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Abstract 15 

Misinformation has become an increasingly topical field of study. Studies on the ‘Continued 16 

Influence Effect’ (CIE) show that misinformation continues to influence reasoning despite 17 

subsequent retraction. Current explanatory theories of the CIE tacitly assume continued reliance 18 

on misinformation is the consequence of a biased process. In the present work, we show why this 19 

perspective may be erroneous. Using a Bayesian formalism, we conceptualize the CIE as a scenario 20 

involving contradictory testimonies and incorporate the previously overlooked factors of the 21 

temporal dependence (misinformation precedes its retraction) between, and the perceived 22 

reliability of, misinforming and retracting sources. When considering such factors, we show the 23 

CIE to have normative backing. We demonstrate that, on aggregate, lay reasoners (N = 101) 24 

intuitively endorse the necessary assumptions that demarcate CIE as a rational process, still exhibit 25 

the standard effect, and appropriately penalize the reliability of contradicting sources. Individual-26 

level analyses revealed that although many participants endorsed assumptions for a rational CIE 27 

very few were able execute the complex model update the Bayesian model entails. In sum, we 28 

provide a novel illustration of the pervasive influence of misinformation as the consequence of a 29 

rational process. 30 

Keywords:  Continued Influence Effect; Negation; Reliability; Dependency; Reasoning31 
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1. Introduction 32 

The harmful effects of misinformation have become a significant concern in 33 

contemporary society (Lewandowsky et al., 2017). These concerns are in part due to the ways 34 

that misinformation can spread rapidly online, as the news industry and general population alike, 35 

can share information outside of traditional information outlets. Media outlets can report false or 36 

inaccurate details while newsworthy events are still unfolding: as demonstrated when a 37 

prominent daily newspaper broke an online story incorrectly claiming Russian hackers had 38 

penetrated the US electricity grid. When, in fact, the electricity utility at the centre of the story 39 

found malware connected with Russian hackers on a single laptop, unconnected to the grid. 40 

Although the newspaper updated its article within a few hours of its original post, the incorrect 41 

information had already ricocheted through social media and the global news environment. 42 

Errors such as these are particularly worrying because several studies have shown that even clear 43 

and credible corrections often fail to eliminate the effects of misinformation (see Lewandowsky 44 

et al., 2012 for review). This phenomenon is known as the Continued Influence Effect (CIE) of 45 

misinformation (Ecker et al., 2010; Johnson & Seifert, 1994).  46 

Continued influence studies examine corrections1 to misinformation using variants of a 47 

laboratory paradigm first developed by Wilkes and Leatherbarrow (1988: but see also Johnson & 48 

Seifert, 1994). In a typical CIE experiment, participants read a fictitious news report presented a 49 

series of sequential statements. Misinformation, offering a causal explanation for the event's 50 

outcome, is presented and retracted later. A subsequent comprehension test typically shows that 51 

 

 

1 We use ‘correction’ and ‘retraction’ interchangeably throughout. 
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misinformation continues to influence memory and inferences even when participants understand 52 

and remember the retraction.  53 

One scenario commonly used in the CIE paradigm concerns a warehouse fire in which 54 

initial reports suggest that flammable chemicals carelessly stored in a closet caused the fire 55 

(Connor Desai & Reimers, 2019; Ecker, Lewandowsky, Swire, et al., 2011; Guillory & Geraci, 56 

2010; Johnson & Seifert, 1994; Wilkes & Leatherbarrow, 1988; Wilkes & Reynolds, 1999). One 57 

group of participants receive a retraction stating that “the closet was empty before the fire” 58 

thereby contradicting earlier misinformation. Retraction group responses are typically compared 59 

to a control group for whom there was no retraction, or a group who never saw the 60 

misinformation. The key CIE finding is that retractions are only partially effective: a retraction 61 

either results in no difference between a condition featuring a retraction and one in which there is 62 

no retraction (Johnson & Seifert, 1994) or reduces but fails to eliminate the misinformation's 63 

influence (Ecker, Lewandowsky, & Apai, 2011; Ecker, Lewandowsky, Swire, et al., 2011; Ecker 64 

et al., 2010; Guillory & Geraci, 2010, 2013; Rich & Zaragoza, 2016). 65 

To date, there have been two leading cognitive explanations for the CIE (Gordon, 66 

Brooks, Quadflieg, Ecker, & Lewandowsky, 2017; Lewandowsky et al., 2012). The selective-67 

retrieval account suggests that the CIE occurs when there is simultaneous storage of correct and 68 

incorrect information in memory; upon retrieval, misinformation is activated but inadequately 69 

suppressed (Ecker, Lewandowsky, Swire, et al., 2011). The model-updating account instead 70 

argues that corrections are poorly encoded because correcting misinformation leaves a gap in 71 

people’s mental model of the described event. Misinformation is therefore maintained because 72 

people prefer a coherent (incorrect) to an incomplete (correct) mental model. People are often 73 

unable to fill the gap in their mental-model, left by correcting misinformation unless a correction 74 
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offers an alternative explanation for the outcome of the event (Connor Desai & Reimers, 2019; 75 

Ecker, Lewandowsky, & Apai, 2011; Ecker et al., 2010; Johnson & Seifert, 1994; Rich & 76 

Zaragoza, 2016). While selective-retrieval relates the CIE to and the inadequate suppression of 77 

misinformation at retrieval, the model-updating account posits a failure to update the mental-78 

model stored in memory.  79 

The selective-retrieval and model-updating accounts tacitly assume that the CIE is an 80 

error, or that normatively, a correction should reduce reliance on misinformation to the same 81 

level as would be observed if there was no misinformation at all. Both accounts presuppose that 82 

it is always appropriate to disregard earlier ‘incorrect’ information in favour of the later 83 

presented ‘correct’ information. For this assumption to hold, the ‘correct’ information must 84 

sufficiently “cancel out” the original ‘incorrect’ information. In this paper, as explained below, 85 

we explore the possibility for a rational foundation for the CIE, which considers the temporal 86 

dependence between misinformation and its subsequent correction, and the perceived reliability 87 

of the misinforming and retracting sources.  88 

1.1. Temporal Dependence and Continued Influence of Misinformation 89 

In this paper, we conceptualize the CIE as a scenario involving a contradiction between 90 

the testimonies of misinforming and retracting sources. As mentioned previously, there are two 91 

assumptions necessary for the retraction to “cancel out” the misinformation. First, the retracting 92 

source (either the same source at a second time-point or a different source at a later time-point) is 93 

perceived to be at least as reliable as the misinforming source. Second, the sources make their 94 

reports independently from one another. That is, the source of the retracting report bears no 95 

relation to the misinforming source, whether by sharing evidence (Schum, 1994), or background 96 

