Mathematics Magazine 88:1

Crux's crux's crux

Amol Sasane Mathematics Department London School of Economics A.J.Sasane@lse.ac.uk

The following problem (proposed by Stanley Rabinowitz), appeared as problem 1325 in Crux* Mathematicorum. We call this the Crux[†] Problem, since the accompanying diagram contains a shaded 'cross'=crux.

Crux Problem. Let P be any point inside a unit circle with center C. Perpendicular chords are drawn through P. Rotation of these chords counterclockwise about Pthrough an angle θ sweep out the shaded area shown in the picture below. Show that this shaded area only depends on θ , but not on P (and hence is easily seen to be 2θ by taking P = C).

There were two solutions that appeared [1, pp. 120-122]:

- (I) (Jörg Häterich) a solution using calculus and Archimedes' theorem,
- (II) (Shiko Iwata) a non-calculus solution based on trigonometry.

The accompanying editor's note mentioned that Murray Klamkin generalised the problem to n chords through P with equal angles of π/n between successive chords, with the area swept out, when these chords are rotated through an angle of θ about P, then being $n\theta$. The editor's note ended with the following parenthetical remark:

(This can also be proved using the solution II. Can it be proved as in solution I?) In this note, we present a calculus-based solution, based on a special case of a generalisation of "Archimedes' theorem", which is proved by employing vectors. We purport that this solution captures in some sense the crux[‡] of the matter.

We begin with a calculus-based proof along lines similar to the first solution given in [1].

^{*}First 'Crux' in the title.

[†]Second 'crux' in the title.

[‡]Third 'crux' in the title.

A calculus-based proof of the Crux problem

Mathematics Magazine 88:1

We will use the following result. We call it Archimedes' Theorem as it is Proposition 11 in Archimedes' work *The book of Lemmas* [2, p.312].

Archimedes' Theorem. If two mutually perpendicular chords A_1B_1 and A_2B_2 in a unit circle with center C meet at P, then $PA_1^2 + PB_1^2 + PA_2^2 + PB_2^2 = 4$.

Proof. $\Delta B_2 P A_1$ is similar to $\Delta B_2 B_1 D$ since we have $\angle B_2 A_1 B_1 = \angle B_2 D B_1$ and $\angle B_2 P A_1 = 90^\circ = \angle B_2 B_1 D$. So $\angle P B_2 A_1 = \angle B_1 B_2 D$. This implies that $\angle A_1 C A_2 = \angle B_1 C D$, and so $A_1 A_2 = B_1 D$. By Pythagoras' Theorem, we have $P B_2^2 + P B_1^2 = B_2 B_1^2$ and $P A_1^2 + P A_2^2 = A_1 A_2^2$. Adding these, we obtain that $P A_1^2 + P B_1^2 + P A_2^2 + P B_2^2 = B_2 B_1^2 + A_1 A_2^2 = B_1 B_2^2 + B_1 D^2 = B_2 D^2 = 2^2 = 4$. □

Now we give a calculus argument as follows. Rotating A_1B_1 and A_2B_2 about P through an infinitesimal angle $d\theta$, we obtain four sectors, with areas given by

$$\frac{1}{2}PA_k^2\mathrm{d}\theta, \quad \frac{1}{2}PB_k^2\mathrm{d}\theta, \quad k=1,2.$$

Upon addition, and using Archimedes' Theorem, we obtain the rate of change of area

$$\frac{\mathrm{dA}}{\mathrm{d}\theta} = \frac{1}{2}(PA_1^2 + PB_1^2 + PA_2^2 + PB_2^2) = \frac{1}{2}4 = 2,$$

and so the total area, if the chords are rotated through an angle θ , is given by

$$A = \int_0^\theta \frac{dA}{d\theta} d\theta = \int_0^\theta 2 d\theta = 2\theta.$$

A vector calculus proof

We will first show the following:

Proposition 1. Let P be any point inside a unit circle, and through P, let there be n chords A_1B_1, \dots, A_nB_n , such that there are equal angles of π/n between successive chords. Suppose moreover that A_1B_1 is a diameter. If each chord is rotated counterclockwise through an angle θ , then the total area formed by the resulting sectors is $n\theta$.

Mathematics Magazine 88:1

This will be shown to yield the generalisation (given in Theorem 1 below) of the Crux problem, where as opposed to the situation above, one of the chords needn't be the diameter.

In order to prove Proposition 1, we will first prove a special case of a generalisation of Archimedes' Theorem (Theorem 2 in the next section, saying that the sum of the squared distances from a point inside a unit circle to the vertices of n equally angularly spaced chords passing through that point is 2n), when one of the chords A_1B_1 is the diameter.

Lemma 1 (Generalised Archimedes' theorem – special case). Let P be any point inside a unit circle, and let there be n chords $A_1B_1, \cdots A_nB_n$ through P such that there are equal angles of π/n between successive chords. Suppose, moreover, that A_1B_1 is a diameter. Then $PA_1^2 + PB_1^2 + \cdots + PA_n^2 + PB_n^2 = 2n$.

