
FINDING TIGHT HAMILTON CYCLES IN RANDOM HYPERGRAPHS1

FASTER2

PETER ALLEN*, CHRISTOPH KOCH**, OLAF PARCZYK†, AND YURY PERSON‡3

Abstract. In an r-uniform hypergraph on n vertices a tight Hamilton cycle consists of n edges
such that there exists a cyclic ordering of the vertices where the edges correspond to consecutive
segments of r vertices. We provide a first deterministic polynomial time algorithm, which finds
a.a.s. tight Hamilton cycles in random r-uniform hypergraphs with edge probability at least
C log3 n/n.

Our result partially answers a question of Dudek and Frieze [Random Structures & Algo-
rithms 42 (2013), 374–385] who proved that tight Hamilton cycles exists already for p = ω(1/n)
for r = 3 and p = (e + o(1))/n for r ≥ 4 using a second moment argument. Moreover our al-
gorithm is superior to previous results of Allen, Böttcher, Kohayakawa and Person [Random
Structures & Algorithms 46 (2015), 446–465] and Nenadov and Škorić [arXiv:1601.04034] in
various ways: the algorithm of Allen et al. is a randomised polynomial time algorithm working
for edge probabilities p ≥ n−1+ε, while the algorithm of Nenadov and Škorić is a randomised
quasipolynomial time algorithm working for edge probabilities p ≥ C log8 n/n.

1. Introduction4

The Hamilton Cycle Problem, i.e., deciding whether a given graph contains a Hamilton cycle,5

is one of the 21 classical NP-complete problems due to Karp [13]. The best currently known6

algorithm is due to Björklund [3]: a Monte-Carlo algorithm with worst case running time7

O∗(1.657n),1 without false positives and false negatives occurring only with exponentially small8

probability. But what about “typical” instances? In other words, when the input is a random9

graph sampled from some specific distribution, is there an algorithm which finds a Hamilton10

cycle in polynomial time with small error probabilities?11

For example, let us examine the classical binomial random graph G(n, p): Pósa [22] and12

Korshunov [15, 16] proved that the hamiltonicity threshold is at p = Θ(log n/n). Their result13

was improved by Komlós and Szemerédi [14] who showed that the hamiltonicity threshold14

coincides with the threshold for minimum degree 2, and Bollobás [4] demonstrated that this15

is even true for the hitting times of these two properties in the corresponding random graph16

process. But these results do not allow one to actually find any Hamilton cycle in polynomial17

time. The first polynomial time randomised algorithms for finding Hamilton cycles in G(n, p) are18

due to Angluin and Valiant [2] and Shamir [25]. Subsequently, Bollobás, Fenner and Frieze [5]19

developed a deterministic algorithm, whose success probability (for input sampled from G(n, p))20

matches the probability of G(n, p) being hamiltonian in the limit as n→∞.21

Date: May 16, 2018.
* Department of Mathematics, London School of Economics, Houghton Street, London WC2A 2AE, U. K.

E-mail : p.d.allen@lse.ac.uk .
** Department of Statistics, University of Oxford, St. Giles 24-29, Oxford OX1 3LB, U. K. E-mail :

christoph.koch@stats.ox.ac.uk .
†Institut für Mathematik, Goethe Universität, Robert-Mayer-Str. 6-10 60325 Frankfurt am Main, Germany.

E-mail : parczyk@math.uni-frankfurt.de .
‡Institut für Mathematik, Technische Universität Ilmenau, 98684 Ilmenau, Germany. E-mail :

yury.person@tu-ilmenau.de .
The second author was supported by Austrian Science Fund (FWF): P26826, and European Research Council

(ERC): No. 639046. The third and fourth authors were supported by DFG grant PE 2299/1-1.
1Writing O∗ means we ignore polylogarithmic factors.

1

Turning to hypergraphs, there exist various notions of Hamilton cycles: weak Hamilton cycle,22

Berge Hamilton cycle, `-overlapping Hamilton cycles (for ` ∈ [r − 1]). In each situation, one23

seeks to cyclically order the vertex set such that:24

• any two consecutive vertices lie in a hyperedge (a weak Hamilton cycle),25

• any two consecutive vertices lie in some chosen hyperedge and no hyperedge is chosen26

twice (a Berge Hamilton cycle),27

• the edges are consecutive segments so that two consecutive edges intersect in exactly `28

vertices (an `-overlapping Hamilton cycle).29

The (binomial) random r-uniform hypergraph G(r)(n, p) defined on the vertex set [n] :=30

{1, . . . , n}, includes each r-set x ∈
(
[n]
r

)
as an (hyper-)edge independently with probability31

p = p(n). The study of Hamilton cycles in random hypergraphs was initiated more recently32

by Frieze in [10], who considered so-called loose cycles in 3-uniform hypergraphs (these are33

1-overlapping cycles in our terminology). Dudek and Frieze [7, 8] determined, for all ` and r,34

the threshold for the appearance of an `-overlapping Hamilton cycle in a random r-uniform35

hypergraph (most thresholds being determined exactly, some only asymptotically). However,36

these results were highly nonconstructive, relying either on a result of Johansson, Kahn and37

Vu [12] or the second moment method.38

The case of weak Hamilton cycles was studied by Poole in [21], while Berge Hamilton cycles39

in random hypergraphs were studied by Clemens, Ehrenmüller and Person in [6], the latter one40

being algorithmic.41

In the case ` = r− 1 it is customary to refer to an `-overlapping cycle as a tight cycle. Thus,42

the tight r-uniform cycle on vertex set [n], n ≥ r, has edges {i+ 1, ..., i+ r} for all i, where we43

identify vertex n+ i with i. A general result of Friedgut [9] readily shows that the threshold for44

the appearance of an `-overlapping cycle in G(r)(n, p) is sharp; that is, there is some threshold45

function p0 = p0(n) such that for any constant ε > 0 the following holds. If p ≤ (1− ε)p0 then46

G(r)(n, p) a.a.s. does not contain the desired cycle, whereas if p ≥ (1 + ε)p0 then it a.a.s. does47

contain the desired cycle. Dudek and Frieze [8] proved that for r ≥ 4 the function p0(n) = e/n48

is a threshold function for containment of a tight cycle, while for r = 3 they showed that a.a.s.49

G(3)(n, p) contains a tight Hamilton cycle for any p = p(n) = ω(1/n). An easy first moment50

calculation shows that if p = p(n) ≤ (1 − ε)e/n then a.a.s. G(r)(n, p) does not contain a tight51

Hamilton cycle.52

1.1. Main result. At the end of [8], Dudek and Frieze posed the question of finding algorith-53

mically various `-overlapping Hamilton cycles at the respective thresholds. In this paper we54

study tight Hamilton cycles and provide a first deterministic polynomial time algorithm, which55

works for p only slightly above the threshold.56

Theorem 1. For each integer r ≥ 3 there exists C > 0 and a deterministic polynomial time57

algorithm with runtime O(nr) which for any p ≥ C(log n)3n−1 a.a.s. finds a tight Hamilton58

cycle in the random r-uniform hypergraph G(r)(n, p).59

Prior to our work there were two algorithms known that dealt with finding tight cycles. The60

first algorithmic proof was given by Böttcher, Kohayakawa and the first and the fourth authors61

in [1], where they presented a randomised polynomial time algorithm which could find tight62

cycles a.a.s. at the edge probability p ≥ n−1+ε for any fixed ε ∈ (0, 1/6r) and running time63

n20/ε
2
. The second result is a randomised quasipolynomial time algorithm of Nenadov and64

Škorić [20], which works for p ≥ C(log n)8/n.65

Our result builds on the adaptation of the absorbing technique of Rödl, Ruciński and Sze-66

merédi [24] to sparse random (hyper-)graphs. This technique was actually used earlier by67

Krivelevich in [17] in the context of random graphs. However, the first results that provided68

essentially optimal thresholds (for other problems) are proved in [1] mentioned above in the69

context of random hypergraphs and independently by Kühn and Osthus in [18], who studied70

the threshold for the appearance of powers of Hamilton cycles in random graphs. The proba-71

bility of p ≥ C(log n)3n−1 results in the use of so-called reservoir structures of polylogarithmic72

2

size, as first used by Montgomery to find spanning trees in random graphs [19], and later in [20].73

