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Crop switching reduces agricultural losses from
climate change in the United States by half under
RCP 8.5
James Rising 1✉ & Naresh Devineni 2

A key strategy for agriculture to adapt to climate change is by switching crops and relocating

crop production. We develop an approach to estimate the economic potential of crop real-

location using a Bayesian hierarchical model of yields. We apply the model to six crops in the

United States, and show that it outperforms traditional empirical models under cross-

validation. The fitted model parameters provide evidence of considerable existing climate

adaptation across counties. If crop locations are held constant in the future, total agriculture

profits for the six crops will drop by 31% for the temperature patterns of 2070 under RCP 8.5.

When crop lands are reallocated to avoid yield decreases and take advantage of yield

increases, half of these losses are avoided (16% loss), but 57% of counties are allocated

crops different from those currently planted. Our results provide a framework for identifying

crop adaptation opportunities, but suggest limits to their potential.
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Extreme temperatures under climate change are predicted to
reduce average yields for several of the United States’ major
crops1–4. However, these impacts can vary across space,

with some areas showing benefits from increases in moderate
temperatures and increased evapotranspiration under
irrigation5,6. As climate shifts, these changes in productivity will
drive farmers to change crops and move into new areas7.
Understanding the extent of these regional changes in agricultural
productivity and how they influence future cropping decisions is
a central question for the impacts of climate change on
agriculture8,9. Crop shifting may be able to attenuate climate
impacts, but the potential benefits depend on the distribution of
impacts, the total availability of productive land, and the costs of
switching crops.

In this paper, we explore the potential redistribution of six
crops in the United States as an adaptation to climate change. We
approach the crop shifting problem as a spatial optimization
problem to maximize profits, following Polasky et al.10. and
Devineni and Perveen11. Our key innovation consists of provid-
ing a new empirical approach which better supports this form of
crop shifting analysis, by providing estimates of the potential for
crops as they move into new areas.

Empirical agricultural crop models use variation in the weather
to explain yearly variation in crop yields5,12,13. Local agricultural
management decisions are detailed and dynamic in a way that is
unavailable to scientists working at large spatial scales. Econo-
metric techniques allow these unobserved differences between
regions to be accounted for with local baselines. However, these
techniques have two consequences that undermine their ability to
model the crop shifting process. First, they can model changes in
yields, but not yield levels, since this information is factored out
with region-specific baselines. As a result, crop productivity in
regions that are not observed growing the crop cannot be
determined. Second, they have a resolution-variance trade-off,
whereby interaction terms that allow the relationship between
weather and yield to vary by region necessarily reduce the pre-
cision of the estimated relationship within each region and may
lead to over-fitting.

In this paper, we develop a Bayesian approach which addresses
both of these challenges. As with econometric models, yields are
predicted with a log-linear model, with terms for the non-linear
effect of temperatures, crop water deficits, and a linear technology
trend. In our model, the parameters of the model are allowed to
vary for each high-resolution region, represented here with US
counties. To constrain this regional variation in parameters and
predict parameters in new regions, the expected values of each
region’s coefficients and of the regional intercept are modeled as a
linear combination of a set of spatial covariates in a hierarchical
Bayesian model14,15. The method allows “partial pooling”,
whereby the degree to which regions are pooled to estimate a
single national set of parameters is determined by the data: if the
data support idiosyncratic regional differences in temperature
sensitivity, for example, very little pooling between regions will be
used and the parameters for each region will be estimated sepa-
rately. The covariates used to predict variation in the sensitivity to
weather are the annual mean temperature, isothermality (diurnal
range divided by annual temperature range), temperature sea-
sonality (standard deviation over months), annual precipitation,
precipitation seasonality (coefficient of variation across months),
and irrigation fraction by crop. Both the region-specific weather
coefficients and the model of how those coefficients vary over
space are estimated simultaneously. In comparison to a least-
squares regression approach, the hierarchical Bayesian approach
is more efficient than a two-stage estimation process and allows
more regional variation than a regression model with interacted
coefficients. Using the resulting model, we forecast yield losses for

all six crops studied, when applied to current cropping patterns.
We use the modeled yields for crops outside of their historical
growing regions to estimate the potential for crop switching to
mitigate these losses. In aggregate, agricultural losses for the crops
we study can be reduced by half, but some regions become
unsuitable for any of the crops.

