B, one can also let the probability of realizing the good state approach
zero, in which case the firm’s debt capacity ex ante declines similar to Propo-
sition 4. However, this comparative static exercise is conceptually different.
Reducing the likelihood of the good outcome in a static model necessarily low-
ers the quality of the project. Therefore, the lower debt capacity results me-
chanically because the project is not as valuable to begin with. In contrast,
throughout the dynamic analysis in this section, the first-best firm value is
held constant in the limit and does not shrink to the resale value. Another way
to interpret Proposition 4 is that even in the limit when renegotiation occurs
frequently, the (expected) upside remains the same, but the firm cannot borrow
against it by having multiple creditors.

Since troubled firms renegotiate debt at or before maturity, the renegotia-
tion cycle must be shorter than debt maturity in practice. Therefore, if debt
maturity is shorter, renegotiations tend to occur more often. The analysis
above suggests that for a debt instrument with very short maturity, such as a
repo agreement, the threat of incurring rollover risk and coordination failures
among multiple lenders cannot improve borrowers’ debt capacity. This may
be one reason why repo lenders often receive super-seniority in bankruptcy
proceedings.

It is also interesting to relate my analysis to the classic work of Diamond
and Rajan (2001), who show that coordination problems among short-term
dispersed depositors (creditors) can improve a bank’s (borrower’s) pledgeabil-
ity. My paper differs in two important respects. First, the dynamic feature
in this paper separates two crucial ingredients in the static Diamond-Rajan
mechanism: the coordination problem among creditors and the short matu-
rity of debt. While the coordination problem creates a termination threat that
improves pledgeability (Proposition 3), the short maturity can lead to more
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frequent renegotiation that exacerbates the commitment problem. Second, the
stochastic fundamental process in this paper extends the static insight from
Diamond and Rajan (2001). In a dynamic model with a stochastic fundamen-
tal, frequent renegotiation increases the likelihood that a bad state will persist
before the next round of renegotiation. This higher persistence of the bad state,
which is absent in a static model, dramatically increases rollover risk, which in
turn severely limits the commitment power associated with a dispersed credi-
tor structure.

In the model, I analyze exogenous renegotiation frequency. In practice, how-
ever, a borrowing firm chooses when to renegotiate with its creditors. While I
leave the full interaction between creditor dispersion and endogenous renego-
tiation timing for future research, I conjecture that firms have incentives to
renegotiate instantaneously if they cannot commit to an exogenous debt rene-
gotiation schedule. Because debt renegotiation is beneficial for the borrowing
firm ex post, without commitment, the firm may have incentives to abuse it.
Therefore, the limiting case discussed in this section could represent the out-
come when firms cannot commit to the timing of renegotiations.

V. The Role of Cash

So far, I have assumed that the firm always refinances the exact amount of
debt repayment and never carries cash across periods. In this section, I relax
this restriction and study the role of cash when the firm borrows from multiple
creditors. In Section V.A, I extend the baseline model in Section I to allow for
cash savings by the firm. As a benchmark, I show in Section V.B that the ability
to save cash is irrelevant whenever the firm borrows from a single creditor. In
Section V.C, I demonstrate a novel insight: cash combined with multiple credi-
tors can increase state-noncontingent commitment power. Consequently, firms
only keep cash if debt capacity has a positive state-noncontingent component.

A. Extended Model with Cash Savings Inside the Firm

I begin with a modified version of the baseline model that accommodates
cash. Denote by Ct the firm’s cash holding upon entering period t, which is
the extra state variable. Assume that the interest rate on cash is the same as
the discount rate r. If the project matures in period t, then total firm value,
including both the project’s payoff and cash, is Yt + Ct . If sold prematurely,
total firm value is Lt (Yt+1) + Ct , where Lt is the resale value of the assets.19

This specification extends the baseline model in which Lt (Yt+1) = λYt+1. As a
result of the extra cash balance in a renegotiation, the firm must offer

min
(

Ft

Nt
, Lt (Yt+1) + Ct

)
, (30)

19 The assumption on the firm’s resale value is the crucial difference from Hart and Moore
(1998). They assume that the liquidation value is unaffected by the firm’s cash holding, whereas I
assume the cash is part of the assets that can be seized by creditors.
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similar to the logic of (4). Therefore, the value of debt in (7) becomes

Dt = 1
1+r

⎧⎪⎨⎪⎩π min
(
Ft,Yt + Ct

)︸ ︷︷ ︸
project matures

+ (1 − π )Et

⎡⎢⎣1RO min
(
Ft, Nt (Lt + Ct )

)︸ ︷︷ ︸
successful rollover

+ (1 − 1RO) min
(
Ft, Lt + Ct

)︸ ︷︷ ︸
rollover failure

⎤⎥⎦
⎫⎪⎬⎪⎭.

(31)

At the refinancing stage in period t, the debt capacity net of the cash balance
is

DCt+1 ≡ max
Ct+1,Nt+1,Ft+1

Dt+1 − Ct+1

1 + r
. (32)

Similar to but different from definition (11) in the baseline model, the net bor-
rowing amount Dt+1 − Ct+1

1+r is what can be used to repay the maturing creditors
in period t. Together with the existing cash Ct , the total resources available for
repayment in period t are DCt+1 + Ct . Similar to (12), debt rollover is successful
(1RO = 1) if the total renegotiated repayments from (30) can be honored,

min
(
Ft, Nt

(
Lt + Ct

)) ≤ DCt+1 + Ct . (33)

At the refinancing stage in period t, the firm chooses cash Ct+1, number of
creditors Nt+1, and face value Ft+1 to maximize equity value Vt+1, which is
recursively defined as

Vt = 1
1+r

⎧⎪⎨⎪⎩π max
(
Yt + Ct − Ft, 0

)︸ ︷︷ ︸
project matures

+(1 − π )Et[1RO

max
Ct+1,Nt+1,Ft+1

V zt+1
Nt+1

(Ct+1, Ft+1,Yt+1)︸ ︷︷ ︸
successful rollover

+ (1 − 1RO) max
(
Lt + Ct − Ft, 0

)︸ ︷︷ ︸
rollover failure

⎤⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭,

(34)

where (Ct+1, Nt+1, Ft+1) satisfy

Ct+1

1 + r
= Dzt+1

Nt+1
(Ct+1, Ft+1,Yt+1) − min

(
Ft, Nt

(
Lt + Ct

))+ Ct . (35)

The evolution of cash (35) states that the present value of the cash car-
ried into the next period Ct+1

1+r comes from the newly issued debt Dt+1 and
the cash balance Ct , net of the repayments made to the maturing credi-
tors, min(Ft, Nt (Lt + Ct )). The equilibrium variables of interest are the firms’
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refinancing decisions (C∗
t+1, N∗

t+1, F∗
t+1) that govern the evolution of cash bal-

ance, creditor dispersion, and face value.

