
Collider Bias in Economic History Research⇤

Eric B. Schneider†

12 August 2020

Forthcoming in Explorations in Economic History

Abstract

Economic historians have long been aware of many forms of bias that could lead to
spurious causal inferences. However, our approach to these biases has been muddled
at times by dealing with each bias separately and by confusion about the sources of
bias and how to mitigate them. This paper shows how the methodology of directed
acyclical graphs (DAGs) formulated by Pearl (2009) and particularly the concept of
collider bias can provide economic historians with a unified approach to managing
a wide range of biases that can distort causal inference. I present ten examples of
collider bias drawn from economic history research, focussing mainly on examples
where the authors were able to overcome or mitigate the bias. Thus, the paper
addresses how to diagnose collider bias and also strategies for managing it. The pa-
per also shows that quasi-random experimental designs are rarely able to overcome
collider bias. Although all of these biases were understood by economic histori-
ans before, conceptualising them as collider bias will improve economic historians’
understanding of the limitations of particular sources and help us develop better
research designs in the future.

Keywords: sample-selection bias, collider bias, directed acyclical graphs

JEL Codes: N01, N30

⇤Thanks to the editor Marianne Wanamaker, two anonymous referees, Vellore Arthi, Jason Lennard,
Mary Morgan, Felix Scha↵ and participants in the LSE Economic History Reading Group for helpful
comments on an earlier draft. Any remaining errors are my own.

†London School of Economics, e.b.schneider@lse.ac.uk, https://www.ericbschneider.com/

1



1 Introduction

Economic historians have long worried about how the data generating process may induce

biases in our analysis. This is in part because many historical sources are subject to sample

selection either through their initial collection or survival.1 However, the potential for bias

in economic history research goes well beyond sample-selection bias and includes many

other forms of bias that arise from the nature of our sources. Non-random attrition is

common in longitudinal studies as is the use of truncated variables. Data may only survive

for successful cases, and we often rely on imperfect proxy measures that may be subject

to bias. Economic historians have typically been astute at understanding these biases,

but we can benefit and learn from interdisciplinary understandings of bias that a↵ect our

work.

This paper introduces an approach to detecting and managing bias developed origin-

ally by Sewall Wright (1934) and adapted and expanded by the computer scientist Judea

Pearl. Pearl has developed a graphical method for causal inference using directed acyc-

lical graphs (DAGs) (Pearl 2009). This method has been adopted by epidemiologists and

sociologists (Elwert 2013) but has seen slower take-up among economists who already

had a very developed set of methodologies for determining causality, though c.f. Spiegler

(2016). DAGs are very useful for teaching (especially undergraduates) because they ex-

plain some of the main threats to causal inference in a very intuitive and non-technical

way (Cunningham 2021). However, DAGs can also be helpful to researchers in economic

history through the concept of collider bias, which incorporates many common forms of

bias that we face.

DAGs have several advantages relative to existing approaches. First, they are simpler,

faster and more intuitive than many of the typical ways of modelling various biases in

economics. Second, modelling the bias in a DAG provides insight into how the researcher

might mitigate its e↵ect in di↵erent empirical settings. Economic historians obviously

1The recent debate sparked by Bodenhorn et al. (2017)’s critique of the anthropometric history
literature has brought sample-selection bias back to the fore and prompted substantial new research on
the topic including a special issue of Social Science History (Inwood and Maxwell-Stewart 2020; Komlos
and A’Hearn 2019; Schneider 2020; Steckel and Ziebarth 2016; Zimran 2019).
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have less flexibility with research design than those working with more recent data or

experimental methods, which means that any insights on how to mitigate the e↵ects of

various forms of bias are helpful. Finally, DAGs make it clear that randomisation or other

quasi-experimental research designs are not a panacea for collider bias. In fact, in most

cases they are not able overcome collider bias because the collider bias is unrelated to the

randomisation of the treatment (independent variable of interest). To be clear, the insights

provided by DAGs about collider bias are not necessarily novel, i.e. traditional economics

approaches would lead you to the same conclusions. However, their non-technical and

intuitive structure may help to clarify these issues because many forms of bias can be

summarised in a similar form.

This paper follows the structure of Elwert and Winship (2014), presenting ten ex-

amples of collider bias from economic history research. The examples are mainly drawn

from historical economic demography since that is my own field of interest. Each example

has its own DAG.2 These DAGs are simplified versions that seek to highlight the poten-

tial for collider bias instead of illustrating all the potential causal paths between each

exposure and outcome. Rather than seeking to undermine the papers discussed, I have

almost exclusively chosen examples where the authors were able to manage the potential

bias. Thus, the examples address both the forms collider bias can take in economic history

research and techniques for overcoming (or seeking to mitigate) the bias. The forms of

collider bias can be split into three broad categories: colliders that are direct descendants

of the outcome variable, colliders that relate to intermediate variables between treatment

and outcome and pre-treatment colliders. The paper gives a brief introduction to DAGs

and collider bias before dealing with the three larger types of collider bias in turn.

2http://www.dagitty.net/ is a useful web-based tool for drawing DAGs and getting a feel for how
they work (Textor et al. 2016).
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2 Directed Acyclical Graphs and Collider Bias

There is not room in this paper for a full explication of DAGs and the do-calculus of

causal inference developed by Judea Pearl in relation to them.3 However, I will briefly

present the language of DAGs to help the reader understand the points made in relation

to collider bias below.

DAGs illustrate the causal relationship between two main variables: the exposure or

treatment variable (the main independent variable of interest) and the outcome variable

(the dependent variable). A causal relationship between two variables in a DAG is illus-

trated using an arrow with the direction of the arrow reflecting the direction of causation.