Our improvements result in the combination of the two algorithmic approaches [1, 20] and in74

the analysis of a simpler algorithm that we provide.75

Organisation. In Section 2 we provide an informal overview of our algorithm. In Section 3 we76

then provide two key lemmas and the proof of Theorem 1 which rests on these lemmas. In the77

subsequent sections we prove these main lemmas: the Connecting Lemma and the Reservoir78

Lemma.79

2. An informal algorithm overview80

2.1. Notation and inequalities. An s-tuple (u1, . . . , us) of vertices is an ordered set of distinct81

vertices. We often denote tuples by bold symbols, and occasionally also omit the brackets and82

write u = u1, . . . , us. Additionally, we may also use a tuple as a set and write for example, if S83

is a set, S ∪u := S ∪{ui : i ∈ [s]}. The reverse of the s-tuple u is the s-tuple←−s := (us, . . . , u1).84

In an r-uniform hypergraph G the tuple P = (u1, . . . , u`) forms a tight path if the set85

{ui+1, . . . , ui+r} is an edge for every 0 ≤ i ≤ ` − r. For any s ∈ [`] we say that P starts86

with the s-tuple (u1, . . . , us) =: v and ends with the s-tuple (u`−(s−1), . . . , u`) =: w. We also87

call v the start s-tuple of P , w the end s-tuple of P , and P a v −w path. The interior of P88

is formed by all its vertices but its start and end (r − 1)-tuples. Note that the interior of P is89

not empty if and only if ` > 2(r − 1).90

For a binomially distributed random variable X and a constant 0 < γ < 1 we will apply the91

following Chernoff-type bound (see, e.g., [11, Corollary 2.3])92

P [|X − E(X)| ≤ γE(X)] ≤ 2 exp

(
−γ

2E(X)

3

)
. (1)

In addition we will make use of the following consequence of Janson’s inequality (see for93

example [11], Theorem 2.18): Let Ω be a finite set and P be a family of non-empty subsets94

of Ω. Now consider the random experiment where each e ∈ Ω is chosen independently with95

probability p and define for each P ∈ P the indicator variable IP that each element of P gets96

chosen. Set X =
∑

P∈P IP and ∆ =
∑

P 6=P ′,P∩P ′ 6=∅ E(IP IP ′). Then97

P[X = 0] ≤ exp

(
− E(X)2

E(X) + ∆

)
. (2)

2.2. Overview of the algorithm. We start with the given sample of the random hyper-98

graph G(r)(n, p) and we will reveal the edges as we proceed. First, using the Reservoir Lemma99

(Lemma 2 below), we construct a tight path Pres which covers a small but bounded away from100

zero fraction of [n], which has the reservoir property, namely that there is a set R ⊆ V (Pres) of101

size 2Cp−1 log n ≤ 2n/ log2 n such that for any R′ ⊆ R, there is a tight path covering exactly102

the vertices V (Pres) \ R′ whose ends are the same as those of Pres, and this tight path can be103

found given Pres and R′ in time polynomial in n a.a.s.104

We now greedily extend Pres, choosing new vertices when possible and otherwise vertices in105

R. We claim that a.a.s. this strategy produces a structure Palmost which is almost a tight path106

extending Pres and covering [n]. The reason it is only ‘almost’ a tight path is that some vertices107

in R may be used twice. We denote the set of vertices used twice by R′1. But we will succeed in108

covering [n] with high probability. Recall that, due to the reservoir property, we can dispense109

with the vertices from R′1 in the part Pres of the almost tight Hamilton path Palmost.110

Finally, we apply the Connecting Lemma (Lemma 3 below) to find a tight path in R \ R′1111

joining the ends of Palmost, and using the reservoir property this gives the desired tight Hamilton112

cycle.113

This approach is similar to that in [1]. The main difference is the way we prove the Reservoir114

Lemma (Lemma 2). In both [1] and this paper, we first construct many small, identical,115

vertex-disjoint reservoir structures (in some part of the literature, mostly in the dense case, this116

structure is called an absorber). A reservoir structure contains a spanning tight path, and a117

3

second tight path with the same ends which omits one reservoir vertex. We then use Lemma 3118

to join the ends of all these reservoir structures together into the desired Pres. In [1], reservoir119

structures are of constant size (depending on the ε) and they are found by using brute-force120

search. This is slow, and is also the cause of the algorithm in [1] being randomised: there it is121

necessary to simulate exposure in rounds of the random hypergraph since the brute-force search122

reveals all edges. In this paper, by contrast, we construct reservoir structures by a local search123

procedure which is both much faster and reveals much less of the random hypergraph.124

We will perform all the constructions in this paper by using local search procedures. At125

each step we reveal all the edges of G(r)(n, p) which include a specified (r − 1)-set, the search126

base. The number of such edges will always be in expectation of the order of pn, so that by127

Chernoff’s inequality and the union bound, with high probability at every step in the algorithm128

the number of revealed edges is close to the expected number. Of course, what we may not do129

is attempt to reveal a given edge twice: we therefore keep track of an exposure hypergraph E ,130

which is the (r− 1)-uniform hypergraph consisting of all the (r− 1)-sets which have been used131

as search bases up to a given time in the algorithm. We will show that E remains quite sparse,132

which means that at each step we have almost as much freedom as at the start when no edges133

are exposed.134

For concreteness, we use a doubly-linked list of vertices as the data structure representing135

a tight (almost-) path. However this choice of data structure is not critical to the paper and136

we will not further comment on it. The reader can easily verify that the various operations137

we describe can be implemented in the claimed time using this data structure. To simplify138

readability, we will omit in the calculations floor and ceiling signs whenever they are not crucial139

for the arguments.140

3. Two key Lemmas and the proof of Theorem 1141

3.1. Two Key Lemmas. Recall the definition of the reservoir path Pres. It is an r-uniform142

hypergraph with a special subset R (V (Pres) and some start and end (r − 1)-tuples v and w143

respectively, such that:144

(1) Pres contains a tight path with the vertex set V (Pres) and the ‘end tuples’ v and w, and145

(2) for any R′ ⊆ R, Pres contains a tight path with the vertex set V (Pres) \ R′ and the ‘end146

tuples’ v and w.147

We first give the lemma which constructs Pres. In addition to with high probability returning148

Pres, we also need to describe the likely resulting exposure hypergraph.149

Lemma 2 (Reservoir Lemma). For each r ≥ 3 and p ∈ (0, 1] there exists C > 0 and a150

deterministic O(nr)-time algorithm whose input is an n-vertex r-uniform hypergraph G and151

whose output is either ‘Fail’ or a reservoir path Pres with ends u and v and an (r− 1)-uniform152

exposure hypergraph E on vertex set V (G) with the following properties.153

(i) All vertices of Pres and edges of E are contained in a set S of size at most n
4 .154

(ii) The reservoir R ⊆ V (Pres) has size 2Cp−1 log n.155

(iii) There are no edges of E contained in R ∪ u ∪ v.156

(iv) All r-sets in V (G) which have been exposed contain at least one edge of E.157

When G is drawn from the distribution G(r)(n, p) and p ≥ Cn−1 log3 n, the algorithm returns158

‘Fail’ with probability at most n−2.159

Furthermore we need a lemma which allows us to connect two given tuples with a not too160

long path. This lemma is the engine behind the proof and behind the Reservoir Lemma.161

Lemma 3 (Connecting Lemma). For each r ≥ 3 there exist c, C > 0 and a deterministic162

O(nr−1)-time algorithm whose input is an n-vertex r-uniform hypergraph G, a pair of distinct163

(r − 1)-tuples u and v, a set S ⊆ V (G) and an (r − 1)-uniform exposure hypergraph E on the164

same vertex set V (G). The output of the algorithm is either ‘Fail’ or a tight path of length165

4

o(log n)2 in G whose ends are u and v and whose interior vertices are in S, and an exposure166

hypergraph E ′ ⊃ E. We have that all the edges E(E ′) \ E(E) are contained in S ∪ u ∪ v.167