B. Absence of Cash with a Single Creditor

I first show that cash is redundant whenever the firm borrows/refinances
from a single creditor. The result, summarized in Proposition 5, is highly robust
in that it does not depend on a specific fundamental process Yt or a functional
form of the resale value Lt (Yt+1).

PROPOSITION 5. (Redundancy of cash with a single creditor): In any period
t, if the firm chooses a single creditor Nt ≡ 1, equilibrium can be implemented
with no cash: Ct = 0.

The intuition for Proposition 5 is that both the firm and the creditor are in-
different about who holds the cash: the marginal loan granted in period t − 1
for the extra cash balance of Ct

1+r is risk-free for any Ct . Since the cash balance
Ct in period t is part of the liquidation value that can be seized by the creditor,
the creditor is happy to lend the present value of Ct

1+r in period t − 1. Alterna-
tively, the firm can choose not to borrow the extra cash and lower the face value
by Ct . The creditor’s payoff is likewise not affected. Hence, the ability to borrow
extra cash is inconsequential with a single creditor.

The following example illustrates the logic of Proposition 5. In addition,
this example shows that cash combined with multiple creditors improves
pledgeability.

EXAMPLE 1. (A deterministic example): There are three periods, t = 0, 1, 2,
and no time discount, r = 0. The project matures at t = 2 with certainty, and
the final dividend Y2 is deterministic. The firm issues one-period debt in period
0 to finance the upfront investment I0 and rolls over the maturing debt in
period 1. The resale value of the project at the interim date is L1 = 0.

In this example, if the firm cannot borrow more than I0 and keep some
cash, the total pledgeable income is zero. No project with positive investment
(I0 > 0) can be financed. This is because L1 = 0, and each creditor receives
min( F1

N1
, L1) = 0 in a renegotiation. Any one-period debt issued in period 0 will

be completely renegotiated away in period 1, despite the firm’s ability to refi-
nance Y2. In anticipation of this outcome, creditors refuse to lend regardless of
creditor dispersion N1 and face value F1.

When the firm borrows from a single creditor N1 = 1, even if cash savings
are allowed, the pledgeable income is still zero. To see this, suppose the firm
borrows I + C1 by promising some face value F1. When the debt matures in
period 1, the repayment is renegotiated to min(F1, L1 + C1) ≤ C1. Therefore, a
single creditor can never break even.

Once the firm can borrow extra cash from multiple creditors, N1 > 1, any
positive net present value project with I0 ≤ Y2 can be financed. Specifically,
in period 0, the firm can raise I0 + C1 risk-free debt by promising a total
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repayment of F1 = I0 + C1 to N1 creditors, where

C1 = Y2 + I0

N1 − 1
. (36)

After making the investment I0, the firm keeps C1 as cash. In period 1, the firm
must offer

min
(

F1

N1
, L1 + C1

)
= min

(
I0 + C1

N1
,C1

)
= I0 + C1

N1
(37)

to each creditor.20 The firm can therefore commit to pay back a total of I0 +
C1 to N1 creditors. This repayment can be honored by paying back the cash
balance C1 and refinancing the remaining I0 ≤ Y2 into the final period. �

Example 1 shows that cash in the firm improves each creditor’s reservation
payoff from zero to C1. As a result, if renegotiated in period 1, the total commit-
ted repayment to the N1 creditors is N1C1, which is higher than the available
cash C1 inside the firm. This wedge (N1 − 1)C1, which equals I0 + Y2 in Ex-
ample 1, creates pledgeability because it commits the firm to borrow against
the final dividend and credibly repay it to the initial creditors. This observa-
tion suggests that the role of cash in this debt rollover model is very different
from that in Hart and Moore (1998), where cash is used to reduce partial liq-
uidation in the states in which liquidation is relatively more inefficient. The
next subsection pinpoints the source of cash-induced pledgeability when the
fundamental is stochastic.

C. Cash with Multiple Creditors

In this subsection, I examine the role of cash when there are multiple cred-
itors. From (30), the total payment after renegotiation is min(Ft, Nt (Lt + Ct )),
and the pledgeable repayment NtLt + NtCt contains two components. The
first component NtLt (Yt+1) depends on the realization of Yt+1, increasing
the firm’s state-contingent commitment power. In contrast, the second com-
ponent from the cash balance NtCt is independent of Yt+1, increasing the
state-noncontingent commitment power. Example 2 shows that firms choose
to borrow extra money and carry a cash balance when the debt capacity has a
positive state-noncontingent component.

EXAMPLE 2. (A stochastic example): There are three periods, t = 0, 1, 2. The
project matures at t = 2. There are two equally likely states in period 1 (z =
G, B), with the corresponding resale value Lz

1 and final dividend Y z
2 specified as

follows:

20 Note that a simple rearrangement of (36) gives N1C1 = I0 + C1 + Y2, implying that I0+C1
N1

<

C1.
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Table

Lz
1 Y z

2

G(ood) 2 X
B(ad) 1 5

Case 1: X = 10. In this case, the debt capacity in period 1 (Y z
2 ) is proportional

to the resale value, Y z
2 = 5Lz

1, and there is no state-noncontingent component
in Y z

2 . Hence, the firm can pledge the entire final dividend Y z
2 in period 0 by

using only dispersed creditors without cash: by borrowing from N1 = Y z
2

Lz
1

= 5
creditors and promising a total face value of F1 = 10, the firm can pledge the
entire final dividend. Mathematically, min(N1Lz

1, F1) = N1Lz
1 = Y z

2 . Therefore,
no cash is needed.

Case 2: X = 7.21 In this case, I show that the firm can design a pair of (N1,C1)
to pledge the entire final dividend. To do so, the total renegotiated payment in
period 1 must be exactly the final dividend plus the cash balance C1,

N1Lz
1 + N1C1 = Y z

2 + C1. (38)

Plug in the numbers for each state z = G, B and solve for (N1,C1) = (2, 3).
To borrow the entire final dividend Y G

2 +Y B
2

2 = 6 in period 0, the firm borrows
a total of 6 + C1 = 9 from N1 = 2 creditors and keeps C1 = 3 as cash. The total
face value promised to the creditors is Y G

2 + C1 = 10. In the good state, there is
no renegotiation because the reservation value of each creditor is LG

1 + C1 = 5.
To repay 10, the firm uses up the cash balance 3 and refinances the remaining
7, which coincides with the final dividend Y G

2 . In the bad state, the actual re-
payment to each creditor is renegotiated to LB

1 + C1 = 4. The total repayment
of 8 is honored by using cash C1 and final dividend Y B

2 . In period 0, the expected
repayment is 10+8

2 = 9, making the creditors break even.
From a more general perspective, the debt capacity in this case can be de-

composed into state-contingent and noncontingent components,

Y z
2 = 2Lz

1 + (3, 3). (39)

Compared with (38), one can see that the state-contingent component 2Lz
1 is

pledged by having N1 = 2 creditors, and the state-noncontingent component 3
is pledged by having cash savings inside the company.