We can express the relationship between any pair of variables in a DAG as follows: if A

causes B (A ! B), A is an ancestor of B and B is a descendant of A. Thus, the simplest

DAG would merely include an exposure variable and an outcome variable with an arrow

pointing toward the outcome connecting them (Figure 1A). However, very few causal

relationships are so simple, and to properly account for all potential biases, we need to

include other types of variables. A general rule of thumb is that a complete DAG must

include all direct ancestors and descendants of the exposure and outcome and any other

variables that may causally link these initial variables to one another (Elwert 2013).

Once the DAG is complete, there are four types of paths from the exposure to the

outcome (see Figure 1 for the full set of options). The first is the direct path, a direct line

connecting the exposure and outcome: Exposure! Outcome (Figure 1A). The second is a

mediated path where the e↵ect of the exposure on the outcome works through a mediator

variable, A: Exposure ! A ! Outcome (Figure 1B). The mediating path can contain

more than one variable but the direction of causation must always flow from exposure

to outcome: Exposure ! B ! C ! Outcome. The third is a confounding path where

an ancestor variable causes both the exposure and the outcome. This can be through a

direct line of causation as in Figure 1C: Exposure D! Outcome. Or it could include a

number of variables as in the lower path in Figure 1C: Exposure  E  F ! Outcome.

3For a brief introduction, see Cunningham (2021) chapter 4. For more advanced and technical dis-
cussions see Pearl (2009) or Elwert (2013).
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Finally, a colliding path is one where two arrows collide on (are pointed toward) the same

variable. The simplest form is when a variable is a descendant of both the exposure and

outcome as in the top path in Figure 1D: Exposure ! G  Outcome. Colliding paths

can also be more complex though as in the lower path: Exposure ! H  I ! Outcome.

Variables where two arrows collide are called collider variables, i.e. variables G and H.

In the language of DAGs, in order to identify an unbiased causal e↵ect of the exposure

on the outcome, we have to close all of the non-causal (sometimes called backdoor) paths

between the exposure and the outcome. The direct path and any mediating paths are part

of the causal link between exposure and outcome, so they do not create bias. However,

confounding and colliding paths have the potential to bias the causal e↵ect between the

exposure and the outcome.

Starting with confounding paths, imagine that variable D in Figure 1C has a positive

e↵ect on both the exposure and the outcome. This means that a positive shock to D would

also lead the exposure and outcome to increase, inducing spurious covariance between

the exposure and outcome. Thus, we would need to control for variable D in order to

estimate an unbiased e↵ect of exposure on outcome. In this paper, controlling for (or

conditioning on) a variable is represented in the DAGs by putting a box around the

variable. This could mean that the variable is included as a control in a regression or

is conditioned on by design since the data is only collected for a subset of the variable

or sample selection is correlated with the variable. Note that we only need to control

for one variable along each non-causal confounding path to close the path, which means

that in Figure 1C, controlling for either variable E or F would remove the bias of the

lower path: Exposure  E  F ! Outcome. However, the fact that we do not control

for variable D means that there is bias in the estimated causal e↵ect between exposure

and outcome, represented by the red, dashed line. This bias is equivalent to omitted

variable bias, with which economists are familiar, and can be eliminated with common

identification strategies such as instrumental variables or di↵-in-di↵.

Colliding paths can also create bias, but unlike confounders, collider variables nat-

urally close non-causal paths. Thus, the upper path in Figure 1D, Exposure ! G  
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Figure 1: Basic Structure of DAGs

A. Direct Causal Path

OutcomeExposure

B. Mediated Causal Paths

OutcomeExposure A

B C

C. Confounding Non-Causal Paths

Outcome

E

D

F

Exposure

D. Colliding Non-Causal Paths

Outcome

H

G

I

Exposure

E. Example of an Identified DAG

Outcome

M

L

J K

N

Exposure

Notes: Names in each DAG represent variables and the arrows show the direction of causation between
the variables in the DAG. The exposure is the main independent variable (treatment variable) of interest,

and the outcome is the dependent variable. Variables in a box have been controlled for or conditioned
on in the DAG. This could mean that they are included as a control in a regression or that they are
conditioned on by design since the data is only collected for a subset of the variable or sample selection
is correlated with the variable. The red, dashed lines show the bias that is induced by conditioning on a
collider (except in the case of Figure 1C, which shows bias induced by omitting a confounding variable).
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Outcome, is naturally closed. However, controlling for or conditioning on a collider (or

a descendent of the collider) opens a non-causal path between exposure and outcome,

inducing bias in the e↵ect of interest. The lower path in Figure 1D is an example of this.

Conditioning on variable H opens the non-causal path Exposure ! H  I ! Outcome,

inducing bias in the estimated causal e↵ect between exposure and outcome, again repres-

ented by a red, dashed line. This bias is known as collider bias or endogenous selection

bias and is far less intuitive and straightforward than confounding bias. It can take many

forms from traditional sample-selection bias to attrition and survival bias to the bad con-

trols described by Angrist and Pischke (2009). In historical research, conditioning on a

collider is often a product of the study design since historical sources may have only been

collected or survive for selected samples and is especially likely to occur when sample

selection is related to the outcome. Note that in many cases, identification strategies

commonly used by economic historians cannot overcome collider bias because the col-

liding non-causal path either occurs after the treatment has occurred or is unrelated to

the treatment, meaning that randomisation of the treatment or other quasi-experimental

identification strategies such as IV and di↵-in-di↵ do not eliminate the bias.4

In order to estimate a causal e↵ect between exposure and outcome using a DAG, the

researcher must close all confounding non-causal paths and not open any colliding non-

causal paths. Figure 1E presents an identified DAG with all four types of paths. We have

closed the confounding non-causal path by controlling for variable N, and we have not

opened the colliding non-causal path since we do not condition on or control for variable

