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Abstract—Prophet inequalities compare the expected per-
formance of an online algorithm for a stochastic optimization
problem to the expected optimal solution in hindsight. They are
a major alternative to classic worst-case competitive analysis,
of particular importance in the design and analysis of simple
(posted-price) incentive compatible mechanisms with provable
approximation guarantees.

A central open problem in this area concerns subadditive
combinatorial auctions. Here n agents with subadditive valua-
tion functions compete for the assignment of m items. The goal
is to find an allocation of the items that maximizes the total
value of the assignment. The question is whether there exists
a prophet inequality for this problem that significantly beats
the best known approximation factor of O(log m).

We make major progress on this question by providing an
O(log log m) prophet inequality. Our proof goes through a
novel primal-dual approach. It is also constructive, resulting in
an online policy that takes the form of static and anonymous
item prices that can be computed in polynomial time given
appropriate query access to the valuations. As an application of
our approach, we construct a simple and incentive compatible
mechanism based on posted prices that achieves an O(log
log m) approximation to the optimal revenue for subadditive
valuations under an item-independence assumption.

Keywords-prophet inequality; posted prices; combinatorial
auction; mechanism design

I. INTRODUCTION

We study the following online stochastic allocation prob-
lem. There is a set M of m objects to be divided among n
agents. Each agent has a valuation function that assigns a
value to every subset of objects. These valuation functions
are random, drawn independently from known (but not
necessarily identical) distributions. Agents arrive one by one
in an arbitrary order and when an agent arrives her valuation
is revealed. The decision-maker must choose which subset
of objects to give each agent when she arrives. The goal is
to maximize the total value of the assignment.

The special case of a single object is precisely the setup
of the famous prophet inequality due to Krengel, Sucheston,
and Samuel-Cahn [1], [2], [3]. They show that there exists
an online policy whose expected value is at least half of
the expected optimal solution in hindsight, which in this
case is simply the expected maximum value held by any
agent for the object. The policy also has a surprisingly
simple form: allocate to the first agent whose value exceeds

a fixed threshold calculated in advance from the known
distributions. Interest in prophet inequalities has surged
recently, in part due to applications in pricing and auction
design driven by the observation that the fixed threshold
can be viewed as a posted price. This has lead to a line
of literature studying prophet inequalities for more general
instances of the allocation problem, yielding approximately-
optimal online policies and incentive compatible auctions for
increasingly general problem instances with many objects
and rich classes of valuation functions (e.g., [4], [5], [6],
[7], [8], [9], [10], [11], [12]).

One of the more vexing open problems in this space
concerns subadditive valuations. A valuation function v is
subadditive if v(S) + v(T ) ≥ v(S ∪ T ) for all sets of
objects S and T . This captures the property that items are
not complementary, in the sense that objects are not more
valuable together than they are apart. This is a natural and
important property in many contexts, and the subadditive
allocation problem has thus received considerable attention
from both the algorithmic and economic perspectives. For
the former, there is a known O(1)-approximate polynomial-
time algorithm for the offline problem [13]. For the latter, it
is known that running a sealed-bid auction for each object
separately yields an O(1) approximation to the optimal
welfare at any Bayes-Nash equilibrium [14]. But despite
these results, the best-known prophet inequality bound is
O(logm) [6]. Correspondingly, the best known incentive
compatible mechanisms for Bayesian subadditive combi-
natorial auctions achieve O(logm) approximations to the
expected welfare or revenue [6], [15]. This leaves us with
a significant asymptotic gap in the known power of truthful
versus non-truthful mechanisms, and closing it is a central
open challenge.

We make substantial progress on this problem by ob-
taining an O(log logm)-approximate prophet inequality for
subadditive valuations. The policy we construct is threshold-
based: the designer constructs static and anonymous prices
for the objects, and each agent is assigned the set of
objects (from among those that remain) that maximizes her
value minus the posted prices. The analysis is constructive,
and the appropriate prices can be computed in polynomial



time given access to demand queries for the valuations.1

This prophet inequality directly implies a polynomial-time
incentive compatible posted-price mechanism for subaddi-
tive combinatorial auctions that achieves an O(log logm)
approximation to the expected optimal welfare.

Our construction can also be applied to the problem
of constructing simple and approximately revenue-optimal
mechanisms. A recent line of work has studied the power of
simple posted-price-based mechanisms to approximate opti-
mal revenue in auctions with multiple items. Recently, Cai
and Zhao [15] showed that under an item-independence as-
sumption, it is possible to obtain an O(logm) approximation
for subadditive valuations using a posted-price mechanism
with either (a) an up-front entry fee for each agent, or (b)
a restriction on the number of objects each agent can buy.
We show that a modification of our prophet inequality can
be used to obtain an improved O(log logm) approximation,
using the same two classes of mechanisms.

A. Our Results and Techniques
An O(log logm) Prophet Inequality: Our first result is

an existential O(log logm)-approximate price-based prophet
inequality for subadditive combinatorial auctions. The pric-
ing interpretation is that we are given access to distribu-
tions Di over subadditive valuation functions vi, we will
precompute item prices pj for each item j ∈ M , and then
agents will arrive one-by-one, each with valuation vi drawn
from Di, and buy a subset of items S that maximizes their
utility vi(S)−

∑
j∈S pj . Our result is that we can find prices

so that the expected welfare of the resulting allocation will
be an O(log logm) approximation to the expected welfare
that could be achieved by an optimal offline algorithm with
advance knowledge of all valuations.

Theorem I.1 (Welfare, Existential). For subadditive valua-
tions drawn independently from known distributions, there
exist static anonymous item prices that yield a O(log logm)
approximation to the optimal expected welfare.

We prove the theorem for complete information (known
valuations), and then extend it to the Bayesian case with
incomplete information. At the heart of our approach is the
following lemma, which for a given and fixed subbaditive
valuation vi asserts the existence of item prices pj for a
given set U that satisfy a certain inequality.

Lemma I.1 (Key Lemma). For every i ∈ N , subadditive
function vi, and set U ⊆M there exist prices pj for j ∈ U
and a probability distribution λ over S ⊆ U such that for
all T ⊆ U∑

S⊆U

λS

(
vi(S \ T )−

∑
j∈S

pj

)
≥ vi(U)

α
−
∑
j∈T

pj ,

1Given a valuation function v, a set of objects M , and a price pj ≥ 0
for all j ∈ M , a demand query returns the set S that maximizes v(S) −∑

j∈S pj .

where α ∈ O(log logm).

Given this lemma it is relatively straightforward to show
Theorem I.1. The idea is to let (U1, . . . , Un) be the welfare-
maximizing allocation, and for each Ui and j ∈ Ui use
the prices pj from Lemma I.1 with U = Ui. The welfare
argument then proceeds by rewriting the welfare as the sum
of buyer utilities and revenue, with Lemma I.1 providing a
tool to lower bound the buyer utilities.