(Bovens & Hartmann, 2003; Madsen et al., 2020). When conceptualized as a matter of 97 



THE RATIONAL CONTINUED INFLUENCE OF MISINFORMATION 

6 

 

contradictory testimonies, the CIE could reflect a dependency effect whereby the observing 98 

reasoner perceives a source which contradicts themselves or two sources which contradict each 99 

other as less reliable, due to the inconsistency between their first and second reports. When a 100 

source contradicts their earlier statement, the reasoner does not know which testimony is truly 101 

correct but knows a source has been openly wrong on at least one occasion and therefore 102 

penalizes the reliability of all  reporting sources. Crucially, in situations in which two sources do 103 

not know what the other has said (i.e. the sources are conditionally independent), yet provide 104 

contradictory reports, then the two reports should cancel out. In such a case, there should be no 105 

CIE. However, if the retracting source is aware of what the misinforming source has said (as is 106 

usually the case when a retraction is issued), the sources are no longer independent. When there 107 

is an asymmetry between the original and correcting reports: the correction is not just a statement 108 

of the hypothesis given the reliability of its source, but also a response to the original report, 109 

whilst the reverse is not true for the original (misinforming) reporter. Depending on the 110 

assumptions outlined below, this asymmetry can produce a difference in the reliability penalty 111 

applied to each source, given they are contradicting each other. Specifically, the corrector 112 

(second source) is penalized more than the misinformer (first source), and as such the correcting 113 

testimony is deemed weaker, and a continued belief in the (misinformation) hypothesis remains 114 

(i.e., a CIE). 115 

Work in evidential reasoning on testimony has illustrated the necessity of these 116 

assumptions (Hahn et al., 2009; Hahn, Harris, et al., 2013; Hahn, Oaksford, et al., 2013; Schum, 117 

1994; Schum & Martin, 1982) for disagreement (misinformation vs correction) to have a 118 

nullifying effect. For independence to hold in the CIE case, the “corrector” cannot be aware of 119 

the misinformation they are correcting – impossible in the same source case, and unlikely in the 120 
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different source case. Instead, we must consider there to be a “temporal” dependency between 121 

the two pieces of information because the misinformation precedes its correction – something 122 

known to influence the reliability of sources providing evidence for a hypothesis (Madsen, Hahn, 123 

& Pilditch, 2018; 2019).  124 

When considering the temporal dependence between misinformation and its retraction, 125 

and the reliability of misinforming and retracting sources, we seek to shed new light onto an 126 

effect that has, to date, escaped any normative account of how people should process corrections 127 

to misinformation. Sensitivity to temporal order has previously shown to affect the CIE wherein 128 

retractions followed by valid information/explanation are more effective than retractions 129 

preceded by valid information (Ecker et al., 2015). However, the temporal dependence between 130 

misinformation and its correction, and the impact of this temporal dependence on perceived 131 

source reliability, have yet to be considered within a formal framework.  132 

In this paper, we formalize the CIE within a Bayesian Network (BN) model (Pearl, 1988) 133 

to test whether there may be a rational explanation for the CIE. Bayesian Networks use graph 134 

structures to represent probabilistic relations between hypotheses and evidence, showing which 135 

inferences a given model rationally permits. BNs can capture (in)dependencies between sources 136 

(e.g. Pilditch et al., 2020; Pilditch et al., 2018), and the influence of perceived reliability on 137 

belief revision (e.g. Madsen et al., 2018, 2020), both critical features of misinformation 138 

retraction scenarios. Following these studies, which explore the effects of contradictions when 139 

considering issues of dependence, we manipulate the source of the retraction. In our case, the 140 

source of the retraction is either the original misinformer, or a different source retracts the 141 

misinformation statement made by another source.  142 
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Bayesian normative frameworks facilitate the integration of people’s subjective 143 

perception of the strength of evidence, their prior beliefs in hypotheses, and their perception of 144 

dependency and reliability. Bayesian approaches have been used to explain reasoning biases or 145 

errors from a rational perspective, including arguments from ignorance (Hahn, Oaksford, & 146 

Bayindir, 2005; Oaksford & Hahn, 2004), ad hominem (Harris et al., 2012; Oaksford & Hahn, 147 

2012), slippery slope (Corner et al., 2011), and circular arguments (Hahn, Oaksford, & Corner, 148 

2005). Bayesian networks have also been successfully applied to responses which appear to 149 

violate optimal responding, and involve contrary updating, such as belief polarization (Cook & 150 

Lewandowsky, 2016; Jern et al., 2014). By developing process-oriented models, such as 151 

Bayesian models, researchers can uncover causal mechanisms, and thereby better test 152 

interventions to prevent undesirable outcomes (e.g. the persistence of misinformation after a 153 

correction).  154 

Exploring the CIE through a formal reasoning model, we find an alternative explanation 155 

that does not entail irrationality or bias. In line with model predictions, as explained below, we 156 

show that belief in the hypothesis (i.e. misinformation) should remain above prior levels. Instead, 157 

the reliabilities of sources that provide contradictory information are (appropriately) penalized 158 

whereby people perceive the second (retracting) reporter as less reliable than the first. Temporal 159 

dependence influences the effect when incorporated within the formal reasoning model. 160 

Correcting is often done by a source that is, in some way, linked with the source of 161 

misinformation (e.g. a second reporter working at the same network as the first). The correction 162 

must not only be considered a function of direct evaluation of the hypothesis in question but also 163 

of the (in)accuracy of the reports (i.e. the second report may be erroneous not only because of 164 

independent error but also the influence of the preceding report). The model, therefore, 165 
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highlights a significant conceptual limitation to the traditional framing of CIE, which is silent on 166 

the dependency between misinformative and retracting reports. The crucial assumption here is 167 

that a correcting source is, ceteris paribus, less likely to be providing a truthful testimony when 168 

they are following (and contradicting) the report of another source, than when they are the first 169 

source providing an independent testimony. Examples of this inequality would be, for instance, 170 

concerns over cover-ups or attempts to control narratives, such as to divert blowback/blame 171 

arising from the original report. Lewandowsky et al. (2012) have acknowledged that the 172 

dismissal of retractions to misinformation could represent rational integration of prior biases with 173 

new information and that in principle, it is possible to instantiate the CIE within a BN. To date; 174 

however, the CIE has not been realized within a BN framework. 175 

Contrary to the standard interpretation of CIE, we demonstrate that there are reasonable 176 

grounds under which people should maintain the misinformation, despite the provision of a 177 

correction; thus, the effect does not require deviation-based explanatory theories. 178 