J. Thus, technically it is possible to identify a causal e↵ect simply by ensuring that all

non-causal, biasing paths are closed, i.e. controlling for all confounders. A sceptical reader

might question the researcher’s ability to produce a correctly specified DAG that could

capture all potential confounders5 and on that basis prefer to use quasi-experimental re-

4This is discussed in much more detail below.
5It is possible to empirically test the structure of a DAG because DAGs produce independence con-

ditions between variables. The DAG in Figure 1E has 18 independence conditions between the variables.
For example, the following conditional independence should be true: (Exposure ? K | Outcome), i.e. the
partial correlation between Exposure and K should be zero when controlling for the Outcome. If this
partial correlation is not equal to zero, it could mean one or more of three things: 1) that there is a direct
relationship between the Exposure and K; 2) that there is an omitted confounder in the DAG that is
driving the partial correlation between the variables; or 3) that measurement error is driving a partial

7



search designs to manage confounding or omitted variable bias. This makes sense, but

even simple, non-fully specified DAGs can be helpful in diagnosing and mitigating collider

bias, with which economic historians are less familiar. Thus, the rest of the paper focusses

on collider bias. Rather than discussing forms of bias at a theoretical level, I present spe-

cific examples from economic history research of various types of collider bias to illustrate

some of the forms that collider bias can take and how to mitigate these biases.

3 Conditioning on an Outcome Collider

Before moving to complex forms of collider bias, it is best to start with the simplest form:

colliders that are descendants of the outcome variable. I present four types of colliders

that are direct descendants of the outcome variable.

3.1 Truncation Bias

Beginning with truncation bias, Figure 2 presents a very simple DAG following Floud

et al. (1990) where the authors are (in the first instance) trying to understand the causal

relationship between nutrition in childhood and adult height. The adult height measure-

ments come from enlistment records of the British military, which had a minimum height

requirement. This means that the outcome variable (adult height) is truncated, i.e. we

are implicitly adjusting on the outcome variable. This creates collider bias because the

outcome variable is always a collider on the path between the exposure and the error

term. Thus, without accounting for the truncation via maximum likelihood estimators or

other methods, we would estimate a biased e↵ect of nutrition on adult height (A’Hearn

2004).

The fact that the outcome is always a collider on the path from the exposure to the

error term yields another important insight. If one conditions on a variable that is a

correlation. The web tool http://www.daggity.net/ lists the conditional independences for each DAG
submitted by the user, and the R package daggity will test the conditional independences using a dataset
provided (Textor et al. 2016). These conditional independence assumptions are perhaps less useful to
economic historians because we rarely have the data to be able to test all conditional independences in
our data.
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Figure 2: Bias caused by Truncation of the Outcome

Adult Height
(outcome)

Error Term

Nutrition
(exposure)

Sources: Empirical setting taken from Floud et al. (1990).

descendant of the outcome, this will always create collider bias whether the variable is

related to the exposure or not. We will explore this in more detail in the next section.

3.2 Sample-Selection Bias

Collider bias can also be used to explicate the classic example of Heckman sample-

selection bias. This applies to Bodenhorn et al. (2017)’s critique of the historical height

literature. Bodenhorn et al. argue that since taller individuals enjoyed a wage premium

in the labour market and the military was not an attractive employer in relative terms in

the economy, changes in economic conditions would a↵ect the types of men enlisting in

the army. Specifically, they argue that as conditions improved during the Industrial Re-

volution, taller men had better employment opportunities in the civilian labour market,

and therefore shorter men were more likely to enlist in the military. They argue that this

bias, instead of changes in nutrition as had been argued before (Komlos 1998), produces

the ‘Industrial Growth Puzzle’ or ‘Antebellum Puzzle’ where mean heights of adult men

fell during the nineteenth century in Britain and the United States even as GDP per

capita and real wages grew.

Seen in the context of a DAG (Figure 3A), the Bodenhorn et al. critique can be repres-

ented as conditioning on the descendant of a collider, the outcome. Since the researcher

can only observe the heights of men who enlisted in the military, they are implicitly con-

ditioning on a descendant of the outcome, introducing a non-causal association between

the exposure and error term and biasing the estimated e↵ect between nutrition and adult
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Figure 3: Sample-Selection Bias as Collider Bias

Adult Height
(outcome)

Error Term

Wage in
Labour Market

Enlisted

Nutrition
(exposure)

A.

Adult Height
(outcome)

Human
Capital

Formation

Wage in
Labour Market

Commit a Crime

Nutrition
(exposure)

B.

Sources: Empirical setting for A adapted from Bodenhorn et al. (2017) and B from Bodenhorn et al.
(2012).
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height. Although there is debate in the literature about whether the Bodenhorn et al.

critique is valid, thinking about selection on unobservables in a DAG context is help-

ful because it clarifies what solutions there are to the bias. Given that enlisted is not

a confounder and is unrelated to the exposure in the DAG, the collider bias cannot be

overcome by controlling for enlistment year or randomizing nutrition as the treatment

(Hughes et al. 2019).6 Finding an instrumental variable (IV) for nutrition would not

change the fact that enlistment could still be driven by height, especially since enlistment

would occur after the exposure. Thus, one either has to model the selection explicitly as

Zimran (2019) did, or seek to show that there is no causal link between the outcome and

collider as Komlos and A’Hearn (2019) did. As a general note, one must always break

the causal link between the outcome and the collider if the collider is a direct descendant

of the outcome.

We can extend this example to nineteenth-century American prison records as in

Bodenhorn et al. (2012). Because prison records are only collected for those convicted of

a crime, they can create the same kinds of selection discussed above. Figure 3B presents

a simplified DAG of this relationship. Again, the researcher is seeking to understand the

relationship between nutrition in childhood and adult height. However, collider bias is

present. The exposure variable, nutrition, a↵ects human capital formation, which in turn

influences an individual’s wage in the labour market in adulthood. On the other hand,

height directly a↵ects an individual’s wage in the labour market, and an individual’s wage

a↵ects their propensity to commit a crime since it a↵ects the opportunity cost of crime.

