Crux's crux's crux

Amol Sasane
Mathematics Department London School of Economics A.J.Sasane@lse.ac.uk

The following problem (proposed by Stanley Rabinowitz), appeared as problem 1325 in Crux Mathematicorum. We call this the Crux Problem, since the accompanying diagram contains a shaded 'cross'=crux.

Crux Problem. Let P be any point inside a unit circle with center C. Perpendicular chords are drawn through P. Rotation of these chords counterclockwise about P through an angle θ sweep out the shaded area shown in the picture below. Show that this shaded area only depends on θ, but not on P (and hence is easily seen to be 2θ by taking $P=C$).

There were two solutions that appeared [1] pp. 120-122]:
(I) (Jörg Häterich) a solution using calculus and Archimedes' theorem,
(II) (Shiko Iwata) a non-calculus solution based on trigonometry.

The accompanying editor's note mentioned that Murray Klamkin generalised the problem to n chords through P with equal angles of π / n between successive chords, with the area swept out, when these chords are rotated through an angle of θ about P, then being $n \theta$. The editor's note ended with the following parenthetical remark:
(This can also be proved using the solution II. Can it be proved as in solution I?) In this note, we present a calculus-based solution, based on a special case of a generalisation of "Archimedes' theorem", which is proved by employing vectors. We purport that this solution captures in some sense the crux of the matter.

We begin with a calculus-based proof along lines similar to the first solution given in [1].

[^0]A calculus-based proof of the Crux problem
We will use the following result. We call it Archimedes' Theorem as it is Proposition 11 in Archimedes' work The book of Lemmas [2, p.312].
Archimedes' Theorem. If two mutually perpendicular chords $A_{1} B_{1}$ and $A_{2} B_{2}$ in a unit circle with center C meet at P, then $P A_{1}^{2}+P B_{1}^{2}+P A_{2}^{2}+P B_{2}^{2}=4$.

Proof. $\triangle B_{2} P A_{1}$ is similar to $\Delta B_{2} B_{1} D$ since we have $\angle B_{2} A_{1} B_{1}=\angle B_{2} D B_{1}$ and $\angle B_{2} P A_{1}=90^{\circ}=\angle B_{2} B_{1} D$. So $\angle P B_{2} A_{1}=\angle B_{1} B_{2} D$. This implies that $\angle A_{1} C A_{2}=\angle B_{1} C D$, and so $A_{1} A_{2}=B_{1} D$. By Pythagoras' Theorem, we have $P B_{2}^{2}+P B_{1}^{2}=B_{2} B_{1}^{2}$ and $P A_{1}^{2}+P A_{2}^{2}=A_{1} A_{2}^{2}$. Adding these, we obtain that $P A_{1}^{2}+P B_{1}^{2}+P A_{2}^{2}+P B_{2}^{2}=B_{2} B_{1}^{2}+A_{1} A_{2}^{2}=B_{1} B_{2}^{2}+B_{1} D^{2}=B_{2} D^{2}=2^{2}=4$.
Now we give a calculus argument as follows. Rotating $A_{1} B_{1}$ and $A_{2} B_{2}$ about P through an infinitesimal angle $\mathrm{d} \theta$, we obtain four sectors, with areas given by

$$
\frac{1}{2} P A_{k}^{2} \mathrm{~d} \theta, \quad \frac{1}{2} P B_{k}^{2} \mathrm{~d} \theta, \quad k=1,2 .
$$

Upon addition, and using Archimedes' Theorem, we obtain the rate of change of area

$$
\frac{\mathrm{dA}}{\mathrm{~d} \theta}=\frac{1}{2}\left(P A_{1}^{2}+P B_{1}^{2}+P A_{2}^{2}+P B_{2}^{2}\right)=\frac{1}{2} 4=2
$$

and so the total area, if the chords are rotated through an angle θ, is given by

$$
\mathrm{A}=\int_{0}^{\theta} \frac{\mathrm{dA}}{\mathrm{~d} \theta} \mathrm{~d} \theta=\int_{0}^{\theta} 2 \mathrm{~d} \theta=2 \theta
$$

A vector calculus proof

We will first show the following:
Proposition 1. Let P be any point inside a unit circle, and through P, let there be n chords $A_{1} B_{1}, \cdots, A_{n} B_{n}$, such that there are equal angles of π / n between successive chords. Suppose moreover that $A_{1} B_{1}$ is a diameter. If each chord is rotated counterclockwise through an angle θ, then the total area formed by the resulting sectors is $n \theta$.