In this lower bound argument the set T from Lemma I.1
can be interpreted as the set of items which are already gone
when we consider agent i, and λ is a distribution over sets of
items S that agent i considers to buy. Of course, agent i can
only buy items that are still available, so she only derives
value from S \ T . The lemma therefore establishes that the
utility that can be obtained by agent i is at least a factor α
of her contribution to the optimal welfare, less the revenue
obtained from selling the items from T .

To prove Lemma I.1 we write down an LP and use strong
LP duality to show the following equivalent condition: There
exists a probability distribution λ over set of items S so
that for every probability distribution µ with

∑
T :j∈T µT ≤∑

S:j∈S λS , i.e., that puts at most the same probability mass
on each item j as distribution λ, it holds that∑

S,T

λS · µT · vi(S \ T ) ≥ 1

α
· vi(U). (1)

We interpret the left-hand side of (1) as a zero-sum
game, in which the protagonist chooses λ and the antag-
onist chooses µ, and the protagonist’s goal is to maximize∑
S,T λS · µT · vi(S \ T ). This has a natural interpretation:

the designer’s goal is to find a purchasing strategy for the
buyer that maximizes the value of the set they obtain, and
the adversary’s goal is to arrange the purchasing outcomes
so that removing all previously-sold items (i.e., T ) steals
most of the value from the buyer, leaving their realized value
vi(S \ T ) as small as possible.

We prove a lower bound on the value of this game by
restricting attention to distributions λ that put the same
probability mass q on each item. The crux of our argument
is that for each such “equal-marginals distribution” λ with
corresponding probability q, the value of the zero-sum game
is at least f(q)− f(q2), where f(q) is the optimal expected
social welfare that can be achieved by a distribution over
sets of items S ⊆ U that puts probability mass at most q
on each item. Intuitively, if it’s possible for the adversary
to choose some distribution µ over T that is guaranteed to
“steal the value” from the buyer’s distribution λ over S, then
it must be that the set S ∩ T has high expected value. But
if λ and µ each place probability at most q on each item,
then the distribution over S ∩ T places probability at most
q2 on each item. Thus, if the adversary can perform well
in the zero-sum game for some q, this directly implies that
we should consider the game with the significantly smaller



marginal probability q2.
To turn this intuition into an O(log logm) bound, we let

the protagonist consider such “equal marginal distributions”
for q = 2−2k

for k = 0 to k = O(log logm), and obtain a
lower bound on the value of the zero-sum game by taking
the average of the sum of the corresponding lower bounds
f(q) − f(q2). Now by the choice of the q this sum has
O(log logm) terms, and the sum is a telescoping sum which
evaluates to f(1/2)− f(1/m2). The proof is completed by
observing that the latter is at least (1/2− o(1)) · vi(U).

Polynomial-Time Computation of Prices: Our second
result shows how to turn this existential proof into a polytime
result, assuming appropriate demand query access to the
valuation functions.

Theorem I.2 (Welfare, Computational). For subadditive
combinatorial valuations drawn independently from known
distributions and any ε > 0, there is a polytime (in n, m, and
1/ε) algorithm to compute static and anonymous item prices
for which the resulting posted-price mechanism achieves an
O(log logm) approximation to the optimal expected welfare
up to an additive error of ε.

We prove this theorem by reformulating our optimization
problem in a way that avoids having to compute the equilib-
rium distributions in our zero-sum game, and instead draws a
connection to the classic configuration LP for combinatorial
assignment. We then use the fact that the configuration LP
can be solved in polynomial time using the Ellipsoid method,
since a separation oracle can be implemented with demand
queries.

Specifically, we draw q uniformly from the set of q’s
introduced above. For the resulting q we consider the dual
LP to the configuration LP for f(q2) — the optimal welfare
that can be achieved with a probability distribution that puts
probability mass at most q2 on each item—and we use the
prices from this dual LP scaled by q.

The intuition behind this construction is as follows. In our
argument above we bounded the value of the zero-sum game
by f(q) − f(q2). Here f(q) is the highest expected value
that the protagonist could obtain from a choice of λ if the
adversary abstained, and f(q2) is an upper bound on how
much value the antagonist can take away by choosing µ
optimally. By taking the dual prices for the configuration
LP for f(q2) and scaling them by q, we are effectively
setting prices that approximate the welfare loss due to the
antagonist’s strategy, which is to say the worst-case loss
from excluding items that have already been sold.

Revenue Maximization: We also show how to leverage
our new insights to make progress on another important fron-
tier in algorithmic mechanism design. Namely, the question
of how well the optimal revenue that can be obtained by
a Bayesian incentive compatible (BIC) mechanism can be
approximated by a simple and dominant strategy incentive
compatible (DSIC) mechanism. Our revenue approximation

makes use of a framework for constructing simple mech-
anisms due to Cai and Zhao [15], which builds upon a
recent literature applying a duality approach to revenue
maximization [16]. Cai and Zhao established an O(logm)
approximation under a natural item independence assump-
tion. Under the same assumption we show:

Theorem I.3 (Revenue). When buyers have subadditive
valuations over independent items, there is a simple DSIC
mechanism that yields an O(log logm) approximation to the
optimal BIC revenue.

A key step in the proof of Cai and Zhao [15] invokes a
posted-price-based prophet inequality for welfare maximiza-
tion, and indeed their approximation factor of O(logm) is
driven by the O(logm)-approximate prophet inequality that
they apply. However, one cannot apply a prophet inequality
to their framework as a black box. The reason is that the
prophet inequality is invoked to argue that the value of
a certain interim allocation rule—the core of a revenue-
optimal mechanism—can be approximated by posted prices.
We obtain the improved bound by extending our prophet
inequality so that it can handle arbitrary (not necessarily
equal) constraints on the marginal probability of allocating
each item, and using this to obtain a better price-based
approximation to the core.

Going Beyond O(log logm): Finally, we demonstrate
that the O(log logm)-factor that shows up in all our bounds
is best possible using our approach. In particular, our anal-
ysis restricts to distributions that set the same marginal
probability q of allocating each item. We show by way of
example that such distributions (and their associated dual
prices) can suffer loss as high as Ω(log logm).

Theorem I.4 (Lower Bound). There exists a subadditive
valuation function vi over m items such that for any q ∈
[0, 1], any α ∈ o(log logm), and any distribution λ that puts
probability at most q on each item there exists a distribution
µ that puts probability at most q on each item that violates
inequality (1).

Our restriction to equal-marginal distributions was crucial
for our approach to optimizing over distributions. Of course,
it is natural to wonder whether our bound could be improved
by relaxing the equal-marginals assumption and permitting
an arbitrary profile of marginal distributions. Indeed, we con-
jecture that an O(1)-approximate prophet inequality can be
achieved using item prices that are dual to a distribution with
unequal marginals. But we leave resolving this conjecture as
an open problem.

