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Abstract

Demand for insurance can be driven by high risk aversion or high risk. We show

how to separately identify risk preferences and risk types using only choices from

menus of insurance plans. Our revealed preference approach does not rely on ratio-

nal expectations, nor does it require access to claims data. We show what can be

learned non-parametrically about the type distributions from variation in insurance

plans, offered separately to random cross-sections or offered as part of the same

menu to one cross-section. We prove that our approach allows for full identification

in the textbook model with binary risks and extend our results to continuous risks.

We illustrate our approach using the Massachusetts Health Insurance Exchange,

where choices provide informative bounds on the type distributions, especially for

risks, but do not allow us to reject homogeneity in preferences.

JEL Codes: D81, D83, G22.
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1 Introduction

When people make choices over uncertain outcomes, it is diffi cult to distinguish between

expectations about how an option will pay off and preferences for the option itself. A

consumer could buy more insurance either because of a higher expected probability of

making a claim, or because of more risk averse preferences. A student could choose a

career either because they particularly enjoy that type of work, or because they expect

their wage to be particularly high.1 A worker’s low retirement savings rate could be

∗Corresponding author: Johannes Spinnewijn, Department of Economics, London School of Eco-
nomics, London, WC2A 3PH, United Kingdom. Email: j.spinnewijn@lse.ac.uk. We would like to thank
Richard Blundell, Laurens Cherchye, Ian Crawford, Mark Dean, Geert Dhaene, Liran Einav, Phil Haile,
Arthur Lewbel, Matthew Rabin, Bernard Salanié, Frans Spinnewyn and other seminar participants for
helpful comments and discussions.

1See, for instance, Altonji et al. (2016).

1



driven by their time preference for consumption, or expectations about wage growth

and asset returns.2 One way of solving the problem is to identify expectations using

observed outcomes, and assuming expectations are rational. Yet beliefs can be both

heterogenous and biased; moreover they may be diffi cult to elicit. In this paper, we

take another approach. In the context of insurance choice, we show how to separately

identify expectations and preferences using data on choices alone, highlighting what

can be learned from examining how choices vary when the choice menu varies, as well

as what can be learned from choices from a single menu of plans.

Distinguishing between demand for insurance driven by variation in risk preferences

(e.g., degree of risk aversion) and variation in risk types (e.g., probability of making a

claim) is crucial for positive and normative analysis (e.g., Einav et al., 2010; Chetty

and Finkelstein, 2013). Adverse selection, in which consumers select into insurance

plans based on expected expenditure, can lead to market unravelling and ineffi ciently

low coverage. In contrast with heterogeneity in risks, preference heterogeneity alone

cannot cause insurance markets to be adversely selected. In fact, recent empirical

work finds advantageous selection in which low risk individuals purchase more generous

insurance plans, which has been considered evidence for the importance of preference

heterogeneity (e.g., Cutler et al., 2008).

A growing empirical insurance literature estimates heterogeneity in both preference

and risk types using data on plan choices and insurance claims (see reviews by Einav

et al., 2010, and Barseghyan et al., 2018). This approach is data-demanding compared

to standard demand estimation. Moreover, this literature relies on an unappealing

assumption: that each individual has rational expectations over the distribution of

their claims. However, evidence suggests that individuals have distorted perceptions of

their risk exposure. For example, in the context of health insurance, individuals may

not understand how different health states map into health expenditures due to the

opacity of health care prices (Lieber, 2017). They may be overconfident about their

own health states (Grubb, 2015) and underweight small probability events (Johnson et

al., 1993). If individuals do not have rational expectations over the distribution of their

future claims, claims data cannot help to separate a low degree of risk aversion from

overoptimistic beliefs about risk. A final challenge with the standard approach is that,

even under rational expectations, inferring heterogeneity in (ex ante) risk types from

(ex post) risk outcomes requires structural assumptions not only on the set of feasible

risk types, but also on the potential distribution of risk types.

We present an alternative approach that is robust to incorrect beliefs. Our approach

is based on revealed preference, and identifies heterogeneity in (perceived) risks and

preferences from choice data alone. We start from a choice model with risk preferences

indexed on one dimension and risk types indexed on another dimension. Our approach,

2For instance, Skinner (2007) shows the sensitivity of optimal retirement savings to both the rate
of return on investment and the desired change in consumption at retirement.
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though, does not require claims data, and relies neither on rational expectations nor on

parametric assumptions regarding the type distribution. Instead, our approach exploits

variation in the plans from which individuals can choose. The framework allows us to

revisit the question how important preference heterogeneity is for the observed variation

in insurance choices and provides an alternative approach to estimating perceived risks.