Thus, conditioning on committing a crime is conditioning on the descendant of a collider

(wage in the labour market) and introduces bias in the causal path between nutrition in

childhood and adult height.

The extent of the bias that this creates depends on the strength of the relationships

between the exposure and outcome and the collider. For instance, it is possible that

nutrition in childhood explains a very small share of human capital formation in the

nineteenth-century economy because most human capital was gained through learning by

6Bodenhorn et al. (2017) propose a diagnostic test for selection on unobservables that includes enlist-
ment year dummies in the regression, but this does not eliminate the potential bias.
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doing and cognitive ability was less important. Thus, the correlation between nutrition in

childhood and the wage in the labour market might be very small and therefore introduce

only a small amount of bias. Likewise, one could argue that women’s wages were not as

strongly determined by their height as men’s wages since men tended to work in the

most physically demanding jobs where physical size might be most valued. This would

mean that the bias introduced by conditioning on a collider might be smaller for women

than for men, which is reassuring since prison records are one of the very few sources of

women’s heights that economic historians have. As Zimran (2019) shows, just because

some bias is detectable in the data does not mean that the bias is large enough to

overturn findings from the raw data that did not formally account for the collider. Finally,

many researchers focus on local gaols like Houses of Correction rather than penitentiaries

which housed criminals convicted of serious o↵ences. By focusing on minor crimes such as

drunkenness and disorderly conduct, these historians have argued that the link between

an individual’s wage in the labour market and their propensity to commit a crime was

very small, reducing the potential bias (Horrell et al. 2009, p. 104). One could extend

this approach by showing that height trends by birth cohort were similar among those

committing crimes strongly related and unrelated to labour market conditions. These

solutions are not formally as convincing as modelling the selection directly, but they

could help to assuage fears of substantial bias.

3.3 Nonresponse Bias

Another common form of collider bias in economic history research is nonresponse bias

in longitudinal studies. One example of nonresponse bias arises in my recent paper with

David de la Croix and Jacob Weisdorf (de la Croix et al. 2019). We were seeking to

understand (in part) how social status a↵ected women’s propensity to marry versus to

remain celibate across their lifecourse. We found that upper class women had much lower

marriage rates than other social groups, i.e. upper-class women were more likely to remain

celibate across their lifecourse. We analysed the Cambridge Group family reconstitution

data, which uses records of baptisms (births), marriages and burials (deaths) in parish

12



Figure 4: Nonresponse Bias

Marriage
(outcome)

Migration

Social Status
(exposure)

Sources: Empirical setting taken from de la Croix et al. (2019).

registers to reconstruct the population of 26 parishes in early modern England (Wrigley

et al. 1997). These vital events are recorded for people in a particular parish but not for

surrounding parishes, so there are limits to what the data can tell us about the movement

of people across parishes.

Figure 4 presents a simplified DAG for our empirical approach highlighting the po-

tential collider bias. Social status is a categorical variable with seven occupational groups

based on the wealth attributed to occupations in probate records. Marriage is a binary

variable equal to one if we observed the woman’s birth, marriage and death in one of our

parishes and zero if we observed a woman’s birth and death but no marriage or children,

implying that the woman remained single across her lifecourse. We can only compute

marriage rates for women who remained in the same parish their entire life, i.e. women

who we observe both at birth and at death, because women born in our parish may have

moved to a di↵erent parish to get married, leaving our dataset. These women are lost to

follow up or non-respondents in our data, which could produce bias. If there were dif-

ferential rates of marriage and celibacy between migrants and non-migrants, for instance

because people migrated across parishes to get married and start a new household, then

this would mean that migration was a descendant of marriage, our outcome variable.

On the other hand, social status may also cause migration because women of higher

social status might have migrated ‘for marriage more frequently since they had a smaller

pool of eligible bachelors locally, had more money to search for potential partners and

would have benefited more from their husband’s inheritance’ (de la Croix et al. 2019,
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p. 246). Therefore, it is possible that we were conditioning on a collider, migration, which

would have created a biased relationship between social status and marriage.

Unfortunately, there was no perfect solution for this problem because the data does

not allow one to compare directly the marriage rates of migrants and non-migrants. To

deal with this issue, we first tried to show that social status did not influence migration.

There were no statistically significant or meaningful di↵erences in outmigration rates of

women by social class. Thus, upper-class women were not more likely to migrate than

their middle- and lower-class counterparts. However, disproving this link is not su�cient

because even if there were no causal link between social status and migration, migration

would still be the descendent of a collider (the outcome) as in Figure 3A.

Second, we tried to disprove the causal connection between marriage and migration.

Although we could not observe the marriages of out-migrants from our parishes, we could

observe and study women who migrated into our parishes for marriage. We showed that

the share of in-migrant brides was fairly constant across social groups and that upper

class women were not more likely to migrate for marriage. Thus, it seems unlikely that

there was a strong causal relationship between marriage and migration, and it certainly

did not vary substantially by social group. This allowed us to argue that conditioning on

non-migrants did not substantially bias our results. Although I have focused on this one,

narrow example, nonresponse bias applies to many research designs in economic history

including record linking between censuses or other administrative data where individuals

who cannot be linked are nonrespondents.

3.4 Ascertainment Bias

Ascertainment bias is one of the most famous forms of collider bias. It is the example

described by Cunningham (2021) looking at the correlation between acting talent and

beauty. Cunningham (following Rossman) posits that acting talent and beauty are inde-

pendent in the population. However, when one looks at the correlation between the two

variables among Hollywood Stars, one would find a negative correlation. The reason for

this is that becoming a Hollywood Star is caused by both being beautiful and talented.
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Figure 5: Ascertainment Bias

Died in Plague
(outcome)

Probated

Wealth
(exposure)

Sources: Hypothetical empirical setting.