Case 3: X > 10. In this case,

Y G
2

Y B
2

= X
5

>
LG

1

LB
1

= 2

and there is no role for cash: any outcome can be implemented without keeping
cash. Take X = 15 for instance. Similar to (39), the final dividend Y z

2 can be

21 In fact, any X ∈ (6, 10) delivers a qualitatively similar outcome.
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decomposed into two components,

Y z
2 = (15, 5) = 10 ∗ (2, 1) + (−5,−5) = 10 ∗ Lz

1 + (−5,−5).

To pledge the entire final dividend, the cash savings must be negative. In fact,
solving (38) gives (N1,C1) = (10,− 5

9 ). Hence, any positive cash balance reduces
pledgeability. �

Example 2 helps explain why firms save cash. If debt capacity contains a
positive state-independent component, then firms can borrow extra cash to
increase commitment power uniformly across all states and pledge this com-
ponent to the creditors. In contrast, if the debt capacity is more state-sensitive
than the resale value, there may not be a positive state-independent com-
ponent and the firm never borrows extra cash. For instance, in the baseline
model, firms can refinance up to the debt capacity κzYtz, which is more state-
sensitive than the resale value λYtz:

κGYt (1 + μ)
κBYt

>
λYt (1 + μ)

λYt
. (40)

Hence, assuming away cash savings in the baseline model is without loss of
generality, a result formally established in the following proposition.

PROPOSITION 6. (No cash holding in the baseline model): The firm never bor-
rows extra cash in the baseline model, even when doing so is allowed, that is,
C∗

t = 0.

Despite being a nonexistence result, Proposition 6 highlights a new possi-
bility for future research on firms’ cash holding: adopting a more sophisticated
fundamental process. For example, with a mean-reverting process, the project’s
expected profitability can be negatively correlated with the current state. Con-
sequently, condition (40) could fail and cash savings can emerge in equilibrium.
Many interesting questions await future research. For example, when do firms
keep cash and how does it vary with cash flow distribution, how does cash hold-
ing interact with creditor dispersion, and how do firm characteristics affect the
dynamics of cash accumulation?

VI. Conclusion

In this paper, I construct a dynamic model in which the firm must repeat-
edly roll over short-term debt contracts in order to finance a long-term project.
The firm cannot commit to make repayments but instead has incentives to op-
portunistically renegotiate the debt contracts. A dispersed creditor structure
risks inefficient coordination problems among creditors, which, following bad
shocks, makes it harder for a firm to restructure its debt and avoid liquidation.
With a good shock realization, however, these same coordination problems en-
hance repayment incentives by making it harder for a firm to opportunistically
hold up its creditors. In the model, the firm optimally chooses the number of
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creditors over time by trading off the benefit of better commitment power
against the cost of elevated rollover risk.

The analysis shows that in the time series, firms increase the number of
creditors after poor performance, whereas in the cross section, firms with
higher growth rates can have more creditors on average. If firms cannot adjust
their creditor dispersion over time, then no meaningful renegotiation can occur
in equilibrium. In addition, frequent renegotiation destroys the extra pledge-
ability generated by a dispersed creditor structure. However, holding a cash
balance while borrowing from multiple creditors can improve a firm’s ability to
pledge state-noncontingent borrowing capacity.

I conclude the paper with several potential directions for future research.
First, one could endogenize renegotiation timing (or similarly, maturity pro-
file) together with creditor structure. I offer some preliminary conjectures on
this question at the end of Section IV, but a more comprehensive investiga-
tion can be informative. Second, how a firm’s cash holding evolves remains an
open question. The analysis in Section V points out that one must consider
a more general fundamental process. Addressing this question could deliver
new insights on how a firm’s cash holding varies over time and how it is af-
fected by the firm’s creditor structure. Lastly, throughout the paper, I assume
that the resale value of the project λY is sufficiently small that continuing
the project is always efficient. With a different specification, abandoning the
project could be optimal in certain states of the world. Consequently, creditor
structure could affect firms’ incentive to continue the project (e.g., risk shifting
and debt overhang). How creditor structure affects firms’ investment decisions
thus represents a potentially fruitful direction for future research.
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Appendix A: Omitted Proofs

PROOF OF EQUATION 1: The expected values of the final dividend satisfy the
recursive formulation

V G
FB(Y ) = 1

1+r

[
πY + (1 − π )V G

FB(Y (1 + μ))
]

V B
FB(Y ) = 1

1+r

{
πY + (1 − π )

[
pV G

FB(Y (1 + μ)) + (1 − p)V B
FB(Y )

]}
.

(A1)

I conjecture and verify a linear solution: V θ
FB(Y ) = vθ

FBY . Under the conjecture,
(A1) becomes

vG
FB = 1

1+r

[
π + (1 − π )vG

FB(1 + μ)
]

vB
FB = 1

1+r

{
π + (1 − π )

[
pvG

FB(1 + μ) + (1 − p)vB
FB

]}
.

(A2)

Solving the above system for (vG
FB, vB

FB) gives (1).

PROOF OF PROPOSITION 1: As discussed in the main text, the proof focuses on
the bad state. I first show that the debt capacity κBYt can only be attained by
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Nt = κG

λ
or Nt = κB

λ
. Otherwise, I can construct an alternative creditor structure

(N
′
t, F

′
t ) with a strictly higher debt value as follows.

(1) Consider any debt structure such that rollover fails in the bad state.
The maximum payoff when the project matures is Yt and the maximum
payoff from a good state is κG(1 + μ)Yt . Therefore, the value of debt must
be bounded by

1
1 + r

{
π + (1 − π )

[
pκG(1 + μ) + (1 − p)λ

]}
Yt, (A3)

which can be attained by the creditor structure with Nt = κG

λ
and Ft =

max(Yt, λNtYt (1 + μ)).
(2) Consider any debt structure such that rollover is successful in the

bad state: min(Ft, λNtYt ) ≤ κBYt . If Nt < κB

λ
, then the renegotiated re-

payment min(Ft, λNtYt+1) is strictly less than κBYt+1. Setting F
′

t =
max(F,Yt, κ

GYt (1 + μ)) and N
′
t = κB

λ
attains the value of debt as in (17). If

Nt > κB

λ
, then it must be the case that Ft < κBYt , which implies the rene-

gotiated repayment min(Ft, λNtYt+1) = Ft regardless of the state. The
same debt structure (N

′
t, F

′
t ) as above again increases the payoff to cred-

itors uniformly when debt matures.

