
JACKKNIFE EMPIRICAL LIKELIHOOD: SMALL BANDWIDTH, SPARSE
NETWORK AND HIGH-DIMENSION ASYMPTOTICS

YUKITOSHI MATSUSHITA AND TAISUKE OTSU

Abstract. This paper sheds light on inference problems for statistical models under alternative
or nonstandard asymptotic frameworks from the perspective of jackknife empirical likelihood.
Examples include small bandwidth asymptotics for semiparametric inference and goodness-of-
fit testing, sparse network asymptotics, many covariates asymptotics for regression models, and
many-weak instruments asymptotics for instrumental variable regression. We first establish
Wilks’ theorem for the jackknife empirical likelihood statistic on a general semiparametric in-
ference problem under the conventional asymptotics. We then show that the jackknife empirical
likelihood statistic may lose asymptotic pivotalness under the above nonstandard asymptotic
frameworks, and argue that these phenomena are understood as emergence of Efron and Stein’s
(1981) bias of the jackknife variance estimator in the first order. Finally we propose a modi-
fication of the jackknife empirical likelihood to recover asymptotic pivotalness under both the
conventional and nonstandard asymptotics. Our modification works for all above examples and
provides a unified framework to investigate nonstandard asymptotic problems.

1. Introduction

This paper sheds light on inference problems for statistical models under alternative or non-
standard asymptotic frameworks from the perspective of jackknife empirical likelihood, initially
proposed by Jing, Yuan and Zhou (2009) for one- and two-sample U-statistics. Examples of non-
standard asymptotics include (i) small bandwidth asymptotics for semiparametric inference using
average derivatives by Cattaneo, Crump and Jansson (2010, 2014a, b), and for goodness-of-fit
testing by a quadratic functional of the density by Bickel and Rosenblatt (1973), (ii) sparse net-
work asymptotics by Bickel, Chen and Levina, (2011), (iii) many-weak instruments asymptotics
for instrumental variable regression by Chao et al. (2012), and (iv) many covariates asymptotics
for regression models by Cattaneo, Jansson and Newey (2018a, b). These nonstandard asymp-
totic frameworks, which cover the conventional asymptotics as a special case, are developed to
provide better approximations for finite sample properties of statistics and more reliable infer-
ence methods. We investigate the behavior of the jackknife empirical likelihood statistics under
such nonstandard asymptotics and develop a unified inference approach that has good statisti-
cal properties under both the conventional and nonstandard asymptotics. In the main text, we
discuss the small bandwidth and sparse network asymptotics, and the results on the many-weak
instruments and many covariates asymptotics are presented in Supplementary Material.

In particular, we first consider a general semiparametric inference problem under the conven-
tional asymptotics, and establish Wilks’ theorem for the jackknife empirical likelihood statistic.
This is a natural extension of Jing, Yuan and Zhou (2009) toward semiparametric moment con-
dition models, which are typically written by U-statistics with varying kernels. Next, we show
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that the jackknife empirical likelihood statistics may lose asymptotic pivotalness under the above
nonstandard asymptotic frameworks, and typically converge to quadratic forms of normal vectors
with unknown weights. A crucial point, made by Cattaneo, Crump and Jansson (2014b) for the
small bandwidth asymptotics, is that the mismatch between the variance of the normal vectors
and the weight matrix in these quadratic forms is understood as emergence of Efron and Stein’s
(1981) bias of the jackknife variance estimator in the first order. Under the conventional asymp-
totics, Efron and Stein (1981) presented a general higher-order bias formula for the jackknife
variance estimator. Under the nonstandard asymptotics, however, both the linear and quadratic
terms of U-statistics can be of the same order, and Efron and Stein’s (1981) bias violates as-
ymptotic pivotalness of the jackknife empirical likelihood statistic. Finally, based on this point,
we propose a modification of the jackknife empirical likelihood to recover asymptotic pivotalness
under both the conventional and nonstandard asymptotics. The basic idea is to incorporate
leave-two-out adjustments as in Hinkley (1978), Efron and Stein (1981), and Cattaneo, Crump
and Jansson (2014b) into the estimating equations to construct the jackknife empirical likelihood
statistics. Our modification works for all above examples and provides a unified framework to
investigate nonstandard asymptotic problems.

The literature on alternative or nonstandard asymptotic analysis is so broad that we limit
ourselves to mention only closely related papers for the examples discussed in later sections. In
a series of papers, Cattaneo, Crump and Jansson (2010, 2014a, b) advocated the small band-
width asymptotics to conduct robust statistical inference for semiparametric average derivative
estimators. See also Cattaneo and Jansson (2018) for further developments on bootstrap in-
ference. Cattaneo, Crump and Jansson (2014b) is particularly important for this paper since
they first pointed out the emergence of Efron and Stein’s (1981) bias in the first order. This
paper puts forward Cattaneo, Crump and Jansson’s (2014b) view toward the jackknife empirical
likelihood inference. We also consider goodness-of-fit testing based on a quadratic functional
of the density by Bickel and Rosenblatt (1973). In this case, we observe analogous robustness
for the bandwidth choices for our jackknife empirical likelihood statistic, cf. Hall (1984). For
the network asymptotics, our analysis is considered as robustification of the network method of
moments by Bickel, Chen and Levina (2011) and Bhattacharyya and Bickel (2015) for sparse
networks. See Supplementary Material for literature on the many-weak instruments and many
covariates asymptotics. Cattaneo, Jansson and Ma (2019) employed a jackknife method under
nonstandard asymptotics where the first stage of semiparametric generalized method of moments
estimation involves many covariates. They used the jackknife to remove the bias term due to
many covariates and to estimate their standard error, and then proposed to conduct bootstrap
inference. See also Cattaneo, Crump and Jansson (2013) for the jackknife bias correction for
weighted average derivatives under weaker bandwidth conditions. This paper focuses on the se-
tups where the bias term is negligible typically because the nonparametric components enter the
estimating equations in linear ways, and the asymptotic variance changes under the nonstandard
asymptotics.

This paper also contributes to the literature of empirical likelihood, see Owen (2001) for a
review. Since the seminal work by Jing, Yuan and Zhou (2009), jackknife empirical likelihood
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has been extended to various contexts, such as Wang, Peng and Qi (2013) for high dimensional
means, Gong, Peng and Qi (2010) for receiver operating characteristic curves, Zhang and Zhao
(2013) for transformation models, Peng, Qi and Van Keilegom (2012) for copulas, and Zhong
and Chen (2014) for regression imputation, among others. Under the conventional asymptotics,
empirical likelihood inference has been studied by Bertail (2006), Zhu and Xue (2006), Hjort,
McKeague and Van Keilegom (2009), Bravo, Escanciano and Van Keilegom (2020), among others.

2. Standard asymptotics

2.1. Semiparametric model. This section considers inference on parameters defined via semi-
parametric moment conditions under the conventional asymptotic framework. In particular, we
are interested in a vector of parameters ✓ satisfying

E[g{Z, ✓, µ(X)}] = 0, (1)

where X and Z are observables, g is a known function up to ✓ and µ, and µ is a vector of unknown
functions. In this section, we focus on the case where µ(X) takes the form of the conditional
expectation E(Y |X) for some variables Y or its derivatives. Many inference problems are covered
by this setup as illustrated by the following popular examples.

Example 1. Average treatment effect. Let Y (0) and Y (1) be potential outcomes for a treatment
D = 0 and 1, respectively. We observe Z = (Y,X,D), where Y = DY (1) + (1 � D)Y (0) and
X are covariates. Under the so-called ignorability assumption by Rosenbaum and Rubin (1983),
the average treatment effect is identified as

✓ = E{Y (1)� Y (0)} = E{µ1(X)� µ0(X)},

where µd(X) = E(Y |X,D = d). This setup can be considered as a special case of (1) by setting
g{Z, ✓, µ(X)} = µ1(X)� µ0(X)� ✓.

Example 2. Weighted average derivative. Let m(X) = E(Y |X) and w be a known weight
function or density function of X. The weighted average derivative of the regression function is
defined as

✓ = E

⇢
w(X)

@m(X)

@X

�
.

This object is often used for estimation of single index models as in Powell, Stock and Stoker
(1989), and some nonseparable models. This setup can be considered as a special case of (1) by
setting g{Z, ✓, µ(X)} = w(X)µ(X) � ✓ with µ(x) = @m(x)/@x. For the standard asymptotic
analysis in this section, w can be either a known weight function or density function of X. How-
ever, the small bandwidth asymptotic analyses are very different for these cases, see Cattaneo,
Crump and Jansson (2013) for a known weight case, and Cattaneo, Crump and Jansson (2014a)
for the density weighted case. We focus on the density weighted case for the small bandwidth
asymptotic analysis in Section 3.

Other examples include estimating equations for various semiparametric models, such as par-
tially linear and varying coefficient models.
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Suppose a preliminary estimator µ̂ for µ is available. Then the parameters ✓ can be estimated
by solving the estimating equations

1

n

nX

j=1

g{Zj , ✓̂, µ̂(Xj)} = 0.

As shown in Newey (1994), under certain regularity conditions the influence function of ✓̂ is given
by

 (Z,X) = �E


@g{Z, ✓, µ(X)}

@✓0

�✓
g{Z, ✓, µ(X)}+ E


@g{Z, ✓, µ(X)}

@µ0

����X
�
{Y � µ(X)}

◆
, (2)

and the asymptotic variance of ✓̂ is obtained by var{ (Z,X)}. To obtain the Wald-type confi-
dence set for ✓, we need to estimate the asymptotic variance var{ (Z,X)} that involves analytical
or often numerical derivatives of g and estimation of the conditional mean E

h
@g{Z,✓,µ(X)}

@µ0

���X
i

and average derivatives E
h
@g{Z,✓,µ(X)}

@✓0

i
. We provide an alternative inference approach based on

the jackknife empirical likelihood, which does not require estimation of nonparametric compo-
nents in var{ (Z,X)} nor even computation of the derivatives of g.

2.2. Jackknife empirical likelihood. We now introduce the jackknife empirical likelihood
approach for the setup in (1). Here we focus on the case where µ(X) is estimated by the kernel
estimator

µ̂(Xj) =
1

f̂(Xj)

1

n� 1

X

k 6=j

1

hd
K

✓
Xj �Xk

h

◆
Yk,

where K is a kernel function, h is the bandwidth, and f̂(Xj) = 1
n�1

P
k 6=j

1
hdK

⇣
Xj�Xk

h

⌘
is

an estimator for the density f of X. Similar results can be established for local polynomial
estimators. For given ✓, we construct the jackknife pseudo-values as

Vi(✓) = nS(✓)� (n� 1)S(i)(✓), (3)

where

S(✓) =
1

n

nX

j=1

g{Zj , ✓, µ̂(Xj)}, S(i)(✓) =
1

n� 1

X

j 6=i

g{Zj , ✓, µ̂
(i)(Xj)},

and µ̂(i)(Xj) =
1

f̂(Xj)
1

n�2

P
k 6=i,j

1
hdK

⇣
Xj�Xk

h

⌘
Yk is a leave-i-out counterpart of µ̂(Xj). We treat

the jackknife pseudo-values as if they are estimating equations for ✓, and construct jackknife
empirical likelihood as

`(✓) = �2 sup
p1,...,pn

nX

i=1

log(npi), s.t. pi � 0,
nX

i=1

pi = 1,
nX

i=1

piVi(✓) = 0.