Some can overcome a lack of talent through exceptional beauty and others can overcome

being less attractive through extraordinary talent. Thus, limiting the analysis to Hol-

lywood Stars is conditioning on a collider by design and produces a spurious negative

correlation between beauty and talent.

Economic historians sometimes face this issue as well. Consider a hypothetical example

of a historian trying to understand whether plague mortality in early modern England

was higher among the rich or the poor (Figure 5). To do this, the author might compare

the wealth of individuals in probate records who died during the plague to those who died

before or after the plague in ‘normal’ years. This empirical setup implicitly conditions

on a collider because not all individuals were probated: the wealthy were more likely to

be probated and people were probably less likely to leave wills and be formally probated

during plague epidemics. Thus, conditioning on those who were probated could create

a spurious finding that those dying during plague epidemics were wealthier than those

dying in normal times, even if there was no di↵erence in wealth between people dying

during the plague and in normal years. Ascertainment bias cautions against looking at

the causes of success (or failure) among the successful (or failures).

4 Conditioning on an Intermediate Collider

Having discussed several examples where the collider is a descendant of the outcome, we

now turn to the more nuanced and trickier cases where the collider is an intermediate

variable. By an intermediate variable, I mean a variable whose causal process occurs
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between the exposure (treatment) and outcome and that is not a direct descendant of the

outcome. I present four examples. Two are a product of selective attrition of individuals

in longitudinal studies, another is the result of using an imperfect proxy and the fourth

arises from conditioning on a mediator.

4.1 Informative/Dependent Censoring and Attrition Bias in Lon-

gitudinal Studies

4.1.1 Survival Bias

Similar to nonresponse bias described above, collider bias also arises when the researcher

can only observe outcomes for individuals who survived to a certain age and this attrition

is caused by the exposure and an ancestor of the outcome. Survivor bias is very common

in historical economic demography and is di�cult to overcome. For example, in a recent

paper with Vellore Arthi, we wanted to understand how infant feeding practices in early

infancy (in particular breastfeeding) a↵ected the weights of children later in infancy

(Arthi and Schneider 2020). To test this relationship, we used a sample of children from

the London Foundling Hospital. Figure 6 presents a simplified version of the DAG for

this relationship. Since breastfeeding protects against mortality in infancy, there was a

clear causal link between breastfeeding and survival. An individual’s latent (initial) health

status would clearly also a↵ect their propensity to survive to measurement and would also

influence their weight in infancy. We were forced to condition on a collider because we

only observed weights in infancy and infant feeding information for children who survived

to be measured in infancy (a number of months after birth). Conditioning on the collider,

survive to measurement, opens a non-causal path from breastfeeding to weight in infancy

and biases our estimate of the e↵ect of exposure on outcome.

In this case, the collider bias would lead us to underestimate the benefits of exclusive

breastfeeding on weight in infancy. The simplest way to see this is if we compare two

categories of breastfeeding as a binary variable: exclusively breastfed = 1 and never

breastfed = 0.7 Assume that the two groups had the same latent health at birth, and

7The paper takes a more nuanced perspective than this, but this simplifies the explanation.
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Figure 6: Survivor Bias

Weight in
Infancy

(outcome)

Survive to
Measurement

Latent Health

Breastfeeding
(exposure)

Sources: Empirical setting taken from Arthi and Schneider (2020).

that breastfeeding did not respond to this latent health status.8 Mortality would be higher

among those children who were never breastfed, and it is possible that this mortality

would have selectively culled weaker individuals. At its most extreme, this would amount

to removing the left tail of the initial health distribution, which would mean that the

survivors later in infancy in the never breastfed group would have had higher mean

initial health than the original group of never breastfed children. Thus, any di↵erence in

weight in infancy between the exclusively and never breastfed groups would be equal to

the causal e↵ect of breastfeeding minus the positive survival bias.

In order to combat this bias, we were able to find birth weights for a sub-sample of

the Foundling Hospital children and compare their birth weights to a random sample

of children born in London during the same period. Our results suggest that although

mortality may have been higher among the never breastfed group, this mortality did

not appear to be related to latent health, proxied by birth weight. Birth weights of

breastfed and never breastfed children observed later in infancy were not statistically

di↵erent from one another or from birth weights in the comparative sample of children.

This casts doubt on the causal relationship between latent health and survival within

8We test this using a subsample and find no significant di↵erences between the birth weight distribu-
tions of children who were breastfed and those who were not. This suggests that mothers did not seek
to compensate or reinforce initial health endowments with their breastfeeding decisions.
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breastfeeding categories at least insofar as birth weight captures latent health. We also

controlled directly for birth weight as a proxy of latent health, which closes the non-causal

path between exposure and outcome through the collider survival, eliminating the collider

bias. This example highlights the importance of key controls in managing collider bias

on intermediate variables.

Note that randomising breastfeeding at birth either experimentally or quasi-experimentally

through an IV or di↵erences-in-di↵erences strategy would not necessarily overcome the

collider bias. Randomisation of breastfeeding at birth would close non-causal, confound-

ing paths between the exposure and outcome but would not remove the collider bias since

the attrition from the sample occurs after the treatment. Thus, to remove the collider

bias, randomisation would have to somehow break the causal link between breastfeeding

and survival. It is di�cult to think of any randomisation that could break that link.

In addition, a sceptical reader would note that any common ancestor of the outcome

and the collider (survival) would open its own biasing, non-causal path. For example,

disease exposure and non-feeding health investments would both influence survival and

weight in infancy and create biasing non-causal paths.9 To address these open non-causal

paths, we added as many controls as possible. Fortunately, the Foundling Hospital Dataset

we use is extraordinarily rich, allowing us to control for a wide variety of variables. For

instance, we proxied disease exposure using birth year, birth district, and birth season

fixed e↵ects. In unreported specifications, we went even further controlling for individual-

level exposure to some diseases and the infant mortality rate in the birth district in the

year of birth. These additional controls did not substantially a↵ect our results, suggesting

that disease exposure (independent of infant feeding) did not produce significant bias.