This will be shown to yield the generalisation (given in Theorem@below) of the Crux problem, where as opposed to the situation above, one of the chords needn't be the diameter.

In order to prove Proposition 1 , we will first prove a special case of a generalisation of Archimedes' Theorem (Theorem 2 in the next section, saying that the sum of the squared distances from a point inside a unit circle to the vertices of n equally angularly spaced chords passing through that point is $2 n$), when one of the chords $A_{1} B_{1}$ is the diameter.
Lemma 1 (Generalised Archimedes' theorem - special case). Let P be any point inside a unit circle, and let there be n chords $A_{1} B_{1}, \cdots A_{n} B_{n}$ through P such that there are equal angles of π / n between successive chords. Suppose, moreover, that $A_{1} B_{1}$ is a diameter. Then $P A_{1}^{2}+P B_{1}^{2}+\cdots+P A_{n}^{2}+P B_{n}^{2}=2 n$.
Proof. Let C_{1}, \cdots, C_{n} be the centers of $A_{1} B_{1}, \cdots, A_{n} B_{n}$. As $A_{1} B_{1}$ is the diameter, C_{1} is the center of the circle. We know that for all $1 \leq k \leq n$,

$$
\begin{aligned}
& \left\langle\overrightarrow{P A}_{k}-\overrightarrow{P C}_{1}, \overrightarrow{P A}_{k}-\overrightarrow{P C}_{1}\right\rangle=\left\|\overrightarrow{P A}_{k}-\overrightarrow{P C}_{1}\right\|_{2}^{2}=1 \\
& \left\langle\overrightarrow{P B}_{k}-\overrightarrow{P C}_{1}, \overrightarrow{P B}_{k}-\overrightarrow{P C}_{1}\right\rangle=\left\|\overrightarrow{P B}_{k}-\overrightarrow{P C}_{1}\right\|_{2}^{2}=1
\end{aligned}
$$

Expanding these, adding, and rearranging, we obtain

$$
\begin{equation*}
\sum_{k=1}^{n}\left(P A_{k}^{2}+P B_{k}^{2}\right)=2\left\langle\overrightarrow{P C}_{1}, \sum_{k=1}^{n}\left(\overrightarrow{P A}_{k}+\overrightarrow{P B}_{k}\right)\right\rangle-2 n P C_{1}^{2}+2 n . \tag{1}
\end{equation*}
$$

So we need to determine the inner product on the right-hand side. We have

$$
\overrightarrow{P A}_{k}=\overrightarrow{P C}_{k}+{\overrightarrow{C_{k} A}}_{k} \text { and } \overrightarrow{P B}_{k}=\overrightarrow{P C}_{k}+{\overrightarrow{C_{k} B}}_{k}
$$

But since ${\overrightarrow{C_{k} A}}_{k}+{\overrightarrow{C_{k} B}}_{k}=\mathbf{0}$, we obtain $\overrightarrow{P A}_{k}+\overrightarrow{P B}_{k}=2 \overrightarrow{P C}_{k}$. Hence

$$
\sum_{k=1}^{n}\left(\overrightarrow{P A}_{k}+\overrightarrow{P B}_{k}\right)=2 \sum_{k=1}^{n} \overrightarrow{P C}_{k}=\sum_{k=1}^{n} \overrightarrow{P C}_{k}+\sum_{k=1}^{n} \overrightarrow{P C}_{n-k}=\sum_{k=1}^{n}\left(\overrightarrow{P C}_{k}+\overrightarrow{P C}_{n-k}\right) .
$$

By referring to Figure 1 , we see that for all $1 \leq k \leq n$,

$$
\begin{aligned}
\overrightarrow{P C}_{k}+\overrightarrow{P C}_{n-k} & =2 P C_{k}\left(\cos \frac{k \pi}{n}\right) \frac{\overrightarrow{P C}_{1}}{P C_{1}}=2\left(\cos \frac{k \pi}{n}\right) P C_{1}\left(\cos \frac{k \pi}{n}\right) \frac{\overrightarrow{P C}_{1}}{P C_{1}} \\
& =2\left(\cos \frac{k \pi}{n}\right)^{2} \overrightarrow{P C}_{1}
\end{aligned}
$$

Figure 1

So

$$
\begin{equation*}
\sum_{k=1}^{n}\left(\overrightarrow{P A}_{k}+\overrightarrow{P B}_{k}\right)=\sum_{k=1}^{n}\left(\overrightarrow{P C}_{k}+\overrightarrow{P C}_{n-k}\right)=\sum_{k=1}^{n} 2\left(\cos \frac{k \pi}{n}\right)^{2} \overrightarrow{P C}_{1} . \tag{2}
\end{equation*}
$$