By applying the Lagrange multiplier method, the dual form of `(✓) is written as

`(✓) = 2 sup
�

nX

i=1

log{1 + �0Vi(✓)}. (4)

In practice we employ this dual formula to compute `(✓). The asymptotic property of the
jackknife empirical likelihood statistic `(✓) is obtained as follows.
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Theorem 1. Under Assumption SP in Appendix, it holds `(✓) d! �2
p, where p is the dimension

of ✓.

This theorem says that the jackknife empirical likelihood statistic `(✓) is asymptotically piv-
otal and converges to the �2

p distribution. Thus, the jackknife empirical likelihood confidence
set of ✓ can be constructed by {c : `(c)  �2

p,↵}, where �2
p,↵ is the (1 � ↵)-th quantile of the

�2
p distribution. In contrast to the Wald-type confidence set based on the influence function in

(2), the jackknife empirical likelihood inference does not require estimation of nonparametric
components nor evaluations of the derivatives of g. Also we do not have to derive the influ-
ence function for each application. The above construction of jackknife empirical likelihood is
particularly attractive when computation of the estimator ✓̂ is expensive. Indeed the jackknife
empirical likelihood statistic `(✓) does not involve any point estimator of ✓ because we conduct
jackknifing on the estimating equations rather than the estimator.

3. Small bandwidth asymptotics

3.1. Density weighted average derivative. In this section we focus on the density weighted
average derivative

✓ = E

⇢
f(X)

@µ(X)

@X

�
,

where f is the density of X and µ(X) = E(Y |X). Using integration by parts, this parameter is
alternatively written as ✓ = �2E

n
Y @f(X)

@X

o
, and thus can be estimated by

✓̂ = � 2

n

nX

j=1

Yj
@f̂(Xj)

@X
, (5)

where f̂(Xj) = 1
n�1

P
k 6=j

1
hdK

⇣
Xj�Xk

h

⌘
is the leave-one-out kernel density estimator. Note

that this estimator takes the form of the second-order U-statistic and admits the Hoeffding
decomposition:

✓̂ =

✓
n

2

◆�1 nX

j=1

nX

k=j+1

Ujk = E(✓̂) +
1

n

nX

j=1

Lj +

✓
n

2

◆�1 nX

j=1

nX

k=j+1

Wjk, (6)

where Ujk = � 1
hd+1 K̇

⇣
Xj�Xk

h

⌘
(Yj � Yk) with the derivative K̇ of K, Lj = 2{E(Ujk|Zj) �

E(Ujk)}, and Wjk = Ujk�(Lj+Lk)/2�E(Ujk). Under standard conditions listed in Assumption
SB in Appendix, the bias term E(✓̂)�✓ is of order O(hs), where s is smoothness of f as well as the
order of the kernel, and the quadratic term

�n
2

��1Pn
j=1

Pn
k=j+1Wjk is of order Op(n�1h�

d
2�1).

Thus, by imposing both
p
nhs ! 0 and nhd+2 ! 1, the limiting distribution of ✓̂ is determined

by the linear term in (6) as in Powell, Stock and Stoker (1989), that is

p
n(✓̂ � ✓) =

1p
n

nX

j=1

Lj + op(1)
d! N(0,⌃),

where ⌃ = E(LjL0
j). In order to robustify inference on ✓ against the choice of bandwidths,

Cattaneo, Crump and Jansson (2014a) relaxed the requirement nhd+2 ! 1, called the small
bandwidth asymptotics, so that both the linear and quadratic terms in (6) play the dominant
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roles. In particular, they established
p
n(✓̂ � ✓)

d! N(0,⌃+ 2�1�) under nhd+2 !  2 (0,1),
s✓

n

2

◆
hd+2(✓̂ � ✓)

d! N(0,�) under nhd+2 ! 0,

where � = limn!1 hd+2E(WjkW 0
jk) = 2E{var(Y |X)f(X)}

R
K̇(u)K̇(u)0du is the variance of

the quadratic term in the Hoeffding decomposition (6). Cattaneo, Crump and Jansson (2014a)
advocated inference based on the case of nhd+2 !  by estimating the asymptotic variance
⌃+ 2�1�.

3.2. Jackknife empirical likelihood. We apply the jackknife empirical likelihood method to
the density weighted average derivative estimator ✓̂ in (5). Based on the estimator, we construct
the jackknife pseudo-values as in (3) with

S(✓) = ✓̂ � ✓, S(i)(✓) = ✓̂(i) � ✓,

where ✓̂(i) is the leave-i-out version of ✓̂ in (5). The asymptotic property of the jackknife empirical
likelihood statistic in (4) is obtained as follows.

Theorem 2. Consider the setup of this section and suppose Assumption SB in Appendix holds
true. Then

`(✓)
d!

8
><

>:

�2
d under nhd+2 ! 1,

⇠0(⌃+ 4�1�)⇠ under nhd+2 !  2 (0,1),
1
2�

2
d under nhd+2 ! 0,

(7)

where ⇠ ⇠ N(0,⌃+ 2�1�).

Similar to the estimator ✓̂, the limiting distribution of the jackknife empirical likelihood statis-
tic `(✓) depends on the condition on nhd+2. If nhd+2 ! 0 or 1, then the jackknife empirical
likelihood statistic is asymptotically pivotal but obeys different limiting distributions. In par-
ticular, if we use the conventional �2

d critical values for very small values of h, such inference
tends to be conservative. For the knife edge case of nhd+2 !  2 (0,1), the jackknife empirical
likelihood statistic is no longer asymptotically pivotal and its limiting distribution depends on
. It is interesting to note that discrepancy of the constants multiplied to �1� in the variance
of ⇠ and the term ⌃+4�1� is analogous to the second-order bias in the conventional jackknife
variance estimator in Efron and Stein (1981). As pointed out by Cattaneo, Crump and Jansson
(2014b), this Efron-Stein bias of the jackknife variance estimator is exactly due to mismatch of
characterizing the quadratic term in the Hoeffding decomposition. Under the small bandwidth
asymptotics, the Efron-Stein bias emerges in the first order.

It is desirable to modify jackknife empirical likelihood to have the same limiting distribution
for all cases. To this end, we employ the bias correction method suggested by Efron and Stein
(1981) and Cattaneo, Crump and Jansson (2014b) and modify the jackknife empirical likelihood
statistic as follows. Let ✓̂(i,j) be the leave-(i, j)-out version of ✓̂, and define

Qij = n✓̂ � (n� 1)(✓̂(i) + ✓̂(j)) + (n� 2)✓̂(i,j).
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This term is used in Efron and Stein (1981) to correct the higher-order bias of the jackknife
variance estimator. If ✓ is scalar, the bias corrected variance estimator is given by

n� 1

n

nX

i=1

(✓̂(i) � ✓̂)2 � 1

n(n+ 1)

nX

i=1

nX

j=i+1

(Qij � Q̄)2,

where Q̄ = 2
n(n�1)

Pn
i=1

Pn
j=i+1Qij .

Since Qij is asymptotically expressed as a function of Wij ’s but not Li’s, see, eq. (C.13) in
Supplementary Material, it can be used to estimate the variance component �. We utilize this
term to modify the jackknife empirical likelihood statistic as follows

`m(✓) = 2 sup
�

nX

i=1

log{1 + �0V m
i (✓)}, (8)

where V m
i (✓) = Vi(✓̂)� �̂�̃�1{Vi(✓̂)� Vi(✓)}, and �̂ and �̃ are given by

�̂�̂0 =
1

n

nX

i=1

Vi(✓̂)Vi(✓̂)
0, �̃�̃0 =

1

n

nX

i=1

Vi(✓̂)Vi(✓̂)
0 � 1

n

nX

i=1

nX

j=i+1

QijQ
0
ij .

Theorem 3. Consider the setup of this section. Under Assumption SB, `m(✓)
d! �2

d regardless
of the condition on nhd+2.

Therefore, the modified jackknife empirical likelihood `m(✓) is asymptotically pivotal and fol-
lows the �2

d limiting distribution for all cases of nhd+2. Note that the modified jackknife empirical
likelihood inference only requires the estimators, ✓̂, ✓̂(i), and ✓̂(i,j), and circumvents estimation
of ⌃ and �, which contains nonparametric components and requires additional smoothing.

4. Goodness-of-fit testing

In this section, we consider goodness-of-fit testing for a d-dimensional random vector X with
the density function f . In particular, for a specified density function f0, we wish to test

H0 : f = f0 vs. H1 : f 6= f0.

Let f̃(x) = 1
nhd

Pn
j=1K

⇣
x�Xj

h

⌘
be the kernel density estimator for some kernel function K :

Rd ! R and bandwidth h. As a test statistic, we consider a modified version of a quadratic
functional proposed by Bickel and Rosenblatt (1973):

J =

Z
{f̃(x)�Kh ⇤ f0(x)}2dx,

where Kh ⇤ f0(x) = 1
hd

R
K
�
x�u
h

�
f0(u)du. The idea of using the convolution with Kh is first

used in Härdle and Mammen (1993). The asymptotic distribution of J is the same for over,
optimally, or under-smoothed bandwidths, and it is the same as that of

R
{f̃(x)� f0(x)}2dx for

undersmoothed bandwidths, see, p. 332 of Fan (1994). The main reason of such robustness of
J for the bandwidth is due to the fact that the dominant term of J is given by a degenerated
U -statistic. Here we show that the jackknife empirical likelihood statistic applied on J enjoys
analogous robustness for the bandwidth choices.
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Let f̃ (i)(x) = 1
(n�1)hd

Pn
j 6=iK

⇣
x�Xj

h

⌘
be the leave-i-out kernel density estimator and define

the leave-i-out counterpart of J as

J (i) =

Z
{f̃ (i)(x)�Kh ⇤ f0(x)}2dx.

In this case, we construct the jackknife pseudo-values Vi = nS � (n� 1)S(i) by setting

S = J �B, S(i) = J (i) �B,

where B = 1
nhd

R
K(z)2dz is a constant for centering. Then the jackknife empirical likelihood

statistic is obtained as

`0 = �2 sup
{pi}ni=1

nX

i=1

log(npi), s.t. pi � 0,
nX

i=1

pi = 1,
nX

i=1

piVi = 0.

The asymptotic property of the jackknife empirical likelihood statistic `0 is obtained as follows.

Theorem 4. Consider the setup of this section and suppose Assumption GoF in Appendix holds
true. Then under h ! 0, nhd ! 1, and the null hypothesis H0, it holds

`0
d! 1

2
�2(1).

Note that the jackknife empirical likelihood statistic `0 is asymptotically pivotal regardless
the over, optimally, or under-smoothed bandwidths. In this example, the limiting distribution is
always 1

2�
2(1), which corresponds to the third case in (7). This is because of the fact that the

dominant term of S is given by a degenerated U -statistic. Therefore, in this example, there is
no need for modification on the jackknife empirical likelihood statistic as in the previous section.

Since
Pn

i=1 Vi converges to a positive constant under the alternative hypothesis, we propose a
one-sided version of the signed root jackknife empirical likelihood statistic SEL = sgn(

Pn
i=1 Vi)

p
2`0.