Suppose that G is drawn from the distribution G(r)(n, p) with p ≥ C(log n)3/n, that E does168

not contain any edges intersecting both S and u ∪ v. If furthermore |S| = Cp−1 log n and169

|e(E [S])| ≤ c|S|r−1 then e(E ′) ≤ e(E)+O(|S|r−2) and the algorithm returns ‘Fail’ with probability170

at most n−5.171

3.2. Overview continued: more details. We now describe the algorithm claimed by Theo-172

rem 1, which we state in a high-level overview as Algorithm 1 and explain somewhat informally173

some of the arguments.174

Algorithm 1: Find a tight Hamilton cycle in G(r)(n, p)
1 use subroutine from Lemma 2 to either construct Pres (with ends u, v and exposure

hypergraph E on S) or halt with failure;

L := V (G) \ S;

U := S \ V (Pres);

2 extend Pres greedily from v to cover all vertices of U and using up to n/2 vertices of L,

otherwise halt with failure;

3 extend Pres further greedily to Palmost by covering all vertices of L and using up to |R|/2
vertices of R, otherwise halt with failure;

4 use subroutine of Lemma 3 to connect the ends of Palmost using the unused at least |R|/2
vertices of R, otherwise halt with failure;

Step 1. Given G drawn from the distribution G(r)(n, p), we begin by applying Lemma 2 to a.a.s.175

find a reservoir path Pres with ends u and v contained in a set S of size n
4 . Let L = V (G) \ S,176

and U = S \ V (Pres). Recall that by Lemma 2 (i) and (iii), all edges of E are contained in177

S; and R ∪ u ∪ v contains no edges of E . By (iv) all exposed r-sets contain an edge of E ; by178

choosing a little carefully where to expose edges (see Step 2 below), we will not need to worry179

about what exactly the edges of E are beyond the above information.180

Step 2. We extend Pres := P0 greedily, one vertex at a time, from its end u = u0, to cover181

all of U . At each step i, we simply expose the edges of G which contain the end ui−1 of Pi−1182

and whose other vertex is not in V (Pi−1), choose one of these edges e and add the vertex from183

e \ ui−1 to Pi−1 to form Pi. The rule we use for choosing e is the following: if i is congruent to184

1 or 2 modulo 3, we choose e such that e \ ui−1 is in L, and if i is congruent to 0 modulo 3 we185

choose e such that e \ ui−1 is in U if it is possible; if not we choose e such that xi := e \ ui−1186

is in L. The point of this rule is that at each step we want to choose an edge which contains187

at least two vertices of L, because no such r-set can contain an edge of E since all the edges188

of E are contained in S (Property (i)). We will see that while U \ V (Pi−1) is large, we always189

succeed in choosing a vertex in U when i is congruent to 0 modulo 3. When it becomes small190

we do not, but a.a.s. we succeed often enough to cover all of U while using not more than 5n
8191

vertices of L.192

Step 3. Next, we continue the greedy extension, this time choosing a vertex in L when possible193

and in R when not, until we cover all of L. It follows from the first two steps and Properties (i)194

and (iii) that no edge of E is in L∪R. Thus, at each step we choose from newly exposed edges195

and again we a.a.s. succeed in covering L using only a few vertices of R. Let the final almost-196

path (which uses some vertices R′1 ⊆ R twice) be Palmost, and R1 the subset of R consisting of197

vertices we did not use in the greedy extension, i.e. R1 = R \R′1.198

2We will make this more precise later. You could replace this by at most Cn/ log log n.

5

Step 4. At last, Palmost covers V (G) = L∪U∪V (Pres). Its ends, together with the vertices of R1,199

satisfy the conditions of Lemma 3, which we apply to a.a.s. complete Palmost to an almost-tight200

cycle H ′ in which some vertices of R1 are used twice. The reservoir property of R now gives a201

tight Hamilton cycle H.202

Runtime. Our applications of Lemmas 2 and 3 take time polynomial in n by the statements of203

those lemmas; the greedy extension procedure is trivially possible in O(n2) time (since at each204

extension step we just need to look at the neighbourhood of an (r−1)-tuple, and there are O(n)205

steps). Finally the construction of Pres allows us to obtain H from H ′ in time O(n2): we scan206

through Pres, for each vertex r of R we scan the remainder of H ′ to see if it appears a second207

time, and if so locally reorder V (Pres) to remove r from Pres.208

To prove Theorem 1, what remains is to justify our claims that various procedures above209

a.a.s. succeed.210

3.3. Proof of Theorem 1. We choose C ≥ max{CL2 , CL3 , 108} large enough for Lemmas 2211

and 3 to hold. For this proof we do not need to know the value of c′ required for Lemma 3.212

We suppose that n is large enough to make log logn larger than any constant appearing in the213

following proof.214

Constructing Pres. Let G be drawn from the distribution G(r)(n, p). Lemma 2 states that with215

probability at least 1− n−2, a reservoir path Pres in G is found in polynomial time. From this216

point on, at each step except the final connection, when we expose edges at an (r − 1)-set x,217

that (r − 1)-set will be included in the path we construct. Hence in future steps we will not218

examine edges containing x. Thus while we should keep updating E , in fact we will never need219

to know which edges are added after generating Pres.220

Extending Pres to cover all of U . We next aim to prove that with high probability the greedy221

extension of Pres to cover U succeeds, with at least n/8 vertices of L remaining uncovered at the222

end. Recall that we chose |S| = n
4 and thus |L| = 3n

4 . We choose the next vertex from L when i is223

congruent to 1 or 2 modulo 3 or when we fail to extend into U . At each step i where at least n/8224

vertices of L are uncovered, we expose all the r-sets in V (G) which contain the end ui−1 of Pi−1225

and a vertex of L. The greedy algorithm can only fail to complete step i if none of these r-sets226

turn out to be edges, which happens with probability at most (1 − p)n/8 ≤ exp
(
− pn

8

)
< n−4227

(since the edges of the random hypergraph are independent). Taking the union bound, the228

greedy algorithm to cover U fails before covering 5
8n vertices of L with probability at most n−3.229

Similarly, for any i such that
∣∣U \ V (Pi−1)

∣∣ ≥ Cp−1 log n, if i is divisible by 3 the probability230

that no edge containing ui−1 and a vertex of U \V (Pi−1) is in G is at most exp
(
−C log n

)
< n−4.231

It follows that with probability at most n−3 the greedy algorithm chooses a vertex of L when232

i is divisible by 3 and U \ V (Pi−1) has size at least Cp−1 log n. Let t1 be the first time in the233

greedy extension procedure when U \ V (Pt1) has size less than Cp−1 log n.234

It remains to show that while the last Cp−1 log n vertices of U are covered, at most n/8235

vertices of L are used. We split these last Cp−1 log n vertices into the last 1
2p
−1 vertices and the236

rest. When x vertices of U remain uncovered with x ≥ 1
2p
−1, then the probability of choosing a237

vertex of U for the vertex xi extending Pi−1 (when i is divisible by 3) is at least 1−(1−p)x ≥ 1
3 .238

By Chernoff’s inequality, the probability that at time t2 := t1+6Cp−1 log n there are more than239
1
2p
−1 vertices of U remaining uncovered is at most exp

(
− 1

6Cp
−1 log n

)
≤ n−3. Next, we show240

that we cover all but at most log n vertices of U in not too much more time.241

To see this, consider the following event. For 1 ≤ j ≤ 7n/8 and log n ≤ x ≤ 1
2p
−1, let A(x, j)242

be the event that we have
∣∣U \ V (Pj)

∣∣ = x and
∣∣U \ V (Pj−3000p−1)

∣∣ ≤ 2x. We claim that the243

probability for any of these events to hold is at most n−3. Indeed, if for some given x and j the244

event A(x, j) occurs, then at each of the at least 500p−1 values of i with j − 3000p−1 ≤ i ≤ j,245

an edge containing ui−1 and a vertex of U appears with probability at least 1− (1− p)x ≥ px/2246

(since x ≤ 1
2p
−1). Thus for A(x, j) to hold, it is necessary that a sum of at least 500p−1 Bernoulli247

random variables, each with probability at least px/2, is at most x. Chernoff’s inequality states248

6

that this probability is at most exp
(
− 250x

12

)
≤ n−5, and taking the union bound over all A(x, j)249

the claim follows. Taking in particular x = 2−kn/ log n for k ≥ 1 such that 2−kn log n ≥ log n250