Now

$$
\begin{equation*}
\sum_{k=1}^{n} 2\left(\cos \frac{k \pi}{n}\right)^{2}=\sum_{k=1}^{n}\left(1+\left(\cos k \frac{2 \pi}{n}\right)\right)=n+0=n \tag{3}
\end{equation*}
$$

where we have used

$$
\begin{equation*}
\sum_{k=1}^{n} \cos \left(k \frac{2 \pi}{n}\right)=0 . \tag{4}
\end{equation*}
$$

(To see (4), we first note that this sum is the horizontal component of the sum \vec{S} of n vectors whose tails lie at the center of the unit circle and whose tips lie on the vertices of a regular n-gon. To see that \vec{S} is zero, imagine rotating each vector counterclockwise through an angle of $\frac{2 \pi}{n}$, and let the sum of the rotated vectors be $\overrightarrow{S^{\prime}}$. On grounds of symmetry of the regular polygon, $\vec{S}=\overrightarrow{S^{\prime}}$. On the other hand $\overrightarrow{S^{\prime}}$ ought be a rotated version of \vec{S} through an angle of $\frac{2 \pi}{n}$. This can only happen if $\vec{S}=\mathbf{0}$. Alternative justifications of (4) can be given by first summing the geometric series

$$
\sum_{k=1}^{n} e^{i \frac{2 \pi}{n} k}=e^{i \frac{2 \pi}{n}} \frac{1-e^{i 2 \pi}}{1-e^{i \frac{2 \pi}{n}}}=0
$$

and taking real parts, or by noticing the sum of the nth roots of unity must add up to 0 since the coefficient of z^{1} in $z^{n}-1$ is 0 , and again taking real parts.)
Consequently, using (11), (2), and (3), we obtain

$$
\begin{aligned}
\sum_{k=1}^{n}\left(P A_{k}^{2}+P B_{k}^{2}\right) & =2\left\langle\overrightarrow{P C}_{1}, \sum_{k=1}^{n}\left(\overrightarrow{P A}_{k}+\overrightarrow{P B}_{k}\right)\right\rangle-2 n P C_{1}^{2}+2 n \\
& =2\left\langle\overrightarrow{P C}_{1}, n \overrightarrow{P C}_{1}\right\rangle-2 n P C_{1}^{2}+2 n \\
& =2 n P C_{1}^{2}-2 n P C_{1}^{2}+2 n=2 n .
\end{aligned}
$$

We are now ready to prove Proposition 1
Proof of Proposition [1] Rotating $A_{1} B_{1}, \cdots, A_{n} B_{n}$ anticlockwise about P through an infinitesimal angle $\mathrm{d} \theta$, we obtain $2 n$ sectors, with areas given by

$$
\frac{1}{2} P A_{k}^{2} \mathrm{~d} \theta, \quad \frac{1}{2} P B_{k}^{2} \mathrm{~d} \theta, \quad k=1, \cdots, n .
$$

Upon addition, and using Lemma the rate of change of the total area is

$$
\frac{\mathrm{dA}}{\mathrm{~d} \theta}=\frac{1}{2} \sum_{k=1}^{n}\left(P A_{k}^{2}+P B_{k}^{2}\right) \mathrm{d} \theta=\frac{1}{2} 2 n=n
$$

and so the total area, if the chords are rotated through an angle θ, is given by

$$
A=\int_{0}^{\theta} \frac{\mathrm{dA}}{\mathrm{~d} \theta} \mathrm{~d} \theta=\int_{0}^{\theta} n \mathrm{~d} \theta=n \theta
$$

Theorem 1. Let P be any point inside a unit circle, and let there be n chords through P such that there are equal angles of π / n between successive chords. If each chord is rotated counterclockwise through an angle θ, then the total area formed by the resulting sectors is $n \theta$.

Proof. To see how this follows from Proposition 1, we first construct the diameter $A_{1} B_{1}$ through P, and consider successive anticlockwise rotations of this diameter through angles of π / n, resulting in the chords $A_{2} B_{2}, \cdots, A_{n} B_{n}$. Let the given chords from the theorem statement be labelled as $A_{1}^{\prime} B_{1}^{\prime}, \cdots, A_{n}^{\prime} B_{n}^{\prime}$, and let their rotated versions (though an angle θ) be labelled as $A_{1}^{\prime \prime} B_{1}^{\prime \prime}, \cdots, A_{n}^{\prime \prime} B_{n}^{\prime \prime}$.