However, non-feeding health investments remained unobserved, so this biasing path

and any relationship between the disease environment and the outcome not captured by

our proxies remained open. To provide bounds for the importance of this bias, we checked

for selection on unobservables using the test proposed by Oster (2019), which uses changes

in the coe�cient of the exposure variable and R-square when adding controls to give

9By non-feeding health investments, I mean washing the child, keeping a clean home, comforting the
child, etc.
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bounds on the potential importance of selection on unobservables. This test suggested that

there was very little selection on unobservables biasing our main coe�cient, alleviating

concerns that there was substantial bias in our estimated causal e↵ect of breastfeeding on

weight in infancy. Our strategy for dealing with collider bias for this paper highlights the

importance of key controls and the limitations of randomisation of treatment in mitigating

this form of intermediate variable collider bias.

4.1.2 M-Bias

A particularly tricky form of collider bias is known as M-bias because the DAG structure

tends to look like an M. In this case, the collider variable is not a direct descendant of

either the exposure or the outcome variable but is instead a descendant of ancestors of

the exposure and outcome. However, conditioning on an M-like collider still opens up a

non-causal path from the exposure to the outcome biasing the estimated causal e↵ect of

interest (Liu et al. 2012).

For an example of M-bias, we can borrow the empirical setting of Bleakley (2007)

in a slightly altered form. Bleakley wanted to understand how exposure to disease in

childhood a↵ected outcomes of children later in life (Figure 7). He focussed on hookworm

in the US South in the early twentieth century. Hookworm is a parasitic disease that saps

children’s nutrients, making it di�cult for them to concentrate in school.10 He showed

that exposure to hookworm substantially decreased children’s earnings in later life (say

age 50).

This setting could potentially su↵er from M-style collider bias if Bleakley were only

able to observe hookworm exposure in childhood for non-migrants at age 50 in the South.

This empirical setup would lead to the attrition of migrants by design, and although

migration is not caused by the exposure variable (hookworm) or the outcome variable

(income at 50) directly, it is caused by ancestors of the exposure and outcome. Migration

is particularly important in the US South in this period as a large share of the Black

population moved to the North during the Great Migration. These migrants tended to

10Note that hookworm was very rarely fatal, so there should not be any survivor bias issues as described
in Figure 6 above.
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Figure 7: M-Bias due to Attrition related to Ancestors of Exposure and Outcome

Income
at Age 50
(outcome)

Parental SES

Migration

Education

Hookworm
Exposure
(exposure)

Sources: Empirical setting adapted from Bleakley (2007).

be positively selected on income and education and were more likely to come from a

non-farm origin (Collins and Wanamaker 2015).11

Returning to our DAG, parental socio-economic status (SES) would clearly influ-

ence individual children’s exposure to hookworm since better o↵ parents could buy their

children shoes, maintain higher levels of hygiene and live in areas with better sanitary

conditions. However, parental SES would also influence the propensity of individuals to

migrate since migrants were more likely to come from non-farm employment. On the

other hand, an individual’s education would influence their income at age 50 and would

also influence their propensity to migrate since migrants were positively selected on edu-

cation. The attrition of high SES migrants from the sample leads to a biased estimate of

the influence of hookworm exposure on income at age 50.

Simulations conducted by epidemiologists have generally found that M-bias is small

relative to typical confounding bias unless the correlation between the collider and its

ancestors is very high (Liu et al. 2012), suggesting that M-bias may be less problematic

than other forms of collider bias. However, Bleakley (2007) avoids this collider bias in a

number of ways. First, he uses a di↵erence-in-di↵erence methodology to break the causal

11The size of the positive selection was somewhat small, but the example is still valid.
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link between parental SES and hookworm exposure. He uses the deworming campaigns

carried out by the Rockefeller Sanitary Commission for the Eradication of Hookworm

Disease after 1910 as an exogenous shock to hookworm exposure across cohorts. He also

takes account of the di↵erent initial levels of hookworm exposure since the eradication of

hookworm would have been more important in areas where hookworm was more prevalent.

He compares cohorts born before and after hookworm eradication and in places where

hookworm was very prevalent and not prevalent in order to produce quasi-randomised

variation in hookworm exposure. Thus, randomisation of treatment is a way of eliminating

M-style collider bias since the collider is not a direct descendant of the treatment or the

outcome as in the examples above.

Bleakley also avoids this bias by including all individuals born in states where hook-

worm was prevalent. Thus, he does not exclude migrants from his analysis. This choice

helps to avoid the collider bias above, but it also introduces other sources of endogeneity.

The US census only records the state of birth of individuals, so this means that the hook-

worm exposure variable cannot be as precise as it would have been at the county level.

This could introduce measurement error into the exposure variable and cause attenuation

bias. Thus, there are often trade-o↵s with imperfect data about the types of bias one is

willing to accept.