(so k ≤ log n) we see that with probability at least 1 − n−3, at time t3 := t2 + 3000p−1 log n251

there are at most log n vertices of U remaining uncovered.252

While at least one vertex of U remains uncovered, the probability that when i is divisible by253

three we choose a vertex of U is at least p. Applying Chernoff’s inequality, the probability that254

at time t4 := t3+300p−1 log n we still have not covered all of U is at most exp(−100 logn
12) ≤ n−3.255

Putting all this together, the probability that V (Pt4) does not cover U is at most 4n−3. Since256

t1 ≤ 3|U |, since |U | ≤ |S| ≤ n/4, and since t4 − t1 ≤ n/16, we conclude that with probability257

at least 1− 4n−3 the greedy extension procedure indeed covers U with at least n/8 vertices of258

L left uncovered. Let t5 be the first time at which Pt5 covers U .259

Extending Pres further to Palmost by covering all of L. We now repeat a similar procedure to use260

up all of L\V (Pt5) while not using too many vertices in R. Since no edges of E are contained in261

R∪L, at each time t, all the r-sets containing the end ut−1 of Pt−1 and a vertex of L∪R\V (Pt−1)262

are unrevealed. In particular, provided that at each step we have
∣∣R \ V (Pt−1)

∣∣ ≥ 1
2 |R|, by263

Chernoff’s inequality with probability at least 1−n−4 at least one edge of G is found consisting264

of ut−1 and a vertex of R \ V (Pt−1). Taking the union bound, the probability of the extension265

procedure failing when
∣∣R \ V (Pt−1)

∣∣ ≥ 1
2 |R| is at most n−3.266

As long as
∣∣L \ V (Pt−1)

∣∣ ≥ C
100p

−1 log n, by Chernoff’s inequality with probability at most267

exp
(
− C

300 log n
)
≤ n−4 there is no edge of G containing ut−1 and a vertex of L \ V (Pt−1);268

in particular with probability at least 1 − n−3 the greedy extension covers all but at most269
C
100p

−1 log n vertices of L before using any vertex of R. Let t6 be the time at which all but at270

most C
100p

−1 log n vertices of L are covered. Again, we now consider the time taken to cover all271

but 1
2p
−1 vertices of L. At each time the probability of being able to choose a vertex of L to272

extend our path with is at least 1
3 , so that with probability at least 1− n3 we cover all but at273

most 1
2p
−1 vertices of L by time t7 ≤ t6 + C

25p
−1 log n. In particular we use at most C

25p
−1 log n274

vertices of R in this time.275

By the same analysis as before, the total time taken to go from covering all but at most 1
2p
−1

276

vertices of L to covering all but at most log n vertices of L and then all vertices of L is with277

probability at least 1− 2n−3 not more than 3000p−1 log n+ 300p−1 log n. Putting this together,278

provided all these good events hold we succeed in covering all but at most log n vertices of L279

having used at most280

C
25p
−1 log n+ 3300p−1 log n < Cp−1 log n = 1

2 |R|
vertices of R.281

In sum, with probability at least 1−n−2−8n−3, the algorithm succeeds in generating Palmost,282

where the set R′ ⊆ R of vertices not used in the greedy extension has size at least 1
2 |R|.283

Connecting the end tuples of Palmost and getting the tight Hamilton cycle. Applying Lemma 3284

to connect the end tuples of Palmost in a subset of R′ of size Cp−1 log n (which is possible285

since R′ together with the ends of Palmost contains no edges of E and since |R′| ≥ n/ log2 n),286

with probability at least 1 − n−4 we find the desired almost-tight cycle H ′, which gives us287

deterministically the desired tight Hamilton cycle H. Thus as desired the probability that our288

algorithm fails to find a tight Hamilton cycle is at most n−1. �289

4. Proof of the Connecting Lemma290

In this section we prove Lemma 3 and a very similar lemma (Lemma 6) dealing with ‘spike-291

paths’ which we will require for Lemma 2. A spike-path is similar to a tight path, but after292

(r − 1)-steps the direction of the last (r − 1)-tuple is inverted.293

Definition 4 (Spike path). In an r-uniform hypergraph, a spike path of length t consists of a294

sequence of t pairwise disjoint (r−1)-tuples a1, . . . ,at, where ai = (ai,1, . . . , ai,r−1) for all i, with295

7

the property, that the edges {ai,r−j , . . . , ai,1, ai+1,1, . . . , ai+1,j} are present for all i = 1, . . . , t− 1296

and j = 1, . . . , r − 1. We call ai the i-th spike.297

This is the same as taking t tight paths of length 2(r−1), where the end (r−1)-tuples of path298

i are xi and yi, and identifying ←−xi with yi+1 for all i = 1, . . . , t − 1. The proofs of Lemmas 3299

and 6 are essentially identical, so we give the details of the former and then explain how to300

modify it to obtain the latter.301

4.1. Preliminaries. For an (r − 1)-tuple u and an integer i we define a fan Fi(u) in an r-302

uniform hypergraph H as a set {P1, . . . , Ps} of tight paths in H, of length i or i+ 1, starting in303

u. For any set or tuple a, let {Pj}j∈I be the subcollection of tight paths from Fi(u) in which304

a appears as a consecutive interval (in arbitrary order). The leaves or ends of Fi(u) are the305

ending (r−1)-tuples of alle the paths P1, . . . , Ps. We denote by mult(a) the number of different306

paths we see in {Pj}j∈I after truncating behind a.307

In any r-uniform hypergraph H = (V,E) the degree of a set or tuple f of size 1 ≤ |f | ≤ r− 1308

is the number of edges which it is contained in, i.e.309

degH(f) = |{e ∈ E : f ⊆ e}|.
Given a set S ⊆ V , we write degH(f, S) for the degree into S, that is, where we count only310

edges e satisfying e \ f ⊆ S.311

4.2. Idea and further notation. The basic idea is that, starting with the u and v and the312

empty fans F0(u) and F0(v), we want to fan out. That is, for each path in Fi(u) we will find a313

large collection of ways to extend by one vertex and all the resulting paths form Fi+1(u). We314

do this until we have fans Ft(u) and Ft(v) with315

Q := p−(r−1)/2 log n

leaves each. This happens roughly when we have316

t := 2 ·
⌈

log(Q)

log(log n)

⌉
≤ (r − 1) ·

⌈
log(p−1)

log(log n)

⌉
+ 2 = o(log n).

A complication is that in this process we have to avoid the edges of E when expanding317

the fans. In order to make the modifications for the promised spike-path variation easy (cf.318

Lemma 6 below), we will do something a little more complicated. We split into expansion319

and continuation phases, each of length r − 1. The first phase is an expansion phase, so when320

forming F1(u), . . . , Fr−1(u) we find many ways to extend each path by one vertex and put all321

of them into the next fan. The second phase is a continuation phase, so when forming Fr(u),322

. . . , F2r−2(u) we choose only one way to extend each path. As soon as we have a collection of323

paths with the desired Q leaves, we cease expanding (even if we are still in an expansion phase)324

and simply continue each path such that each has the same length. We construct fans from v325

similarly, and we continue construction up to Ft(v).326

In the final step we find r − 1 further edges connecting two of the leaves, giving us a tight327

path connecting u to v. Again there is a complication here: some pairs of leaves (w,x) may328

be blocked by edges of E , meaning that inside some r consecutive vertices of the concatenation329

w←−x there is an edge of E . If a pair of leaves is blocked, then trying to reveal (r − 1) edges330

connecting the pair would mean revealing an edge of the random hypergraph twice (and if a331

pair is not blocked then doing so does not reveal any edge twice). We need to take this into332

account in our analysis, and we need to construct Ft(v) carefully to avoid creating dangerous333

leaves for which a large fraction of the pairs is blocked.334

To make this precise, we use the following algorithm.335

The subroutine BuildFan takes as input a starting tuple, the sets in which to build a fan,336

and a danger hypergraph D which is important for the construction of the second fan: it is an337

(r − 1)-uniform hypergraph which records the tuples in S′1, . . . , S
′
4(r−1) which we cannot easily338

connect to the leaves of Ft(u). The algorithm ensures that no leaf of a fan will be a dangerous339

tuple. Though we only need this for the leaves of the final fan, it is convenient to maintain this340