Based on the above theorem, we reject H0 if SEL > z1�↵, where z1�↵ is the (1� ↵)-th quantile
of the standard normal distribution.

5. Sparse network asymptotics

Consider a random graph on vertices (1, . . . , n) represented by an n⇥ n adjacency matrix A,
where Akl = 1 if there is an edge from node k to l and 0 otherwise. We assume that the graph
is undirected and contains no self-loops, which means A is symmetric and diagonals of A are
all zero. In this section, we focus on inference for the probability of an edge in the network,
✓n = P (Akl = 1), which can be estimated by ✓̂ =

�n
2

��1Pn
k=1

Pn
l=k+1Akl. In this setup, the

parameter ✓n typically depends on n, and note that dn = (n� 1)✓n is the expected degree. The
case of dn = 1 is called the phase transition, and the case of dn ! 1 is often considered as a
dense graph.

To study the asymptotic properties of ✓̂, we employ the nonparametric latent variable model
in Bickel, Chen and Levina (2011) and Bhattacharyya and Bickel (2015):

P (Aij = 1|⇠i, ⇠j) = E(Aij |⇠i, ⇠j) = ✓nw(⇠i, ⇠j)I{w(⇠i, ⇠j)  ✓�1
n }, (9)
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for i, j 2 (1, . . . , n), where (⇠1, . . . , ⇠n) are iid U(0, 1), and w(·, ·) is positive, symmetric, and
R 1
0

R 1
0 w(s, t)dsdt = 1. This model is derived from a general representation theorem of the

adjacency matrix A by Bickel and Chen (2009) and is flexible to cover popular network formation
models, such as stochastic block models, latent variable models, and preferential attachment
models. See Kolaczyk (2009) for a review.

By using the latent variables in (9), the estimation error ✓̂ � ✓n can be decomposed as

✓̂ � ✓n =
1

n

nX

k=1

Lk +

✓
n

2

◆�1 nX

k=1

nX

l=k+1

(Wkl +Rkl), (10)

where

Lk = 2{E(Akl|⇠k)� E(Akl)},

Wkl = E(Akl|⇠k, ⇠l)� {E(Akl|⇠k)� E(Akl)}� {E(Akl|⇠l)� E(Akl)}� E(Akl),

Rkl = Akl � E(Akl|⇠k, ⇠l).

The terms by Lk’s and Wkl’s are analogous to the ones in the Hoeffding decomposition in (6),
but the conditioning variables (⇠1, . . . , ⇠n) are latent. The third term by Rkl’s is composed of
projection errors. In Section C.5 in Supplementary Material, we show that

1

n

nX

k=1

Lk = Op

✓
dn
n
p
n

◆
,

✓
n

2

◆�1 nX

k=1

nX

l=k+1

Wkl = Op

✓
dn
n2

◆
, (11)

✓
n

2

◆�1 nX

k=1

nX

l=k+1

Rkl = Op

✓p
dn

n
p
n

◆
.

Thus, as far as E(Aij |⇠i) does not degenerate to a constant, the limiting distribution of ✓̂ is
determined by the first linear term in (10) in the dense case with dn ! 1. On the other
hand, in the sparse case with dn = O(1), the limiting distribution of ✓̂ is determined by the
first and third terms in (10). Finally, when E(Aij |⇠i) degenerates to a constant, the third term
dominates as far as dn = o(n). Bhattacharyya and Bickel (2015) proposed a variance estimator
that is consistent only in the dense case with non-degenerate E(Aij |⇠i). Our modified jackknife
empirical likelihood inference presented below will be valid for all these cases.

Based on the estimator ✓̂ =
�n
2

��1Pn
k=1

Pn
l=k+1Akl, we construct the jackknife pseudo-values

as in (3) with
S(✓n) = ✓̂ � ✓n, S(i)(✓n) = ✓̂(i) � ✓n,

where ✓̂(i) =
�n�1

2

��1Pn
k=1,k 6=i

Pn
l=k+1,l 6=iAkl is the leave-i counterpart of ✓̂. The limiting distri-

bution of the jackknife empirical likelihood statistic is obtained as follows. Let ⌃n = var(Lk)/n

and ⌥n =
�n
2

��1
var(Rkl).

Theorem 5. Consider the setup of this section under the model (9). Suppose
R 1
0

R 1
0 w(s, t)2dsdt <

1 and dn = o(n). Then

`(✓n)
d!
(

�2
1 under dn ! 1 and E(Aij |⇠i) is random,

��2�2
1 otherwise,
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where �2 = limn!1(⌃n + 2⌥n)/(⌃n +⌥n).

Similar to the results so far, the limiting distribution of the jackknife empirical likelihood
statistic `(✓n) depends on the behavior of dn. If the network is dense in the sense that dn ! 1 and
E(Aij |⇠i) is random, then the jackknife empirical likelihood statistic is asymptotically pivotal.
However, for sparse networks with dn 9 1 and possibly degenerate E(Aij |⇠i), the jackknife
empirical likelihood statistic is no longer asymptotically pivotal and its limiting distribution
depends on �2. It is interesting to note that the discrepancy between 2⌥n and ⌥n in the
expression of �2 can be understood as the Efron-Stein bias in this context.

It is desirable to modify the jackknife empirical likelihood statistic to have the same �2
1 limiting

distribution for both cases. Let

Qij = nS(✓n)� (n� 1){S(i)(✓n) + S(j)(✓n)}+ (n� 2)S(i,j)(✓n),

where S(i,j)(✓n) =
�n�2

2

��1Pn
k=1,k 6=i,j

Pn
l=k+1,l 6=i,j Akl�✓n is the leave-(i, j)-out version of S(✓n).

Then we define the modified jackknife empirical likelihood statistic `m(✓n) as in (8).

Theorem 6. Consider the setup of this section under the model (9). Suppose
R 1
0

R 1
0 w(s, t)2dsdt <

1 and dn = o(n). Then `m(✓n)
d! �2

1 (for both cases).

This theorem shows that the modified jackknife empirical likelihood statistic using the �2

critical value is asymptotically valid for both dense and sparse networks as far as dn = o(n).
Note that the currently available inference method by Bhattacharyya and Bickel’s (2015) variance
estimator is valid only in the dense case with non-degenerate E(Aij |⇠i).

6. Simulation

This section conducts a simulation study to evaluate the finite sample properties of the jack-
knife empirical likelihood inference methods. In particular, we focus on the jackknife empirical
likelihood inference under the sparse network asymptotics in Section 5, and consider a stochastic
block model with K = 2 equal-sized communities and the following edge probabilities

Fab = P (Aij = 1|i 2 a, j 2 b) = snSab, for 1  a, b  K.

We set S =

 
0.6 0.4

0.4 0.4

!
and vary sn such that ✓n = ⇡0F⇡ 2 (0.5, 0.1, 0.05) with ⇡ = (0.5, 0.5)0.

The network size is n = 100.
We compare four methods to construct confidence intervals for ✓n: (i) Wald-type confidence

interval (Wald), which is defined as [✓̂ ± 1.96�̂] with �̂2 = n�1
n

Pn
i=1(✓̂

(i) � ✓̂)2, (ii) bootstrap
confidence interval (Boot), which is defined as [✓̂ � c⇤97.5�̂, ✓̂ � c⇤2.5�̂] with the ↵-th percentile
of the bootstrap approximation c⇤↵ based on the node resampling network bootstrap by Green
and Shalizi (2017) with 999 bootstrap replications, (iii) jackknife empirical likelihood confidence
interval (JEL) in Section 5, and (iv) modified jackknife empirical likelihood confidence interval
(mJEL) in Section 5.

Table 1 gives the empirical coverage rates and average lengths of the confidence intervals
above across 1,000 Monte Carlo replications. The nominal rate is 0.95. The main findings
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from the simulation study are in line with our theoretical results. The Wald and jackknife
empirical likelihood confidence intervals tend to over-cover especially when the network is sparse,
which verifies our theoretical results. The bootstrap-based intervals are more accurate than the
Wald and jackknife empirical likelihood, but still tend to over-cover for sparse network. The
modified jackknife empirical likelihood confidence intervals are most robust to the sparsity of
the network compared to the other intervals, and offer close-to-correct empirical coverages in
all cases. Furthermore, in terms of the average lengths of the confidence intervals, the modified
jackknife empirical likelihood outperforms other methods for all cases.

Coverage rates Average interval lengths
✓n Wald Boot JEL mJEL Wald Boot JEL mJEL
0.5 0.971 0.958 0.972 0.952 0.0583 0.0544 0.0581 0.0514
0.1 0.990 0.974 0.990 0.949 0.0253 0.0225 0.0254 0.0190
0.05 0.995 0.979 0.996 0.949 0.0178 0.0158 0.0179 0.0130

Table 1. Coverage rates and average lengths of 95% confidence intervals

We also analyze the power properties of the tests for the null H0 : ✓n = ✓0 against the
alternative hypotheses H1 : ✓n = ✓0 + � for � 2 (�0.02,�0.01, 0.01, 0.02). Table 2 gives
the calibrated powers of all the tests across 1,000 Monte Carlo replications, i.e., the rejection
frequencies of these tests, where the critical values are given by the Monte Carlo 95th percentiles
of these test statistics under H0. The results suggest that the proposed modified jackknife
empirical likelihood test exhibits good calibrated power.

✓0 � Wald Boot JEL mJEL
0.5 -0.02 0.338 0.288 0.345 0.350

-0.01 0.131 0.105 0.135 0.142
0.01 0.900 0.107 0.089 0.085
0.02 0.258 0.301 0.263 0.253

0.1 -0.02 0.984 0.976 0.981 0.977
-0.01 0.527 0.455 0.518 0.468
0.01 0.398 0.456 0.428 0.394
0.02 0.953 0.958 0.956 0.946

0.05 -0.02 1.000 1.000 1.000 1.000
-0.01 0.878 0.864 0.871 0.842
0.01 0.767 0.814 0.798 0.760
0.02 0.997 0.998 0.998 0.997

Table 2. Calibrated powers

7. Real data example

To assess the practical utility of our method, we consider the automobile collision data an-
alyzed by Härdle and Stoker (1989). There are n = 56 observations in the data set and the
response variable Y indicates whether the accidents are judged to result in fatality, where Y = 1

for fatal and Y = 0 for not fatal. We focus on three important covariates: X1 =age of the
subject, X2 =velocity of the automobile, and X3 =the maximal acceleration. The variables are
standardized so that each of them has zero mean and unit variance.
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Table 3 presents the density weighted average derivative estimates ✓̂ with the standard er-
rors calculated by the Powell, Stock and Stoker’s (1989) estimator, and the results for testing
significance of each covariate. We employ the data-driven bandwidth selector compatible with
the small bandwidth asymptotics proposed by Cattaneo, Crump and Jansson (2010) to imple-
ment the modified jackknife empirical likelihood tests. On the other hand we employ the plug-in
bandwidth selector proposed by Powell, Stock and Stoker (1989), which is compatible with the
standard asymptotics, to implement the point estimators and the Wald tests. The Gaussian
kernel is used for all the results.