4.2 Imperfect Proxy Measures

Another form of intermediate collider bias arises from using imperfect proxies that may

be descendants of other variables in the DAG. This is one of the forms of a ‘bad control’

described by Angrist and Pischke (2009, pp. 66-68). Figure 8 presents an example based on

the first stage of Acemoglu et al. (2001)’s famous paper. Acemoglu et al. argue that settler

mortality at the point of colonisation of a territory by Europeans determined whether the

Europeans set up extractive or inclusive institutions. Where Europeans settlers faced high

mortality rates, they set up extractive institutions such as the encomienda and slavery

in the Americas, but where Europeans faced low mortality rates, they settled importing

their inclusive, participatory institutions. Albouy (2012) has raised a number of issues
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Figure 8: Collider Bias due to Imperfect Proxy Variables

Modern
Expropri-
ation Risk
(outcome)
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Crosses Atlantic

Earliest Avail-
able Settler

Mortality Data

Settler
Mortality at
the Point of
Colonisation
(exposure)

Historical
Institutions

Sources: Empirical setting taken from Acemoglu et al. (2001).

about this paper, but one of his critiques is that the mortality data that Acemoglu et al.

use mainly comes from non-combat deaths of European militaries in the late eighteenth

and nineteenth centuries long after colonisation. This is especially true of mortality in

Latin America and the Caribbean.

We can illustrate Acemoglu et al.’s use of a proxy for settler mortality in the DAG

in Figure 8. The earliest available settler mortality data is a proxy for settler mortality

at the point of colonisation. However, it is also a descendant of historical institutions. As

McNeill (1999) has argued, yellow fever was an African disease that was transmitted across

the Atlantic through the slave trade. It was able to become endemic in the Americas in

part because sugar cane production required small clay pots that often sat with stagnant

water in them near population centres, providing ideal breeding grounds for the Aedes

aegypti mosquito that carries yellow fever. Yellow fever epidemics were extraordinarily

deadly for European troops at the end of the eighteenth century and therefore were an

important cause of the earliest settler mortality data available to Acemoglu et al. for

Latin America and the Caribbean. Thus, this imperfect proxy variable induces collider

bias in the estimate of the causal e↵ect of settler mortality at the point of colonisation on
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Figure 9: Collider Bias due to Conditioning on a Mediator

Trust in
Local Council
(outcome)

Unobserved Factors

Slave Exports
(exposure)

Local
Institutions

Local Council
E↵ectiveness

Sources: Empirical setting taken from Nunn and Wantchekon (2011).

modern expropriation risk. If Acemoglu et al. wanted to overcome this bias, they could

go back to the original sources and attempt to exclude yellow fever deaths from their

mortality estimates in order to produce a more accurate proxy of settler mortality at the

point of colonisation.

4.3 Mediation Analysis and Causal Mechanisms

Mediation analysis is less common in economic history than in other social science dis-

ciplines, but economic historians will at times condition on mediators when trying to

understand the mechanisms behind a particular causal e↵ect. This type of analysis is

particularly common in persistence papers that analyse the long-run consequences of a

particular historical institution. Collider bias arises in mediation analysis if the mediator

shares a common cause with the outcome. If this is the case, then conditioning on the

mediator is conditioning on a collider, which opens a non-causal path between exposure

and outcome. This case is the second form of ‘bad control’ discussed by Angrist and

Pischke (2009, pp. 64-66).

Nunn and Wantchekon (2011) provides an example of this kind of collider bias in

economic history research (Figure 9). In the paper, Nunn and Wantchekon wanted to

understand the direct e↵ect of exposure to the historical slave trade on trust among

Africans today. To measure this e↵ect, they regressed individual-level responses to a
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number of questions related to trust in the Afrobarometer Surveys on the exports of

slaves in the historical slave trade. One of their results showed that the slave trade a↵ected

trust in local government councils, but they wanted to know whether this e↵ect was a

direct e↵ect of the slave trade on trust or whether the e↵ectiveness or quality of the local

council mediated this e↵ect on trust, i.e. did people trust the local council less because

the slave trade directly a↵ected the quality of local government. Thus, they controlled for

several indicators of local council quality to see how this changed the coe�cient on slave

exports. They found that the mediated e↵ect explained about half of the total e↵ect of

slave exports on trust in the local council.

However, by conditioning on the mediator, they also opened a non-causal path between

exposure and outcome because unobserved factors may have a↵ected both trust in the

local council and the e↵ectiveness of the local council. This induces a spurious correlation

between slave exports and these unobserved factors, which biases the analysis. One such

factor would have been local public goods. In actuality, Nunn and Wantchekon control for

local public goods in a second specification, which closes the backdoor path through the

collider, but as mentioned above, any variable that is a common ancestor of the mediator

and outcome will lead to bias when conditioning on the mediator. This type of bias does

not arise frequently in economic history research, but those trying to understand causal

mechanisms by controlling for mediators should consider it carefully.

5 Pre-Treatment Colliders: Conditioning on Endo-

genous Location Choices

A final type of collider bias may occur when the researcher conditions on a pre-treatment

collider. Elwert and Winship (2014) highlight homophily bias in social network analysis

as an example, and this could certainly apply to economic history research (Esteves

and Geisler Mesevage 2019). However, another example arises when the researcher only

observes individuals (or firms) after they have made a choice about where to live (or

locate). An example of this is the recent paper by Beach and Hanlon (2018), which tests
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the e↵ects of industrial coal smoke pollution on infant mortality using cross-sectional

data from England and Wales, 1851-60. If we simplify for a moment and assume that the

treatment e↵ects of coal pollution would not be confounded by an individual’s underlying

health status, then Figure 10 presents a DAG that captures the causal pathway that Beach

and Hanlon wanted to identify. As the DAG shows, there are many variables that influence

mortality, but none of these would directly a↵ect the location of industrial pollution in

1851-60. One might then feel comfortable simply regressing coal pollution in a registration

district on the infant mortality rate in a registration district. However, this ignores the

fact that individuals sort across locations based on observable amenities. In Figure 10,

individuals choose locations based on their income, the crowding in a neighbourhood,

the sanitary conditions and the observable pollution. Because Beach and Hanlon only

observe the deaths of infants where their parents had chosen to live, they are implicitly

conditioning on a collider. Their direct causal estimate is biased by all of the non-causal

paths that run from pollution through the collider (residence location choice) to mortality,

i.e. the raw association captures not only the e↵ects of pollution on mortality but also

that of disease exposure, neighbourhood crowding and income.