8

Algorithm 2: Find a connecting path from u to v

split S into equal parts S1, . . . , S4(r−1), S
′
1, . . . , S

′
4(r−1);

Ft(u) := BuildFan(u, S1, . . . , S4(r−1), ∅);
set D :=

{
x ∈ Sr−1 : (w,x) is blocked for at least ξ′Q leaves w of Ft(u)

}
;

Ft(v) := BuildFan(v, S′1, . . . , S
′
4(r−1), D);

find r − 1 edges connecting a leaf of Ft(u) to the reverse of one of Ft(v);

return tight path P connecting u to v ;

property throughout. For convenience, we write Si for the set Simod 4(r−1) ∈ {S1, . . . , S4(r−1)}341

with S0 = S4(r−1); the point of these sets is that we choose the ith vertex of each path in Si,342

which is helpful in the analysis. Finally, we need to ensure that we always choose ‘good’ vertices343

which allow us to continue our construction and prove various probabilistic statements. To that344

end, we define a vertex b to be good with respect to an exposure hypergraph E , a set F of345

paths with distinct ends, a danger hypergraph D and a (r − 1)-tuple a if none of the following346

statements hold for any (possibly empty) tuple c whose vertices are contained in those of a (not347

necessarily in the same order).348

(i) b appears somewhere on the unique path P (a) ending in a,349

(ii) |c| ≤ r − 2 and degE({c, b}, S) > ξr−|c|−1|S|r−|c|−2,350

(iii) mult({c, b}) > ξr−|c|−1Q · |S|−|c|−1 · log|c|+1 n, and351

(iv) |c| ≤ r − 2 and degD({c, b}, S) > (ξ′|S|)r−|c|−2.352

Normally E , F and D will be clear from the context and we will simply say good for a. We are353

finally ready to give the BuildFan subroutine.354

4.3. Proof. We set355

ξ′ = 1
100r , ξ = (ξ′)r/(2r220r) , δ = 8rξ + ξ′ , C = 108r and c = 10−rξr . (3)

The proof amounts to showing two things. First, BuildFan is likely to succeed—that is, that356

it does not fail for lack of good vertices before returning a fan, that the returned fan does have357

size Q, and that it does not add too many tuples to E . Second, the required extra r − 1 edges358

which should connect the fans can be found.359

Creating the fans. We begin by showing that the subroutine BuildFan(s, T1, . . . , T4(r−1), D) is360

likely to succeed, whether we choose s = u, Ti = Si and D = ∅ or we choose s = v, Ti = S′i and361

D as given in Algorithm 2, using the following claim.362

We define Li to be the leaves of Fi.363

Claim 5. If step i was successful, then step i+ 1 is successful with probability at least 1− n−3r364

and the following holds throughout step i + 1 for each a ∈ Li+1 and each non-empty c whose365

vertices are chosen from a, not necessarily in the same order.366

P1 Each path in Fi extends to at least one path in Fi+1; if 2(r − 1)` < i ≤ 2(r − 1)` + r − 1367

and |Fi+1| < Q then each path in Fi extends to at least log n paths in Fi+1. In both cases,368

all leaves are not in E.369

P2 e(E [S]) ≤ c|S|r−1 + 20rQ.370

P3 If |c| < r − 1 we have degE(c, S) ≤ ξr−|c||S|r−1−|c| + 1.371

P4 We have mult(c) ≤ ξr−|c|Q · |S|−|c| · log|c| n+ 1.372

P5 If 1 ≤ |c| ≤ r − 2 we have degD(c, S) ≤ (ξ′|S|)r−|c|−1.373

Proof of Claim 5. Observe that F0 trivially satisfies the conditions of Claim 5, modulo Cher-374

noff’s inequality for P1. Suppose that for some 0 ≤ i < t, at each step 0 ≤ j ≤ i of Algorithm 3375

the conditions of Claim 5 are satisfied. In particular, by P4, the ends of the paths Fi are376

distinct as for |c| = r − 1 we have mult(c) < 2, and by P1 we have |Fi| ≥ min
(

logi/2 n,Q
)
.377

9

Algorithm 3: BuildFan(s, T1, . . . , T4(r−1), D)

F0 :=
{
s
}

;

foreach i = 1, . . . , t do
if i mod 2(r − 1) ∈ {1, . . . , r − 1} then

phase =‘expand’;

else
phase =‘continue’;

end

NumPaths := |Fi−1|;
Fi := Fi−1;

foreach P ∈ Fi−1 do
5 let the (r − 1)-tuple a be the end of P ;

reveal the edges of G containing a and add a to E ;

6 let T ⊆ Ti be the set of vertices b which are good for a and {a, b} is an edge;

if phase =‘expand’ then
Add := min

(
log n,Q+ 1−NumPaths

)
;

choose Add vertices b1, . . . , bAdd ∈ T ;

Fi := Fi ∪ {(P, b1), . . . , (P, bAdd)} \ {P};
NumPaths := NumPaths + Add− 1;

else
choose a vertex b ∈ T ;

Fi := Fi ∪ {(P, b)} \ {P};
end

end

end

return Ft ;

To begin with, we show that E cannot have too many edges. At each step j with 1 ≤ j ≤ i,378

we add |Fj−1| edges to E , so that we want to upper bound
∑t

j=1 |Fj−1|. Definitely Ft has size379

at most Q and Fj−4(r−1) always has size less than half of Fj , so that this sum is dominated by380

4r
∑`

i=1 2i where ` = log2Q. We conclude that
∑t

j=1 |Fj−1| ≤ 8rQ. Since we create two fans,381

in total we obtain the claimed bound P2.382

We now show that, for each choice of P ∈ Fi with end a, the total number of vertices in Ti+1383

which are not good for a is at most δ|S|. This will allow us to prove P1. First, since P has at384

most t vertices, at most t vertices are excluded by (i).385

For each c of size at most r− 2 with vertices chosen from a, there are at most 2rξ|S| vertices386

fulfilling (ii). To see this for |c| = 0, observe that otherwise we have e(E [S]) > 2ξr|S|r−1 >387

2c|S|r−1, contradicting P2 as Q ≤ 1
C |S|

r−1. Assume that it fails for some non-empty c. Then388

there are more than 2rξ|S| vertices x ∈ Ti+1 with389

degE({c, x}, S) > ξr−|c|−1|S|r−|c|−2

which implies that390

degE(c, S) > 2ξr−|c||S|r−|c|−1

in contradiction to P3.391

Furthermore there are at most 2rξ|S| vertices b fulfilling (iii) for each c. Again for |c| = 0 it392

is enough to note that there are at most Q paths in total and thus there are at most393

Q

ξr−1Q · |S|−1 · log n
≤ ξ|S|

10

vertices b with mult(b) > ξr−1Q · |S|−1 · log n. Now suppose c is not empty. Every path in394

Fi+1 whose end contains {c, b} was constructed by the expansion of some path in Fi whose end395

contains c. Note that every path expands at most by a factor of log n and by P3 there are at396

most ξr−|c|Q · |S|−|c| log|c| n + 1 paths in Fi whose end contains c. If this bound is less than397

two, then there are at most log n vertices b with mult({c, b}) ≥ 1. Otherwise there are at most398

2ξr−|c|Q · |S|−|c| log|c|+1 n

ξr−|c|−1Q · |S|−|c|−1 log|c|+1 n
= 2ξ|S|

vertices x ∈ Si with mult({c, b}) > ξr−|c|−1Q · |S|−|c|−1 · log|c|+1 n.399

Finally, we want to show that for each c there are at most ξ′|S| vertices b in Ti which400

satisfy (iv). This is trivial for D = ∅, so we may assume that D is as given in Algorithm 2.401

First suppose |c| = 0. If a vertex b satisfies (iv), then it is in (ξ′|S|)r−2 edges of D, so if there402

are ξ′|S| such vertices then there are at least (ξ′|S|)r−1 edges in D using vertices of Ti (note403

that edges of D only intersect Ti in one vertex). In other words, the number of blocked pairs404