Hence, the debt capacity κBYt can only be attained by Nt = κG

λ
(as in (A3), or

equivalently (16)) or Nt = κB

λ
(as in (17)). Next, I show that the former domi-

nates the latter. Suppose that κBYt is attained by (17) instead of (16),

κB = 1
1 + r

{
π + (1 − π )[p(1 + μ) + 1 − p]κB}.

Subtracting the equation above from (14) yields

λ − κB >
1

1 + r

[
π + (1 − π )[p(1 + μ) + 1 − p]

(
λ − κB)]. (A4)

Since

1 + r > (1 − π )(1 + μ) > (1 − π )[p(1 + μ) + 1 − p],

inequality (A4) implies that κB < λ, which is smaller than κG. However, these
results then imply (17) is strictly dominated by (16)—a contradiction. Hence,
condition (16) gives the debt capacity in the bad state, completing the proof. �

The more precise statement of Proposition 2: Assume that λ(1 + μ) < 1. Sup-
pose the firm needs to refinance leverage of dt+1 at the refinancing stage in
period t. If the realized state is good (zt+1 = 1 + μ), then the new number of
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creditors N∗
t+1 and total face value f ∗

t+1 are given by

(
N∗

t+1, f ∗
t+1

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1, (1 + r)dt+1

)
if dt+1 ≤ λ(1 + μ)

1 + r(
1,

(1 + r)dt+1 − (1 − π )λ(1 + μ)
π

)
if

λ(1 + μ)
1 + r

< dt+1 ≤ π + (1 − π )λ(1 + μ)
1 + r(

(1 + r)dt+1 − π

(1 − π )λ(1 + μ)
, max

(
(1 + r)dt+1 − π

(1 − π )
, 1
))

if
π + (1 − π )λ(1 + μ)

1 + r
< dt+1 ≤ vG

FB

.

(A5)
If the realized state is bad (zt+1 = 1), then

(
N∗

t+1, f ∗
t+1

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1, (1 + r)dt+1

)
if dt+1 ≤ λ

1 + r(
1,

(1 + r)dt+1 − (1 − π )(1 − p)λ
π + (1 − π )p

)
if

λ

1 + r
< dt+1 ≤ πλ(1 + μ) + (1 − π )[p(1 + μ) + 1 − p]λ

1 + r(
1,

(1 + r)dt+1 − (1 − π )
[
pλ(1 + μ) + (1 − p)λ

]
π

)
if

πλ(1 + μ) + (1 − π )[p(1 + μ) + 1 − p]λ
1 + r

< dt+1 ≤
π + (1 − π )[p(1 + μ) + 1 − p]λ

1 + r⎛⎜⎜⎝ (1 + r)dt+1 − π

(1 − π )[p(1 + μ) + 1 − p]λ
, max

⎛⎜⎜⎝ (1 + r)dt+1 − π

(1 − π )
(

p + 1 − p
1 + μ

) , 1

⎞⎟⎟⎠
⎞⎟⎟⎠

if
π + (1 − π )[p(1 + μ) + 1 − p]λ

1 + r
< dt+1 ≤

π + (1 − π )[p(1 + μ) + 1 − p]κB

1 + r(
(1 + r)dt+1 − [π + (1 − π )(1 − p)λ

]
(1 − π )pλ(1 + μ)

,
(1 + r)dt+1 − [π + (1 − π )(1 − p)λ

]
(1 − π )p

)
if

π + (1 − π )[p(1 + μ) + 1 − p]κB

1 + r
< dt+1 ≤ κB.

(A6)

PROOF OF PROPOSITION 2: First, consider the good state. Since the firm is
never prematurely terminated, the first-best value V G

FB can be achieved. Recall
that whenever indifferent, the firm first minimizes the number of creditors and
then the face value of debt. The smallest number of creditors is one.

� Case G.1: dt+1 ≤ λ(1+μ)
1+r . The firm can issue debt with normalized face value

f ∗
t+1 = (1 + r)dt+1 to a single creditor N∗

t+1 = 1. If the project matures in
period t + 1, since f ∗

t+1 ≤ λ(1 + μ) < 1, the creditor will receive the full
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repayment f ∗
t+1Yt+1. If the project does not mature, the renegotiated re-

payment is min( f ∗
t+1Yt+1, λ(1 + μ)Yt+1) = f ∗

t+1Yt+1. Therefore, this debt is
risk-free and hence minimizes the face value.

� Case G.2: λ(1+μ)
1+r < dt+1 ≤ π+(1−π )λ(1+μ)

1+r . It is still possible to borrow from a
single creditor: N∗

t+1 = 1. Solving for the face value f ∗
t+1 from the following

debt valuation condition gives the smallest face value in the proposition:

dt+1 = 1
1 + r

[
π f ∗

t+1 + (1 − π )λ(1 + μ)
]
. (A7)

If the project matures, f ∗
t+1Yt+1 < Yt+1 is repaid since we are in Case

G.2. Otherwise, renegotiated payment is λYt+1(1 + μ) > f ∗
t+1Yt+1. Com-

bining these two scenarios gives the value of debt (A7). Hence, f ∗
t+1 =

(1+r)dt+1−(1−π )λ(1+μ)
π

.
� Case G.3: dt+1 >

π+(1−π )λ(1+μ)
1+r . Because the maximum repayment if the

project matures in period t + 1 is πYt+1, and the renegotiated repayment
is bounded by N∗

t+1λYt+1(1 + μ), creditor dispersion N∗
t+1 must therefore

satisfy

dt+1 ≥ 1
1 + r

[
π + (1 − π )N∗

t+1λ(1 + μ)
]
,

which gives a lower bound of N∗ ≥ (1+r)dt+1−π

(1−π )λ(1+μ) . This lower bound can be
attained by setting the face value f ∗

t+1 = max(1, N∗
t+1λ(1 + μ)).

Next, consider a firm that is currently in a bad state. Since the firm can at-
tain the first-best value in the good state, it is optimal to schedule as much
repayment (or equivalently, leverage) as possible in that state.

� Case B.1: dt+1 ≤ λ
1+r . Similar to Case G.1 in the good state, the firm can

issue risk-free debt with f ∗
t+1 = (1 + r)dt+1 to N∗

t+1 = 1 creditor.
� Case B.2:

λ

1 + r
< dt+1 ≤ 1

1 + r
{πλ(1 + μ) + (1 − π )[p(1 + μ) + (1 − p)]λ}.