From Table 3, both the Wald and modified jackknife empirical likelihood (mJEL) methods
indicate that X1 with the estimated slope ✓̂1 = .0062 is statistically significant, and X3 with the
estimated slope ✓̂3 = .0016 is insignificant at the 5% level. On the other hand, for X2, Wald gives
p-value of 0.087 and hence suggests that X2 with the slope estimate ✓̂2 = .0025 is not statistically
distinguishable from zero, while our modified jackknife empirical likelihood gives p-value of 0.049
and hence delivers marginal significance at the 5% level.

Predictor variables
✓̂ X1 X2 X3

estimate .0062 .0025 .0016
s.e. .0015 .0014 .0015

Significance tests
H0 Wald statistic mJEL statistic
✓1 = 0 17.14 11.68
✓2 = 0 2.93 3.88
✓3 = 0 1.08 0.31

Table 3. Density weighted average derivative estimates and tests for Collision data
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Appendix A. Assumptions

Assumption SP.

(i): {(Yi, Xi, Zi)}ni=1 is independent and identically distributed. X is compactly supported
in Rd and its density f is uniformly bounded from above and away from zero. µ and
f are continuously differentiable to order s. E{|Y � µ(X)|2+�} < 1 for some � > 0,
E(Y p) < 1 for some p � 4, and E(Y p|X = x)f(x) is bounded. g has bounded second
derivative in µ.

(ii): K is an s-th order kernel function that integrates to 1 in its compact support. Also,
nh2d/(log n)2 ! 1 and nh2s ! 0 as n ! 1.
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Assumption SB.

(i): f is (s+ 1) times differentiable, and f and its first (s+ 1) derivatives are bounded for
some s � 2. m is twice differentiable, e = mf has the bounded second derivative, v(x) =
E(Y 2|X = x) is differentiable, vf has the bounded first derivative, and lim|x|!1{m(x)+

|e(x)|} = 0. E(Y 4) < 1, E{var(Y |X)f(X)} > 0, and var
n

@e(X)
@X � Y @f(X)

@X

o
is positive

definite.
(ii): K is even, differentiable with the bounded first derivative K̇, and s-th order kernel.

Also,
R
K̇(u)K̇(u)0du is positive definite and

Z
|K(u)|(1 + |u|s)du+

Z
|K̇(u)|(1 + |u|2)du < 1.

As n ! 1, it holds min(nhd+2
n , 1)nh2sn ! 0 and n2hdn ! 1.

Assumption GoF.

(i): f and its second order derivatives are bounded and uniformly continuous on Rd.
(ii): K is bounded and nonnegative function on Rd satisfying

Z
K(u)du = 1,

Z
uK(u)du = 0,

Z
ujulK(u)du = 2kI(j = l) < 1,

for each j, l = 1, . . . , d, where k is a constant that does not depend on j or l.
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SUPPLEMENTARY MATERIAL FOR “JACKKNIFE EMPIRICAL
LIKELIHOOD: SMALL BANDWIDTH, SPARSE NETWORK AND

HIGH-DIMENSION ASYMPTOTICS”

YUKITOSHI MATSUSHITA AND TAISUKE OTSU

Abstract. In this file, we provide additional results on the many weak instruments asymptotics
(Section A) and many covariates asymptotics (Section B). Section C contains the proofs for all
the theorems.

Appendix A. Many-weak instruments asymptotics

A.1. Instrumental variable regression. In this section, we consider the instrumental variable
regression model

Y = X✓ + U,

X = Z 0�n + ✏, (A.1)

where Y and X are scalar observables, U and ✏ are scalar error terms, and Z is a K-dimensional
vector of instrumental variables. To simplify the presentation, we consider the case where X is
scalar, but an extension to the vector case is relatively straightforward.

Kunitomo (1980) and Bekker (1994), and Chao and Swanson (2005) advocated the many
instrument asymptotics and the many weak instrument asymptotics, respectively. Chao, et al.
(2012) and Hausman, et al. (2012) established asymptotic normality of jackknife versions of
the instrumental variable and limited information maximum likelihood estimators, respectively,
under heteroskedasticity and many instruments.

We assume Z is nonrandom, otherwise conditional on Z. For the coefficient vector �n, we
assume

�n = n�1/2µn⇡,

where µn is a scalar sequence and ⇡ is a K-dimensional vector of constants. We are interested
in the three cases: (i) K is fixed and µn = O(n1/2), (ii) K ! 1 and K/µ2

n ! ↵ 2 (0,1) as
n ! 1, and (iii) K ! 1 and K/µ2

n ! 1 as n ! 1. Case (i) is the conventional asymptotic
framework. Cases (ii) and (iii) are designed to the situations where the researcher has access to
many but possibly weak instrumental variables.

As an estimator of ✓, we focus on the jackknife instrumental variables (JIV) estimator by
Angrist, Imbens and Krueger (1999):

✓̂ =

0

@
nX

k=1

X

l 6=k

XkPklXl

1

A
�1

nX

k=1

X

l 6=k

XkPklYl,

1



where Pkl = Z 0
k (
Pn

h=1 ZhZ 0
h)

�1 Zl. It is known that the jackknife instrumental variable estimator
is robust to heteroskedasticity and many instruments in contrast to the limited information
maximum likelihood and two-stage least squares estimators. Let �2k = E(U2

k ).

Assumption MW.

(i): There are positive constants C and C1 such that max1in Pii  C < 1 and C�1
1 

⇡0
�
1
n

Pn
i=1 ZiZ 0

i

�
⇡  C1 for all n large enough. Also, n�2Pn

i=1 |⇡0Zi|4 ! 0 as n ! 1.
(ii): {(Ui, ✏i)}ni=1 are independent with E(Ui) = 0 and E(✏i) = 0. Also for some positive

constant C2, the minimum eigenvalue of var(Ui, ✏i) is larger than C�1
2 and

max1in{E(U2
i ), E(U4

i ), E(✏2i ), E(✏4i )} < C2.
(iii): ⌃,  , and ⌅ exist. Also

p
K/µ2

n ! 0 as n ! 1.

Under Assumption MW in the appendix, the limiting distribution of the jackknife instrumental
variable estimator is derived as follows by Chao et al. (2012):

Case (i) : µn(✓̂ � ✓)
d! N(0, H�1⌃H�1),

Case (ii) : µn(✓̂ � ✓)
d! N(0, H�1⌃H�1 + ↵H�1 H�1),

Case (iii) :
µ2
np
K

(✓̂ � ✓)
d! N(0, H�1 H�1),

where

H = lim
n!1

1

n

nX

k=1

(1� Pkk)⇡
0ZkZ

0
k⇡, ⌃ = lim

n!1

1

n

nX

k=1

�2k(1� Pkk)
2⇡0ZkZ

0
k⇡,

 = lim
n!1

1

K

nX

k=1

X

l 6=k

P 2
kl{�2kE(✏2l ) + E(✏kUk)E(✏lUl)}.

Based on this result, Chao et al. (2012) suggested a robust inference method by estimating the
unknown components H, ⌃, and  .

A.2. Jackknife empirical likelihood. In this case, based on the first-order condition of the
jackknife instrumental variable estimator, we construct the jackknife pseudo-values as in eq. (3)
in the main text with

S(✓) =
1

n(n� 1)

nX

k=1

X

l 6=k

XkPkl(Yl�Xl✓), S(i)(✓) =
1

(n� 1)(n� 2)

X

k 6=i

X

l 6=i,k

XkPkl(Yl�Xl✓).

The asymptotic property of the jackknife empirical likelihood statistic in eq. (4) in the main
text is obtained as follows. Let ⌅ = limn!1

1
n

Pn
k=1

P
l 6=k �

2
l P

2
lk⇡

0ZkZ 0
k⇡.

Theorem 7. Consider the setup of this section. Under Assumption MW,

`(✓)
d!

8
><

>:

�2
1 under Case (i),

⇠2/(⌃+ ⌅+ 2↵ ) under Case (ii),
1
2�

2
1 under Case (iii),

where ⇠ ⇠ N(0,⌃+ ↵ ).
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Similar to Theorem 2, the jackknife empirical likelihood statistic is not asymptotically pivotal
under the many weak instruments asymptotics of Case (ii). On the other hand, for Case (iii),
where the instruments are even weaker than Case (ii), the jackknife empirical likelihood statistic
recovers asymptotic pivotalness. The term 1

2 appears by setting ⌃ = ⌅ = 0 for Case (ii). The
additional term ⌅ emerges due to the fact that the matrix with elements Pkl is not exactly the
projection matrix for the leave-i-out counterpart S(i)(✓).

It is desirable to modify jackknife empirical likelihood to have same �2
1 limiting distribution

for all cases. Let

Qij = nS(✓)� (n� 1){S(i)(✓) + S(j)(✓)}+ (n� 2)S(i,j)(✓),

where
S(i,j)(✓) =

1

(n� 2)(n� 3)

X

k 6=i,j

X

l 6=i,j,k

XkPkl(Yl �Xl✓),

is the leave-(i, j)-out version of S(✓). Then define the modified jackknife empirical likelihood
statistic `m(✓) as in eq. (8) in the main text.

Theorem 8. Consider the setup of this section. Under Assumption MW, `m(✓)
d! �2

1 (for all
cases).

Similar comments to Theorem 3 apply. The modified jackknife empirical likelihood `m(✓)

follows the �2
1 limiting distribution for all cases without estimating the variance components ⌃,

⌅, and  .

Appendix B. Many regressors asymptotics

B.1. Jackknife empirical likelihood. We consider the regression model

Y = X✓ + Z 0�n + U, (B.1)

where Y and X are scalar observables, Z is a K-dimensional vector of covariates, and U is an
error term. We are concerned with inference on the scalar parameter ✓ under two scenarios,
K
n ! 0 and K

n ! ⌧ 2 (0, 1) as n ! 1.
Since Huber (1973), there is rich literature on regression analysis with a growing number of

covariates. Examples include Mammen (1993), El Karoui et al. (2013), Zheng et al. (2014),
among others. The analyses in Sections 5 and 7 on many covariates asymptotics are closely
related to Cattaneo, Jansson and Newey (2018a, b).

Let Pkl = Z 0
k(
Pn

h=1 ZhZ 0
h)

�1Zl and Mkl = I(k = l)� Pkl. Also define X̃k =
Pn

l=1MklXl. We
construct the jackknife pseudo-values as in eq. (3) in the main text with

S(✓) =
1

n

nX

k=1

nX

l=1

X̃kMkl(Yl �Xl✓),

S(i)(✓) =
1

n� 1

X

k 6=i

X̃kMkk(Yk �Xk✓) +
1

n� 2

X

k 6=i

X

l 6=i,k

X̃kMkl(Yl �Xl✓).
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Let

⌃ = plim
n!1

1

n

nX

i=1

X̃2
i U

2
i ,  = plim

n!1

1

n

nX

i=1

0

@
X

l 6=i

X̃iMilUl

1

A
2

,

⌅1 = plim
n!1

1

n

nX

i=1

(X̃iPiiZ
0
i�)

2, ⌅2 = plim
n!1

1

n3

nX

i=1

0

@
X

k 6=i

X̃kMkkZ
0
k�

1

A
2

.

The limiting distribution of the jackknife empirical likelihood statistic is obtained as follows.

Assumption MR. Let �min(·) denote the minimum eigenvalue of its argument.