(a,b) with a ∈ Ft(u) and b ∈ Sr−1 is at least405

(ξ′|S|)r−1 · ξ′Q ≥ 2r · 22rξ|S|(r−1) ·Q

using our choice of parameters (3). We conclude that there is a leaf a of Ft(u) that is in at406

least 2r · 22rξ|S|r−1 blocked pairs with tuples b ∈ Sr−1. Fix this leaf. Now P3 holds for a, and407

we will show that this gives a contradiction. Consider the following property of tuples b. For408

any sets A and B with vertices in a and b respectively, if |A|+ |B| = r− 1 then A∪B is not in409

E , while if |A|+ |B| < r − 1 then we have degE(A ∪B,S) ≤ 2ξr−|A|−|B||S|r−1−|A|−|B|. Trivially410

if b has the property, then (a,b) is not blocked. If b does not have the property, then let Bb411

be a set of minimal size witnessing the property’s failure. Since A 6∈ E by P1, and by P3, we412

do not have |Bb| = 0.413

We now count the ways to create b which does not have the property. We choose vertices414

b1, . . . , br−1 one at a time until we create a witness B 6= ∅ that b cannot have the property.415

When we come to choose bj , we have at most |S| ways to choose it without creating a witness.416

If we are to choose bj which witnesses the property’s failure, then there are sets A and B′417

contained respectively in a and {b1, . . . , bj−1} such that (A,B′ ∪ {bj}) fails the property. There418

are at most 22r choices for A and B′. Since (A,B′) does not witness the property failing, by419

definition for each choice of A and B′ there are at most ξ|S| choices of bj . Summing up, there420

are at most r · 22rξ|S|r−1 tuples b which do not have the property. As all blocked pairs use a421

tuple from this set, this is the desired contradiction.422

Now suppose c is a tuple for which there are at least ξ′|S| vertices b satisfying (iv). In other423

words, there are more than ξ′|S| vertices b ∈ Ti+1 with degD({c, b}, S) > (ξ′|S|)r−|c|−2, which424

implies that425

degD(c, S) > (ξ′|S|)r−|c|−1

in contradiction to P5.426

Putting all this together we conclude that there are at most δ|S| vertices b such that c exists427

satisfying any one of the conditions (i)–(iv), as desired.428

Now let a be a leaf of Fi. We now reveal all r-sets containing a which were not revealed before429

and which use a vertex x of Ti+1 which is good for a. Let X be the number of edges {a, x}430

which appear. Then the expected value of X is at least p(1− δ)|Ti+1| ≥ C
20r log n. Applying the431

Chernoff bound (1) we get that X < C
40r log n with probability at most 2 exp(−C log n/(240r)) ≤432

n−4r. Let us suppose that X ≥ log n. Then Algorithm 3 does not fail to create the required433

number of paths from a. Taking a union bound over the at most |S|r−1t such events, we obtain434

the stated success probability of Claim 5.435

It remains to prove that P3, P4 and P5 also hold in Fi+1(u). But this is immediate, since436

we avoided choosing vertices which could cause their failure. �437

11

Taking a union bound over the 2t steps, we conclude that with probability at most n−2r there438

is a failure to construct either of the desired fans Ft(u) and Ft(v).439

Connecting the fans. By construction, as set up in line 6 of Algorithm 3, all leaves of Ft(v) are440

not edges of D and thus not dangerous. Let L be the leaves from Ft(u) and L′ the leaves from441

Ft(v) reversed. We now want to reveal more edges to connect a leaf from L with one from L′.442

For a ∈ L and b ∈ L′ let P be the tight path with r − 1 edges on the vertices (a,b). There443

are |L′| · (1 − ξ′)|L| = (1 − ξ′)Q2 many such paths P , which are not blocked, because b is not444

dangerous. Let P be the set of all these paths which are not blocked.445

Let IP be the indicator random variable for the event that the path P appears, which occurs446

with probability pr−1. Further let X be the random variable counting the number of paths447

which we obtain and note X =
∑

P∈P IP . With Janson’s inequality (2) we want to bound the448

probability that X = 0. First let us estimate the expected value of X. By the observation from449

above we have E(X) = |P|pr−1 ≥ (1− ξ′)(cC)r−1 logr−1 n ≥ log n.450

Now consider two distinct paths P = (a,b) and P ′ = (a′,b′), which share at least one edge.451

It follows from property P4 of Claim 5 and the quantities Q and |S|, that two paths are identical452

if they share at least r/2 vertices in their end tuple. Since either the start or end r/2-tuple of453

one of the (r− 1)-tuples from P has to agree with P ′, we can assume without loss of generality454

that a = a′. Further we can assume that for some 1 ≤ j < r/2, b and b′ agree on the first j455

entries, but not in the (j + 1)-st. They can not share another r/2 or more entries as this would456

imply b = b′. Thus P and P ′ share precisely an interval of length r − 1 + j and thus j edges.457

With this we can bound E(IP IP ′) ≤ p2r−2−j .458

Let NP,j be the number of paths P ′ such that P and P ′ share precisely j edges. The above459

shows that for fixed P = (a,b), NP,j is at most the number of choices of leaves b′ ∈ L′ such460

that b and b′ only differ in the ending (r − 1 − j)-tuple, plus the number of choices of leaves461

a′ ∈ L such that a and a′ only differ in the start (r− 1− j)-tuple. It follows from property P4462

of Claim 5, that the start j-tuple of b′ and the end j-tuple of a′ are the ends of at most463

ξr−jQ · |S|−j logj n+ 1 many paths. This implies that NP,j ≤ Q · |S|−j logj n, because j < r/2.464

We can now obtain for P, P ′ ∈ P465

∆ =
∑

P 6=P ′,P∩P ′ 6=∅

E(IP IP ′) =
∑
P∈P

∑
1≤j<r/2

(∑
|P ′∩P |=j

E(IP IP ′)
)
.

With the above we get466

∆ ≤
∑
P∈P

∑
1≤j<r/2

NP,j · p2r−2−j

≤ |P|2p2r−2
∑

1≤j<r/2

|P|−1 ·Q · |S|−j logj n · p−j

≤ E(X)2 · 2Q−1
∑

1≤j<r/2

C−j ≤ E(X)23C−1 log−1 n,

where we used that |S| ≥ Cp−1 log n and Q ≥ log n. Hence, Janson’s inequality (2) implies that467

P(X = 0) ≤ exp(−E(X)2/(E(X) + ∆)) ≤ exp(−C
6 log n). Thus we find some connection with468

probability at least 1− n−2r.469

But we do not want to reveal all the O(Q2) edges for all paths from P, since this would add470

way to manu edges to the exposure hypergraph E . The above argument proves that it is very471

likely that the desired connecting path exists and we will argue how to find such a path in an472

“economic” way. We find it by the following procedure. First we reveal all the edges at each473

leaf in L and L′. This entails adding 2Q edges to E and if r = 3 then we are already done and474

we have added 2Q ≤ |S| edges to E .475

For r ≥ 4 we then construct from each leaf of L all possible tight paths in S with b(r− 2)/2c476

edges and similarly from each leaf of L′ all tight paths of length b(r − 3)/2c. We do this by477

the obvious breadth-first-search procedure, revealing at each step all edges at the end of each478

12

currently constructed path with less than b(r− 2)/2c (or b(r− 3)/2c respectively) edges which479

have not so far been revealed and adding each end to E . Trivially, if the desired path exists480

then two of these constructed paths will link up, so that this procedure succeeds in finding a481

connecting path with probability 1− n−2r.482

The expected number of edges in S containing any given (r − 1)-set in S is p(|S| − r + 1),483

is between C
2 log n and C log n. Thus by Chernoff’s inequality and the union bound, with484

probability at least 1− n−3r no such (r − 1)-set is in more than 2C log n edges contained in S.485

It follows that the number of edges we add to E in this procedure is with probability at least486

1− n−3r not more than487

2Q

b(r−2)/2c∑
i=0

(2C log n)i ≤ 2p−(r−1)/2 log n · r(2C log n)(r−2)/2

= O
(
p−(r−2) logr−2 n

)
= O(|S|r−2) ,

for r ≥ 4. Putting this together with property P2 of Claim 5 we see that the final exposure488

graph E ′ has at most O(|S|r−2) edges more than E , as desired.489

Probability and runtime. Altogether we have that our algorithm for the Connecting Lemma490

fails with probability at most n−2r + n−2r + n−3r ≤ n−5.491

We now estimate the running time of our algorithm. In total we added O(|S|r−2) many492