The key challenge in inferring risk perceptions and preferences from insurance

choices is that both high risk and risk aversion increase the willingness to buy in-

surance. To overcome this challenge, we propose to use variation in insurance plan

characteristics that differentially attract individuals along the risk and preference di-

mension. We prove identification using plan variation in a stylised model and then

illustrate how these insights can be applied in our empirical setting. Our identifica-

tion approach can be implemented using cross-sectional data on individuals choosing

from a single menu of (at least three) plans. This is what we use in our empirical

application. Moreover, the approach would be more powerful when applied to choice

data from similar populations facing different menus of plans. Random variation in

insurance options and prices for otherwise identical populations can be driven by dif-

ferences in the regulatory environment, by differences in costs of insurance provision

(across states or time), or by differences in market power of insurance providers.3,4 Our

results show other researchers how to use this variation to extract estimates of beliefs

and preferences.

The first part of the paper conveys the key intuition for identification in a simple

model with binary risks and binary choices (e.g., buy a plan or not). In this binary

choice setting, data on insurance choices from a single menu is insuffi cient to reject

homogeneity in risks or preference (even if heterogeneity was substantial). With cross-

sectional variation in menus, the difference in plan shares under the menus allow us

to put bounds on the distribution of both risk types and risk preferences. Our iden-

tification argument exploits the fact that the marginal willingness to buy insurance is

more rapidly decreasing in coverage for individuals with high risk aversion than for

individuals with low risk aversion (see also Barseghyan et al., 2013; 2018). As a con-

sequence, two plans that differ in their coverage level and premiums can differentially

3Our identification argument does not depend on the optimality of the contracts offered and therefore
does not rely on the market structure either, but only on whether these contracts are actually offered.
We do not attempt to characterise the menu of contracts offered in a market equilibrium with multi-
dimensional heterogeneity (e.g., Azevedo and Gottlieb, 2017), since, as we discuss, variation can come
from a variety of sources.

4Revealed preference arguments are often based on the same individuals choosing consumption
bundles at different prices. In insurance markets we rarely have such data: insurance options for
individuals often change when the characteristics of the individual changed and individuals’responses
may not reflect their preference ranking due to inertia (Handel, 2013). Examples of between-individual
variation in insurance options include discontinuities in prices at round numbered ages (Ericson and
Starc, 2015), discontinuities in prices at state borders (Cabral and Mahoney, 2019), subsidy changes
that affect some but not all employees (Gruber and McKnight, 2016), plausibly exogenous variation in
market competition (Dafny et al., 2015), retaliatory taxes (Starc, 2014), and state regulation (Kowalski
et al., 2008). We take such variation as given in our approach.
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attract individuals along the risk and preference dimension. In particular, in the binary

risk setting, a plan that provides more coverage at a higher premium, but at a lower

price per unit of coverage will attract more types with low risk aversion (but high risk)

and discourage types with high risk aversion (but low risks). In the absence of such

variation, it is impossible to reject homogeneity in preferences, even if claims data is

observed and expectations are rational (see also Aryal et al., 2010).

Remaining with binary risks, we demonstrate the potential of plan variation for

identification in the standard textbook insurance model. Here, individuals decide how

much coverage to buy at a constant price per unit of coverage. This can be represented

as choices among binary sets with high vs. low coverage, but with a large number

of such choice sets this conveniently reduces to the textbook model where individuals

may choose any amount of coverage at the specified unit price. As risk aversion deter-

mines the gradient of the marginal willingness to pay with respect to coverage, it also

determines the change in preferred coverage when the unit price of coverage changes,

while both an individual’s risk and risk aversion determine the agent’s preferred cov-

erage level. We show how the joint distribution of binary risks and CARA preferences

can be non-parametrically identified exploiting price variation in the textbook model.

Full identification would require price variation over the full support, but more limited

price variation suffi ces to identify key moments capturing the heterogeneity in both

dimensions.

We then extend the model beyond binary risks and choice sets to settings that

more closely resemble actual health insurance coverage. Health costs vary over a wide

range, and health insurance plans provide non-linear coverage for these costs. Typical

contract features include a deductible, co-insurance rate, and out-of-pocket maximum.