(i): {(Yi, Xi, Zi)}ni=1 is independent and identically distributed.
(ii): P{�min(

Pn
i=1 ZiZ 0

i) > 0} ! 1, and

max
1in

|Z 0
i�|2+max

1in
{E(U4

i |Xi, Zi)+E(|Vi|4|Zi)}+max
1in

[1/E(U2
i |Xi, Zi)+1/�min{E(ViV

0
i |Zi)}] = Op(1),

with Vi = Xi � E(Xi|Zi).
(iii): E(|Xi|2) = O(1), nE[{E(Ui|Xi, Zi)}2] = o(1), and max1in |X̃i|/

p
n = op(1).

Theorem 9. Consider the setup of this section. Under Assumption MR,

`(✓)
d!
(

�2
1 under K

n ! 0,

⇠2/(⌃+ + ⌅1 + ⌅2) under K
n ! ⌧ 2 (0, 1),

where ⇠ ⇠ N(0,⌃).

Similar to Theorems 2 and 7, the jackknife empirical likelihood statistic is not asymptotically
pivotal under the many regressors asymptotics with K

n ! ⌧ 2 (0, 1). The term  emerges due to
mismatch of characterizing the quadratic term in the Hoeffding decomposition of 1

n

Pn
i=1 X̃iUi =

1
n

Pn
i=1

Pn
l=1XlMilUi, which is analogous to the Efron-Stein bias. Again, the additional terms

⌅1 and ⌅2 emerge due to the fact that the matrix with elements Pkl is not exactly the projection
matrix for the leave-i-out counterpart S(i)(✓).

It is desirable to modify jackknife empirical likelihood to have same �2
1 limiting distribution

for all cases. Let �̂(i) be the leave-i-out ordinary least squares estimator for � from the regression
of Yi �Xi✓ on Zi, and

⌃̂ =
1

n

nX

i=1

X̃2
i {(Yi �Xi✓)(Yi �Xi✓ � Z 0

i�̂
(i))}.

Kline, Saggio and Sølvsten (2018) proposed similar estimators for quadratic forms in the pa-
rameters of linear models with many regressors and heteroskedasticity. We define the modified
jackknife empirical likelihood statistic as in eq. (8) in the main text with the ordinary least
squares estimator ✓̂ and �̃�̃0 = ⌃̂.

Theorem 10. Consider the setup of this section. Under Assumption MR, `m(✓)
d! �2

1 (for both
cases).

Similar comments to Theorems 3 and 8 apply. The modified jackknife empirical likelihood
`m(✓) follows the �2

1 limiting distribution for all cases without estimating the variance components
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⌃, ⌅, and  . Under the asymptotics K
n ! ⌧ 2 (0, 1/2), Cattaneo, Jansson and Newey (2018a)

developed a robust Wald inference method for ✓. It is interesting to note that the above theorems
on jackknife empirical likelihood allow ⌧ 2 (0, 1). Therefore, we expect that our jackknife
empirical likelihood inference works better when K

n � 1
2 . In the next section, we examine this

point by a simulation study.

B.2. Simulation. This section conducts a simulation study to evaluate the finite sample proper-
ties of the jackknife empirical likelihood inference methods. In particular, we adopt the simulation
designs in Cattaneo, Jansson and Newey (2018a).

First, we consider a semiparametric partially linear model (Model 1):

Y = �X + g(W ) + U, U |X,W ⇠ N(0,�2U ), �2U = cU [1 + {t(X) + ◆0W}]#,

X = h(W ) + V, V |W ⇠ N(0,�2V ), �2V = cV {1 + (◆0W )2}#,

where � = 1, W is a six-dimensional mutually independent U [�1, 1] random variables, the
unknown regression functions are set to g(w) = exp(�|w|1/2) and h(w) = exp(|w|1/2), ◆ =

(1, 1, . . . , 1)0, and t(a) = aI(�2  a  2) + 2sgn(a){1 � I(�2  a  2)}. The constants cU and
cV are chosen so that var(U) = var(V ) = 1, and we consider two cases: Homoskedastic (# = 0)
and Heteroskedastic (# = 1). We observe a random sample {(Yi, Xi,Wi)}ni=1 form (Y,X,W )

of size n = 250 for each Monte Carlo replication. To approximate the unknown function g, we
employ power series expansions. To be specific, we consider the polynomial basis expansion in
Table 1.

K pK(w)
7 (1, w1, w2, w3, w4, w5, w6)

13 (p7(w), w2
1, w

2
2, w

2
3, w

2
4, w

2
5, w

2
6)

28 p13(w) + first-order interactions
34 (p28(w), w3

1, w
3
2, w

3
3, w

3
4, w

3
5, w

3
6)

84 p34(w) + second-order interactions
90 (p84(w), w4

1, w
4
2, w

4
3, w

4
4, w

4
5, w

4
6)

210 p90(w) + third-order interactions
216 (p210(w), w4

1, w
4
2, w

4
3, w

4
4, w

4
5, w

4
6, w

5
6)

Table 1. Basis functions

Second, we consider a linear model (Model 2):

Y = �X + �0W + U, U |X,W ⇠ N(0,�2U ), �2U = cU [1 + {t(X) + ◆0W}2]#,

X = V, V |W ⇠ N(0,�2V ), �2V = cV {1 + (◆0W )2}#,

where W = (1,W2, . . . ,WK) with Wj = I{N(0, 1) � 1.5} for j = 2, . . . ,K, � = 1, and � = 0.
We compare four methods to construct confidence intervals for �: (i) Wald-type confidence

interval (Wald-HC0) with the usual version of Eicker-White heteroskedasticity-robust standard
error, (ii) Wald-type confidence interval (Wald-CJN) with the heteroskedasticity-robust standard
error proposed by Cattaneo, Jansson and Newey (2018a), (iii) jackknife empirical likelihood
confidence interval (JEL) in Section 5, and (iv) modified jackknife empirical likelihood confidence
interval (mJEL) in Section 5.
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Tables 2 and 3 give the empirical coverage rates of all the intervals across 1,000 replications
for Model 1 and Model 2, respectively. The nominal rate is 0.95. The main findings from the
simulation study are in line with our theoretical results. Wald-HC0 intervals tend to under-cover
especially when the dimension K is large. Wald-CJN intervals offer close to correct empirical
empirical coverage when K/n < 1/2, but tend to under-cover when K/n � 1/2. The jackknife
empirical likelihood confidence intervals are conservative, which verifies our theoretical results.
The modified jackknife empirical likelihood confidence intervals are most robust to the dimension
compared to the other intervals and they offer close-to-correct empirical coverages in all cases. In
Table 2, all the intervals do not provide close-to-correct empirical coverage when K = 7, because
the semiparametric model clearly exhibits misspecification error when K is small.

We also analyze the power properties of the tests for H0 : � = 1 under the alternative
hypotheses H1 : � = 1+� for � = �0.2,�0.1, 0.1, 0.2. Tables 4-5 (Model 1) and 6-7 (Model 2)
give the calibrated powers of all the tests across 1,000 replications, i.e., the rejection frequencies
of these tests where the critical values are given by the Monte Carlo 95% percentiles of these test
statistics under H0. The results suggest that the modified jackknife empirical likelihood tests
exhibit good calibrated power.

K Wald-HC0 Wald-CJN JEL mJEL Wald-HC0 Wald-CJN JEL mJEL
Homoskedastic Heteroskedastic

7 0.871 0.875 0.883 0.875 0.866 0.875 0.879 0.874
13 0.937 0.941 0.951 0.943 0.925 0.937 0.940 0.936
28 0.931 0.944 0.960 0.946 0.921 0.941 0.953 0.939
34 0.922 0.948 0.964 0.948 0.918 0.945 0.957 0.944
84 0.908 0.949 0.970 0.956 0.878 0.939 0.962 0.940
90 0.894 0.937 0.972 0.951 0.851 0.930 0.967 0.944
210 0.660 0.847 0.965 0.955 0.646 0.842 0.965 0.946
216 0.656 0.858 0.974 0.957 0.636 0.850 0.959 0.951

Table 2. Coverage probabilities of 95% confidence intervals (Model 1)

K Wald-HC0 Wald-CJN JEL mJEL Wald-HC0 Wald-CJN JEL mJEL
Homoskedastic Heteroskedastic

5 0.943 0.945 0.948 0.945 0.931 0.935 0.940 0.936
25 0.932 0.944 0.960 0.946 0.900 0.940 0.953 0.945
50 0.905 0.941 0.957 0.944 0.896 0.950 0.970 0.953
100 0.848 0.939 0.971 0.946 0.831 0.927 0.968 0.943
200 0.595 0.868 0.959 0.948 0.585 0.853 0.966 0.951

Table 3. Coverage probabilities of 95% confidence intervals (Model 2)

� Wald-HC0 Wald-CJN JEL mJEL Wald-HC0 Wald-CJN JEL mJEL
Homoskedastic Heteroskedastic

-0.2 0.687 0.673 0.655 0.667 0.616 0.611 0.578 0.596
-0.1 0.252 0.227 0.240 0.232 0.200 0.211 0.203 0.192
0.1 0.235 0.229 0.221 0.223 0217 0.231 0.207 0.212
0.2 0.709 0.687 0.651 0.672 0.633 0.643 0.571 0.571

Table 4. Calibrated power for Model 1 (n = 250, K = 90)
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� Wald-HC0 Wald-CJN JEL mJEL Wald-HC0 Wald-CJN JEL mJEL
Homoskedastic Heteroskedastic

-0.2 0.259 0.162 0.212 0.202 0.239 0.121 0.194 0.191
-0.1 0.094 0.075 0.094 0.094 0.086 0.075 0.093 0.082
0.1 0.100 0.061 0.073 0.088 0.095 0.052 0.061 0.069
0.2 0.252 0.159 0.125 0.135 0.236 0.147 0.108 0.114

Table 5. Calibrated power for Model 1 (n = 250, K = 210)

� Wald-HC0 Wald-CJN JEL mJEL Wald-HC0 Wald-CJN JEL mJEL
Homoskedastic Heteroskedastic

-0.2 0.692 0.686 0.709 0.717 0.564 0.538 0.561 0.556
-0.1 0.231 0.225 0.247 0.248 0.211 0.202 0.216 0.209
0.1 0.238 0.236 0.254 0.257 0.181 0.161 0.177 0.169
0.2 0.665 0.653 0.687 0.688 0.574 0.533 0.564 0.544

Table 6. Calibrated power for Model 2 (n = 250, K = 100)

� Wald-HC0 Wald-CJN JEL mJEL Wald-HC0 Wald-CJN JEL mJEL
Homoskedastic Heteroskedastic

-0.2 0.335 0.230 0.321 0.323 0.280 0.154 0. 240 0.249
-0.1 0.123 0.100 0.121 0.122 0.099 0.070 0.087 0.095
0.1 0.130 0.120 0.122 0.118 0.112 0.070 0.104 0.104
0.2 0.295 0.210 0.280 0.283 0.291 0.184 0.255 0.266

Table 7. Calibrated power for Model 2 (n = 250, K = 200)

Appendix C. Proofs

C.1. Proof of Theorem 1. To simplify the presentation, we focus on the case where both g

and µ are scalar-valued functions. First, by Lemmas 2, 4, and 3 below, the same argument as in
the proof of Owen (1990, eq. (2.14)) guarantees �̂ = Op(n�1/2).