Conceptualizing CIE, in this manner, also has implications for the kinds of interventions that are 179 

likely to be effective at reducing reliance on misinformation.  180 

1.2. Source Reliability 181 

Source reliability is essential for evaluating the evidentiary value of testimony. The quality of 182 

the source of information is critical to evaluating the suggested content – for example, if the 183 

source lies (is untrustworthy) or is mistaken (is inexpert), it may be entirely reasonable to 184 

disregard the suggested content. Although initially demonstrated normatively (e.g. Bovens & 185 

Hartmann, 2003; Hahn et al., 2009), empirical studies suggest that people incorporate 186 

subjectively perceived source credibility into evaluations of testimony (Harris & Hahn, 2009; 187 

Harris et al., 2016; Madsen, 2016). Indeed, adjusting a source’s reliability is prudent if new 188 
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information, additional contradictory or corroborative reports, or insight into the relationship 189 

between sources becomes available (Madsen et al., 2020).  190 

We consider the CIE to be a case of contradicting testimonies, such that, the “corrector’s” 191 

statement contradicts the “misinformer’s” statement (whether the same source or not), and argue 192 

that correcting source’s reliability suffers as a consequence of the contradiction. Several studies 193 

support this interpretation and show that the CIE may occur because some people do not believe 194 

the retraction (Guillory & Geraci, 2010, 2013; Ithisuphalap et al., 2020; O'Rear & Radvansky, 195 

2020), demonstrating that source reliability is a critical component of processing retractions to 196 

misinformation. As the CIE involves a temporal dependence (the contradicting testimony follows 197 

the original, incorrect testimony), there is an additional reason for including source reliability 198 

within the scope of the study: the two sources of information differ in the information they have 199 

available (when reporting, the correcting source is often aware of the preceding, incorrect 200 

source’s statement, but not vice-versa), and this may influence judgments of reliability. In 201 

summary, given the CIE involves contradicting testimonies from sources with potentially 202 

different access and motivations for producing said testimony, there is a need for formalization, 203 

detailed in the section that follows.  204 

1.3. A Bayesian Approach to Continued Influence of Misinformation 205 

As mentioned, past CIE research has not provided a normative account of how people 206 

should process retractions of misinformation. Bayes’ theorem gives a normative belief revision 207 

model by integrating people’s subjective prior degrees of belief with the likelihood ratio to 208 

estimate the posterior degree of belief and expresses how a rational agent should revise their 209 

belief in a hypothesis H when faced with new evidence E. The probability P(H|E) represents the 210 

revised (posterior) degree of belief in the hypothesis H. The revised belief is a function of the 211 
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prior belief P(H) and the conditional probability of observing the evidence E given H is true. 212 

Bayesian approaches to belief revision have been popular in research on argumentation (Hahn & 213 

Oaksford, 2006, 2007), and reasoning (Hayes et al., 2019; Oaksford & Chater, 2007), as well as 214 

other areas of cognition (Chater et al., 2010).  215 

The BN framework (Pearl, 1988) is apt for capturing the difficulties of dependencies, and 216 

reasoning under uncertainty, that is integral to updating inferences in CIE. Bayesian networks are 217 

probabilistic graphical models which represent the relations between items of evidence and 218 

possible hypotheses allowing one to draw inferences about specific hypotheses based on 219 

observed evidence. The graph consists of a set of nodes representing variables of interest (i.e. 220 

hypotheses, evidence, reliability) and a set of directed links representing the probabilistic 221 

relations between variables, and in particular, the conditional dependencies. The quantitative 222 

component of BNs consists of conditional probability distributions for each variable in the graph. 223 

Bayesian networks, therefore, provide the means to test causal models of scenarios – including 224 

models of source reliability – and compare intuitive inferences of lay reasoners to a normative 225 

standard (Lagnado et al., 2013). The BN framework therefore offers a method for formalising the 226 

temporal dependency between misinformative and retracting reports and the impact that this 227 

contradiction has on misinforming and retracting sources (i.e., their perceived reliability, and the 228 

impact of their testimonies on the hypothesis).  229 

1.4. The Present Study 230 

In order to test the foundational assumptions of CIE formally, we constructed two BN 231 

scenarios; in the first scenario, the contradicting report (retraction) comes from the same source 232 

whereas, in the second scenario, the contradicting report comes from a second source. Figures 1 233 

and 2 (below) show example BN models for the same and different source retraction conditions, 234 
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respectively, and illustrate the assumptions of the temporal dependence between first and second 235 

reports and the impact on source reliability. Each model consists of a hypothesis node (i.e. the 236 

subject of the misinformation report), reporter nodes and reliability node(s). Figures 1 and 2 237 

encapsulate the three stages involved in the CIE: the first (baseline) stage reflects the situation 238 

when there are no observations, at stage two a single piece of evidence (the misinformation) is 239 

available, and at stage three the contradictory (retraction) report is available. Referring to Figures 240 

1 and 2, the values shown in stage one represent the prior probabilities elicited from participants 241 

before reading any reports (see Method section for further details). Each scenario includes 242 

unidirectional links between sources to represent the dependency between timepoints or reports. 243 

This link represents the assumption that an individual is aware of their previous statements or 244 

that, in general, people are aware of existing statements in the “world” (i.e. a retraction usually 245 

requires an awareness of the retracted statement). At stage two, the ‘misinforming’ reporter node 246 

is fixed to ‘true’ to reflect the positive report submitted by the reporter. The hypothesis node 247 

(denoted by H) value increases from stage 1 to stage 2, reflecting an increase in belief in the 248 

hypothesis (misinformation) after receiving a positive report. At stage three, the hypothesis and 249 

reliability nodes update when there is second a contradictory (retraction) report. In both the same 250 

and different source cases, belief in the hypothesis decreases relative to stage two but does not 251 

return the level observed in stage one, indicating a CIE. There are corresponding updates to the 252 

source reliabilities. In Figure 1, the same source reports the misinformation and retraction and 253 

source reliability increases from stage one to two but decreases in stage three after the retraction. 254 