How individuals value these contract features will depends on their preference type

and risk type. For example, the decreasing returns to coverage imply that individuals

with high risk aversion care more about reducing high out-of-pocket expenses (e.g., a

decrease in the out-of-pocket maximum) than reducing of out-of-pocket expenses that

are already low (e.g., a decrease in the deductible). We then show how the same type

of plan variation drives identification when all plans are offered within one menu to a

single cross-section of individuals. The key intuition is the same as in the case with

cross-sectional variation in binary choice sets: plans need to differentially attract types

along the different dimensions. Within-menu plan variation naturally arises in many

practical settings, which is also what we exploit in our empirical analysis.

We apply our method to choice data from the Massachusetts Health Insurance Ex-

change (see Ericson and Starc, 2015). We find informative bounds on the distribution

of preferences and risks exploiting variation in the features of the contracts offered.

Interestingly, we cannot reject homogeneity: it is possible for observed plan choices to

be rationalised with only heterogeneity in risks. However, we do reject homogeneity in

risks. The required variance in risks increases as we restrict the analysis to reasonable
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preference parameters. We then compare our bounds to estimates from the existing

literature. Our application shows what can be learned from choice data alone and

highlights the strengths of the revealed preference approach.

Related Literature Our paper is motivated by the literature analysing heterogene-

ity in preferences and risks, reviewed in Einav et al. (2010) and Barseghyan et al.

(2018). This literature started with empirical tests for asymmetric information in in-

surance markets, often finding a weak relationship between risk type and insurance

choice (see Chiappori and Salanié, 2013, and Cohen and Siegelman, 2010). This in-

spired a new series of papers estimating the heterogeneity in risk preferences jointly

with the heterogeneity in risk types and arguing that the former is important.5 These

studies use both choice and claims data to estimate a structural model of heterogeneity.

Our work starts from a similar model of consumer choice in which individuals choose

insurance plans that maximise their expected utility given their specific risk and pref-

erence parameters. Our approach, however, does not require the additional structure

on heterogeneity and relaxes the assumption of rational expectations.

Indeed, a growing empirical literature documents evidence for deviations from ra-

tional expectations in insurance choices. For instance, Sydnor (2010) demonstrates

that distorted beliefs could explain deductible choices in home insurance, while with

rational expectations extreme risk aversion would be needed. The identification chal-

lenges in the absence of rational expectations have been previously addressed using

survey data eliciting expectations (see Manski, 2004). Most similar in spirit to our

paper is Barseghyan et al. (2013), who analyse choice data through the lens of a model

in which individuals are allowed to perceive true risks in a distorted way. Different from

us, they assume that all individuals distort true probabilities in the same way, and then

use auto insurance choices and realised claims data for the estimation of the parametric

preference and (true) risk type distributions. They separate the probability distortion

from risk preferences using a single-crossing property based on the decreasing returns

to coverage implied by risk aversion. This argument is further developed in the review

paper by Barseghyan et al. (2018). We start from the same single-crossing property,

but establish non-parametric identification of the type distribution, allowing for het-

erogeneity in both risk perceptions and preferences. In their review of the literature,

Barseghyan et al. (2018, p. 521) state how "to date, point identification of multidimen-

sional heterogeneity in risk preferences has relied upon parametric assumptions about

their joint distribution. It remains a question for future research, to find a field setting

and the proper set of assumptions to obtain nonparametric identification." We char-

acterise the plan variation, either across menus (offered to multiple cross-sections) or

within a menu (offered to one cross-section), that is needed for non-parametric identifi-

5Examples are auto insurance (Cohen and Einav, 2007), annuities (Einav et al., 2010) and health
insurance (Bundorf et al., 2012; Handel, 2013).
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cation of a two-dimensional type distribution and apply our method to health insurance

choices.

Our work uses only choices and relies on price or plan variation for identification,

which is very close to the Revealed Preference (RP) paradigm.6 Our methodology is,

however, different from standard empirical RP techniques (see Crawford and De Rock,

2014), as we start from a choice model with risk preference and risk type, and aim

to recover both preferences and risk perceptions underlying the observed choices. Our

focus is to uncover heterogeneity in types and we do not require multiple observations

for the same individual.7 ,8 Our work is closely related to a number of recent papers

analysing the non-parametric identification of type heterogeneity underlying choices

under uncertainty. Assuming rational expectations, Aryal et al. (2016) study how

identification depends on the observed number of claims, using choices from continuous

and discrete choice sets. In contrast, our approach does not rely on claims data and

rational expectations.