Next, we obtain an asymptotic approximation for �̂. The first-order condition for �̂ satisfies

0 =
1

n

nX

i=1

Vi(✓)

1 + �̂Vi(✓)
=

1

n

nX

i=1

Vi(✓)�
1

n

nX

i=1

Vi(✓)
2�̂+

1

n

nX

i=1

Vi(✓)3�̂2

1 + �̂Vi(✓)
,

where the second equality follows from the identity (1+x)�1 = 1�x+x2(1+x)�1. By applying
Lemmas 2, 4, and 3, and �̂ = Op(n�1/2), we have

�̂ =

Pn
i=1 Vi(✓)Pn
i=1 Vi(✓)2

+ op(n
�1/2).

By using this expansion for �̂, a Taylor expansion yields

2
nX

i=1

log{1 + �̂Vi(✓)} = 2
nX

i=1


�̂Vi(✓)�

1

2
{�̂Vi(✓)}2

�
+ op(1) =

n
1p
n

Pn
i=1 Vi(✓)

o2

1
n

Pn
i=1 Vi(✓)2

+ op(1).

The conclusion follows by Lemmas 2 and 3.
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C.1.1. Lemmas for Theorem 1. Let f̂j = f̂(Xj), µ̂j = µ̂(Xj), and µ̂(i)
j = µ̂(i)(Xj). We use the

following identities.

Lemma 1. It holds

µ̂j � µ̂(i)
j =

1

n� 2

(
1

f̂j

1

hd
K

✓
Xj �Xi

h

◆
Yi � µ̂j

)
, (C.1)

1

n

nX

i=1

8
<

:
1

n� 1

X

j 6=i

a(Xj)

9
=

; =
1

n

nX

j=1

a(Xj), (C.2)

1

n

nX

i=1

8
<

:
1

n� 1

X

j 6=i

a(Xj)µ̂
(i)
j

9
=

; =
1

n

nX

j=1

a(Xj)µ̂j =
1

n

nX

i=1

8
<

:
1

n� 1

X

j 6=i

a(Xj)µ̂j

9
=

; . (C.3)

for any function a.

Proof. Let Kjk = K
⇣
Xj�Xk

h

⌘
. For (C.1), note that

µ̂j � µ̂(i)
j =

1

f̂j

1

n� 1

X

k 6=j

1

hd
KjkYk �

1

f̂j

1

n� 2

0

@
X

k 6=j

1

hd
KjkYk �

1

hd
KjiYi

1

A

= � 1

f̂j

1

(n� 1)(n� 2)

X

k 6=j

1

hd
KjkYk +

1

f̂j

1

n� 2

1

hd
KjiYi

=
1

n� 2

 
1

f̂j

1

hd
KjiYi � µ̂j

!
.

For (C.2), note that

1

n

nX

i=1

8
<

:
1

n� 1

X

j 6=i

a(Xj)

9
=

; =
1

n

nX

i=1

8
<

:
1

n� 1

nX

j=1

a(Xj)�
1

n� 1
a(Xi)

9
=

;

=
1

n� 1

nX

j=1

a(Xj)�
1

n(n� 1)

nX

i=1

a(Xi) =
1

n

nX

j=1

a(Xj).
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For (C.3), note that

1

n

nX

i=1

8
<

:
1

n� 1

X

j 6=i

a(Xj)µ̂
(i)
j

9
=

;

=
1

n(n� 1)(n� 2)

nX

i=1

X

j 6=i

X

k 6=i,j

a(Xj)
1

f̂j

1

hd
KjkYk

=
1

n(n� 1)(n� 2)hd

nX

i=1

8
<

:

nX

j=1

X

k 6=j

a(Xj)
1

f̂j
KjkYk �

X

j 6=i

a(Xj)
1

f̂j
KjiYi �

X

k 6=i

a(Xi)
1

f̂i
KikYk

9
=

;

=
1

n� 2

nX

j=1

a(Xj)
1

f̂j

0

@ 1

n� 1

X

k 6=j

1

hd
KjkYk

1

A

� 1

n(n� 2)

8
<

:
1

n� 1

nX

i=1

X

j 6=i

a(Xj)
1

hd
1

f̂j
KjiYi +

nX

i=1

a(Xi)
1

f̂i

0

@ 1

n� 1

X

k 6=i

1

hd
KikYk

1

A

9
=

;

=

✓
n

n� 2
� 2

n� 2

◆
1

n

nX

j=1

a(Xj)µ̂j =
1

n

nX

j=1

a(Xj)µ̂j .

Thus the first equality of (C.3) follows. The second equality of (C.3) follows from (C.2).
Hereafter, by suppressing Zj , ✓, and Xj , we denote by µj = µ(Xj), gj(µ̂j) = g{Zj , ✓, µ̂(Xj)},

gj(µ̂
(i)
j ) = g{Zj , ✓, µ̂(i)(Xj)}, g1j(µj) =

@
@µg{Zj , ✓, µ(Xj)}, and g2j(µj) =

@2

@µ2 g{Zj , ✓, µ(Xj)}.

Lemma 2. Under Assumption SP,

1p
n

nX

i=1

Vi(✓)
d! N(0,⌦),

where ⌦ = E{ (Z,X) (Z,X)0} with
 (Z,X) = �E

h
@g{Z,✓,µ(X)}

@✓0

i ⇣
g{Z, ✓, µ(X)}+ E

h
@g{Z,✓,µ(X)}

@µ0

���X
i
{Y � µ(X)}

⌘
.

Proof. We can write

1p
n

nX

i=1

Vi(✓) =
p
nS(✓)� n� 1p

n

nX

i=1

{S(i)(✓)� S(✓)}

=
1p
n

nX

j=1

gj(µ̂j)�
n� 1p

n

nX

i=1

8
<

:
1

n� 1

X

j 6=i

gj(µ̂
(i)
j )� 1

n

nX

j=1

gj(µ̂j)

9
=

;

⌘ M1 �M2.
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By Newey (Theorem 4.2, 1994), Assumption SP guarantees M1
d! N(0,⌦). Thus, it is enough

to show that M2
p! 0. An expansion of gj(µ̂

(i)
j ) around µ̂(i)

j = µ̂j yields

M2 =
p
n(n� 1)

2

4 1

n

nX

i=1

8
<

:
1

n� 1

X

j 6=i

gj(µ̂
(i)
j )

9
=

;� 1

n

nX

j=1

gj(µ̂j)

3

5

+
p
n(n� 1)

1

n

nX

i=1

8
<

:
1

n� 1

X

j 6=i

g1j(µ̂j)(µ̂
(i)
j � µ̂j)

9
=

;+
p
n(n� 1)

1

n

nX

i=1

Ri

⌘ M21 +M22 +M23,

where
Ri =

1

2(n� 1)

X

j 6=i

g2j(µ̄
(i)
j )(µ̂(i)

j � µ̂j)
2, (C.4)

and µ̄(i)
j lies between µ̂j and µ̂(i)

j . By (C.2) and (C.3), we have M21 = M22 = 0. For M23 = op(1),
it is enough to show that

1

n

nX

i=1

Ri = op(n
�3/2). (C.5)

By using Lemma 1, decompose

1

n

nX

i=1

Ri =
1

n

nX

i=1

2

4 1

2(n� 1)

X

j 6=i

g2j(µ̄
(i)
j )

1

(n� 2)2

(
1

f̂j

1

hd
K

✓
Xj �Xi

h

◆
Yi � µ̂j

)2
3

5

=
1

2n(n� 1)(n� 2)2

nX

i=1

X

j 6=i

g2j(µ̄
(i)
j )

1

f̂2
j

1

h2d
K

✓
Xj �Xi

h

◆2

Y 2
i

� 1

n(n� 1)(n� 2)2

nX

i=1

X

j 6=i

g2j(µ̄
(i)
j )

1

f̂j

1

hd
K

✓
Xj �Xi

h

◆
Yiµ̂j

+
1

2n(n� 1)(n� 2)2

nX

i=1

X

j 6=i

g2j(µ̄
(i)
j )µ̂2

j

⌘ A1 �A2 +A3.

Note that by applying Hansen (2008, Theorem 10) under Assumption SP, it holds.

max
1jn

|µ̂j � µj | = op(n
�1/4), max

1jn
|f̂j � f(Xj)| = op(n

�1/4). (C.6)

For A1, since g2 is assumed to be bounded, it holds

|A1| 
C1

n4h2d

nX

i=1

X

j 6=i

1

f̂2
j

K

✓
Xj �Xi

h

◆2

Y 2
i ,

for some C1 > 0. Due to (C.6) and the law of large numbers, the assumption nh2d/(log n)2 ! 1
guarantees A1 = op(n�3/2). Similarly, for A2, since g2 and K are assumed to be bounded, it
holds

|A2| 
C2

n4hd

nX

i=1

X

j 6=i

|Yi||µ̂j f̂
�1
j |,
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for some C2 > 0. Due to (C.6) and the law of large numbers, the assumption nh2d/(log n)2 ! 1
guarantees A2 = op(n�3/2). Finally, for A3, it holds

|A3| 
C3

n4

nX

i=1

X

j 6=i

µ̂2
j ,

for some C3 > 0. Due to (C.6), we have A3 = op(n�3/2). Therefore, the conclusion is obtained.

Lemma 3. Under Assumption SP,

1

n

nX

i=1

Vi(✓)
2 p! ⌦.

Proof. Note that

1

n

nX

i=1

Vi(✓)
2 = S(✓)2 � 2(n� 1)S(✓)

1

n

nX

i=1

{S(i)(✓)� S(✓)}+ (n� 1)2
1

n

nX

i=1

{S(i)(✓)� S(✓)}2

⌘ N1 � 2N2 +N3.

First, since S(✓) = 1
n

Pn
j=1 gj(µ̂j) = Op(n�1/2) by Newey (1994, Theorem 4.2), it holds N1 =

op(1). An expansion of gj(µ̂
(i)
j ) around µ̂(i)

j = µ̂j yields

N2 = (n� 1)

8
<

:
1

n

nX

j=1

gj(µ̂j)

9
=

;
1

n

nX

i=1

8
<

:
1

n� 1

X

j 6=i

gj(µ̂j)�
1

n

nX

j=1

gj(µ̂j)

9
=

;

+(n� 1)

8
<

:
1

n

nX

j=1

gj(µ̂j)

9
=

;
1

n

nX

i=1

8
<

:
1

n� 1

X

j 6=i

g1j(µ̂j)(µ̂
(i)
j � µ̂j)

9
=

;+ (n� 1)

8
<

:
1

n

nX

j=1

gj(µ̂j)

9
=

;
1

n

nX

i=1

Ri,

where Ri is defined in (C.4). Since the first and second terms are zero by Lemma 1 and the third
term is op(n�1/2) by (C.5), we have N2 = op(1).