Discussion: Connection to Balanced Prices: The main
difference between our O(log logm) approximation and the
earlier state-of-the-art O(logm) prophet inequality from [6]
is that this earlier approach constructed prices by approxi-
mating subadditive valuations through fractionally subaddi-
tive (a.k.a. XOS) functions. This leads to “balanced prices”



in the sense of [11], where the sum of all prices matches
the optimal allocation precisely.

More generally, the balanced prices framework of [11]
entails constructing prices for any fixed valuation profile,
such that (a) the prices of any subset of items partially
offset the value lost due to allocating these items, and (b)
the sum of all prices is upper bounded by the total value
of the optimal allocation of all items. With parameters 1/α
and β for (a) and (b) this leads to O(1/(αβ)) price-based
prophet inequalities. However, such balanced prices cannot
lead to a better than O(logm) approximation for subadditive
combinatorial auctions [6].

Our prices are different, and will generally be much
higher. The basic intuition is that, under balanced prices,
the sum of all prices approximates the optimal welfare, so
in a sense the set of all items is “affordable” and the prices
facilitate an outcome where most of the items are purchased.
However, depending on the curvature of the subadditive
valuations, it may be better to target much smaller sets
for purchase if they already capture most of the value. By
looking at different marginals q we are basically considering
different sizes q ·m of sets of items to go after, and our key
lemma establishes that there is always a good choice of q.
As q becomes smaller, the prices we construct are tailored
to facilitate purchases of smaller sets of items, and hence
the item prices tend to increase.

B. Further related work

From a purely algorithmic perspective social welfare with
fractionally subadditive (or XOS) and subadditive valuations
can be approximated to within a constant factor assuming
demand queries. The state-of-the-art for both XOS and
subadditive valuations is a 1 − 1/e approximation due to
[13]. These approximation guarantees are best possible in
the sense that they match the integrality gap of the LP
formulations they are based on.

An important question in algorithmic mechanism design
concerns the gap between the best (worst-case) approxi-
mation guarantee that can be obtained without incentives
(i.e., purely algorithmically) and with a truthful mechanism.
Recent breakthroughs for XOS valuations were obtained
by Dobzinski [17], who gave an O(

√
logm) truthful ap-

proximation mechanism, and then subsequently by Assadi
and Singla [18], who gave an improved O((log logm)3)
truthful approximation mechanism. Finding DSIC approxi-
mation mechanisms with constant worst-case approximation
guarantees for either XOS or subadditive valuations or
disproving their existence is a major open problem.

A related question concerns the relative power of truthful
direct-revelation mechanisms and general mechanisms at
equilibrium. The latter can be analyzed using the price of
anarchy framework, in which the expected optimal solution
is compared with the worst-case expected outcome at any
Bayes-Nash equilibrium of the mechanism. Christodoulou,

Kovacs, and Schapira [19] established an O(1) price of
anarchy bound for simultaneous item auctions for XOS
valuations, which was subsequently extended to a variety
of auction formats and related solution concepts [20]. In
particular, Feldman, Fu, Gravin, and Lucier [14] established
an O(1) price of anarchy for simultaneous item auctions
under subadditive valuations.

Prophet inequalities for XOS and subadditive combina-
torial auctions in which agents arrive one by one were
previously given in [6], [11] and [21]. For XOS valuations
an optimal factor 2 is shown in [6], [11], and this can be
improved to 1− 1/e by additionally assuming agents arrive
in random order [21]. For subadditive valuations, Feldman
et al. [6] give an O(logm) approximation. Rubinstein and
Singla [10] consider a related but different problem, where
there is one subadditive function across all entities that
arrive over time. They give an O(logm log2 r) prophet
inequality, where r is the rank of an arbitrary downward
closed feasibility constraint.

In concurrent and independent work, [22] was able to
improve the O(logm) prophet inequality for subadditive
combinatorial auctions to O(logm/ log logm). This marks
an important breakthrough as it shows that it is possible to
improve upon the O(logm) bound.

Our application to revenue maximization builds upon a
recent literature on approximately revenue-optimal mech-
anisms for buyers with multi-dimensional types. For unit-
demand buyers, one can obtain a constant approximation to
the optimal mechanism with multiple buyers [23], [4], [24].
Simple constant approximations are known for additive buy-
ers with independent valuations, using a technique known
as a tail-core decomposition which bounds separately the
revenue contribution from rare outlier values and from “ex-
pected” valuation profiles [25], [26], [27], [28]. Chawla and
Miller showed how to combine both approaches to develop a
general class of approximately optimal mechanisms based on
posted prices with per-buyer entry fees [29]. Cai, Devanur,
and Weinberg further unify these approaches using a flexible
duality framework to effectively “linearize” valuations with
respect to revenue [16]. The ideas behind these mechanisms
have since been extended to more general valuation classes,
including XOS and subadditive valuations [15], [30]. Most
related to the current paper is the work of Cai and Zhao [15],
which (among other things) uses this framework to design
an O(logm)-approximate mechanism for subadditive valua-
tions, based on posted item prices with per-buyer entry fees.

II. MODEL AND DEFINITIONS

Subadditive Combinatorial Auctions: We are given a
set N of n buyers and a set M of m goods. Each buyer
i ∈ N has a valuation function vi : 2M → R≥0, which is
assumed to be normalized and monotone, i.e., vi(∅) = 0 and
vi(S) ≤ vi(T ) for S ⊆ T ⊆ M . A valuation function vi is
subadditive if vi(S) + vi(T ) ≥ vi(S ∪ T ) for S, T ⊆M .



We use v = (v1, . . . , vn) to denote a vector of valuation
functions. We will occasionally write v = (vi,v−i), where
we use v−i to denote the valuations of all buyers except
buyer i.

We assume a Bayesian setting, in which the valuation
function of each buyer i is drawn independently from distri-
bution Di. We write D =

∏
iDi for the joint distribution. We

emphasize that the independence here is across bidders. Val-
uations of a fixed agent can be arbitrarily correlated across
items (though we revisit this when discussing applications
to revenue maximization in Section V). We assume that the
designer knows the distributions from which the valuation
functions are drawn, but not the realizations of the random
draws.

An allocation x = (x1, . . . , xn) defines for each buyer
i ∈ N a set of goods xi ⊆ M that he receives. We require
that no good is assigned more than once, i.e., that xi∩xj = ∅
whenever i 6= j. We write x<i for partial allocations to
buyers s < i, i.e., for t ≥ i we have xt = ∅.

We evaluate allocations by the welfare they achieve. The
welfare of an allocation x is

∑
i vi(xi). We write OPT(v)

for the welfare-maximizing allocation, and v(OPT((v)) =∑n
i=1 vi(OPTi(v)) for the welfare it achieves.

Posted-Price Mechanisms: A posted-price mechanism
uses a set of functions pi(· | x<i) : 2M → R≥0 which assign
a non-negative price to each set of items S ⊆M . Note that
these functions can be personalized, they can be “per set”
rather than “per item” (i.e., the price of a set of items need
not be a sum of prices of individual items), and they may
depend on which items were already allocated.