Figure 2 shows that when a different source retracts the misinformation, the reliabilities of both 255 

the first and second reporters decrease from stage two to three.  256 
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Using a BN formalism, we examine the impact of source reliability on the estimated 257 

probability of the reported event being “misinformation” in each scenario - given the statements 258 

provided by those sources. For example, this conditional influence of reliability should mean that 259 

a source perceived as reliable will be more effective in persuading an individual of their 260 

(misleading, or correcting) statement (i.e., misinformation is less likely to be provided, 261 

conditional on that source being reliable). Crucially, along with the inclusion of reliability, we 262 

also capture a reasonable assumption of dependence between sources (within a single source, or 263 

between different sources) as correction temporally follows misinformation, which together with 264 

the consideration of reliability we argue yields a rational explanation for CIE. The model can 265 

consequently capture key differences between conditions. For example, it captures the clear 266 

difference in how reliability is updated (and belief in misinformation is also updated) when a 267 

single source contradicts their earlier statement, vs when a different source provides the 268 

contradiction. In the single-source scenario, the reliability of the source is penalized more 269 

heavily than in the two-source scenario because of the internal contradiction. Lastly, we elicit 270 

key parameters from participants themselves, such that we fit each model to participant’s 271 

assumptions. As a result of this, we can investigate the consistency of participant responses 272 

relative to the predictions of their own, fitted models. Following the CIE paradigm, participants 273 

in the present study read a set of brief news reports and complete a comprehension test. 274 

Crucially, we varied whether or not a sentence that appeared towards the end of the report 275 

retracted information provided earlier information, and whether the retracting source was the 276 

same or different to the misinforming source. 277 

In this paper, we examine four hypotheses. We take pains to note that we do not base 278 

these predictions on the parameterizations of Figures 1 and 2, as these are solely illustrative 279 
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examples of the more general structural (and ordinal parameter) relations that we note can lead to 280 

a rationally predicted CIE. The model is used to delineate several underpinning assumptions and 281 

effects that we outline below:  282 

H1: We predicted higher endorsement of misinformation probes in the retraction condition than 283 

in the control condition in which there was no retraction (i.e. there is no retraction of the initial 284 

report). 285 

H2: We predict that the conditional probability measures provided by participants, which assess 286 

the participants own interpretation of the relationship between a source's likelihood of a 287 

statement being in error, given their reliability and possible contradiction of previous statements, 288 

will yield a predicted CIE when using these measures to parameterize the Bayesian network 289 

model. 290 

H3: In line with model predictions, participants will penalize source reliability when there is a 291 

contradiction. The perceived reliability of the retracting source (at stage three) will decrease 292 

relative to misinforming source (at stage two), as shown in Figures 1 and 2. The same vs 293 

different source manipulation is exploratory, and there is no directional prediction for the impact 294 

on reliability.  295 

H4: We expect to elicit the CIE in terms of the posterior probability measure such that 296 

participants will retain belief in the hypothesis (i.e. the misinformation) despite a retraction.  297 

 298 

 299 
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Fig 1 BN model for the retraction (same source) condition across three separate time points, where H 

represents the belief in the hypothesis in question (misinformation), which is informed by the misinformer 

(represented as Reporter1a) and later this same source as a correction (Reporter1b). Given this is the same 

source at two points in time, the reliability of the source (Reliability1) connects to both instances of the 

reporting source. 1) Baseline (no observation) stage, 2) Single positive (first) report stage (i.e. control 
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condition) –misinformation stated, and 3) Final (retraction) state given a second, correcting report from 

the same reporter.2 Figure created using the AgenaRisk Bayesian Network software (AgenaRisk, 2019).

 

 

2 BN model parameters taken from the mean estimates across the retraction same condition for 

the police officer scenario. 
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Fig 2 BN model for the retraction (different source) condition across three separate time points. H 

represents the belief in the hypothesis in question (misinformation), which is informed by the misinformer 

(represented as Reporter1a) and later a separate source as a corrector (Reporter 2a). Given this, the two 

sources have their reliability specified (Reliability 1a and 2a, respectively). 1) Baseline (no observation) 

stage, 2) Single positive (first) report stage (i.e. control condition) – misinformation stated, and 3) Final 

(retraction) state given a second, correcting report from a separate reporter3. 

 

 

 

3 BN model parameters taken from the mean estimates across the retraction different condition for 

the police officer scenario. 
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2. Method 1 

2.1.  Participants 2 

We aimed to recruit 105 participants (N = 35 per condition). We based our estimate on 3 

the principle that formal statistics sources suggest that Central Limit Theorem tells us that the 4 

sampling distributions of the means will be approximately normal, even if the underlying data 5 

distributions are non-normal when the sample size is larger than 30 (Field, 2013). There was no 6 

prior work to inform an effect-size based power calculation as this was a novel design. In total, 7 

101 participants from Prolific Academic https://www.prolific.co/ completed the experiment. 8 

There was a mean age of 31.57 (SD = 9.6), and there were 71 females and 30 males. Participants 9 

were paid £1.50 (~$1.97) for their time (Median = 12.87 minutes, SD = 5.78). 10 

2.2.  Materials, Design and Procedure 11 

To replicate CIE, we used materials adapted from past research (Gordon et al., 2017; 12 

Johnson & Seifert, 1994). We opted for shorter scenarios than those typically used in CIE studies 13 

to keep the study duration to a minimum since participants answered an extensive set of 14 

conditional probability questions (see Supplementary Materials https://osf.io/6yq47). It was also 15 

necessary to ensure that the non-critical details in the scenario were independent of the 16 

hypothesis (misinformation) and the evidence (retraction), to model the participants' responses. 17 

We selected four scenarios for the main study, that produced the largest baseline CIE (i.e. the 18 

difference between retraction and control conditions) from a set of eight pilot scenarios (N = 70). 19 

In the main study, participants read four scenarios (motorcycle accident/police officer, medical 20 

controversy/independent reviewer, music festival/local journalist, and explosion/police 21 

spokesperson) consisting of six sequentially presented sentences (see Supplementary Materials). 22 

The materials provided minimal information about the source of the misinformation and 23 

https://www.prolific.co/
https://osf.io/6yq47
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retraction, to better control for differences in perceived source reliability. In this sense, the 24 

inferences participants make about reliability should be based on the contradiction, and the 25 

source’s profession (i.e. police officer, local journalist, independent reviewer, police 26 

spokesperson).  27 

We assessed the effect of retracting information between groups (Control, Retraction – 28 