For N3, we have

N3 = (n� 1)2
1

n

nX

i=1

(
S(i)(✓)� 1

n

nX

i=1

S(i)(✓)

)2

+ (n� 1)2
(
1

n

nX

i=1

S(i)(✓)� S(✓)

)2

= (n� 1)2
1

n

nX

i=1

(
S(i)(✓)� 1

n

nX

i=1

S(i)(✓)

)2

+ op(1)

= (n� 1)2
1

n2

nX

i=1

nX

j=i+1

{S(i)(✓)� S(j)(✓)}2 + op(1),

where the second equality follows from the same argument as in Lemma 2, and the third equality
follows from direct calculation by Efron and Stein (1981, p. 589). Combining these results with
S(i)(✓) = 1

n

P
j 6=i  (Zj , Xj) + op(n�1/2) by applying Newey (1994, Theorem 4.2), we have

1

n

nX

i=1

Vi(✓)
2 = N3 + op(1) =

(n� 1)2

n4

nX

i=1

nX

j=i+1

{ (Zj , Xj)�  (Zi, Xi)}2 + op(1).

Thus, the conclusion follows by the law of large numbers.

11



Lemma 4. Under Assumption SP, it holds

max
1in

|Vi(✓)| = op(n
1/2).

Proof. By an expansion around µ̂(i)
j = µ̂j , decompose

max
1in

|Vi(✓)|  max
1in

|gi(µ̂i)|+ max
1in

������

X

j 6=i

g1j(µ̂j)(µ̂
(i)
j � µ̂j)

������
+ max

1in

������

X

j 6=i

g2j(µ̄
(i)
j )(µ̂(i)

j � µ̂j)
2

������

⌘ T1 + T2 + T3,

where µ̄(i)
j lies between µ̂j and µ̂(i)

j . For T1, an expansion around µ̂i = µi and boundedness of g2
yield

T1  max
1in

|gi(µi)|+ max
1in

|g1i(µi)| max
1in

|µ̂i � µi|+ C max
1in

|µ̂i � µi|2,

for some C > 0. From E{gi(µi)2} < 1 and E{g1i(µi)2} < 1 guaranteed by Assumption SP,
we have max1in |gi(µi)| = op(n1/2) and max1in |g1i(µi)| = op(n1/2). Thus, (C.6) implies
T1 = op(n1/2).

For T2, an expansion around µ̂i = µi and boundedness of g2 yield

T2  max
1in

������

X

j 6=i

g1j(µj)(µ̂
(i)
j � µ̂j)

������
+ C max

1in

������

X

j 6=i

(µ̂j � µj)(µ̂
(i)
j � µ̂j)

������

⌘ T21 + T22.

For T21, Lemma 1 yields

T21  1

nhd
max
1in

������

X

j 6=i

g1j(µj)
1

f̂j
K

✓
Xj �Xi

h

◆
Yi

������
+

1

nhd
max
1in

������

X

j 6=i

g1j(µj)µ̂j

������

⌘ T211 + T212.

For T211, due to boundedness of K,

T211  C

hd
max
1in

|Yi| · max
1jn

�����
1

f̂j
� 1

fj

����� ·
1

n

nX

j=1

|g1j(µj)|

+ max
1in

|Yi| · max
1in

������
1

nhd

X

j 6=i

g1j(µj)
1

fj
K

✓
Xj �Xi

h

◆������

= op(n
1/2), (C.7)

where the equality follows from the assumption nh2d/(log n)2 ! 1, max1in |Yi| = op(n1/4)

by the assumption E(|Y |p) < 1 for p � 4, (C.6), the law of large numbers, and the uniform
convergence of 1

nhd

P
j 6=i g1j(µj)

1
fj
K
⇣
Xj�x

h

⌘
over x as in Hansen (2008, Theorem 10). Similarly,

for T212, the assumption nh2d/(log n)2 ! 1, (C.6), and the law of large numbers imply T212 =

op(n1/2). Combining these results, T21 = op(n1/2). Also, a similar argument guarantees T22 =

op(n1/2).
For T3, boundedness of g and Lemma 1 imply

12



T3 
C

n2
max
1in

X

j 6=i

(
1

f̂j

1

hd
K

✓
Xj �Xi

h

◆
Yi � µ̂j

)2

= op(n
1/2),

where the equality follows from a similar argument to the proof of (C.7). Therefore, the conclu-
sion is obtained.

C.2. Proof of Theorem 2. To simplify the presentation, suppose ✓ is scalar. We only prove
the case of nhd+2 ! . Other cases are shown in similar ways. As in the proof of Theorem 1,
we can prove the asymptotic equivalence

`(✓) =

(
1

n

nX

i=1

Vi(✓)
2

)�1(
1p
n

nX

i=1

Vi(✓)

)2

+ op(1).

Thus, it is enough to show

1p
n

nX

i=1

Vi(✓)
d! N(0,⌃+ 2�1�), (C.8)

1

n

nX

i=1

Vi(✓)
2 p! ⌃+ 4�1�. (C.9)

For (C.8), since
Pn

i=1{S(i)(✓)� S(✓)} = 0, it holds

1p
n

nX

i=1

Vi(✓) =
1p
n

nX

i=1

{nS(✓)� (n� 1)S(i)(✓)}

=
p
nS(✓)� (n� 1)

1p
n

nX

i=1

{S(i)(✓)� S(✓)} =
p
nS(✓).

Thus, (C.8) follows by Cattaneo, Crump and Jansson (2014, Theorem 1).
For (C.9), note that

1

n

nX

i=1

Vi(✓)
2 =

1

n

nX

i=1

[S(✓)� (n� 1){S(i)(✓)� S(✓)}]2 = S(✓)2 +
(n� 1)2

n

nX

i=1

{S(i)(✓)� S(✓)}2

=
(n� 1)2

n

nX

i=1

{S(i)(✓)� S(✓)}2 + op(1)

=
(n� 1)2

n2

nX

i=1

nX

j=i+1

{S(i)(✓)� S(j)(✓)}2 + op(1),

where the second equality follows from
Pn

i=1{S(i)(✓)�S(✓)} = 0, the third equality follows from
S(✓) = Op(n�1/2) (by (C.8)), and the last equality follows from Efron and Stein (1981, p. 589).
Now, decompose

S(i)(✓) = B(i) + L̄(i) + W̄ (i),

where

B(i) = E(✓̂(i))� ✓, L̄(i) =
1

n� 1

X

j 6=i

Lj , W̄ (i) =

 
n� 1

2

!�1X

j 6=i

X

k>j,k 6=i

Wjk.

13



By plugging this into the above equation combined with Efron and Stein (1981, eq. (2.3)) and
Cattaneo Crump and Jansson (2014, eq. (9)),

1

n

nX

i=1

Vi(✓)
2 =

nX

i=1

nX

j=i+1

8
<

:
1

n� 1
(Lj � Li) +

2

(n� 1)2

X

k 6=i,j

(Wjk �Wik)

9
=

;

2

+ op(1)

= ⌃+ 4�1�+ op(1).

Therefore, (C.9) is obtained.

C.3. Proof of Theorem 3. Again, we only prove the case of nhd+2 !  with scalar ✓. Other
cases are shown in similar ways. As in the proof of Theorem 1, we can prove the asymptotic
equivalence

`m(✓) =

(
1

n

nX

i=1

V m
i (✓)2

)�1(
1p
n

nX

i=1

V m
i (✓)

)2

+ op(1).

Thus, it is enough to show

1p
n

nX

i=1

V m
i (✓)

d! N(0,⌃+ 4�1�), (C.10)

1

n

nX

i=1

V m
i (✓)2

p! ⌃+ 4�1�. (C.11)

A similar argument to (C.9) combined with the consistency of ✓̂ yields 1
n

Pn
i=1 Vi(✓̂)2

p! ⌃ +

4�1�. Thus, the consistency ✓̂ implies (C.11). It remains to show (C.10). Since
Pn

i=1 Vi(✓̂) = 0,
we have

1p
n

nX

i=1

V m
i (✓) = �̂�̃�1 1p

n

nX

i=1

Vi(✓)

=

vuut n�1
Pn

i=1 Vi(✓̂)2

n�1
Pn

i=1 Vi(✓̂)2 � n�1
Pn

i=1

Pn
j=i+1Q

2
ij

1p
n

nX

i=1

Vi(✓).

By (C.8), it holds 1p
n

Pn
i=1 Vi(✓)

d! N(0,⌃ + 2�1�). Also a similar argument to (C.9) yields
1
n

Pn
i=1 Vi(✓̂)2

p! ⌃+ 4�1�. Thus, for (C.10), it remains to show that

1

n

nX

i=1

nX

j=i+1

Q2
ij

p! 2�1�. (C.12)

By the same argument as in the proof of Cattaneo, Crump and Jansson (2014, Theorem 2), we
have

Qij =
2

n� 2

8
<

:Wij �
1

n� 1

X

k 6=j

Wkj �
1

n� 1

X

l 6=i

Wil +
2

n(n� 1)

nX

k=1

X

l 6=k

Wkl

9
=

;+op(n
�1). (C.13)

Thus by using E(Wij) = E(WijWkj) = E(WijWkl) = 0, we obtain

1

n

nX

i=1

nX

j=i+1

Q2
ij =

4�1

(n� 2)2

nX

i=1

nX

j=i+1

hd+2W 2
ij + op(1)

p! 2�1�.
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C.4. Proof of Theorem 4. As in the proof of Theorem 1, we can prove the asymptotic equiv-
alence

`0 =

 
hd

nX

i=1

V 2
i

!�1 
hd/2

nX

i=1

Vi

!2

+ op(1).

Thus, it is enough to show that

hd/2p
2�

nX

i=1

Vi
d! N(0, 1), (C.14)

hd

2�2

nX

i=1

V 2
i

p! 2, (C.15)

where �2 =
�R

f2(x)dx
 R �R

K(u)K(u+ v)du
 2

dv. Noting that
Pn

i=1 Vi = nS, we have
nhd/2
p
2�

S
d! N(0, 1) by following the proof of Hall (1984, Theorem 1). Thus, (C.14) follows.

For (C.15), note that S = 1
n2h2d

⇣Pn
i=1Wii + 2

Pn
i=1

Pn
j=i+1Wij

⌘
, where

Wij =

Z 
K

✓
x�Xi

h

◆
� E

⇢
K

✓
x�Xi

h

◆��
K

✓
x�Xj

h

◆
� E

⇢
K

✓
x�Xj

h

◆��
dx.

By using this expression, we have

hd

2�2

nX

i=1

V 2
i =

hd

2�2

nX

i=1

{S � (n� 1)(S(i) � S)}2 = hd

2�2

(
nS2 +

(n� 1)2

n

nX

i=1

nX

i0=i+1

(S(i) � S(i0))2
)

=
(n� 1)2hd

2�2n

nX

i=1

nX

i0=i+1

(S(i) � S(i0))2 + op(1)

=
(n� 1)2hd

2�2n

nX

i=1

nX

i0=i+1

2

4 1

n2h2d

8
<

:(Wi0i0 �Wii) + 2
nX

j=1,j 6=i,i0

(Wi0j �Wij)

9
=

;

3

5
2

+ op(1)

=
(n� 1)2hd

2�2

⇢
4

n2h4d
V ar(W12)

�
+ op(1)

= 2 + op(1),

where the second equality follows from the fact that
Pn

i=1 S
(i) = nS, the third equality follows

from the fact that S = Op(n�1h�d/2), the fifth equality follows from the law of large numbers, and
the last equality follows from the definition of �2. Thus, (C.15) is obtained, and the conclusion
follows.