(r − 1)-tuples to E . For every (r − 1)-tuple exposed, we have to go through at most n vertices493

until we found all new edges. This gives at most O(nr−1) steps. We can easily keep track of494

the bounds for Claim 5 and update them after each event. Since there is nothing else to take495

care of, we have a total number of at most O(nr−1) steps.496

4.4. Spike path version. The statement of the lemma is almost the same as for the tight path497

version, Lemma 3.498

Lemma 6 (Spike path Lemma). For each r ≥ 3 there exist c, C > 0 and a deterministic499

O(nr−1)-time algorithm whose input is an n-vertex r-uniform hypergraph G, a pair of distinct500

(r−1)-tuples u and v, a set S ⊆ V (G) and a (r−1)-uniform exposure hypergraph E on the same501

vertex set. The output of the algorithm is either ‘Fail’ or a spike path of even length o(log n)502

in G whose ends are u and v and whose interior vertices are in S, and an exposure hypergraph503

E ′ ⊃ E. We have e(E ′) ≤ e(E) + O(|S|r−2) and all the edges E(E ′) \ E(E) are contained in504

S ∪ u ∪ v.505

Suppose that G is drawn from the distribution G(r)(n, p) with p ≥ C(log n)3/n, that E does506

not contain any edges intersecting both S and u ∪ v. If furthermore we have |S| = Cp−1 log n507

and |e(E [S])| ≤ c|S|r−1 then the algorithm returns ‘Fail’ with probability at most n−5.508

Sketch proof. We modify the proof of Lemma 3 in the following simple ways. First, we will509

maintain fans of spike paths rather than tight paths, and we change Algorithm 3 line 5 so that510

the tuple a to be extended is the (unique) one whose extension continues to give us a spike511

path. Note that whenever we have a spike path ending in a and we extend the spike path by512

adding one vertex b then the end of the new spike path is an (r − 1)-set whose vertices are513

contained in (a, b) (though in general not the last r − 1 vertices nor in the same order). This514

is all we need to make our analysis of the fan construction work; it is not necessary to change515

anything in this part of the proof or the constants. Second, when we come to connect fans, we516

let L be the reverses of the end tuples of Ft(u) and L′ be the end tuples of Ft(v), and (again)517

look for a tight path connecting a tuple in L to one in L′. This has no effect on the proof518

that a connecting path from some member of L to some member of L′ exists, and the result is519

the desired spike path. The resulting spike path is of even length as both fans have the same520

size. �521

13

5. Proof of the Reservoir Lemma522

5.1. Idea. The reservoir path Pres will consist of absorbing structures (each “carrying” one523

vertex from R). More precisely, these absorbing structures can be seen as small reservoir path524

with reservoir of cardinality 1. Each of these small absorbers consists of a cyclic spike path525

plus the reservoir vertex, where pairs of spikes are additionally connected with tight paths (cf./526

Figure 1).527

First we choose the reservoir set R and disjoint sets U1, U2 and U3. For every vertex in R we528

will reveal the necessary path segment in U1. From the endpoints of these path we fan out and529

also close the backbone structure of the reservoir inside U2. Finally we use U3 and Lemma 3 to530

get the missing connections in the reservoir structures and connect all structures to one path531

Pres. In each step the relevant edges of the exposure graph E are solely coming from the same532

step.533

5.2. Proof. We arbitrarily fix the reservoir set R of size 2Cp−1 log n and disjoint sets U1, U2534

and U3 of the same size such that S = R∪U1 ∪U2 ∪U3 is of size n
4 . First we want to build the535

absorbing structures for every a ∈ R, which have size roughly t2 = o(log2 n). There is a sketch536

of this structure for some a ∈ R in Figure 1.537

a
ua

va
P1 P2 Pt−1 Pt. . .

x1 x2 x3 . . . xt−1 xt

ytyt−1. . .y3y2y1

Figure 1. Illustration of the absorber for one vertex a ∈ R and r = 5 with the
path, which contains the vertex a.

So we fix a ∈ R. We want to construct the following tight path on 2r− 1 vertices containing538

a in the middle. The end tuples are x1 = (x1, . . . , xr−1) and ua = (u1, . . . , ur−1) and together539

with a we require that all the edges {xr−j , . . . , x1, a, u1, . . . , uj−1} are present for j = 1, . . . , br.540

We build this path by first choosing x1, . . . , xr−2 arbitrarily from U1. Then we expose all edges541

containing {x1, . . . , xr−2, a} to get xr−1. We continue by exposing all edges containing the set542

{xr−j−1, . . . , x1, a, u1, . . . , uj−1} to get uj for j = 1, . . . , br − 1. The probability that in any of543

these cases we fail to find a new vertex inside a subset of U1 of size at least |U1|/2 is at most544

n−5 by Chernoff’s inequality. A union bound over all r edges and over all a ∈ R reveals that545

with probability at most n−3 we fail to construct the small starting graph for any a.546

Recall that when adding edges, we always expose all edges containing one (r − 1)-tuple and547

then add this to E . All exposed (r−1)-tuples from this step are contained in U1∪R and none of548

them contains more than one vertex from R. Furthermore we did at most O(|R| · |U1|) = O(n2)549

many steps so far.550

Now we want to build the absorbing structure for a. We partition each of U2 and U3 into551

parts of size Cp−1 log n (plus perhaps a smaller left-over set). We apply Lemma 6 to the (r−1)-552

tuples ←−x1 and ←−ua and connect them with a spike path of even length 2t+ 2 in some part of U2,553

with t = o(log n). At each step we use a part of U2 in which we have so far built the least spike554

14

paths for the application of Lemma 6, which is necessary to control the edges of E within this555

set. We use U2 as both tuples are contained in U1 and thus we have no problem with edges from556

E intersecting both U2 and the end tuples. Let the spikes after x1 and ua be called x2, . . . ,xt557

and y1, . . . ,yt respectively. The last remaining spike opposite of ua we call va. We apply the558

tight-path version of Lemma 3 to find paths Pi connecting the tuples xi and yi for i = 1, . . . , t559

in a part of U3. Again, we choose a part of U3 which was used for building the least connecting560

paths so far. We use parts of U3 for these connections, because all the spikes are contained561

in U1 ∪ U2 and thus there are no edges of E intersecting U3 and the spikes. This finishes the562

absorbing structure for a. It has end tuples ua and va.563

To finish Pres we enumerate the vertices in R increasingly a1, . . . , a|R|. Then we use Lemma 3564

repeatedly, again at each step using a part of U3 which has been used least often previously, to565

connect the tuples vai to uai+1 for i = 1, . . . , |R| − 1 with tight paths. Thus we have obtained566

the path Pres with end tuples u = ua1 and v = va|R| .567

The absorbing works in the following way for the structure of a single vertex a ∈ R. It relies568

on the fact, that the paths Pi can be traversed in both directions and that we can walk from569

any spike to its neighbouring spike using a tight path. The path which uses a (Figure 1) starts570

with ua, goes through a to x1 and then uses the path P1 to y1. From there it goes via a tight571

path to y2 and uses P2 to go back to x2. Going from xi via path Pi to yi and back from yi+1572

through Pi+1 to xi+1 for i = 2, . . . , t− 1 the path ends up in va and uses all vertices. To avoid573

a (Figure 2) the path starting in ua goes immediately to y1, then uses the path P1 to go to x1.574

Alternating as above and traversing all the paths Pi in opposite direction we again end up in575

va and used all vertices but a.576

a
ua

va
P1 P2 Pt−1 Pt. . .

x1 x2 x3 . . . xt−1 xt

ytyt−1. . .y3y2y1

Figure 2. Illustration of the absorber for one vertex a ∈ R and r = 5 with the
path, which does not contain the vertex a.