Similar to Case G.2 in the good state, the required leverage can still
be sustained with a single creditor N∗

t+1 = 1, although the debt is no
longer risk-free due to renegotiation. To minimize face value in this
case, debt is only renegotiated in the bad state to λYt+1, that is, λYt+1 <

F∗
t+1 ≤ λYt+1(1 + μ), or equivalently λ < f ∗

t+1 ≤ λ(1 + μ). The face value
f ∗
t+1 solves

dt+1 = 1
1 + r

{
π f ∗

t+1 + (1 − π )
[
pf ∗

t+1 + (1 − p)λ
]}

.

� Case B.3:
1

1+r {πλ(1 + μ) + (1 − π )[p(1 + μ) + (1 − p)]λ} < dt+1

≤ 1
1+r {π + (1 − π )[p(1 + μ) + 1 − p]λ}.
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Similar to the previous case, the repayment is renegotiated down to
λYt+1(1 + μ) in the good state and to λYt+1 in the bad state. Therefore,
the face value f ∗

t+1 ∈ (λ(1 + μ), 1] solves

dt+1 = 1
1 + r

{
π f ∗

t+1 + (1 − π )[pλ(1 + μ) + (1 − p)λ]
}
.

� Case B.4:
1

1+r {π + (1 − π )[p(1 + μ) + 1 − p]λ} < dt+1

≤ 1
1+r

{
π + (1 − π )[p(1 + μ) + 1 − p]κB

}
.

Since the repayment in the good state is bounded by 1 + μ times that in
the bad state,

min
(
F∗

t+1, N∗
t+1λYt+1(1 + μ)

) ≤ (1 + μ) min
(
F∗

t+1, N∗
t+1λYt+1(1 + μ)

)
,

and the repayment when the project matures is bounded by πYt+1, the
minimum repayment in the bad state (or equivalently, the minimum N∗

t+1)
solves

dt+1 = 1
1 + r

{
π + (1 − π )[p(1 + μ) + 1 − p]λN∗

t+1

}
.

This is achieved by a face value f ∗
t+1 = max(1, N∗

t+1λ(1 + μ)). The renego-
tiated repayment is λN∗

t+1Yt+1(1 + μ) in the good state and λN∗
t+1Yt+1 ≤

κBYt+1 in the bad state.
� Case B.5: Finally, d∗

t+1 > 1
1+r {π + (1 − π )[p(1 + μ) + 1 − p]κB}. From the

discussion of (17) in the main text, rollover must fail in the bad state
when debt matures in period t + 1. The renegotiated repayment in the
good state is bounded by N∗

t+1λYt+1(1 + μ). Therefore, N∗
t+1 solves

dt+1 = 1
1 + r

[
π + (1 − π )

(
pN∗

t+1λ(1 + μ) + (1 − p)λ
)]

,

and the corresponding minimum f ∗
t+1 = max(1, N∗

t+1λ(1 + μ)), completing
the proof.

�

Remark on the additional assumption λ(1 + μ) < 1: This assumption is made
purely to conserve space. If the opposite is true, that is, λ(1 + μ) ≥ 1, then the
equilibrium is characterized as follows. If the realized state is good (zt+1 =
1 + μ), then the new number of creditors N∗

t+1 and the total face value f ∗
t+1 are

given by

(
N∗

t+1, f ∗
t+1

) =

⎧⎪⎪⎨⎪⎪⎩
(
1, (1 + r)dt+1

)
if dt+1 ≤ 1

1+r(
1, (1+r)dt+1−π

1−π

)
if 1

1+r < dt+1 ≤ π+(1−π )λ(1+μ)
1+r(

(1+r)dt+1−π

(1−π )λ(1+μ) ,
(1+r)dt+1−π

(1−π )

)
if π+(1−π )λ(1+μ)

1+r < dt+1 ≤ vG
FB

. (A8)
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If the realized state is bad: zt+1 = 1, then

(
N∗

t+1, f ∗
t+1

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1, (1 + r)dt+1

)
if dt+1 ≤ λ

1+r(
1, (1+r)dt+1−(1−π )(1−p)λ

π+(1−π )p

)
if λ

1+r < dt+1 ≤ π+(1−π )[p+(1−p)λ]
1+r(

1, (1+r)dt+1−π−(1−π )(1−p)λ
(1−π )p

)
if π+(1−π )[p+(1−p)λ]

1+r < dt+1 ≤ π+(1−π )[p(1+μ)+1−p]λ
1+r(

(1+r)dt+1−π

(1−π )[p(1+μ)+1−p]λ , (1+r)dt+1−π

(1−π )
(

p+ 1−p
1+μ

))
if π+(1−π )[p(1+μ)+1−p]λ

1+r < dt+1 ≤ π+(1−π )[p(1+μ)+1−p]κB

1+r(
(1+r)dt+1−[π+(1−π )(1−p)λ]

(1−π )pλ(1+μ) ,
(1+r)dt+1−[π+(1−π )(1−p)λ]

(1−π )p

)
if π+(1−π )[p(1+μ)+1−p]κB

1+r < dt+1 ≤ κB

. (A9)

The proof of this case is logically identical to that of Proposition 2.

PROOF OF COROLLARY 2: First, consider the good state, zt+1 = 1 + μ. If dt+1
belongs to Cases G.1 or G.2 in the proof of Proposition 2, then N∗

t+1 = 1 ≤ N∗
t

and the conclusion N∗
t+1 ≤ N∗

t holds trivially. Otherwise, dt+1 belongs to Case
G.3, and N∗

t+1 = (1+r)dt+1−π

(1−π )λ(1+μ) . Recall that

dt+1 ≤ vG
FB = π

1 + r − (1 − π )(1 + μ)
,

which implies

(1 + r)dt+1 − π

(1 − π )λ(1 + μ)
≤ dt+1

λ
.

Together with the fact that dt+1 = min( ft
zt+1

, N∗
t λ) ≤ N∗

t λ, we have

N∗
t+1 = (1 + r)dt+1 − π

(1 − π )λ(1 + μ)
≤ dt+1

λ
≤ N∗

t .

Next, I study the bad state, zt+1 = 1. Clearly, if N∗
t = 1, the result N∗

t+1 ≥ N∗
t

holds trivially. Now consider N∗
t > 1. Because debt rollover is still possible in

period t with zt+1 = 1, Proposition 2 suggests that N∗
t must belong to Case B.4

in the proof of Proposition 2. Hence, we have

N∗
t = (1 + r)dt − π

(1 − π )[p(1 + μ) + 1 − p]λ
≤ κB

λ
, (A10)

dt ≤ 1
1 + r

{
π + (1 − π )[p(1 + μ) + 1 − p]κB}, (A11)

dt >
1

1 + r
{π + (1 − π )[p(1 + μ) + 1 − p]λ}, (A12)
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and

(1 + r)dt = π + (1 − π )[p(1 + μ) + 1 − p]dt+1, (A13)

where dt+1 = min( ft, λN∗
t ) = λN∗

t is the actual amount of leverage refinanced
in the bad state (zt+1 = 1) in period t.