Same Source, Retraction – Different Source). We randomly assigned participants to a condition 29 

and randomized the presentation order of the scenarios across participants. Table 1 shows that in 30 

each scenario, sentence 2 differed between control and retraction conditions for each event. In 31 

retraction conditions, sentence 2 contained (mis)information. Whereas in the control condition, 32 

sentence 2 contained incidental information to provide a baseline for the misinformation 33 

endorsement test. The key sentence (sentence 5) was identical in all conditions. Given exposure 34 

to sentence 2, sentence 5 did or did not correct previous information. The source of the 35 

(mis)information (sentence 2) and retraction (sentence 5) were either from the same source or a 36 

different source, in the retraction conditions.  37 

Before reading the scenarios, participants provided prior estimates for the reliability of 38 

the sources of misinformation that would appear in the subsequent reports on a scale of 0 39 

(Extremely unlikely) to 100 (Extremely likely). They then provided six conditional probability 40 

estimates per report for each of the two sources (i.e. the misinformer and the retractor). Eliciting 41 

conditional probability estimates in this way is necessary because there is no general normative 42 

function that captures the dependency relationship between the misinformer and the retractor. 43 

Participants provided their probability estimates (on the same scale as above) for the same and 44 

different source conditions and thus capturing the specific assumptions regarding the nature of 45 

the dependency relationship on the individual level.   46 
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1. If a police officer is reliable, how likely are they to make an erroneous statement 47 

in reporting about a road accident, if that same police officer is contradicting 48 

their own earlier statement? 49 

2. If a police officer is reliable, how likely are they to make an erroneous statement 50 

in reporting about a road accident, if that same police officer is contradicting an 51 

earlier statement from another police officer? 52 

Responses to the above questions illustrate one aspect of the dependency relationship: the 53 

perceived likelihood of a source providing an erroneous report (i.e. the misinformation) given 54 

that they are reliable, before learning about the specifics of the event. Participants provided six 55 

conditional probability estimates per event scenario (24 in total), all on 0-100 sliders (0 and 100 56 

denote the same as in the above). Due to the elicitation of conditional probabilities, no free 57 

parameters were requiring posthoc fitting.  58 

The modelling process generated a Condition (3) x Scenario (4) matrix, creating 12 59 

“group” models. Participants provided three types of estimates; participants supplied the first two 60 

types of estimates before reading the reports and supplied the third type of estimate after reading 61 

the report. First, participants provided estimates for the reliability of the sources of 62 

misinformation that would appear in the subsequent reports (e.g. police officer), which we call 63 

reliability priors (e.g. How likely are police officers to be reliable in their reporting?). Second, 64 

participants estimated the likelihood of the sources making an erroneous statement about the 65 

reported event (e.g. road accident) conditional on the source being reliable or not (e.g. If a police 66 

officer is reliable, how likely are they to make an erroneous statement in reporting about a road 67 

accident?), and conditional on whether the source was contradicting/corroborating their own or 68 

another source’s statement. We call these estimates conditional probability estimates. These 69 
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allow for a full range of possible assumptions regarding the relationship between the 70 

misinforming and retracting reports (from no influence, to complete dependence). Finally, 71 

participants estimated the probability of the focal hypothesis and the reliability of the source in 72 

each scenario.  73 

We created each model using the elicited responses for each estimate, using as many of 74 

the responses of possible. All three conditions could use the reliability priors from all 75 

participants, along with the conditional probabilities for Reporter 1, as these were similar across 76 

conditions. However, the conditional probabilities for Reporter 2 were condition-specific (i.e. the 77 

Retraction Same Source condition could only use conditionals elicited from that condition – see 78 

question 1 above).  79 

Lastly, as eliciting participants’ “prior” probability estimates for the focal hypothesis in 80 

each scenario (i.e. an estimate of how likely the reported event is to be accurate, in each 81 

scenario) beforehand were likely to interfere with CIE (via the premature introduction of the 82 

misinformation), we reverse-engineered the priors from the control condition posterior estimates. 83 

As the control condition had a single positive Reporter 1 observation (rather than multiple 84 

contradicting observations), a prior probability could be calculated via Bayes Theorem using the 85 

known likelihood (i.e. Reporter 1 conditionalized parameters) and provided posterior estimates. 86 

For example, given the posterior (P ( Hypothesis | Report) for the journalist scenario was 87 

77.58%, and the elicited conditional probabilities for the journalist reporter were a probability of 88 

the journalist being correct if reliable (P ( Report | Hypothesis , Reliable)) of 68.94% and correct 89 

if unreliable (P (Report | Hypothesis, ¬ Reliable)) of 31.06% (with these probabilities reflected 90 

for the chance of error), conditional on a probability of being reliable (P (Reliable)) of 54.1%, 91 

then dividing the above posterior by the conditionalized reporter likelihood results in a prior 92 
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(P(Hypothesis)) of 75.6%. All parameters, except the generated prior, were directly elicited from 93 

participants and fed into the model at the group level. This “prior” could then be implanted in the 94 

retraction condition models, further ensuring that the models did not have any free parameters. 95 

Responses to a set of misinformation probes that followed each scenario measured the 96 

continued influence of misinformation (see Table 1). Participants rated each probe on a 7-point 97 

scale from ‘strongly disagree’ to ‘strongly agree’. In line with previous CIE methods, probes 98 

referred to the critical information (sentence 5).  Higher levels of misinformation probe 99 

endorsement captured the extent to which participants integrated the misinformation (sentence 2 100 

in the retraction conditions)  into their understanding of the news report.  101 

After rating the probes, participants provided posterior probabilities on a similar scale 102 

used for prior beliefs. For example, in the scenario in Table 1, participants were asked: 1) Given 103 

everything you know so far about the incident in question, how likely do you think it is that 104 

the accident occurred because the driver was intoxicated/travelling over the speed limit? 2) 105 

Given everything you know so far about the incident in question, how likely to do you think it is 106 

that the police officer is reliable in their reporting? Participants who received a retraction from a 107 

different source as the misinformation provided an additional estimate for the reliability of the 108 

second reporter. 109 

 110 



THE RATIONAL CONTINUED INFLUENCE OF MISINFORMATION 

23 

 

Table 1  

Example news report scenario and misinformation probes 

Sentence Control 
Retraction 

(Same Source) 

Retraction 

(Different Source) 

Example News Report 

Sentence 1 
 

A motorcyclist died yesterday after being knocked off his bike by a car. 