Proof. Let C_1, \cdots, C_n be the centers of A_1B_1, \cdots, A_nB_n . As A_1B_1 is the diameter, C_1 is the center of the circle. We know that for all $1 \le k \le n$,

$$\langle \overrightarrow{PA}_k - \overrightarrow{PC}_1, \overrightarrow{PA}_k - \overrightarrow{PC}_1 \rangle = \|\overrightarrow{PA}_k - \overrightarrow{PC}_1\|_2^2 = 1,$$

$$\langle \overrightarrow{PB}_k - \overrightarrow{PC}_1, \overrightarrow{PB}_k - \overrightarrow{PC}_1 \rangle = \|\overrightarrow{PB}_k - \overrightarrow{PC}_1\|_2^2 = 1.$$

Expanding these, adding, and rearranging, we obtain

$$\sum_{k=1}^{n} (PA_k^2 + PB_k^2) = 2\left\langle \overrightarrow{PC}_1, \sum_{k=1}^{n} (\overrightarrow{PA}_k + \overrightarrow{PB}_k) \right\rangle - 2nPC_1^2 + 2n. \tag{1}$$

So we need to determine the inner product on the right-hand side. We have

$$\overrightarrow{PA_k} = \overrightarrow{PC_k} + \overrightarrow{C_kA_k}$$
 and $\overrightarrow{PB_k} = \overrightarrow{PC_k} + \overrightarrow{C_kB_k}$.

But since $\overrightarrow{C_kA_k}+\overrightarrow{C_kB_k}=\mathbf{0}$, we obtain $\overrightarrow{PA_k}+\overrightarrow{PB_k}=2\overrightarrow{PC_k}$. Hence

$$\sum_{k=1}^{n} (\overrightarrow{PA_k} + \overrightarrow{PB_k}) = 2\sum_{k=1}^{n} \overrightarrow{PC_k} = \sum_{k=1}^{n} \overrightarrow{PC_k} + \sum_{k=1}^{n} \overrightarrow{PC}_{n-k} = \sum_{k=1}^{n} (\overrightarrow{PC_k} + \overrightarrow{PC}_{n-k}).$$

By referring to Figure 1, we see that for all $1 \le k \le n$,

$$\overrightarrow{PC}_k + \overrightarrow{PC}_{n-k} = 2PC_k \left(\cos\frac{k\pi}{n}\right) \frac{\overrightarrow{PC}_1}{PC_1} = 2\left(\cos\frac{k\pi}{n}\right) PC_1 \left(\cos\frac{k\pi}{n}\right) \frac{\overrightarrow{PC}_1}{PC_1}$$
$$= 2\left(\cos\frac{k\pi}{n}\right)^2 \overrightarrow{PC}_1.$$

Mathematics Magazine 88:1

MATHEMATICS MAGAZINE

Figure 1

So

$$\sum_{k=1}^{n} (\overrightarrow{PA}_k + \overrightarrow{PB}_k) = \sum_{k=1}^{n} (\overrightarrow{PC}_k + \overrightarrow{PC}_{n-k}) = \sum_{k=1}^{n} 2\left(\cos\frac{k\pi}{n}\right)^2 \overrightarrow{PC}_1. \tag{2}$$

Now

$$\sum_{k=1}^{n} 2\left(\cos\frac{k\pi}{n}\right)^2 = \sum_{k=1}^{n} \left(1 + \left(\cos k\frac{2\pi}{n}\right)\right) = n + 0 = n,\tag{3}$$

where we have used

$$\sum_{k=1}^{n} \cos\left(k\frac{2\pi}{n}\right) = 0. \tag{4}$$

(To see (4), we first note that this sum is the horizontal component of the sum \overrightarrow{S} of nvectors whose tails lie at the center of the unit circle and whose tips lie on the vertices of a regular n-gon. To see that \overrightarrow{S} is zero, imagine rotating each vector counterclockwise through an angle of $\frac{2\pi}{n}$, and let the sum of the rotated vectors be \overrightarrow{S}' . On grounds of symmetry of the regular polygon, $\overrightarrow{S} = \overrightarrow{S}'$. On the other hand \overrightarrow{S}' ought be a rotated version of \overrightarrow{S} through an angle of $\frac{2\pi}{n}$. This can only happen if $\overrightarrow{S} = \mathbf{0}$. Alternative justifications of (4) can be given by first summing the geometric series

$$\sum_{k=1}^{n} e^{i\frac{2\pi}{n}k} = e^{i\frac{2\pi}{n}} \frac{1 - e^{i2\pi}}{1 - e^{i\frac{2\pi}{n}}} = 0,$$

and taking real parts, or by noticing the sum of the nth roots of unity must add up to 0since the coefficient of z^1 in $z^n - 1$ is 0, and again taking real parts.)