There are two strategies for mitigating the collider bias in this case. First, the re-

searcher could attempt to control for one variable on each path from the collider to the

outcome, i.e. control for (at minimum) income, neighbourhood crowding and sanitary

conditions. This would close these non-causal paths and allow for the estimation of the

causal e↵ect of coal pollution on infant mortality. In actuality, it would be very di�cult

to find this kind of data for each registration district.

A second strategy would be to break the causal link between the exposure and collider.

Note again that finding quasi-random variation in the exposure (industrial pollution)

will not necessarily get rid of the bias. Only randomisation that breaks the causal link

between the exposure and the collider would eliminate the collider bias. For instance,

using industrial coal pollution in year t � 50 as an IV for industrial pollution in year t

would provide quasi-randomised variation in the exposure, but because residence location

choices would occur after randomisation, part of the predicted variation in the endogenous
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variable would still be causally linked to the sorting that is the source of the collider bias.

To break the causal link, one would need exogenous variation in coal pollution that

came after residence location choices had been made: for instance a sudden shock to

coal pollution such as the Lancashire cotton famine;12 changes in the weather that would

temporarily intensify or ameliorate the existing pollution of an area but would not a↵ect

longer-run residential sorting (Hanlon 2019); or the introduction of ‘clean coal’ technology,

such as taller chimneys, that would suddenly reduce the impact of coal production locally

(c.f. Clay et al. (2019)). As Elwert and Winship (2014) highlight, when dealing with pre-

treatment colliders, the researcher needs to develop a clear understanding of the data

generating process in order to understand the bias and mitigate its e↵ect.

Beach and Hanlon overcome this issue by comparing the e↵ect of coal pollution upwind

and downwind of a particular district. They argue that pollution upwind of a district will

a↵ect mortality but will be less noticeable in terms of residence location choices than the

smoke pollution emitted in a district. Upwind and downwind districts were also likely to

be similar to the target district, eliminating other unobservable confounders. This strategy

breaks the causal link between the exposure and collider, eliminating the collider bias on

the upwind part of the pollution in each district.

This form of collider bias is rather common in historical demography and economic

geography. We know that people were not static across space (Schürer and Day 2019)

and that migratory flows could respond quickly to economic conditions (Arthi et al.

2019). In addition, there is substantial evidence that internal migrants tended to be

positively selected (Collins and Wanamaker 2015; Humphries and Leunig 2009) and that

urban disamenities a↵ected the growth of cities (Hanlon 2020). Thus, researchers need to

consider the potential bias of endogenous location choices more carefully in the future.

12Though this would create other issues since the shock would a↵ect income and migration directly
(Arthi et al. 2019).
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6 Conclusion

Collider bias is common in research designs employing historical sources. Following Elwert

and Winship (2014), this paper has presented ten examples of di↵erent forms of collider

bias in economic history research. While the taxonomy of collider bias presented in this

paper is helpful, to determine whether collider bias is present in a particular empirical

setting, it is more important to develop a detailed understanding of the underlying data

generating process than to fit every form of bias into this taxonomy. The forms of bias

described in this paper are all well-known to economists and economic historians, but

economic historians could benefit from recognising and analysing these forms of bias as

collider bias for several reasons. First, because DAGs force the researcher to make their

assumptions about the causal relationships between variables explicit, they can help the

researcher both diagnose potential sources of collider bias and understand the type of

evidence or empirical strategy necessary to mitigate their e↵ects. Since economic histor-

ians often have less flexibility in their research design, we have more to gain from using

DAGs than other economists who can simply opt for an empirical strategy una↵ected by

collider bias.

Second, DAGs clarify when randomisation or quasi-randomisation of the treatment

does and does not overcome various forms of collider bias. Randomisation cannot over-

come collider bias from a direct descendent of the outcome since randomising the treat-

ment will have no e↵ect on the bias. Likewise, randomisation is only ensured to mitigate

collider bias on an intermediate variable if the collider is a descendant of ancestors of

the exposure and outcome (M-bias discussed in Section 4.1.2). Otherwise, randomisation

only eliminates intermediate variable collider bias if it breaks the causal link between the

exposure and the collider. Whether this occurs often depends on the timing of random-

isation of the treatment relative to the collider generating causal path. If the causal path

generating the collider bias must occur after the treatment, as in the case of survival bias

presented in Section 4.1.1, it is almost impossible for randomisation to overcome this bias.

However, if randomisation of the treatment can occur after the causal path generating

collider bias, then randomisation may be able to break this causal link.
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Third, the examples have highlighted a number of strategies (other than randomisa-

tion) for mitigating collider bias. Since the causal relationships represented in the DAGs

are often drawn from theoretical understandings, one can attempt to show that there

is not a strong causal link between the collider and the other variables in a particular

historical setting. For sample selection dependent on the outcome, one can model sample

selection explicitly to formally account for the bias. For collider bias on an intermediate

variable, one can control for key variables that break the non-causal path from the ex-

posure through the collider to the outcome. For the most part, though, avoiding collider

bias may simply require being more careful about the types of causal relationships that

can be studied using a particular dataset, an extension of understanding the limits of

data at which economic historians excel.

As a final note, I would like to highlight how useful DAGs can be in teaching causal

inference, especially to undergraduates. Obviously, this method will never replace stand-

ard econometrics. However, DAGs demonstrate forms of endogeneity like omitted variable

bias and reverse causality in a very clear, intuitive and non-technical way and can also be

used to explain the most common identification strategies used by economic historians. As

illustrated in this paper through collider bias, they can also incorporate sample-selection

bias and other forms of bias that students often struggle to understand. Thus, DAGs could

be another powerful tool for teaching the fundamentals of causal inference in economics

and economic history (Cunningham 2021).
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