 

Sentence 2 
Officer Jones reported 

that the driver of the car 

had been travelling over 

the speed limit. 

Officer Jones reported 

that the driver of the 

car was intoxicated. 

Officer Jones reported 

that the driver of the 

car was intoxicated. 

Sentence 3 
 

The accident happened on the A7 north of Carlisle. 

Sentence 4 
 

The motorcyclist was 30 years old and had two children. 

 

Sentence 5 
Officer Jones revealed 

that the car driver was not 

intoxicated. 

Officer Jones revealed 

that the car driver was 

not intoxicated. 

Officer Smith revealed 

that the car driver was 

not intoxicated 

Sentence 6 
 

The driver of the car was also injured in the incident. 

 

Example Misinformation Probes 

Question 1 
 

Drink-driving charges should be brought against the driver of the car 

 

Question 2 
 

The driver should be forced to complete a drink-driving awareness course 

 

Question 3 
 

A breathalyzer would have returned a positive result 
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3. Results 1 

Bayesian analyses were performed with JASP statistical software (JASP Team, 2018) and 2 

assumed an uninformed prior. The use of Bayes factors (BFs) additionally allowed us to infer 3 

evidence for the null hypothesis, wherein a BF10 of less than one third is considered substantial 4 

support for the null (Dienes, 2014). 5 

3.1.  Misinformation Endorsement Ratings 6 

A Bayesian repeated-measures ANOVA was used to determine the effect of retraction 7 

condition and scenario type on mean misinformation endorsement ratings. Strong evidence was 8 

found for the main effect of condition, BFInclusion
4 = 1.917 * 1012, and scenario, BFInclusion = 5.44 * 9 

109, but no interaction, BFInclusion = 0.122. The model including just main effects was the 10 

strongest fit, BFM
5 = 131.26, and was decisive; overall, BF10 = 2.105 * 1022. As illustrated in Fig. 11 

3 scenarios differed in misinformation endorsement ratings from one another, and there was a 12 

differential influence of condition.  13 

Critically, the effect of condition indicated significantly higher endorsement ratings 14 

following the presentation and retraction of misinformation compared to when there was no 15 

misinformation presented. This result indicates that a CIE was observed across all scenarios, 16 

such that a retraction was insufficient to bring endorsement ratings back to baseline. 17 

A Bayesian repeated-measures ANOVA was also used to establish whether there was an 18 

effect of scenario order (i.e. whether a participant read the scenario first, second, third or fourth) 19 

on misinformation endorsement ratings. This found no effect of scenario order, BFInclusion = 20 

 

 

4 BFInclusion reflects the change in odds from the sum of the prior probabilities of models that include the 

effect, to the sum of posterior probabilities of models including the effect. 
5 BFM reflects the change from prior to posterior odds for the given model. 
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0.435, and strong evidence for a null effect of its interaction with scenario (type), BFInclusion = 21 

0.034. There was, however, strong evidence for the main effect of scenario, BFInclusion = 5.46 * 22 

109, with the model including only this main effect yielding the strongest fit, BFM = 6.132, and 23 

decisive overall, BF10 = 7.54 * 109. 24 

 25 
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Fig 1 Mean misinformation endorsement ratings, split by scenario (line) and condition 

(horizontal axis). Error bars reflect 95% CI. The scale ranged from 1 = strongly disagree to 7 = 

strongly agree. Misinformation probes were more strongly endorsed in the retraction conditions 

than the control condition. A retraction was insufficient to bring endorsement ratings to baseline 

levels.  Note that points have been offset on the x-axis to improve legibility.  
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3.2. Bayesian Model Fits 1 

Using the conditional probabilities and priors elicited from participants, group means of 2 

these estimates were used to parameterize two group-condition models for each scenario. The 3 

conditional probabilities and priors for each first reporter and reliability node were fitted based on 4 

all participants, with two notable exceptions. First, conditional probabilities for the second reporter 5 

were based solely on estimates from the condition of relevance (i.e. we only used estimates from 6 

the retraction (different source) condition to parameterize the entailed different second reporter in 7 

that condition). Secondly, we reverse-engineered prior probabilities for each hypothesis (via Bayes 8 

Theorem) using the posteriors provided by the control condition. More precisely, taking the control 9 

condition BN model, the posterior for the hypothesis was fitted, given the single positive report. 10 

Retracting the observation could reveal the approximate prior (absent observations) for that 11 

hypothesis. This “prior” was fitted into the models for the two retraction conditions. 12 

Figures 1 and 2 illustrate models for each experimental condition of the police officer 13 

scenario, fitted from participant data according to the protocol outlined above. Several significant 14 

trends are noticeable: Firstly, as expected, given a single positive reporter (stage 2), belief in the 15 

hypothesis (H) increases, and the predicted likelihood of corroboration from the second report 16 

increases. However, when the second, contradicting report is observed (stage 3), the belief in the 17 

hypothesis (H) does not return to prior (stage 1) levels. Instead, the reliability of sources decreases 18 

given the contradiction, this decrease is most influential in the second reporter (different condition) 19 

but is also substantial when the same reporter contradicts themselves (Fig. 2, stage 2 to stage 3). 20 

Critically, the reason for this effect (retention of belief in H, but the reduction in 21 

perceived reliability) is due to the capturing of the temporal dependence from first to the second 22 

report. Put another way; the models capture the intuition that the second report is made with an 23 
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awareness of the first report (whether internally in the case of the same reporter condition or via 24 

general narrative in the different reporter condition). The elicited conditional probabilities from 25 

participants then capture the manner and strength of this influence. 26 

3.3. Participant Estimates 27 

Returning to participant data, we again use Bayesian repeated-measures ANOVA to 28 

examine whether probability estimates correspond to the BN model predictions (and thus map 29 

onto a CIE) or corroborate the misinformation endorsement ratings (and indicate an absence of 30 

CIE – against fitted normative prescription).  31 

3.3.1. Hypothesis  32 

Turning first to posterior estimates of belief in the hypothesis, we find main effects of 33 

condition, BFInclusion = 3.328 * 109, and scenario, BFInclusion = 41812.52, but no interaction, 34 

BFInclusion = 0.467. The model consisting of the main effects along was the strongest fit, BFM = 35 