Of particular interest will be posted-price mechanisms that
use static anonymous item prices. A posted-price mechanism
has anonymous prices if there exists a single set of functions
p(· | x<i) such that pi(S | x<i) = p(S | x<i) for all i, S,
and x<i. It uses item prices if pi(S | x<i) =

∑
j∈S pi({j} |

x<i) for all i, S, and x<i. Finally, prices are static if for each
i there is a single function pi(·) such that pi(S | x<i) =
pi(S) for all S and x<i.

An important advantage of posted-price mechanism with
static anonymous item prices is that they can be succinctly
described by a single vector p = (p1, . . . , pm) ∈ Rm≥0.

A posted-price mechanism proceeds as follows. The buy-
ers arrive sequentially, and for notational convenience we as-
sume they are indexed according to their arrival order.2 Upon
arrival of buyer i the mechanism posts a price pi(S,x<i) for
each set of items S. Buyer i buys any set of items xi that
maximizes her utility ui(xi,p) = vi(xi)−

∑
j∈xi

pj among
all such sets.

Given a fixed choice of item prices, we will tend to
write ALG for the corresponding posted-price mechanism,

2All of our results continue to hold in a more general setting where the
arrival order is arbitrary and unknown to the designer (but still fixed in
advance) and is revealed online as the buyers arrive.

ALG(v) for the resulting allocation of items when valua-
tions are v, and use v(ALG(v)) =

∑n
i=1 vi(ALGi(v)) to

denote the welfare it achieves.
Prophet Inequalities: We will follow the “prophet-

inequality paradigm” to evaluate the performance of posted-
price mechanisms. That is, we will evaluate the perfor-
mance of a posted-price mechanism ALG by comparing
its expected welfare Ev∼D [v(ALG(v))] to the expected
optimal welfare Ev∼D [v(OPT(v))]. Extending the notion
of competitive ratio from the worst-case analysis of online
algorithms, we define the (stochastic) competitive ratio of a
posted-price mechanism as

sup
D

Ev∼D [v(OPT(v))]

Ev∼D [v(ALG(v))]
.

III. AN O(LOG LOGm) PRICE-BASED PROPHET
INEQUALITY FOR WELFARE

We start by establishing the existence of an O(log logm)-
competitive price-based prophet inequality for subadditive
combinatorial auctions and the goal of maximizing welfare.

Theorem III.1. For subadditive combinatorial auctions
there is a O(log logm)-competitive posted-price mechanism
that uses static anonymous item prices.

It suffices to show Theorem III.1 for m > 2 as for m =
O(1) the competitive ratio is constant. We will prove the
theorem in two steps. In Section III-A, we show the claim
for complete information. That is, we assume valuations are
fixed and known. In Section III-B, we sketch our proof for
the Bayesian case with incomplete information.

A. Proof for Complete Information

Our key lemma and driver of the improved competitive
ratio is the following lemma. We prove this lemma using
LP-duality, and derive the existence of appropriate prices
and the corresponding probability distribution over sets of
items through a zero-sum game formulation. Lemma III.1 is
a restatement of Lemma I.1 from the introduction. Recalling
the discussion after Lemma I.1, the intuition is that the
revenue raised by selling items that would typically be
allocated to buyer i (set T ), plus the utility that buyer i
can obtain from the remaining items (by buying set S\T ),
approximates buyer i’s contribution to the expected optimal
welfare (i.e., vi(U)).

Lemma III.1. For every i ∈ N , subadditive function vi, and
set U ⊆M there exist prices pj for j ∈ U and a probability
distribution λ over S ⊆ U such that for all T ⊆ U∑

j∈T
pj +

∑
S⊆U

λS

(
vi(S \ T )−

∑
j∈S

pj

)
≥ vi(U)

α
,

where α ∈ O(log logm).

Before we prove Lemma III.1, let’s see how it implies the
desired result.



Proof of Theorem III.1 (complete information): Let
OPT(v) = (U1, . . . , Un) be the welfare-maximizing allo-
cation for valuations v. Define a vector p of item prices
as follows: For i ∈ N and j ∈ Ui use price pj from
Lemma III.1. Let ALG be the posted-price mechanism
that uses prices p. Denote the allocation of ALG on
valuation profile v by ALG1(v), . . . ,ALGn(v) and let
SOLD(v) = ∪ni=1ALGi(v) denote the set of items sold
by the mechanism.

To derive a lower bound on the welfare achieved by the
posted-price mechanism we will use that the welfare can be
decomposed into utility and revenue. Namely, if we write
ui((vi,v−i),p) for the utility of buyer i and r(v,p) for the
revenue, then

v(ALG(v)) =

n∑
i=1

ui((vi,v−i),p) + r(v,p).

We begin by deriving a lower bound on the sum of the
utilities. To this end consider an arbitrary buyer i. Let λ be
the probability distribution over sets of items S ⊆ Ui from
Lemma III.1 and let T = ∪`<iALG(v)`∩Ui ⊆ SOLD(v)∩
Ui. Now because buyer i could draw a set of items S from
λ and buy set S \T (or no set at all if this gives her negative
utility),

ui((vi,v−i),p) ≥
∑
S⊆Ui

λS

(
vi(S \ T )−

∑
j∈S

pj

)
≥ vi(Ui)

α
−
∑
j∈T

pj ,

where the inequality holds by Lemma III.1.
Summing over all buyers i, we obtain
n∑
i=1

ui((vi,v−i),p) ≥ v(OPT(v))

α
−

∑
j∈SOLD(v)

pj . (2)

On the other hand, the revenue obtained by the posted-
price mechanism is

r(v,p) =
∑

j∈SOLD(v)

pj . (3)

Adding (2) and (3) shows the claim.
To prove Lemma III.1 we will write down an LP that

captures the claim. The lemma statement will be satisfied
whenever the optimal solution to the LP has non-negative
value, and we will show that this is indeed the case using
strong duality.

Consider an arbitrary buyer i and an arbitrary set U . Let
γ = 1/α. In order to establish Lemma III.1, we have to
show that there are prices pj for j ∈ U and a distribution λ
over sets of items S ⊆ U such that for all T ⊆ U∑

j∈T
pj +

∑
S⊆U

λS

(
vi(S \ T )−

∑
j∈S

pj

)
≥ γvi(U).

or equivalently∑
S⊆U

λS
∑
j∈S

pj −
∑
j∈T

pj ≤
∑
S⊆U

λSvi(S \ T )− γvi(U).

(4)

To show inequality (4), we will consider the following
LP. The LP is for a fixed λ and has variables pj ≥ 0 for
j ∈ U and two more variables `+ ≥ 0 and `− ≥ 0. The
extra variables model a slack term `+− `− of arbitrary sign
which we consider adding to the the left-hand side of the
inequality.3 The LP maximizes the slack term.

max `+ − `−
s.t.