For the proof of the lemma it remains to check that we obtain the right probability and we577

are indeed able to apply Lemma 3 as we described. It is immediate from the construction, that578

no edges of E are contained in R ∪ u ∪ v.579

In total we are performing |R| many connections with spike-paths and |R| · t+ |R| − 1 many580

connections with tight-paths. Thus altogether we have o
(
p−1log2 n

)
executions of Lemma 3581

and Lemma 6. In each application we add O
(
Cp−1 log n

)r−2
edges to E in some part of U2 or582

U3. Since each part initially contains no edges of E , provided a given part has been used at most583

p−1 times the total number of edges of E in it is o
(
Cp−1 log n

)r−1
, and therefore we can apply584

Lemma 3 or 6 at least one more time with that part. Since |U2| and |U3| are of size linear in n,585

they each contain Ω
(
pn/ log n

)
parts. Thus we can perform in total Ω(n/ log n) = Ω

(
p−1 log2 n)586

applications of either Lemma 3 or Lemma 6 before all parts have been used p−1 times and thus587

might acquire too many edges of E . Since we do not need to perform that many applications,588

15

we conclude that the conditions of each of Lemma 3 and Lemma 6 are met each time we apply589

them.590

Since the connecting lemma fails with probability at most n−5 the construction of this ab-591

sorber fails with probability at most n−3. In every connection there are at most O(nr−1) steps592

performed and thus we need o(nr−1p−1 log2 n) = O(nr) many steps for the construction of the593

absorber. �594

6. Conclusion595

In this paper we have improved upon the best known algorithms for finding a tight Hamilton596

cycle in G(r)(n, p): we provide a deterministic algorithm with runtime O(nr) which for any edge597

probability p ≥ C(log n)3n−1 succeeds a.a.s. While we give an affirmative answer to a question598

of Dudek and Frieze [8] in this regime, the question remains open for e/n ≤ p < C(log n)3n−1599

for r ≥ 4, and 1/n� p < C(log n)3n−1 for r = 3.600

Let us now turn our attention to the closely related problem of finding the r-th power of a601

Hamilton cycle in the binomial random graph G(n, p), where r ≥ 2. While a general result of602

Riordan [23] already shows that the threshold for r ≥ 3 is given by p = Θ(n−1/r) (as observed603

in [18]), the threshold for r = 2 is still open, where the best known upper bound is a polylog-604

factor away from the first-moment lower bound n−1/2 [20].605

Since the result by Riordan is based on the second moment method it is inherently non-606

constructive. By contrast, the proof in [20] (for r ≥ 2) is based on a quasi-polynomial time607

algorithm which for p ≥ C(log n)8/rn−1/r finds the r-th power of an Hamilton a.a.s. in G(n, p),608

and which is very similar to their algorithm for finding tight Hamilton cycles in G(r)(n, p). We609

think that our ideas are also applicable in this context and would provide an improved algorithm610

for finding r-th powers of Hamilton cycles in G(n, p), though we did not check any details.611

Finally, it would be interesting to know the average case complexity of determining whether612

an n-vertex r-uniform hypergraph with m edges contains a tight Hamilton cycle. Our results613

(together with a standard link between the hypergeometric and binomial random hypergraphs)614

show that if m � nr−1 log3 n then a typical such hypergraph will contain a Hamilton cycle,615

but the failure probability of our algorithm is not good enough to show that the average case616

complexity is polynomial time. For this one would need a more robust algorithm which can617

tolerate some ‘errors’ at the cost of doing extra computation to determine whether the ‘error’618

causes Hamiltonicity to fail or not.619

References620

1. P. Allen, J. Böttcher, Y. Kohayakawa, and Y. Person, Tight Hamilton cycles in random hypergraphs, Random621

Structures Algorithms 46 (2015), no. 3, 446–465.622

2. D. Angluin and L. G. Valiant, Fast probabilistic algorithms for Hamiltonian circuits and matchings, J. Com-623

put. System Sci. 18 (1979), no. 2, 155–193.624

3. Andreas Björklund, Determinant sums for undirected Hamiltonicity, SIAM Journal on Computing 43 (2014),625

no. 1, 280–299.626

4. B. Bollobás, The evolution of sparse graphs, Graph theory and combinatorics (Cambridge, 1983), Academic627

Press, London, 1984, pp. 35–57. MR 777163 (86i:05119)628

5. B. Bollobás, T. I. Fenner, and A. Frieze, An algorithm for finding Hamilton paths and cycles in random629

graphs, Combinatorica 7 (1987), no. 4, 327–341. MR 931191 (89h:05049)630

6. D. Clemens, J. Ehrenmüller, and Y. Person, A Dirac-type theorem for Hamilton Berge cycles in random631

hypergraphs., Discrete mathematical days. Extended abstracts of the 10th “Jornadas de matemática discreta632

y algoŕıtmica” (JMDA), Barcelona, Spain, July 6–8, 2016, Amsterdam: Elsevier, 2016, pp. 181–186.633

7. A. Dudek and A. Frieze, Loose Hamilton cycles in random uniform hypergraphs, Electron. J. Combin. 18634

(2011), no. 1, Paper 48, 14. MR 2776824 (2012c:05275)635

8. , Tight Hamilton cycles in random uniform hypergraphs, Random Structures Algorithms 42 (2013),636

no. 3, 374–385.637

9. E. Friedgut, Sharp thresholds of graph properties, and the k-sat problem, J. Amer. Math. Soc. 12 (1999),638

no. 4, 1017–1054, With an appendix by Jean Bourgain.639

10. A. Frieze, Loose Hamilton cycles in random 3-uniform hypergraphs, Electron. J. Combin. 17 (2010), no. 1,640

Note 28, 4. MR 2651737 (2011g:05268)641

16

11. S. Janson, T. Luczak, and A. Ruciński, Random graphs, Wiley-Interscience, New York, 2000.642

12. A. Johansson, J. Kahn, and V. Vu, Factors in random graphs, Random Structures Algorithms 33 (2008),643

no. 1, 1–28. MR 2428975 (2009f:05243)644

13. R. M Karp, Reducibility among combinatorial problems, Complexity of computer computations, Springer,645

1972, pp. 85–103.646

14. J. Komlós and E. Szemerédi, Limit distribution for the existence of Hamiltonian cycles in a random graph,647

Discrete Math. 43 (1983), no. 1, 55–63. MR 680304 (85g:05124)648

15. A.D. Korshunov, Solution of a problem of Erdős and Renyi on Hamiltonian cycles in nonoriented graphs.,649

Sov. Math., Dokl. 17 (1976), 760–764.650

16. , Solution of a problem of P. Erdős and A. Renyi on Hamiltonian cycles in undirected graphs, Metody651

Diskretn. Anal. 31 (1977), 17–56.652

17. M. Krivelevich, Triangle factors in random graphs, Combinatorics, Probability and Computing 6 (1997),653

no. 3, 337–347.654

18. D. Kühn and D. Osthus, On Pósa’s conjecture for random graphs, SIAM Journal on Discrete Mathematics655

26 (2012), no. 3, 1440–1457.656

19. R. Montgomery, Embedding bounded degree spanning trees in random graphs, arXiv:1405.6559v2.657

20. R. Nenadov and N. Škorić, Powers of Hamilton cycles in random graphs and tight Hamilton cycles in random658

hypergraphs, arXiv preprint arXiv:1601.04034 (2017).659

21. D. Poole, On weak Hamiltonicity of a random hypergraph, arXiv:1410.7446 (2014).660

22. L. Pósa, Hamiltonian circuits in random graphs, Discrete Math. 14 (1976), no. 4, 359–364. MR 0389666 (52661

#10497)662

23. O. Riordan, Spanning subgraphs of random graphs, Combinatorics, Probability and Computing 9 (2000),663

no. 2, 125148.664

24. V. Rödl, A. Ruciński, and E. Szemerédi, A Dirac-type theorem for 3-uniform hypergraphs, Combin. Probab.665

Comput. 15 (2006), no. 1-2, 229–251.666

25. E. Shamir, How many random edges make a graph Hamiltonian?, Combinatorica 3 (1983), no. 1, 123–131.667

17

	1. Introduction
	1.1. Main result

	2. An informal algorithm overview
	2.1. Notation and inequalities
	2.2. Overview of the algorithm

	3. Two key Lemmas and the proof of Theorem 1
	3.1. Two Key Lemmas
	3.2. Overview continued: more details
	3.3. Proof of Theorem 1

	4. Proof of the Connecting Lemma
	4.1. Preliminaries
	4.2. Idea and further notation
	4.3. Proof
	4.4. Spike path version

	5. Proof of the Reservoir Lemma
	5.1. Idea
	5.2. Proof

	6. Conclusion
	References