Let the angle between $A_{1} B_{1}$ and $A_{1}^{\prime} B_{1}^{\prime}$ be θ^{\prime}, and that between $A_{1} B_{1}$ and $A_{1}^{\prime \prime} B_{1}^{\prime \prime}$ be $\theta^{\prime \prime}$. Then for all $1 \leq k \leq n$, we use the notation $\widehat{B_{k}^{\prime} B_{k}^{\prime \prime}}$ for the sector formed by the
corresponding arc with P, and denote the area of the sector by $\mathrm{A}\left(\widehat{B_{k}^{\prime} B_{k}^{\prime \prime}}\right)$. Then:

$$
\begin{aligned}
\sum_{k=1}^{n}\left[\mathrm{~A}\left(\widehat{B_{k}^{\prime} B_{k}^{\prime \prime}}\right)\right. & \left.+\mathrm{A}\left(\widehat{A_{k}^{\prime} A_{k}^{\prime \prime}}\right)\right] \\
& =\sum_{k=1}^{n}\left[\mathrm{~A}\left(\widehat{B_{k} B_{k}^{\prime \prime}}\right)-\mathrm{A}\left(\widetilde{B_{k} B_{k}^{\prime}}\right)+\mathrm{A}\left(\widetilde{A_{k} A_{k}^{\prime \prime}}\right)-\mathrm{A}\left(\widetilde{A_{k} A_{k}^{\prime}}\right)\right] \\
& =\sum_{k=1}^{n}\left[\mathrm{~A}\left(\widehat{B_{k} B_{k}^{\prime \prime}}\right)+\mathrm{A}\left(\widetilde{A_{k} A_{k}^{\prime \prime}}\right)\right]-\sum_{k=1}^{n}\left[\left(\mathrm{~A}\left(\widehat{B_{k} B_{k}^{\prime}}\right)+\mathrm{A}\left(\widetilde{{A_{k} A_{k}^{\prime}}_{k}}\right)\right]\right. \\
& =n \theta^{\prime \prime}-n \theta^{\prime}=n\left(\theta^{\prime \prime}-\theta^{\prime}\right)=n \theta .
\end{aligned}
$$

Archimedes' Theorem

A consequence of Theorem \square is the following generalisation of Archimedes' Theorem from the $n=2$ chord case considered earlier.

Theorem 2 (Generalised Archimedes' theorem). Let P be any point inside a unit circle, and let there be n chords $A_{1} B_{1}, \cdots A_{n} B_{n}$ through P such that there are equal angles of π / n between successive chords. Then

$$
P A_{1}^{2}+P B_{1}^{2}+\cdots+P A_{n}^{2}+P B_{n}^{2}=2 n .
$$

Proof. By Theorem [1, we know that if the chords are rotated through an infinitesimal angle $\mathrm{d} \theta$, then the sum of the areas of the resulting sectors is $n \mathrm{~d} \theta$. But this area is also equal to $\frac{1}{2}\left(P A_{1}^{2}+P B_{1}^{2}+\cdots+P A_{n}^{2}+P B_{n}^{2}\right) \mathrm{d} \theta$. Consequently, we obtain that $P A_{1}^{2}+P B_{1}^{2}+\cdots+P A_{n}^{2}+P B_{n}^{2}=2 n$.

Acknowledgement: The author is grateful to the reviewer for useful suggestions on improving the exposition.

REFERENCES

1. Solution to problem 1325, Crux Mathematicorum, 15 (April 1989) 120-121 number 4, https://cms.math.ca/crux/backfile/Crux_v15n04_Apr.pdf
2. The works of Archimedes. Reprint of the 1897 edition and the 1912 supplement, edited by T. L. Heath, Dover Publications, 2002.

Summary. A result of Archimedes states that for perpendicular chords passing through a point P in the interior of the unit circle, the sum of the squares of the lengths of the chord segments from P to the circle is equal to 4 . A generalisation of this result to $n \geq 2$ chords. This is done in the backdrop of revisiting Problem 1325 from Crux Mathematicorum, for which a new solution is presented.

AMOL SASANE earned a Bachelors degree in Electrical Engineering from the Indian Institute of Technology, Mumbai, a PhD in Mathematics from the University of Groningen, the Netherlands, and a Masters in Theoretical Physics from Lund University, Sweden. He is now a Professor of Mathematics at the London School of Economics. His research interests lie in the field of applicable analysis.

[^0]: *First 'Crux' in the title.
 ${ }^{\dagger}$ Second 'crux' in the title.
 *Third 'crux' in the title.