∑
S⊆U

λS
∑
j∈S

pj −
∑
j∈T

pj + (`+ − `−)

≤
∑
S⊆U

λSvi(S \ T )− γvi(U) for all T ⊆ U

pj ≥ 0 for all j ∈ U
`+ ≥ 0

`− ≥ 0.

As a non-negative slack means that inequality (4) is
fulfilled, we know that there are prices fulfilling inequality
(4) if and only if this LP has an optimal solution with non-
negative objective value.

Our strategy for showing this will be to go through the
dual. Indeed by strong duality it is equivalent to show
that every feasible solution to the following dual LP with
variables µT ≥ 0 for T ⊆ U has non-negative value.

min
∑
T

µT

( ∑
S⊆U

λSvi(S \ T )− γvi(U)

)
s.t. −

∑
T :j∈T

µT +
∑
T

∑
S:j∈S

λSµT ≥ 0 for all j ∈ U∑
T

µT = 1

µT ≥ 0 for all T ⊆ U .

We note that the dual constraints are equivalent to∑
T µT = 1 and

∑
T :j∈T µT ≤

∑
S:j∈S λS for all j ∈ U .

So they naturally define probability distributions over sets of
items T ⊆ U , which can put at most the same probability
mass on each item j ∈ U as the probability distribution λ.

This means that the LP has non-negative value if and only
if for every probability distribution µ with

∑
T :j∈T µT ≤∑

S:j∈S λS it holds that∑
S,T

λSµT vi(S \ T ) ≥ γvi(U). (5)

3The use of two slack variables is simply to have the LP in canonical
form; they could equivalently be replaced by a single slack variable of
arbitrary sign.



We can now formulate the search for an appropriate λ
as a zero-sum game in which pure strategies correspond
to subsets of items. The maximizing player chooses S, the
minimizing player chooses T , and the payoff associated with
two sets S and T is vi(S \T ). We want to show that there is
mixed strategy λ for the maximizing player such that when
the minimizing player is constrained to use a mixed strategy
µ which puts at most the same probability mass on each item
j as λ, then the value of the game is at least γvi(U).

To this end let q = (q1, . . . , q|U |) where qj ∈ [0, 1] and let
∆(q) denote all probability distributions ν over sets S ⊆ U
such that

∑
T3j νT ≤ qj for all j. Define

g(q) = max
λ∈∆(q)

min
µ∈∆(q)

∑
S,T⊆U

λSµT vi(S \ T ). (6)

Inequality (5) and hence inequality (4) and Lemma III.1
are therefore equivalent to there being a q such that g(q) ≥
vi(U)/O(log logm).

The following lemma shows that it is in fact possible to
achieve this with a uniform vector q in which qi = qj for
all i and j.

Lemma III.2. There exists a q ∈ [0, 1] such that for q =
(q, . . . , q) ∈ [0, 1]|U | we have g(q) ≥ 1

O(log logm)vi(U).

Proof: For q ∈ [0, 1] define

g(q) = max
λ∈∆(q,...,q)

min
µ∈∆(q,...,q)

∑
S,T⊆U

λSµT vi(S \ T ), and

f(q) = max
λ∈∆(q,...,q)

∑
S⊆U

λSvi(S).

We now use subadditivity, that
∑
T µT = 1, and finally

that µTλS defines a probability distribution on S ∩ T that
puts at most probability mass q2 on each item to obtain

g(q) = max
λ∈∆(q,...,q)

min
µ∈∆(q,...,q)

∑
S,T⊆U

λSµT vi(S \ T )

≥ max
λ∈

∆(q,...,q)

min
µ∈

∆(q,...,q)

∑
S,T⊆U

λSµT

(
vi(S)− vi(S ∩ T )

)
= max

λ∈
∆(q,...,q)

( ∑
S⊆U

λSvi(S)

− max
µ∈

∆(q,...,q)

∑
S,T⊆U

λSµT vi(S ∩ T )
)

≥ max
λ∈

∆(q,...,q)

( ∑
S⊆U

λSvi(S)− max
ν∈

∆(q2,...,q2)

∑
S⊆U

νSvi(S)
)

= f(q)− f(q2),

For any ` we thus have,∑̀
i=0

g
(
2−2i)

≥
∑̀
i=0

(
f
(
2−2i)

− f
(
2−2i+1))

= f
(
2−1
)
− f

(
2−2`+1)

,

by a telescoping sum argument.

With ` = log logm,

2−2`+1

= 2−2 logm =
1

m2
.

Hence for ` = log logm,∑̀
i=0

g
(
2−2i)

≥ f
(1

2

)
− f

( 1

m2

)
.

We conclude the proof by showing a lower bound on
f(1/2) and an upper bound on f(1/m2). A lower bound
on f(1/2) follows from the fact that λ could take the set Ui
with probability 1/2. So

f
(1

2

)
≥ 1

2
· vi(U).

For the upper bound on f(1/m2) we exploit the trivial upper
bound on vi(S) namely vi(U). Using this we obtain,

f
( 1

m2

)
= max
λ∈∆(1/m2,...,1/m2)

∑
S⊆U

λSvi(S)

≤ max
λ∈∆(1/m2,...,1/m2)

( ∑
S⊆U,S 6=∅

λS

)
vi(U)

≤
∑
j∈U

( ∑
S:S3j

λS

)
vi(U)

≤ m · 1

m2
· vi(U)

=
1

m
· vi(U).

We conclude that

max
q
g(q) ≥ 1

`+ 1

∑̀
i=0

g
(
2−2i)

≥ 1

`+ 1

(1

2
− 1

m

)
vi(U),

as claimed.

B. Proof for Incomplete Information

Our proof for the Bayesian case is based on the following
variant of Lemma III.1. The proof of this lemma follows the
same basic steps as the proof of Lemma III.1, but requires
some additional care when deriving a lower bound on the
value of the zero-sum game. In particular, since the zero-
sum game now has payoffs that are defined with respect to
the distribution over valuations, our argument requires that
we relate the value of the game to the expected value of the
distribution over full-information games.

Lemma III.3. For every probability distribution D =
∏
iDi

over subadditive valuation functions, there exist prices pj for
j ∈ M and probability distributions λi,v over S ⊆ M for
all i and v such that for all T ⊆M∑
j∈T

pj + Ev

[ n∑
i=1

∑
S

λi,vS

(
vi(S \ T )−

∑
j∈S

pj

)]
≥ 1

α
Ev [v(OPT(v))] ,



where α ∈ O(log logm).

Using Lemma III.3 it is straightforward to prove The-
orem III.1 using a hallucination trick similar to that in
the price of anarchy literature [20], [31], the literature
on algorithmic stability [32], and in the balanced prices
framework for prophet inequalities [11].

IV. COMPUTING PRICES IN POLYNOMIAL TIME

Theorem III.1 shows the existence of static anonymous
item prices that yield an O(log logm) approximation to the
optimal welfare. In this section, we establish the following
computational version of this result. It shows how to achieve
the same approximation guarantee in polynomial time. The
proof also reveals an alternative for choosing prices that
yield an O(log logm) approximation. We assume to have
access to demand oracles for the valuation functions in the
support of D. Recall that a demand oracle for valuation
function vi takes as input item prices p1, . . . , pm and returns
the set S ⊆M that maximizes vi(S)−

∑
j∈S pj .