There are two possibilities, which I consider in turn.
Case 1: If the project is not sold in period t + 1 following a bad state (zt+2 =

1), then both N∗
t+1 = (1+r)dt+1−π

(1−π )[p(1+μ)+1−p]λ and N∗
t belong to Case B.4. Hence, it is

sufficient to show that dt+1 > dt . Denote by d̂ the solution to

d̂ = 1
1 + r

{
π + (1 − π )[p(1 + μ) + 1 − p]d̂

}
. (A14)

Subtracting (A14) from (14) yields

λ − d̂ >
1

1 + r

{
π + (1 − π )[p(1 + μ) + 1 − p]

(
λ − d̂

)}
,

which is equivalent to

{1 + r − (1 − π )[p(1 + μ) + 1 − p]}
(
λ − d̂

)
>

π

1 + r
. (A15)

Because

1 + r > (1 − π )(1 + μ) > (1 − π )[p(1 + μ) + 1 − p], (A16)

(A15) implies that λ > d̂. Consequently,

1
1+r {π + (1 − π )[p(1 + μ) + 1 − p]λ}

> 1
1+r

{
π + (1 − π )[p(1 + μ) + 1 − p]d̂

}
= d̂,

and as a result, (A12) implies that

dt > d̂.

It then follows from (A14) and (A13) that

0 < (1 + r)
(
dt − d̂

)
= (1 − π )[p(1 + μ) + 1 − p]

(
dt+1 − d̂

)
.

Using (A16), it follows that dt − d̂ < dt+1 − d̂, and therefore dt < dt+1 and
N∗

t+1 > N∗
t .

Case 2: If the project is sold in period t + 1 following a bad state, then
N∗

t+1 = (1+r)dt+1−[π+(1−π )(1−p)λ]
(1−π )pλ(1+μ) belongs to Case B.5 in (A6). From the lower bound
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of dt+1 ≥ π+(1−π )[p(1+μ)+1−p]κB

1+r in this case, we have

N∗
t+1 ≥

(1 + r)
π + (1 − π )[p(1 + μ) + 1 − p]κB

1 + r
− [π + (1 − π )(1 − p)λ

]
(1 − π )pλ(1 + μ)

= [p(1 + μ) + 1 − p]κB − (1 − p)λ
pλ(1 + μ)

.

Using the fact that κB > λ, we have

N∗
t+1 ≥ [p(1 + μ) + 1 − p]κB − (1 − p)λ

pλ(1 + μ)
>

κB

λ
≥ N∗

t ,

where the second inequality follows from (A10). This completes the proof. �
PROOF OF COROLLARY 3: The debt capacities in (15) and (16) are increasing
in μ, establishing the first statement in the corollary.

To prove the second statement, I discuss two cases depending on whether
the shared refinancing leverage dt+1 belongs to the same case in the proof of
Proposition 2. (Note that the cutoffs between cases depend on the parameter
μ.)

Case 1: For both firms, dt+1 falls into the same case. It is easy to check that
within each of these cases, N∗

t+1 is decreasing in μ.
Case 2: dt+1 falls into different cases as μ varies. Because the cutoffs between

cases are increasing in μ, the case that dt+1 falls into under the firm type μ2
must precede that under μ1. Since N∗

t+1 is weakly increasing across cases, we
have N∗

t+1(μ1) ≥ N∗
t+1(μ2). �

PROOF OF PREDICTION 1: First, note that N∗
t+1 in all possibilities—(A5), (A6),

(A8), and (A9)—is weakly increasing in dt+1. The monotonicity is strict when-
ever N∗

t+1 > 1.

When λ(1 + μ) ≥ 1, it is easy to check from (A8) and (A9) that the ratio f ∗
t+1

dt+1
=

F∗
t+1

Dt+1
takes the form c1 − c2

dt+1
, where c1 and c2 are nonnegative constants (strictly

positive whenever the debt is not risk-free). Therefore, this ratio is increasing
in dt+1 and the creditor dispersion N∗

t+1 covaries positively with the interest

rate F∗
t+1

Dt+1
in equilibrium.

When λ(1 + μ) < 1, the assumption that N∗
t+1 ≥ 1

λ(1+μ) implies that in the
good state, creditor structure falls into the third case in (A5) and F∗

t+1 =
N∗

t+1λ(1 + μ)Yt+1 ≥ Yt+1. Similarly, in a bad state, creditor structure falls into
the fourth or fifth cases in (A6) and F∗

t+1 = N∗
t+1λ(1 + μ)Yt+1 ≥ Yt+1 again holds.

Therefore, in each one of the aforementioned cases, the ratio f ∗
t+1

dt+1
= F∗

t+1
Dt+1

takes
the form c1 − c2

dt+1
, where c1 and c2 are positive constants. The same argument

for the previous case λ(1 + μ) ≥ 1 establishes the result. �
PROOF OF PROPOSITION 3: First, consider the good state zt = 1 + μ�t in pe-
riod t. If the project matures, then the total repayment is at most Yt . If the



A Dynamic Model of Optimal Creditor Dispersion 43

project does not mature, then with N creditors, the maximum repayment that
can be refinanced is

min
(
κ̂G

N (1 + μ�t)Yt, Nλ(1 + μ�t)Yt

)
= min

(
κ̂G

N , Nλ
)

(1 + μ�t)Yt .

Hence, the ex ante value of debt at time t is bounded by

1
1 + r�t

[
π�t + (1 − π�t) min

(
κ̂G

N , Nλ
)

(1 + μ�t)
]
Yt . (A17)

There are two cases, depending on the size of N.
Case 1: N >

v̂G
FB
λ

. In this case, setting the face value at Ft = max(1, v̂G
FB(1 +

μ�t))Yt ∈ [Yt, NλYt+�t ), the firm has incentive to pay Ft if the project does not
mature. The value of debt is

1
1 + r�t

[
π�tYt + (1 − π�t)v̂G

FB(1 + μ�t)Yt

]
= v̂G

FBYt, (A18)

where the equality is the recursive definition of the first-best value in (24).
Since v̂G

FB is already the first-best firm value, the debt capacity is indeed κ̂G
N =

v̂G
FB.

Case 2: N ≤ v̂G
FB
λ

. I first show that λN ≤ κ̂G
N , meaning that the renegoti-

ated payment of NλYt+�t can be refinanced into period t + �t with N cred-
itors. Suppose otherwise, that λN > κ̂G

N . By setting the face value to Ft =
max(1, κ̂G

N (1 + μ�t))Yt , the value of debt can attain

1
1 + r�t

[
π�t + (1 − π�t)κ̂G

N (1 + μ�t)
]
Yt,

which, by the definition of debt capacity, is bounded by κ̂G
NYt :

1
1 + r�t

[
π�t + (1 − π�t)κ̂G

N (1 + μ�t)
]

≤ κ̂G
N .