Consequently, using (1), (2), and (3), we obtain

$$\sum_{k=1}^{n} (PA_k^2 + PB_k^2) = 2\left\langle \overrightarrow{PC}_1, \sum_{k=1}^{n} (\overrightarrow{PA}_k + \overrightarrow{PB}_k) \right\rangle - 2nPC_1^2 + 2n$$

$$= 2\left\langle \overrightarrow{PC}_1, n\overrightarrow{PC}_1 \right\rangle - 2nPC_1^2 + 2n$$

$$= 2nPC_1^2 - 2nPC_1^2 + 2n = 2n.$$

We are now ready to prove Proposition 1.

Mathematics Magazine 88:1

Proof of Proposition 1. Rotating A_1B_1, \dots, A_nB_n anticlockwise about P through an infinitesimal angle $d\theta$, we obtain 2n sectors, with areas given by

$$\frac{1}{2}PA_k^2 d\theta, \quad \frac{1}{2}PB_k^2 d\theta, \quad k = 1, \cdots, n.$$

Upon addition, and using Lemma 1, the rate of change of the total area is

$$\frac{dA}{d\theta} = \frac{1}{2} \sum_{k=1}^{n} (PA_k^2 + PB_k^2) d\theta = \frac{1}{2} 2n = n,$$

and so the total area, if the chords are rotated through an angle θ , is given by

$$A = \int_0^\theta \frac{dA}{d\theta} d\theta = \int_0^\theta n d\theta = n\theta.$$

Theorem 1. Let P be any point inside a unit circle, and let there be n chords through P such that there are equal angles of π/n between successive chords. If each chord is rotated counterclockwise through an angle θ , then the total area formed by the resulting sectors is $n\theta$.

Proof. To see how this follows from Proposition 1, we first construct the diameter A_1B_1 through P, and consider successive anticlockwise rotations of this diameter through angles of π/n , resulting in the chords A_2B_2,\cdots,A_nB_n . Let the given chords from the theorem statement be labelled as $A_1'B_1', \cdots, A_n'B_n'$, and let their rotated versions (though an angle θ) be labelled as $A_1''B_1'', \cdots, A_n''B_n''$.

Let the angle between A_1B_1 and $A'_1B'_1$ be θ' , and that between A_1B_1 and $A''_1B''_1$ be θ'' . Then for all $1 \le k \le n$, we use the notation $\widehat{B}'_k \widehat{B}''_k$ for the sector formed by the corresponding arc with P, and denote the area of the sector by $A(\hat{B}'_k B''_k)$. Then:

$$\sum_{k=1}^{n} [A(\widehat{B'_k B''_k}) + A(\widehat{A'_k A''_k})]$$

$$= \sum_{k=1}^{n} [A(\widehat{B_k B''_k}) - A(\widehat{B_k B'_k}) + A(\widehat{A_k A''_k}) - A(\widehat{A_k A'_k})]$$

$$= \sum_{k=1}^{n} [A(\widehat{B_k B''_k}) + A(\widehat{A_k A''_k})] - \sum_{k=1}^{n} [(A(\widehat{B_k B'_k}) + A(\widehat{A_k A'_k}))]$$

$$= n\theta'' - n\theta' = n(\theta'' - \theta') = n\theta.$$

Archimedes' Theorem

Mathematics Magazine 88:1

A consequence of Theorem 1 is the following generalisation of Archimedes' Theorem from the n=2 chord case considered earlier.

Theorem 2 (Generalised Archimedes' theorem). Let P be any point inside a unit circle, and let there be n chords $A_1B_1, \cdots A_nB_n$ through P such that there are equal angles of π/n between successive chords. Then

$$PA_1^2 + PB_1^2 + \dots + PA_n^2 + PB_n^2 = 2n.$$

Proof. By Theorem 1, we know that if the chords are rotated through an infinitesimal angle $d\theta$, then the sum of the areas of the resulting sectors is $nd\theta$. But this area is also equal to $\frac{1}{2}(PA_1^2+PB_1^2+\cdots+PA_n^2+PB_n^2)\,\mathrm{d}\theta$. Consequently, we obtain that $PA_1^2+PB_1^2+\cdots+PA_n^2+PB_n^2=2n$.

Acknowledgement: The author is grateful to the reviewer for useful suggestions on improving the exposition.

REFERENCES

- 1. Solution to problem 1325, Crux Mathematicorum, 15 (April 1989) 120-121 number 4, https://cms.math.ca/crux/backfile/Crux_v15n04_Apr.pdf.
- 2. The works of Archimedes. Reprint of the 1897 edition and the 1912 supplement, edited by T. L. Heath, Dover Publications, 2002.

Summary. A result of Archimedes states that for perpendicular chords passing through a point P in the interior of the unit circle, the sum of the squares of the lengths of the chord segments from P to the circle is equal to 4. A generalisation of this result to $n \ge 2$ chords. This is done in the backdrop of revisiting Problem 1325 from Crux *Mathematicorum*, for which a new solution is presented.

AMOL SASANE earned a Bachelors degree in Electrical Engineering from the Indian Institute of Technology, Mumbai, a PhD in Mathematics from the University of Groningen, the Netherlands, and a Masters in Theoretical Physics from Lund University, Sweden. He is now a Professor of Mathematics at the London School of Economics. His research interests lie in the field of applicable analysis.