Results
Spatial variation in climate sensitivity. We fit the Bayesian yield
model to yield observations for United States counties from 1949 to
2009 for six crops: barley, corn, cotton, soybeans, rice, and wheat.
The covariate model is used to predict weather response functions
and yields in new locations for each crop. The coefficients for
extreme degree-days, a key driver behind climate impacts, are
shown in Fig. 1 (others are in Supplementary Figs. 10–15).

The spatial patterns for the effects of extreme temperatures
vary by crop. Corn and cotton show less sensitivity to extreme
temperatures in the southern US, reflecting adaptation in seed
varieties and farming practices to minimize losses. For wheat and
barley, adaptation is dependent upon water availability, with
higher sensitivity in dry regions. We find that a fairly low degree
of partial pooling was applied so that the estimated parameters
for the county-specific models vary considerably. The 95% range
of the estimated coefficients on extreme temperatures is 2 (rice) to
12 (cotton) times the standard error of the average coefficient.
Much of the variation in coefficients is explained by county mean
temperature, suggesting existing adaptation to higher tempera-
tures. The portion of the variation in crop yield sensitivity to
extreme temperatures that is explained by mean temperature
varies from 8% for soybeans to 63% for cotton. Finally,
coefficients vary slowly across space, showing spatial correlations
up to 2000 km (Supplementary Note 7).

Comparison of crop modeling approaches. To validate the crop
models, we compare the coefficients of determination (unadjusted
R2) for each crop to the results of a series of panel econometric
regressions, mapping out the range between the model used in
Schlenker and Roberts5 and a regression-based equivalent to our
analysis using covariate interactions. Since we are interested in
the ability of the model to predict future years, we also perform
cross-validation, by fitting the model to data from 1949 to 1994
and evaluating it on yields from 1995–2009. These results are
shown in Table 1.

Applied to data from all years, the Bayesian model performs
similarly to the most flexible ordinary least-squares (OLS) models
with linearly varying coefficients. However, these same OLS
models are prone to over-fitting and show large decreases in their
R2 under cross-validation. OLS models with constant coefficients
across all counties perform better under cross-validation. While
the Bayesian models also show reduced predictive capacity under
cross-validation, they out-perform all OLS models for three of the
crops. In all cases, they have a greater R2 than similarly flexible
OLS models. This is due to the idiosyncratic differences between
coefficients in different counties that are permitted in the
Bayesian model.

Shifting cultivation under climate change. Next, we use the
Bayesian model to identify the optimal cultivation patterns now
and in the future. We use the yield model with constant error
variance (Table 1, column 6) to limit the variance in unobserved
counties. Since cultivation costs and prices vary across the United
States, we use profit (local price times predicted yield, minus
management costs) in USD acre−1 to determine the best crop.
Costs and prices are from USDA Economic Research Service16 for
2010, adjusted when necessary to make the locally optimal crop
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Fig. 1 The effect of extreme degree-days on yields, across counties, and crops. The displayed coefficients are for the effect of a 1 standard deviation
change in extreme degree-days (EDDs) on log yield, interpretable as the fractional effect on yields. The response to extreme temperatures is predicted
even in areas where the crop is not currently grown. Each crop has a different growing season and extreme degree-day cut-off, so that the model coefficient
is normalized by a different standard deviation per crop (240 EDDs/SD for barley, 65 for corn, 40 for cotton, 63 for rice, 64 for soybeans, and 82 for
wheat). County outline color indicates the confidence level (solid black outline: >95% of posterior draws have the same sign; thin white outline: <67% of
posterior draws have the same sign).

Table 1 Comparison of the predictive power of OLS and Bayesian yield models.