Because (1−π�t)(1+μ�t)
1+r�t < 1, condition (A18) implies that κ̂G

N ≥ v̂G
FB, which in turn

dominates λN since we are in Case 2. This contradiction establishes λN ≤ κ̂G
N .

Hence, (A17) becomes

1
1 + r�t

[π�t + (1 − π�t)Nλ(1 + μ�t)]Yt,

concluding the proof for the good state.
Next, consider the bad state zt = 1. I first show that to achieve the debt

capacity κ̂B
N , debt rollover must fail should the bad state persist, that is, zt+�t =

1. Suppose otherwise, that the debt capacity is attained by having successful
rollover in both states:

κ̂B
NYt = 1

1 + r�t

{
π�tYt + (1 − π�t) [p�t min (NλYt (1 + μ�t) , Ft ))

)
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((+ (1 − p�t) min (NλYt, Ft )]} .

Clearly, for rollover to be successful, it must be the case that

min (NλYt, Ft ) ≤ κ̂B
NYt .

Hence, the repayment in the good state must be bounded by

min (NλYt (1 + μ�t), Ft ) ≤ min (NλYt, Ft )(1 + μ�t) ≤ (1 + μ�t)κ̂B
NYt .

We therefore have

κ̂B
N ≤ 1

1 + r�t

{
π�t + (1 − π�t)[p�t(1 + μ�t) + 1 − p�t]κ̂B

N

}
. (A19)

Parameter condition (14) implies that

λ >
π

1 + r − (1 − π )(μp + 1)
>

π

1 + r − (1 − π )
= π

r + π
, (A20)

which in turn implies that for all sufficiently small �t, we have

λ >
1

1 + r�t
{π�t + (1 − π�t)[p�t(1 + μ�t) + 1 − p�t]λ}. (A21)

This is because (A21) is equivalent to

λ >
π�t

1 + r�t − (1 − π�t)[(1 + μ�t)p�t + 1 − p�t]
= π�t

1 + r�t − (1 − π�t)
[
1 + μp(�t)2] ,

and when �t → 0, the right-hand side approaches π
r+π

in which case this con-
dition becomes (A20). Taking the difference between (A21) and (A19) and us-
ing the fact that 1 + r�t > (1 − π�t)(1 + μ�t), we have κ̂B

N < λ. Since rollover
must be successful by assumption, the condition min(NλYt, Ft ) ≤ κ̂B

NYt < λYt
holds in the bad state. However, the ex-ante value of debt can be strictly im-
proved by raising Ft = Yt , and the payoff in the bad state can improve to λYt
through termination – a contradiction. Hence, the debt capacity κ̂B

NYt must be
achieved by having termination in the bad state.

Clearly, the maximum repayment if the project matures is Yt , which is
achieved by any face value Ft ≥ Yt . Next, I determine the repayment to debt
holders when the bad state switches to a good one, that is, zt+�t = 1 + μ�t.

As shown before, when N ≤ v̂G
FB
λ

, the renegotiated repayment of λNYt (1 +
μ�t) ≤ κ̂G

NYt (1 + μ�t) can be refinanced by N creditors. Therefore, the debt
capacity is achieved by setting Ft = max(1, (1 + μ�t)Nλ)Yt and

κ̂B
N = 1

1 + r�t
{π�t + (1 − π�t)[p�t(1 + μ�t)N + 1 − p�t]λ}. (A22)
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In contrast, when N >
v̂G

FB
λ

, the repayment that can be refinanced in the good
state is bounded by v̂G

FBYt (1 + μ�t), which is attained by having the face value
set at the same level. As a result, the debt capacity is given by

κ̂B
N = 1

1 + r�t

{
π�t + (1 − π�t)

[
p�t(1 + μ�t)v̂G

FB + (1 − p�t)λ
]}

. (A23)

Combining (A22) and (A23), we have

κ̂B
N = 1

1 + r�t
{π�t)(

+ (1 − π�t)
[
p�t (1 + μ�t) max

(
v̂G

FB, λN
)

+ (1 − p�t) λ
]}

,

establishing all equations in Proposition 3. �

PROOF OF PROPOSITION 4: As established by expression (24), the limit of
v̂G

FB as �t → 0 is finite (specifically, π
r−μ+π

). Hence, it follows immediately from
(28) that κ̂B

N → λ as �t → 0. Next, I turn to the total debt capacity in the bad
state. Since the parameter assumption (A21) holds (the �t analogue of (14)),
the debt capacity given by (29) is a direct consequence of Proposition 1. Finally,
it is obvious that κ̂B in (29) approaches λ as �t → 0, completing the proof. �

PROOF OF PROPOSITION 5: Suppose Nt = 1. I show that the modified refi-
nancing strategies Ĉt = 0 and F̂t = Ft − Ct implement the same payoff to both
the firm and the creditor in each period. First, the net amount that must be
refinanced in period t is

min
(
Ft, Lt + Ct

)− Ct = min(F̂t, Lt + Ĉt ) − Ĉt .

Thus, the continuation game (35) in period t is not affected.
Second, the debt rollover outcome in period t − 1 is not affected by the mod-

ification. This is because the modified value of debt (31) is

D̂t = 1
1 + r

{
π min

(
F̂t,Yt

))
(
+ (1 − π )Et

[
1RO min

(
F̂t, Lt

)
+ (1 − 1RO) min

(
F̂t, Lt

)]}
= Dt − Ct

1 + r
.

So the net repayment to creditors maturing in period t − 1 is the same,

D̂t − Ĉt

1 + r
= Dt − Ct

1 + r
,

and condition (35) in period t − 1 is therefore unaffected.
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Finally, the equity value V̂t at the end of period t − 1 is also unaffected by
the modification. By definition

F̂t − Ĉt = Ft − Ct,

and therefore the expression in (34) stays the same. In summary, the equilib-
rium can be implemented by setting Ct = 0, completing the proof. �
PROOF OF PROPOSITION 6: Define F̂t = Ft − Ct and D̂t = Dt − Ct

1+r . The value
of debt in (31) becomes

D̂t (F̂t, Nt,Ct ) = 1
1 + r

{
π min

(
F̂t,Yt

)
+ (1 − π )

)
(
Et

[
1RO min

(
F̂t, NtλYt+1 + (Nt − 1)Ct

)
+ (1 − 1RO) min

(
F̂t, Lt

)]}
with the rollover condition (33):

min
(
F̂t, NtλYt+1 + (Nt − 1)Ct

)
≤ DCt+1. (A24)

First, in equilibrium, it must be the case that

F̂t ≤ Ntλ(1 + μ)Yt + (Nt − 1)Ct . (A25)

Otherwise, the firm can lower F̂t to Ntλ(1 + μ)Yt + (Nt − 1)Ct without affecting
the actual debt repayment, contradicting with the minimality of F̂t . As a result
of (A25), the net repayment in the good state is F̂t .