Theorem IV.1. For subadditive combinatorial auctions and
any ε > 0, there is a polynomial-time (in n, m, and 1/ε)
algorithm to compute static and anonymous item prices
for which the resulting posted-price mechanism achieves
expected welfare at least 1

α · Ev [v(OPT(v)] − ε where
α = O(log logm).

Our proof is based on the following version of
Lemma III.3 that includes computations in polynomial time
using demand oracles.

Lemma IV.1. For every probability distribution D =
∏
iDi

over subadditive valuation functions and every ε > 0, there
exist prices pj for j ∈M and probability distributions λi,v

over S ⊆M for all i and v such that for all T ⊆M∑
j∈T

pj + Ev

[ n∑
i=1

∑
S

λi,vS

(
vi(S \ T )−

∑
j∈S

pj

)]
≥ 1

α
Ev [v(OPT(v))]− ε,

where α ∈ O(log logm). Moreover, assuming that
v(OPT(v)) ≤ 1 for all v in the support, for any ζ > 0,
there is an algorithm that uses poly(n,m, 1/ε, log(1/ζ))
demand oracle queries that computes such prices with
probability at least 1− ζ.

We will prove the lemma under the assumption that we
can compute expectations Ev [ · ]. In the full version we
show how to simulate this ability by sampling from the
distributions.

Computation of Prices: Fix some valuation profile v.
As in the case of complete information, we will consider an
f -function that maximizes the expected value vi(S), where
S is drawn from a constrained distribution over sets of items.
To this end, for each q ∈ [0, 1] let Γ(q) = {{νi}ni=1 |

∑n
i=1

∑
S:S3j ν

i
S ≤ q for all j in M} be the collection of

distribution profiles for which the marginal probability that
each item is allocated is at most q. Then we will define

fv(q) = sup
λ∈Γ(q)

n∑
i=1

∑
S

λiSvi(S).

Fix q ∈ [0, 1] and let λi,v,q be some choice of λ ∈ Γ(q)
that achieves the maximum in the definition of fv(q).

We now consider the following linear program:

max
n∑
i=1

∑
S

xiSvi(S)

s.t.
∑
i

∑
S:j∈S

xiS ≤ q2 for all j ∈M∑
S

xiS ≤ 1 for all i

xiS ≥ 0 for all i, S

The value of this program is precisely equal to fv(q2), from
the definition of fv. The dual of this linear program is given
by

min
∑
j∈M

q2yj +

n∑
i=1

ui

s.t. ui +
∑
j∈S

yj ≥ vi(S) for all i, S

ui ≥ 0 for all i
yj ≥ 0 for all j

Let (yv,qj )j∈M , (uv,qi )i∈N denote an optimal solution to
this dual. We note that this optimal solution can be computed
in polynomial time. Indeed, it suffices to find a separation
oracle for the dual program. A separation oracle query is
equivalent to finding a set S that maximizes vi(S)−

∑
j∈S yj

for a given choice of (yj)j∈M . But this is precisely a demand
query, interpreting the dual variables yj as item prices. Thus,
given access to a demand oracle for vi, one can solve the
dual program and compute (yv,qj )j∈M .

Our algorithm now chooses q so as to maximize
Ev [fv(q)] − Ev

[
fv(q2)

]
among all q = 2−2X

for some
X ∈ {0, . . . , `}, where ` = log logm. We then define our
prices according to pqj = Eṽ[qyṽ,qj ]. That is, pqj is equal to
the expected value of yṽ,qj scaled by q.

Approximation Guarantee: To prove the approximation
guarantee, we first show a property of the prices that holds
regardless of the choice of q.

Claim IV.1. For any choice of q ∈ [0, 1], the prices defined
by pqj = Eṽ[qyṽ,qj ] fulfill

Ev

[∑
i,S

λi,v,qS

(
vi(S \ T )−

∑
j∈S

pqj

)
+
∑
j∈T

pqj

]
≥ Ev [fv(q)]− Ev

[
fv(q2)

]
.



Claim IV.1 holds for a fixed but arbitrary choice of q ∈
[0, 1]. Our algorithm chooses among all q = 2−2X

for X ∈
{0, . . . , `}, where ` = log logm, the one that maximizes
Ev [fv(q)]−Ev

[
fv(q2)

]
. Note that by this choice of q, we

have

Ev [fv(q)]− Ev

[
fv(q2)

]
≥ 1

`+ 1

∑̀
X=0

(
Ev

[
fv(2−2X

)
]
− Ev

[
fv((2−2X

)2)
])

=
1

`+ 1
Ev

[(
fv
(1

2

)
− fv

( 1

m2

))]
.

We have already established fv
(

1
2

)
≥ 1

2v(OPT(v))
because one particular choice for λ would be OPT(v)
with probability 1

2 and the empty allocation other-
wise. Furthermore, fv

(
1
m2

)
≤ 1

mv(OPT(v)) because
for any λ ∈ Γ( 1

m2 ), we have
∑n
i=1

∑
S λ

i
Svi(S) ≤∑n

i=1

∑
S λ

i
S

∑
j∈S vi({j}) ≤ 1

m2

∑
j∈M vi({j}) ≤

1
mv(OPT(v)).

So, these calculations in combination with Claim IV.1
yield that for the value of q chosen by the algorithm

Ev

[∑
i,S

λi,v,qS

(
vi(S \ T )−

∑
j∈S

pqj

)
+
∑
j∈T

pqj

]
≥ 1

`+ 1

(
1

2
− 1

m

)
Ev [v(OPT(v)] .

The proof of Theorem IV.1 now follows from Lemma IV.1
in a similar way as Theorem III.1 followed from
Lemma III.3.

V. AN O(LOG LOGm) APPROXIMATION TO OPTIMAL
REVENUE

We next show how to extend our arguments to obtain a
posted-price mechanism that achieves near-optimal revenue
rather than welfare. We will follow the approach of Cai and
Zhao [15]. Fix the valuation distribution D =

∏
iDi. We

will make an independence assumption on each distribu-
tion Di, which is that the valuations are subadditive over
independent items. Roughly speaking, this means that for
any S and T with S ∩ T = ∅, the random variables vi(S)
and vi(T ) are distributed independently. In particular, this
implies vi({j}) is distributed independently for each item
j. We’ll write vi(j) = vi({j}) for convenience.

Theorem V.1. When buyers have subadditive valuations
over independent items, there exists a simple, deterministic,
and DSIC mechanism that achieves an Ω(1/α) approxima-
tion to the optimal BIC revenue where α = O(log logm).