Model specifications

OLS 1 OLS 2 OLS 3 OLS 4 Bayes 1 Bayes 2

Intercepts Uniform County Interacted County Partial Partial
Coefficients Uniform Uniform Interacted Interacted Partial Partial
Error variance Uniform Uniform Uniform Uniform County Uniform

R2 by model: estimated and evaluated on all years

OLS 1 OLS 2 OLS 3 OLS 4 Bayes 1 Bayes 2

Barley 0.36 0.71 0.57 0.75 0.74 0.75
Corn 0.48 0.76 0.65 0.78 0.81 0.82
Cotton 0.32 0.64 0.55 0.70 0.68 0.69
Rice 0.75 0.84 0.81 0.84 0.85 0.85
Soybeans 0.47 0.72 0.65 0.76 0.78 0.79
Wheat 0.42 0.71 0.56 0.73 0.76 0.76

R2 by model: estimated on 1949–1994, evaluated on 1995–2009

OLS 1 OLS 2 OLS 3 OLS 4 Bayes 1 Bayes 2

Barley −0.11 0.43 0.20 0.45 0.48 0.46
Corn −0.09 0.20 0.07 −1.05 0.27 0.17
Cotton 0.07 0.31 0.14 −37.50 0.21 0.12
Rice 0.20 0.37 0.12 −1.59 0.19 0.14
Soybeans 0.26 0.47 0.39 −16.27 0.53 0.48
Wheat 0.16 0.49 0.31 0.47 0.51 0.50

Table cells show R2 by crop and model specification, using all data (top) and under cross-validation on 1995–2009 (bottom). The first four columns are ordinary least-squares (OLS) specifications,
variously including region-specific intercepts and covariate interactions. The last two columns are for the Bayesian model, with partially pooled intercepts and coefficients, either allowing each county to

have a different variance (Bayes 1) or constraining all to have the same variance (Bayes 2). In all cases, R2 ¼ 1�
P

yi�ŷið Þ2P
yi��yið Þ2 , where yi is the observed log yield for county-year i. ŷi is the point estimate for

OLS and the posterior prediction for the mean MCMC parameter draw for the Bayesian model, and �yi is the average across all observations of yi.
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according to profits match the most widely planted observed crop.
Since we do not account for alternative uses of land, we constrain
the crops to only be cultivated in the future in areas currently used
for at least one of the six crops. Changes in future crop production
can also result in general equilibrium effects on prices9. Here, we
avoid significant price changes by limiting the total land used by
each crop to not exceed current nation-wide totals.

Applied to the current climate, crops are grown in character-
istic temperature ranges, as shown in Fig. 2 (top). Barley and
wheat are mainly grown in cooler counties, while cotton is grown
in the warmest areas. However, these suitability envelopes are not
exclusive, with some barley and (winter) wheat grown at higher
temperatures. Although the optimization is calibrated to prefer
the crop currently most planted in each county, 16% [14–18%]
(ranges in brackets display the 95% credible interval throughout)
of counties do experience changes under the optimization, as
secondary crops are replaced with the optimal crop, and then
these secondary crops are shifted to other counties. This results in
a 13% [8–37%] increase in total profits (Fig. 3 and Supplementary
Fig. 29). The largest changes result from swaps between soybean
and corn, which are commonly grown in rotation (excluding
corn–soy swaps, 5% [4–6%] of counties show changes). We then
use a suite of CMIP5 models to project these changes in optimal
crops forward under RCP 8.5 and report outcomes in 2050 and
2070 including both climate and statistical uncertainty (Fig. 2 and
Supplementary Note 16 and Supplementary Tables 13–15). Corn
retains its enormous area (by construction, so long as corn profits
are positive), but becomes less concentrated in the Midwest.
Soybeans show a gradual movement north, replacing spring
wheat and barley. The wheat lands of the Great Plains see a
gradual hollowing-out, while winter wheat moves up from the
south along the Mississippi. Cotton is grown at higher latitudes,
becoming the dominant crop in southern California. At the same
time, lands in the southern US that are not profitable for any crop
expand. These tend to be at the higher end of the temperature
distribution, and account for 5% of the included land area by
2070. We do not observe a uniform movement to higher latitudes,
because of regional variation in climate and the constraint against
crops moving into new areas (Supplementary Note 17 and
Supplementary Figs. 30 and 31).

Economic outcomes of adaptation. Figure 3 (top) shows the
amount of switching between crops to maximize profits. Large
portions of corn and soybean cultivation continue to swap in
2050, but changes from 2050 to 2070 are more minor. By 2070,
53% [39–67%] of counties experience crop switching (36%
[21–51%] excluding corn–soy swaps).