Second, I show that having termination in the good state is not optimal, that
is, F̂t ≤ DCG

t+1. Suppose otherwise. From (A25), we know that

Ntλ(1 + μ)Yt + (Nt − 1)Ct ≥ F̂t > DCG
t+1. (A26)

If termination also happens in the bad state, then obviously the values of debt
and equity can both be improved by reducing F̂t to DCG

t+1. Hence,

min
(
F̂t, NtλYt + (Nt − 1)Ct

)
≤ DCB

t+1. (A27)

In the good state, the firm can pledge the entire first-best firm value as in
the baseline model without cash. Therefore, DCG

t+1 = vG
FBYt (1 + μ). The debt

capacity in the bad state must be bounded by the first-best value. Hence,
DCB

t+1 ≤ vB
FBYt < DCG

t+1. Recall from (A26) that F̂t > DCG
t+1, so (A27) implies

that

DCB
t+1 ≥ NtλYt + (Nt − 1)Ct . (A28)

Hence, DCB
t+1 ≥ λNtYt . However, taking the difference between (A26) and

(A28), we have

λNtμYt > DCG
t+1 − DCB

t+1 ≥ vG
FB(1 + μ)Yt − vB

FBYt > vB
FBμYt ≥ DCB

t+1μYt .
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The contradiction implies that F̂t ≤ DCG
t+1.

Finally, consider a new set of refinancing strategies in period t − 1: N
′
t =

Nt + (Nt−1)Ct
LB

t
, F̂

′
t = F̂t , and no cash C

′
t = 0. It is easy to verify that

N
′
tL

B
t +

(
N

′
t − 1

)
C

′
t = NtLB

t + (Nt − 1)Ct

and

N
′
tL

G
t + (Nt − 1)C

′
t = NtLG

t + (Nt − 1)Ct

LB
t

LG
t > NtLG

t + (Nt − 1)Ct ≥ F̂
′

t .

Hence, the creditor structure (N
′
t, F̂

′
t ,C

′
t ) does not affect the actual repayment

to creditors in (A24) in either the good state or the bad state, and the equilib-
rium outcome can therefore be implemented without cash. �

Appendix B: A Static Benchmark

In this appendix, I present a static version of the dynamic model in Section I
to show that statement 2 in Corollary 3 is effectively static, and this static
model cannot produce some of the key dynamic intuitions.

There are three dates, t = 0, 1, 2, and there is no time discount. At date 0, the
firm chooses the face value of debt F1 and creditor dispersion N1 to finance a
project. The upfront investment is I0, and the project generates a final dividend
only at date 2. At date 1, the state Y1 ∈ {1, μ > 1} realizes with Prob(Y1 = μ) =
p and the resale value L1 = λY1. The renegotiation game at date 1 is exactly
the same as in the dynamic model in Section I. The final dividend Y2 depends
on Y1:

Y2 =
{

1 if Y1 = 1
μ2 if Y1 = μ

,

that is, in the good state, the fundamental grows by μ, or otherwise there is
no growth. For simplicity, I assume that the entire Y2 can be pledged at date 1
to repay the maturing debt if the firm has incentive to do so. The optimization
problem for the firm is to design (N1, F1) efficiently at date 0 to finance I0.

PROPOSITION B1: Assume that μ2 p + (1 − p)λ > μp + 1 − p. The optimal
number of creditors N∗

1 and face value F∗
1 are given by

(
N∗

1 , F∗
1

) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
1, max

(
I0,

I0−(1−p)λ
p

))
if I0 ≤ λ(μp + 1 − p)(

I0
λ(μp+1−p) ,

I0μ

μp+1−p

)
if λ(μp + 1 − p) < I0 ≤ μp + 1 − p(

I0−(1−p)λ
λμp ,

I0−(1−p)λ
p

)
if μp + 1 − p < I0 ≤ μ2 p + (1 − p)λ.

(A29)
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PROOF OF PROPOSITION B1: If I0 ≤ λ(μp + 1 − p), the firm can be financed
without termination in period 1. When N∗

1 = 1, if I0 ≤ λ, then the debt is risk-
free with F∗

1 = I0. Otherwise, if λ < I0 ≤ λ(μp + 1 − p), the firm renegotiates
the payment down to λ in the bad state and F∗

1 = I0−(1−p)λ
p satisfies the lender’s

break-even condition,

pF∗
1 + (1 − p)λ = I0. (A30)

To minimize creditor dispersion when N∗
1 > 1, it must solve

N∗
1λ(μp + 1 − p) = I0.

The corresponding face value is F∗
1 = N∗

1λμ.
If I0 > μp + 1 − p, then the firm can only raise investment by risking ter-

mination in the bad state (Y1 = 1). In this case, the face value again solves
(A30), although unlike when N∗

1 = 1, here the repayment of λ in the bad state
is through termination. To support F∗

1 = I0−(1−p)λ
p , the corresponding number of

creditors is N∗
1 = F∗

1
λμ

. �

When the upfront investment I0 is low, the debt is risk-free. As I0 increases,
the required pledgeability increases, as does N∗

1 . In this static model, the
growth rate μ negatively correlates with the required number of creditors N∗

1
for any given financing size I0. The intuition is similar to statement 2 in Corol-
lary 3: firms with higher asset growth can pledge more to each creditor be-
cause of a higher final dividend in the good state, and therefore do not need
as many creditors as lower-growth firms do. One may be tempted to conclude
that higher-growth firms should have fewer creditors. This conclusion can be
misleading. In the dynamic model, higher-growth firms can survive longer and
support more creditors in the long run due to their higher debt capacity. Hence,
the equilibrium can feature a positive correlation between a firm’s number of
creditors and growth rate.

Finally, consider a reduction in the probability of the good outcome, p. This
exercise is the static version of the dynamic analysis in Section IV.B. Similar to
the finding in Proposition 4, when p decreases, the debt capacity μ2 p + (1 − p)λ
as in (A29) also decreases because the termination payoff λ is more likely to
occur. However, unlike the model in the main text, where total firm value is
held constant as the renegotiation frequency changes, here the ex ante firm
value μ2 p + 1 − p is decreasing in p. Hence, in this static model, the reduction
of debt capacity is a mechanical result of lower firm quality.
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