Just like the mechanism of Cai and Zhao [15], our
mechanism will be from one of the following two classes:

1) Rationed sequential posted-price mechanism (RSPM):
The buyers are approached in a fixed order. For each
buyer, each item is assigned a static and potentially

personalized posted price. Each buyer can purchase at
most a single item at its listed price.

2) Anonymous sequential posted-price with entry fee
mechanism (ASPE): Each item is assigned a static
anonymous posted price. The buyers are approached
in a fixed order, and each buyer faces an entry fee
that can depend on the set of items that have not yet
been sold when they arrive. If the buyer pays the entry
fee, they can purchase any set of items at their posted
prices.

We will write POSTREV for the optimal revenue attainable
using a RSPM, APOSTENREV for the optimal revenue
attainable using an ASPE, and REV for the optimal BIC
revenue.

In Section V-A and Section V-B we describe the high-
level approach of Cai and Zhao [15] and the key facts of
their construction that we will reuse. In Section V-B we also
state our key lemma, Lemma V.6, and show how it implies
the improved bound in Theorem V.1. We prove Lemma V.6
in Section V-C.

A. A First Core-Tail Decomposition and a Benchmark

In this section we summarize a particular core-tail de-
composition due to Cai and Zhao [15]. First some nota-
tion. We’ll use σ to describe an interim allocation rule of
mechanism, where σiS(vi) is the probability that agent i is
allocated set S when agent i has valuation vi. We’ll write
πij(vi) =

∑
S3j σ

i
S(vi) for the probability that agent i is

allocated item j under valuation vi.
Fix personalized item thresholds βij ≥ 0 for all i and j,

whose values will be chosen later. We now describe what is
meant by the core. For each buyer i, define a threshold ci
as follows:

ci = inf{x ≥ 0:
∑
j

Prvi [vi(j) ≥ βij + x] ≤ 1/2}.

Let Ci(vi) = {j : vi(j) < βij +ci}. That is, Ci(vi) contains
all items j for which agent i does not have too large a value
for item j as a singleton, relative to threshold βij .

Fix a mechanism M with interim allocation rule σ. We
can now define the core of a mechanism as follows:

CORE(M,β) = Ev

[∑
i,S

σiS(vi)vi(S ∩ Ci(vi))
]
.

That is, the core with respect to M and β is the total welfare
generated by M , excluding any item j assigned to a buyer
i that has too large a value for it, relative to βij .

We can interpret this more explicitly as welfare under a
valuation transformation. Define v′i(S) = vi(S ∩ Ci(vi)).
Note that with this definition, omitting the dependence
of σ and v′ on v from the notation, CORE(M,β) =

E
[∑

i,S σ
i
Sv
′
i(S).

]
An important observation due to Cai and

Zhao [15] is the following:



Lemma V.1 (Cai and Zhao [15]). Valuations v′ are subad-
ditive over independent items.

The following lemma summarizes the implications of a
construction due to Cai and Zhao [15]

Lemma V.2 (Cai and Zhao [15]). Fix an arbitrary constant
b ∈ (0, 1). Then there exists a mechanism M with interim
allocation rule σ and corresponding item allocation rules
π and personalized item thresholds βij for all i and j such
that the following are true:

1) REV ≤
(

8
1−b + 12

)
· POSTREV + 4 · CORE(M,β),

2)
∑n
i=1

ci
2 ≤

2
1−b · POSTREV,

3)
∑
k 6=i Prvk [vk(j) ≥ βkj ] ≤ b,

4) Evi
[
πij(vi)

]
≤ Prvi [vi(j) ≥ βij ] /b.

From now on we’ll fix b and consider the corresponding
mechanism M and thresholds β from Lemma V.2, and
we’ll simply write CORE to mean CORE(M,β). Given
Lemma V.2, what remains in order to prove Theorem V.1 is
to argue that CORE can be approximated (up to a factor of
O(log logm)) by either POSTREV or APOSTENREV.

B. The Core Within the Core, Key Lemma, and How it
Implies the Bound

The CORE as defined above is just the welfare for a
specific allocation under transformed but still subadditive
valuation functions (namely the v′i’s). A key idea in the
literature on simple, near-optimal posted price mechanisms
for revenue is to turn posted-price mechanisms that achieve
some approximation guarantee for welfare into mechanisms
that achieve the same (up to constant factors) approximation
guarantee for revenue by augmenting the mechanism with
entry fees. The idea is that if each buyer’s surplus is
sufficiently concentrated, then that surplus can be extracted
as revenue using entry fees. One way to show concentration
is to argue that no single item’s contribution to the surplus
is too large (i.e., a Lipschitz condition), but as it turns out
individual items can contribute significantly to surplus under
valuations v′i.

Cai and Zhao [15] therefore invoke a second core restric-
tion (called ĈORE in their paper), resulting in a further
restricted valuation v̂i for each agent. This further restricted
valuation has a sufficiently small Lipschitz constant.

To define this second restriction, consider a set of item
prices pj (we will fix these later). Then, for each agent i,
define

τi = inf{x :
∑
j

Pr [vi(j) ≥ max{βij , pj + x}] ≤ 1/2}.

Write Yi(vi) = {j : vi(j) < pj + τi}.
With these definitions in place, we can formalize what

we meant by a further restriction of each agent’s valuation
vi. Define v̂i(S) = vi(S ∩ Yi(vi)). So v̂ is like v, but with
any “very high-valued individual items” removed from the

valuation. Unlike the initial core decomposition, now the
high-valuedness is with respect to prices pj rather than the
thresholds βij .

For each agent i, set S, and valuation vi, set µi(vi, S) =
maxS′⊆S(v̂i(S

′) −
∑
j∈S′ pj). This is the surplus enjoyed

by an agent with valuation v̂i when S is the set of available
items, priced according to pj . (We use the notation µi(vi, S)
for consistency with [15]. It’s not related to µT as it appears
in the zero-sum games.)

The following lemmata summarize key properties of the
core-within-the-core that are shown in [15] and that we will
re-use in our analysis.

Lemma V.3 (Cai and Zhao [15]). For any choice of item
prices pj and subadditive functions vi, the surplus µi is
monotone, subadditive, and τi-Lipschitz.

Lemma V.4 (Cai and Zhao [15]). For any choice of item
prices pj and subadditive functions vi,
n∑
i=1

∑
j∈M

max{βij , pj + τi}Prvi [vi(j) ≥ max{βi,j , pj + τi}]

≤ 2

b(1− b)
· POSTREV.

Lemma V.5 (Cai and Zhao [15]). For any choice of item
prices pj and subadditive functions vi,

∑
i τi ≤

4
1−b ·

POSTREV.

The crux and key innovation of our analysis is now
the following lemma, which establishes the existence of an
ASPE with an appropriate approximation guarantee.