A comparison of the effects of optimization on profits is shown
in Fig. 3 (bottom). In the absence of optimization, total estimated
profits fall from $45.7 [$44–52] billion to $35.8 [$24–50] billion
in 2050 and $31.4 [$19–48] billion in 2070, a 31% decrease
[59↓–5%↑]. With optimization, profits in 2010 were predicted to
be able to increase to $51.8 [$49–63] billion. However, they fall
below current profits by 2050 and by 2070, even with further
optimization, they fall to $38.6 [$28–54] billion, still 16% below
[38↓–18%↑] observed levels. Relative to the profits of optimally
reallocated crops in the current period, percentage losses from
climate change are greater, 26% below [45↓–4%↑] the peak.

Behind these profits are both increases and decreases in
individual crop production. Production is predicted to be able to
increase for most crops under current conditions and optimal
planting, ranging from small decreases for soy (2% [4–1%]) to
large production increases for barley (26% [11–44%]). By 2070,
however, decreases in total production are shown for barley (9%
[22↓–4%↑]), corn (37% [74↓–10%↑]), rice (2% [30↓–37%↑]), and
soybeans (6% [16↓–5%↑]) relative to observed production. These
are offset by increases from cotton (73% [20–192%]) and wheat
(2% [26↓–28%↑]). These results do not extrapolate the historical
trend in crop yields into the future, to isolate the relative role of
climate change (we explore this in Supplementary Notes 18 and
19, Supplementary Tables 16–18, and Supplementary Figs. 31–34).

In the default model, we assume that there are no additional
barriers or frictions involved in switching crops, and explore the
effects of imposing a range of crop switching costs in
Supplementary Note 20 and Supplementary Fig. 35. Switching
costs of $180/acre reduce reallocation changes by half, against
average cultivation costs between $123/acre (barley) and $499/
acre (rice). As switching costs increase, optimal losses converge to
the losses without crop reallocation. Since optimal profits in 2050
are below current profits, losses will persist under any level of
switching costs.
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Discussion
Agriculture is one of the most exposed sectors to the impacts of
climate change, and adaptation through irrigation investments,
agricultural research, and new management practices can require
decades of planning. A better understanding of the potential for
adaptation is needed for farmers and policy-makers to make
long-term decisions. We show that adaptation through the
movement of crops can reduce climate change losses, but it does
not eliminate them.

We have focused here on the expected losses to agricultural
production, but several other dimensions of impacts are embed-
ded in these numbers. Nation-wide average decreases in yields are
likely to emerge through more years of unforeseen crop failures
and through regional devastation. The crop switching actions
projected in this paper would cause disruptions to farmers, food
supplies, and environmental habitats. Even if crops are mobile,

farmers may not be. In particular, farmers who work on the 5% of
cultivated land that becomes economically untenable under our
model will need to identify new crops or land uses outside the
scope of this study.

Our empirical model only captures adaptation practices cur-
rently employed to respond to within-year shocks of high tem-
peratures. Future work is needed to explicitly account for the
potential and limits of irrigation expansion, long-term investment
in adaptation, and to distinguish the benefits of CO2 fertilization
from the long-term trend. While we consider multiple sources of
uncertainty in the outcomes, we do not account for risk aversion,
unexpected weather shocks, or the multi-year consequences of
crop failures.

Our optimization approach assumes perfect knowledge of crop
weather responses and that observed weather will correspond to
the expected climate. As such, our results should be considered a
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frontier of possibility, assuming that crop yields respond to
temperatures in the future as they have in the past. The cropping
patterns shown in our current and future results should not be
taken as recommendations, since many details at the field and
farmer level are not included.

Our results show considerable potential from crop switching to
avoid some of the damages from climate change. These oppor-
tunities are driven both by differences in how temperatures may
change in different regions as well as differences in the sensitivity
of crops to higher temperatures. However, the remaining losses
imply that crop switching is not a panacea and that new seed
varieties and new adaptation practices are needed to support
farmers and meet the food demands of the future.

Methods
Climate and crop data. County-level yield data17 and weather data18 cover the
contiguous US for 1949–2009. Annual crop water deficit indices are calculated as
in ref. 19, and growing degree-days and extreme degree-days are calculated as in
ref. 5. County-level constant covariates used in the multilevel model consist of
annual mean temperature, isothermality (diurnal range divided by annual tem-
perature range), temperature seasonality (standard deviation over months), annual
precipitation, precipitation seasonality (coefficient of variation across months), all
from ref. 20, and irrigation fraction by crop, from ref. 21. Additional details are in
Supplementary Tables 1 and 2 and Supplementary Notes 1 and 2.