34.27, and enjoyed decisive support overall, BF10 = 2.247 * 1014. As Fig. 4 illustrates, these 36 

effects corroborate misinformation endorsement ratings; wherein there is the retention of belief 37 

in misinformation despite its retraction. Crucially, this shows that participants generally deviate 38 

from the prescribed CIE entailed by the BN models, decreasing belief in the hypothesis below 39 

the control condition (and prior), given the retraction. 40 

We again checked for order effects for posterior estimates of belief in the hypothesis 41 

across scenarios, findings strong evidence for a null effect of presentation order, BFInclusion = 42 

0.028, and its interaction with scenario type, BFInclusion = 0.02. There was, however, the main 43 

effect of scenario type, BFInclusion = 5354.61, with the model including only scenario type yielding 44 

the strongest fit, BFM = 94.26 and being decisive overall, BF10 = 7963.11.  45 

 46 
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 47 

Fig 2 Posterior estimates of belief in the hypothesis (H), given all reports, split by scenario 

(line) and condition (horizontal axis). Error bars reflect 95% CI. Note that points have been 

offset on the x-axis to improve legibility. 
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3.3.2. Individual Differences 48 

We performed an exploratory analysis to examine individual differences in participants’ 49 

model predictions, posterior estimates of belief in the hypothesis, and their misinformation 50 

endorsement ratings. We first generated individual model fits for each participant and scenario. 51 

These individual fits were based on each participants own prior estimate of reliability for the 52 

source of the reports, conditional probabilities for sources, and the prior probability of the 53 

(misinformed) report being true, which was reversed engineered from the control group mean for 54 

that scenario (as such a prior could not be elicited from the same participant without 55 

undermining the CIE framework premise – see section 2.2). We then computed the proportion of 56 

participants whose fitted BN model predicted a CIE and the proportion of participants who 57 

exhibited a CIE (i.e. retained belief in the misinformation despite a retraction), separately for 58 

each of the four scenarios tested (see Table 2).  A prediction of CIE was defined as a posterior 59 

probability for the hypothesis after both reports that remained above the level of the prior. 60 

The first finding of note from is that although around half of participants provided 61 

parameter estimates that should lead to the CIE, very few actually do. We confirmed this by 62 

performing Bayesian tests of association using a joint multinomial sampling plan and default 63 

priors, separately for each scenario6, to test the null that there was no association between 64 

observed and predicted CIE. The journalist scenario produced a BF01 = 3.020, the reviewer and 65 

police officer scenarios produced BF01 = 3.618, and the spokesperson scenario produced a BF01 = 66 

2.233, indicating moderate evidence for the null. 67 

    68 

 

 

6 It was necessary to perform separate analyses for each scenario as the levels of scenario were 

not independent.    
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Table 2 Percentage of participants with predicted given their BN model and observed CIE by 69 

scenario  70 

Predicted 

CIE  

Observed 

CIE 

Journalist Police Reviewer Spokesperson 

Yes No 39.71 38.24 47.06 32.84 

Yes Yes 5.88 32.35 5.88 14.93 

No No 45.59 23.53 42.65 38.81 

No Yes 8.82 5.88 4.41 13.43 

 71 

To corroborate this finding, we also performed a Bayesian regression to examine whether 72 

participant’s parameter estimates predicted their misinformation endorsement ratings and found 73 

that the model including BN parameter estimates as a predictor was 2.11 more likely than an 74 

intercept only model7.  75 

Taken together, we find that although on an individual basis, many participants detailed 76 

probabilistic relationships between model components that should produce a CIE, very few 77 

participants in fact went on to exhibit one in their own  probability responses. Furthermore, 78 

inclusion in the former category did not predict inclusion in the latter. Finally, there was 79 

anecdotal evidence that participant’s parameter estimates predicted their misinformation 80 

endorsement ratings.81 

 

 

7 The Bayesian regression was performed using the BayesFactor package in R using default 

Cauchy priors and participant as a random effect.  
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82 

3.3.3. Reliability 83 

Turning next to estimates of reliability, we add to the repeated measures ANOVA 84 

analysis a within-subject factor of the change in reliability estimates from, the prior, to posterior. 85 

Here we find significant main effects of condition (control > retraction different and same), 86 

BFInclusion > 1020, scenario, BFInclusion = 124.44, and prior-posterior (posterior < prior), BFInclusion > 87 

1020. Figs 5, 6, and 7 illustrate the significant interaction of condition and prior-posterior, 88 

BFInclusion > 1020, wherein reliability estimates increased in the control condition (Fig. 5; where 89 

no contradiction occurs, and in line with the increase observed in Figs 1 and 2, stage 2), but 90 

decreased in both retraction conditions (Figs 6 and 7; also, in line with model predictions 91 

illustrated in Figs 1 and 2, stage 3). Lastly, we also observed a strong interaction of scenario and 92 

prior-posterior, BFInclusion = 75.92, wherein the spokesperson scenario entailed smaller changes 93 

from the prior to the posterior than the 3 remaining scenarios. The model, including the above-94 

supported terms, yielded the strongest fit, BFM = 484.97, and was decisive; overall, BF10 = 1.559 95 

* 1028. 96 

Finally, we note that the retraction condition showed no significant difference in posterior 97 

reliability estimates between the two different (first and second) reporters, BF10 = 0.135, contrary 98 

to model predictions (wherein there should be a more substantial reliability penalty for the 99 

second reporter because of the contradiction). 100 

 101 
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Fig 3 Control condition reliability estimates for reporters from prior to posterior (reports 

observed), split by scenario (lines). Error bars reflect 95% CI. Note that points have been offset 

on the x-axis to improve legibility. 
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Fig 4 Retraction different condition reliability estimates for reporters from prior to posterior 

(reports observed), split by scenario (lines). Error bars reflect 95% CI. 
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Fig 5 Retraction same condition reliability estimates for reporters from prior to posterior 

(reports observed), split by scenario (lines). Error bars reflect 95% CI. 
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4. Discussion 1 

This paper formalizes the continued influence of misinformation (Johnson & Seifert, 2 

1994; Lewandowsky et al., 2012) in a Bayesian network model which accounts for the temporal 3 

dependency between the misinformation and retraction reports, and its impact on source 4 

reliability. When accounting for the temporal dependency between misinformation and its 5 

retraction, we find a rational account for the continued influence effect. We find that 6 

participant’s responses broadly fit with the predictions of this account, and show that belief in the 7 

hypothesis (i.e. the misinformation) remains above prior level, and instead, participants penalize 8 

the reliability of the second reporter (i.e. retraction’s source). Participants perceived the second 9 