Our mechanism is actually from the same class of ASPE
mechanisms as the mechanism of Cai and Zhao [15], but
uses a different set of item prices. This class of ASPE
mechanisms, less call them median ASPE, is parametrized
by a set of of item prices pj and the mechanisms within
that class proceed as follows. The agents are approached
sequentially in a fixed order. We write Si(v) for the set of
items still available when agent i is approached. (Note that
Si(v) only depends on the entries of v corresponding to
agents that arrived before i.) Agent i faces an entry fee equal
to the median (over randomness in vi) of µi(vi, Si(v)). If
agent i pays the entry fee, she can then purchase any desired
subset of items at prices pj .

Lemma V.6. There is a set of item prices pj such that the
median ASPE with these prices achieves expected revenue
at least

APOSTENREV ≥ 1

4α
· CORE − 1 + 6b

2b(1− b)
· POSTREV.

with α = O(log logm).

With Lemma V.6 at hand it’s rather straightforward to
show Theorem V.1. The idea is to distinguish between the
case where POSTREV ≥ c/α · CORE where c is some
constant, and the case where it doesn’t. In the former case



Lemma V.2 implies a lower bound on POSTREV in terms
of REV, and in the latter case it implies a lower bound
on APOSTENREV in terms of REV. The respective bounds
depend on α, b, and c. An appropriate choice of b and c
allows us to balance the two cases, and yields the desired
bound.

C. Proof of Key Lemma, Pricing Beyond Additive Support-
ing Functions

It remains to show Lemma V.6, which boils down to
finding appropriate item prices. We would like to find item
prices that guide the allocation toward one that approximates
the allocation that defines CORE = E[

∑
i,S σ

i
Sv
′
i(S)]. To

this end we will extend Lemma III.3 (our key lemma in the
incomplete information case) to allow arbitrary constraints
on the marginal probability of allocating each item to each
agent. Given z = {zij}, where each zij is a function with
zij(vi) ∈ [0, 1] for each i, j, and vi, we’ll write

Λ(z) =

{
{λv}v : Ev−i

[∑
S3j

λi,vS

]
≤ zij(vi) ∀ i, j, vi

}
.

That is, Λ(z) is the set of all collection of λv’s satisfying
the upper bounds described by z.

Analogous to Lemma III.3 we can now show the follow-
ing lemma.

Lemma V.7. For every independent probability distribution
D =

∏
iDi over subadditive valuation functions, and

zij(vi) ∈ [0, 1] for each i and j and vi, there exist prices pj
for j ∈ M and probability distributions λi,v over S ⊆ M
for all i and v such that λ ∈ Λ(z) and, for all T ⊆M ,∑
j∈T

pj + Ev

[ n∑
i=1

∑
S

λi,vS

(
v′i(S \ T )−

∑
j∈S

pj

)]
≥ 1

α
· Ev

[
max
λ∈Λ(z)

∑
i,S

λ
i,v

S v′i(S)
]
,

where α ∈ O(log logm).

Invoke this lemma with zij(vi) = πij(vi), resulting in
some pj and λ. Note then that the RHS of Lemma V.7,
Ev[maxλ∈Λ(z)

∑
i,S λ

i,v

S v′i(S)], is at least CORE.
We’d now like to claim that if we replace v′i by v̂i in

Lemma V.7, this does not change the welfare bound by too
much.

Lemma V.8. For any {λv}v ∈ Λ(z) with zij(vi) = πij(vi)
and for all T ⊆M ,

Ev

[
n∑
i=1

∑
S

λi,vS v′i(S \ T )

]
− Ev

[
n∑
i=1

∑
S

λi,vS v̂i(S \ T )

]

≤ 2(1 + b)

b(1− b)
· POSTREV.

Similarly to the way we prove Theorem III.1 from
Lemma III.3 we can now prove:

Lemma V.9. Using the prices pj that result from invoking
Lemma V.7 with zij(vi) = πij(vi) we have

n∑
i=1

Ev [µi(vi, Si(v))] ≥ 1

α
CORE − Ev

[ ∑
j∈SOLD(v)

pj

]
− 2(1 + b)

b(1− b)
· POSTREV.

We also need the following result from [15] concerning
the revenue collected by a median ASPE through the entry
fees, which expliots that the µi are τi-Lipschitz. Recall that
we used Si(v) to denote the set of items that are still
available when agent i is approached.

Lemma V.10 (Cai and Zhao [15]). For any choice of item
prices pj and subadditive valuations vi, the expected revenue
that the median ASPE that uses these prices collects through
the entry fees is at least

1

4

n∑
i=1

Ev [µi(vi, Si(v))]− 5

8

n∑
i=1

τi.

Lemma V.6 now follows by observing that APOS-
TENREV decomposes into the revenue from the posted
prices, which is Ev

[∑
j∈SOLD(v) pj

]
by definition, and

the revenue from the entry fees, which is lower
bounded by 1

4

∑n
i=1 Ev [µi(vi, Si(v))]− 5

8

∑n
i=1 τi through

Lemma V.10. Using Lemma V.9 to lower bound∑n
i=1 Ev [µi(vi, Si(v))] and Lemma V.5 to upper bound∑n
i=1 τi the claim follows.

VI. GOING BEYOND O(LOG LOGm)

We leave it as an open problem whether the O(log logm)
factor could be further reduced, possibly even to a constant.
As a matter of fact, many techniques presented in this paper
seem to be very useful to reach such an improved guarantee.
In this section we discuss to what extent they can be applied
and where there are barriers.

In all of our proofs, the O(log logm)-factor originates
from variants of the same technical lemma. In particular, the
complete-information proof of Theorem III.1 as provided
in Section III-A is mainly based on Lemma III.1. Similar
lemmas are used for all other proofs as well. This is why
we will now revisit the proof of Lemma III.1.

The proof of Lemma III.1 shows that its statement for
any value of α is indeed equivalent to there being a
vector of probabilities q = (qj)j∈U , qj ∈ [0, 1], one
for each item such that the λ player has value at least
vi(U)/α in the zero-sum game induced by the q vec-
tor. More formally, g(q) ≥ vi(U)/α for the function
g(q) = maxλ∈∆(q) minµ∈∆(q)

∑
S,T⊆U λSµT vi(S \ T ),

where ∆(q) denotes all probability distributions ν over sets
S ⊆ U such that

∑
T3j νT ≤ qj for all j. This also means

that to show the existence of prices for an o(log logm)-
approximation it suffices to show that there always is a
vector q such that g(q) ≥ vi(U)/α for α ∈ o(log logm).



Our proof continues by Lemma III.2, showing that there
exists a q ∈ [0, 1] such that for q = (q, . . . , q) ∈ [0, 1]|U | we
have g(q) ≥ 1

αvi(U) for α ∈ O(log logm). That is, we put
the same probability mass q on every item. As we will show
now, the O(log logm) bound is indeed tight for strategies
that put the same probability mass q on all items. In other
words, for a o(log logm) bound, one would have to devise
a more sophisticated way to choose the q vector.

Theorem VI.1. There exists a subadditive function vi
such that for U = M we have maxq∈[0,1] g(q, . . . , q) ≤

1
Ω(log logm)vi(M).
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