Multilevel Bayesian crop model. We fit a Bayesian model which represents log-
yields as a linear model of crop water deficits, growing and extreme degree-days,
and a linear trend. The coefficients of this model are allowed to vary by county,
with an expected value for each county-specific coefficient equal to a linear model
of the six county-level constant covariates listed above. That is, for each crop,

log ðYitÞ �Nðαi þ β1i t þ β2i CDIit þ β3i GDDit þ β4i EDDit ; σ
2
i Þ

αi �N a0 þ
X# covar

j¼1

b0j covarij; σ
2
α

 !

βki �N ak þ
X# covar

j¼1

bkj covarij; σ
2
βk

 !

where Yit is the yield in county i in year t, CDIit is the water deficit predictor, GDDit

is growing degree-days, EDDit is extreme degree-days, and covarij is the value of
covariate j for county i. All other parameters are fit in the model. Additional details
are in Supplementary Note 3 and model validation is shown in Supplementary
Notes 4 and 5, Supplementary Tables 3 and 4, and Supplementary Figs. 1–9.
Additional fitted results are shown in Supplementary Notes 6 and 7, Supplemen-
tary Tables 5–7, and Supplementary Figs. 16–20.

Comparison to OLS models. The predictive power of the Bayesian model is
compared to multiple least-squares (OLS) regressions. The regression terms are
combinations from the following intercepts and coefficients columns, according to
the table header in Table 1:

Intercepts: one of Coefficients: one of

log ðYitÞ ¼

Uniform

α

County

αi
Interacted

α0 þ
P# covar

j¼1 αjcovarij

0
BBBBBBBBB@

1
CCCCCCCCCA

þ

Uniform

β10t þ β20CDIit þ β30GDDit þ β40EDDit

Interacted

β10t þ β20CDIit þ β30GDDit þ β40EDDit

þP# covar
j¼1 β1j covarijt þ β2j covarijCDIit

þ β3j covarijGDDit þ β4j covarijEDDit

0
BBBBBBBBB@

1
CCCCCCCCCA

þ ϵit
:

Under cross-validation, both the Bayesian and OLS models are fit only to data
prior to 1995, and the R2 value is computed only on data from 1995 to 2009.
Additional details are in Supplementary Note 8 and Supplementary Tables 8 and 9.
Extensions to the model are described in Supplementary Notes 9 and 10,
Supplementary Tables 10 and 11, and Supplementary Figs. 21–24.

Land-use optimization model. Optimized land use is projected using a linear
programming model, which determines the profit-maximizing distribution of crops
under the yields estimated by the Bayesian model. The optimization problem is,

max
fAictg

X
c

X
i

picŶ ict � oic
� �

Aict ;

for the area of crop c in county i and period t given by Aict and the price pic and
cultivation costs oic are drawn from ref. 16 for 2010. The optimization is performed
separately for each draw from the posterior estimate of yield, Ŷ ict . Yields are
adjusted to account for the irrigation capacity of the destination county. The

optimization is constrained such that,P
c Aict ≤

P
c
�Aic 8i No additional land is appropriated to farming in any county;P

i Aict ≤
P

i
�Aic 8c No additional land is appropriated to any crop;

where �Aic is the area used by crop c in county i in 2010.
When the optimization is applied to observed yields and reported cultivation

costs, 40% of counties are assigned crops that do not match observed planting. We
treat this as reflecting hidden costs and adjust the cost values for these counties to
make the observed crops optimal.

Future weather data for 2050 and 2070 is calculated using downscaled and bias-
corrected CMIP5 results those years from ref. 22 for the 17 GCMs included in
ref. 20. Additional details are in Supplementary Notes 11–15, Supplementary
Table 12, and Supplementary Figs. 25–28.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data used in making the charts and tables in this paper are available at https://doi.
org/10.5281/zenodo.3889144.

Code availability
All models and display codes are available at https://doi.org/10.5281/zenodo.3909637.
The optimization model is constructed using the land-use component of the open-source
AWASH 2.0 water-energy-food model, available at https://github.com/AmericasWater/
awash. The Bayesian model uses JAGS 4.3.0 and the optimization model uses Gurobi
Optimizer 9.0.2.
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