C.5. Proof of Theorem 5. We first show the orders in eq. (11) in the main text. For Lk, note
that

var

 
1

n

nX

k=1

Lk

!
=

4✓2n
n

var[E{w(⇠i, ⇠j)|⇠i}] = O

✓
d2n
n3

◆
,
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where the first equality follows from eq. (9) of the main text, and the second equality follows
from var[E{w(⇠i, ⇠j)|⇠i}] = O(1) and the definition dn = (n� 1)✓n. Similarly, we have

var

(✓
n

2

◆�1 nX

k=1

nX

l=k+1

Wkl

)
=

✓
n

2

◆�1

var(Wkl)

=

✓
n

2

◆�1

✓2nvar (w(⇠k, ⇠l)� [E{w(⇠k, ⇠l)|⇠k}� 1]� [E{w(⇠k, ⇠l)|⇠l}� 1]� 1) = O

✓
d2n
n4

◆
,

and

var

(✓
n

2

◆�1 nX

k=1

nX

l=k+1

Rkl

)
=

✓
n

2

◆�1

var(Rkl)

=

✓
n

2

◆�1

E{var(Akl|⇠k, ⇠l)} =

✓
n

2

◆�1

E[✓nw(⇠k, ⇠l){1� ✓nw(⇠i, ⇠j}] = O

✓
dn
n3

◆
.

We now prove for the case where the network is dense with dn ! 1 and E(Aij |⇠i) is random.
As in the proof of Theorem 1, we can prove the asymptotic equivalence

`(✓n) =

(
1

n

nX

i=1

Vi(✓n)
2

)�1(
1p
n

nX

i=1

Vi(✓n)

)2

+ op(1).

Thus, it is enough to show that

1
p
!nn

nX

i=1

Vi(✓n)
d! N(0, 1), (C.16)

1

!nn2

nX

i=1

Vi(✓n)
2 p! 1, (C.17)

where !n = var(✓̂). Note that 1
n

Pn
i=1 Vi(✓n) = ✓̂ � ✓n. By eq. (11) in the main text, we get

var

(
1

n

nX

i=1

Vi(✓)

)
= !n = ⌃n,

Thus, (C.16) follows from the central limit theorem for U-statistics under the assumptions.
For (C.17), we first note that

nX

l=1

Vi(✓n)
2 =

nX

i=1

n
✓̂ � ✓n + (n� 1)(✓̂ � ✓̂(i))

o2
= n(✓̂ � ✓n)

2 + (n� 1)2
nX

i=1

(✓̂ � ✓̂(i))2

= n(✓̂ � ✓n)
2 + (n� 1)2

1

n

X

i<i0

(✓̂(i) � ✓̂(i
0))2, (C.18)
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where the second equality follows from
Pn

i=1(✓̂ � ✓̂(i)) = 0, and the third equality follows from
a direct calculation. Thus, we have

1

!nn2

nX

i=1

Vi(✓n)
2 =

1

!n

(
1

n
(✓̂ � ✓n)

2 +
(n� 1)2

n3

nX

i=1

nX

i0=i+1

(✓̂(i) � ✓̂(i
0))2

)

=
(n� 1)2

!nn3

nX

i=1

nX

i0=i+1

(✓̂(i) � ✓̂(i
0))2 + op(1)

=
(n� 1)2

!nn3

nX

i=1

nX

i0=i+1

⇢
1

n� 1
(Li0 � Li)

�2

+ op(1) =
n� 1

!nn2
var(L1) + op(1)

p! 1,

where the second equality follows from 1
!nn

(✓̂ � ✓n)2
p! 0 by the consistency ✓̂

p! ✓n, and the
fourth equality follows from the law of large numbers.

Finally, we consider the case where the network is sparse with dn = O(1), or E(Aij |⇠i) degen-
erates to a constant. For this case, it is enough to show (C.16) and

1

!nn2

nX

i=1

Vi(✓n)
2 p! �2. (C.19)

Using the fact that the terms in eq. (10) in the main text are uncorrelated, we get

var

(
1

n

nX

i=1

Vi(✓)

)
= !n = ⌃n +�n +⌥n,

where �n =
�n
2

��2Pn
k=1

Pn
l=k+1 var(Wkl) =

�n
2

��1
var(Wkl). Thus, (C.16) follows from the

central limit theorem for U-statistics under the assumptions.
For (C.19), we have

1

!nn2

nX

i=1

Vi(✓n)
2

=
1

!n

(
1

n
(✓̂ � ✓n)

2 +
(n� 1)2

n3

nX

i=1

nX

i0=i+1

(✓̂(i) � ✓̂(i
0))2

)
=

(n� 1)2

!nn3

nX

i=1

nX

i0=i+1

(✓̂(i) � ✓̂(i
0))2 + op(1)

=
(n� 1)2

!nn3

nX

i=1

nX

i0=i+1

2

4 1

n� 1
(Li0 � Li) +

✓
n� 1

2

◆�1 nX

j=1,j 6=i,i0

{(Wi0j �Wij) + (Ri0j �Rij)}

3

5
2

+ op(1)

=
(n� 1)2

!nn2

"
var(L1)

n� 1
+ 2

✓
n� 1

2

◆�1

{var(W12) + var(R12)}
#
+ op(1)

p! �2,

where the first equality follows from (C.18), the second equality follows from 1
!nn

(✓̂ � ✓n)2
p! 0

(by the consistency ✓̂ p! ✓n), the fourth equality follows from the law of large numbers, and the
convergence follows from eq. (11) in the main text.
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C.6. Proof of Theorem 6. As in the proof of Theorem 5, we can prove the asymptotic equiv-
alence

`m(✓n) =

(
1

n2

nX

i=1

V m
i (✓n)

2

)�1(
1

n

nX

i=1

V m
i (✓n)

)2

+ op(1).

Thus, it is enough to show

1
p
!nn

nX

i=1

V m
i (✓n)

d! N(0,�2), (C.20)

1

!nn2

nX

i=1

V m
i (✓n)

2 p! �2, (C.21)

where !n = var(✓̂). A similar argument to (C.19) yields

1

!nn2

nX

i=1

Vi(✓n)
2 p! �2. (C.22)

Thus, the consistency |✓̂ � ✓n|
p! 0 implies (C.21).

It remains to show (C.20). Since
Pn

i=1 Vi(✓̂) = 0, we have

1
p
!nn

nX

i=1

V m
i (✓n) = �̂�̃�1 1

p
!nn

nX

i=1

Vi(✓n)

=

vuut
1

!nn2

Pn
i=1 Vi(✓̂)2

1
!nn2

Pn
i=1 Vi(✓̂)2 � 1

!nn2

Pn
i=1

Pn
j=i+1Q

2
ij

1
p
!nn

nX

i=1

Vi(✓n).

By (C.16), it holds 1p
!nn

Pn
i=1 Vi(✓n)

d! N(0, 1). Also a similar argument to (C.19) yields
1

!nn2

Pn
i=1 Vi(✓̂)2

p! �2. Thus, for (C.20), it remains to show that

1

!nn2

nX

i=1

Vi(✓̂)
2 � 1

!nn2

nX

i=1

nX

j=i+1

Q2
ij

p! 1 (C.23)

By a direct calculation, we have

Qij =
1

n� 2

8
<

:(Wij +Rij)�
1

n� 1

X

k 6=j

(Wkj +Rkj)�
1

n� 1

X

l 6=i

(Wil +Ril) +
1

n(n� 1)

nX

k=1

nX

l=k+1

(Wkl +Rkl)

9
=

; .

Thus by using eq. (11) in the main text, we obtain (C.23).

C.7. Proof of Theorem 7. We only prove for Case (ii). Other cases are shown in similar ways.
As in the proof of Theorem 1, we can prove the asymptotic equivalence

`(✓) =

(
(n� 1)2

µ2
n

nX

i=1

Vi(✓)
2

)�1(
n� 1

µn

nX

i=1

Vi(✓)

)2

+ op(1).

Thus, it is enough to show
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n� 1

µn

nX

i=1

Vi(✓)
d! N(0,⌃+ ↵ ), (C.24)

(n� 1)2

µ2
n

nX

i=1

Vi(✓)
2 p! ⌃+ ⌅+ 2↵ . (C.25)

For (C.24), note that

nX

i=1

S(i)(✓) =
1

(n� 1)(n� 2)

nX

i=1

0

@
nX

k=1

X

l 6=k

XkPklUl �
X

k 6=i

XkPkiUi �
X

l 6=i

XiPilUl

1

A

=
n

(n� 1)(n� 2)

nX

k=1

X

l 6=k

XkPklUl �
2

(n� 1)(n� 2)

nX

i=1

X

k 6=i

XkPkiUi

=
1

n� 1

nX

k=1

X

l 6=k

XkPklUl = nS(✓).

Thus, n�1
µn

Pn
i=1 Vi(✓) = 1

µn

Pn
k=1

P
l 6=k XkPklUl, and (C.24) follows from Chao et al. (2012,

Lemma A2).
We now prove (C.25). Observe that

(n� 1)2

µ2
n

nX

i=1

Vi(✓)
2 =

(n� 1)2

µ2
n

nX

i=1

0

@ 1

n� 1

nX

k=1

X

l 6=k

XkPklUl �
1

n� 2

X

k 6=i

X

l 6=i,k

XkPklUl

1

A
2

=
1

µ2
n

nX

i=1

0

@
X

k 6=i

XkPkiUi +
X

l 6=i

XiPilUl �
1

n� 2

X

k 6=i

X

l 6=i,k
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For the last term in (C.26), we have
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where the first equality follows from Chao et al. (2012, Lemmas A2 and A3) and the second
equality follows from
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Combining these results,
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where the second equality follows from a similar argument in the proof of Chao et al. (2012,
Lemma A2). Therefore, Chao et al. (2012, Lemma A3) implies
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and we obtain (C.25). Therefore, the conclusion follows.

C.8. Proof of Theorem 8. Again, we only prove for Case (ii). Other cases are shown in similar
ways. As in the proof of Theorem 1, we can prove the asymptotic equivalence
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Thus, it is enough to show
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A similar argument to (C.25) combined with the consistency of ✓̂ yields (n�1)2
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By (C.24), it holds n�1
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Note that
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where the first and third equalities follow from Chao et al. (2012, Lemmas A2 and A3), the
second equality follows from direct calculation and (A.1). Therefore, we have (C.29) due to the
following results in Chao et al. (2012, Lemmas A3):
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C.9. Proof of Theorem 9. We only prove for Case (ii). Case (i) can be shown in the same
manner. Let
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As in the proof of Theorem 1, we can prove the asymptotic equivalence
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For (C.30), a direct calculation yields
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Lemma SA-2).
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where the first equality follows from the direct calculation, and the convergence follows from the
law of large numbers.
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By applying similar arguments to the cross terms, we obtain
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the law of large numbers and the definition of Mii. Similarly for T2i and T3i, the law of large
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Combining these results, we obtain (C.31).

C.10. Proof of Theorem 10. By using the definition of �̂(i), we can decompose
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where the last equality follows from Assumption MR (ii)-(iii). The conditional variance of B3 is
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where we used
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ii = Mii(1 � Mii) in the inequality, and the second
equality follows from Assumption MR (ii)-(iii). Since E(B2|Z1, . . . , Zn) = E(B3|Z1, . . . , Zn) = 0,
we obtain the conclusion.
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