(retracting) reporter as less reliable than the first (misinforming) reporter, irrespective of whether 10 

the second reporter was the same or different from the first. However, participant’s posterior 11 

estimates also decreased below their priors, and against their model predictions. This finding is 12 

contrary to standard CIE accounts (that people continue to rely on retracted misinformation when 13 

they should not); instead, we show that people do not always continue to rely on misinformation 14 

even though they should! 15 

An individual-level analysis of the data revealed that people can, and do, endorse the 16 

necessary assumptions for a rational account of the CIE. However, most participants were unable 17 

to incorporate these assumptions into their posterior probability judgments or their 18 

misinformation endorsement ratings. Put another way, participants did not achieve the complex 19 

Bayesian update that the model entails; namely, integrating the conjunction of temporal 20 

dependency, and its impact on source reliability, to estimate the strength of the evidence for the 21 

retracted misinformative report. Crucially, these findings show that a “rational” CIE is possible 22 

when conceptualized in Bayesian terms, even with people's own assumptions about the 23 
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relationships between the factors in play.This finding shows the integration of contradictory 24 

sources is difficult even when one considers the temporal dependency between the 25 

misinformation and retraction.   26 

Reliability estimates revealed that participants decreased their estimate for a reporter who 27 

contradicts themselves, in line with model predictions. In the different source condition, 28 

participants decreased their reliability estimates for the first reporter and increased reliability 29 

estimates of the second reporter (both correct according to the model). Interestingly, the second 30 

reporter was considered more reliable than the first in the police officer and independent 31 

reviewer scenarios, but less reliable than the first in the journalist and police spokesperson 32 

scenarios. Descriptively, this discrepancy in reliability estimates demonstrates participant’s 33 

sensitivity to the different types of sources and suggests individual variability in source 34 

reliability priors. The fact that we elicited prior estimates of different source type’s reliability 35 

before presenting the scenarios, and still find differences in the reliability estimates between the 36 

control and retraction conditions, also demonstrates that, overall, participants are not solely 37 

remaining consistent with their prior estimates of reliability. Finally, we observed a classic CIE 38 

whereby misinformation endorsement ratings showed that a retraction, whether from the same or 39 

a different source, did not bring endorsement ratings back to the baseline level (as shown in the 40 

control condition). Participants continued to rely on retracted misinformation. Misinformation 41 

probes were more strongly endorsed when misinformation was presented and retracted than 42 

when the scenario did not involve a retraction of misinformation. This result is consistent with 43 

previous CIE studies that have included a "no misinformation" control condition who find 44 

baseline levels are higher than zero (e.g. Gordon et al., 2017; Johnson & Seifert, 1994; Rich & 45 

Zaragoza, 2016).  46 
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At the aggregate level, both posterior estimates for the hypothesis and misinformation 47 

endorsement ratings showed retention of the misinformation despite being retracted. The 48 

posterior estimates for the hypothesis, while lower than the control condition, still showed 49 

substantial retention of belief in the retracted hypothesis.  It is worth noting that the posterior 50 

probability estimates used in the present study measure belief updating and are therefore 51 

qualitatively different from the traditional continued influence measures which measure 52 

comprehension. Our novel probability estimate measures are, arguably, a more sensitive measure 53 

of the CIE than traditional measures, as they demonstrate the uncertainty that often follows a 54 

correction of the misinformation. People might reduce their belief in misinformation after a 55 

retraction but not completely rule out the possibility that the misinformation is still valid because 56 

they do not believe the retraction (Guillory & Geraci, 2010, 2013; O'Rear & Radvansky, 2020).  57 

The present study did not include a condition in which misinformation is presented but 58 

never retracted, as is common in most CIE research. The control and retraction conditions 59 

sufficiently demonstrated higher endorsement in the retraction condition. Excluding the no 60 

retraction condition meant that it was not possible to assess the effect of the retraction. Including 61 

such a condition would make it possible to directly compare the novel approach used in the 62 

present study with previous CIE research and presents an opportunity for follow-up research. 63 

The findings here also involve scenarios, and retractions, that are shorter and more 64 

straightforward than the ones people may encounter in everyday life. Replicating the findings 65 

with richer, more causally complex scenarios is necessary to establish whether the modelling 66 

process still predicts the CIE.  67 

Taken together, we show that participants should exhibit the CIE (according to fitted BN 68 

models), maintaining belief in the retracted misinformation. We find this effect with standard 69 
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behavioural measures used in the CIE literature (Brydges et al., 2018; Gordon et al., 2017), and 70 

observe retention of the hypothesis with novel probability estimate P(H) measures. We also find 71 

appropriate penalization in reliability estimates given a contradiction among first and second 72 

reporters – something hitherto unnoticed in CIE studies but predicted by our formalism. An 73 

individual-level analysis of the data revealed that although many participants endorsed 74 

assumptions for a rational CIE very few of these participants went on to provide posterior 75 

probability estimates in agreement with their model predictions. Furthermore, there was little 76 

evidence that participant’s parameter estimates predicted their misinformation endorsement. To 77 

put our findings in context with previous explanatory theories (Lewandowsky et al., 2012), 78 

which tacitly assume that CIE is an error, we provide a process-oriented theory that can give a 79 

rational (and testable) framework for CIE. We do not argue that the sole explanation for the CIE 80 

relates to the inferences made about the reliability of sources providing contradictory of 81 

information; instead, we argue that source reliability plays a crucial role in the inferences that 82 

people generate after a correction to initially presented information, and that there is a richer 83 

context to consider when contemplating the CIE. We illustrate the (rationality-reversing) impact 84 

of one such reasonable context expansion, but this is not to outright refute previous descriptive 85 

theories per se.  86 

To conclude, we provide a formal account of CIE using a BN framework and show that 87 

CIE is in some circumstances, rational. This approach captures the qualitative inferences 88 

participants make about the reliability of sources providing contradictory information and 89 

suggests that perceived reliability moderates the degree to which people are willing to integrate 90 

contradictory reports. The models described here are normative in the sense that they provide an 91 

argument for why CIE can be the product of a rational process. We do not make the argument 92 
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that the models describe participant reasoning itself. This research demonstrates that it is 93 

possible to model CIE using a BN framework. Building upon current explanatory theories of 94 

CIE, and the insight may represent the reliabilities of sources providing contradictory 95 

information, is a promising direction for future research.   96 

 97 
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