Our work also relates to the large literature on identification of demand systems

(Berry and Haile, 2014; 2016). That literature generally abstracts from adverse se-

lection, focusing instead on allowing rich taste heterogeneity or relaxing assumptions

imposed on the form of the utility function (see, for example, Ichimura and Thompson,

1998, and Briesch et al., 2010). We build on their insights and show how to separately

identify risk and risk preferences in the specific, but important context of insurance

choice. Identifying which types generate market shares is critical in our setting, since

adverse selection is only generated by sorting based on risk type. Therefore, the details

of the underlying heterogeneity beyond overall market shares have especially impor-

tant implications for welfare. Unlike these approaches, we do not need to impose any

linearity assumptions, which is especially useful within the insurance context. By plac-

ing restrictions on the marginal rate of substitution across states of the world, we can

highlight the types of variation in insurance contracts and prices that allow us to place

bounds on marginal distributions of risk preferences and risk types.

Related to this, Chiappori et al. (2019) and Gandhi and Serrano-Padial (2015) use

shares of horse bets to estimate one-dimensional heterogeneity, in either the prefer-

ence or perception dimension. Importantly, their identification approach requires the

absence of heterogeneity in the other dimension, as we will demonstrate in our set-

ting. We do provide an identification approach that allows for heterogeneity in both

dimensions, but this requires plan variation.9 Finally, Barseghyan et al. (2016) use in-

6See also work by Chetty (2006), who shows how bounds on the coeffi cient of relative risk aversion
can be derived by examining how labour supply responds to wage changes. In contrast to our work,
Chetty (2006) does not explicitly explore unobserved heterogeneity nor differences in beliefs.

7Examples in the RP literature are Crawford and Pendakur (2013), who study the minimum number
of types necessary to explain observed choices in cross-sectional data, and Dean and Martin (2016),
who study the largest subset of the data which is consistent with homogeneous preferences.

8Recent examples in the RP literature that allow for deviations from rational demand are Crawford
(2010), Adams et al. (2014) and Caplin and Dean (2015).

9See also Chiappori et al. (2009) on the identification of preference heterogeneity from discrete
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surance choices by the same individual across different domains and partially identify

both preferences and beliefs. We provide conditions for full identification and use plan

variation instead, both across and within menus.

Finally, an alternative literature documents mistakes and other deviations from the

expected utility model. While we do not directly address mistakes in our analysis, our

method could be augmented with any model of errors in choice. For instance, Abaluck

and Gruber (2011) find that individuals buying Medicare Part D insurance are over-

responsive to salient portions of the price —our method could be extended to account

for this by modelling consumers as choosing a plan based on traditional expected utility

plus an additional weight on salient characteristics. Other work documents misunder-

standing of health insurance plans themselves (e.g. Loewenstein et al., 2013). Indeed,

Bhargava et al. (2015) show evidence for dominated choices of health plans, which

cannot be explained by any standard risk preferences or beliefs; dominated choices are

reduced when information is provided more clearly, suggesting consumers were making

mistakes. A fruitful way forward may be to collect data on choice frictions or misunder-

standings and estimate underlying preferences, as done by Handel and Kolstad (2015).

Other work has found less consistency than expected in an individuals’risk preferences

across domains, such as health and auto insurance (Dohmen et al., 2011; Einav et al.,

2012). Our empirical application examines choices within a single domain, and iden-

tifies domain-specific beliefs. Our method could be extended to examine choices and

beliefs in multiple domains to determine whether belief heterogeneity is an important

cause of inconsistent risk-taking behaviour across domains.

The paper is organised as follows. Section 2 sets up our choice model and defines

our object of interest for identification. Section 3 analyses the identification of type

heterogeneity in a stylised model with binary risk and binary choices. We briefly extend

these insights beyond our stylised model in Section 4 and apply them using insurance

choices on the Massachusetts Health Exchange in Section 5. We discuss key steps of

our proofs in the main text, and provide the formal proofs in the Appendix.

2 Setup

We consider a stochastic revealed preference problem (see, e.g., McFadden, 2005; Chi-

appori et al., 2009) applied to an insurance market: a unit mass of consumers of

insurance products appears to be homogeneous to the econometrician (possibly after

controlling for observables), but may be heterogeneous in unobserved types distributed

according to H. Consumers choose products from a budget set M, which in our set-

ting constitutes a menu of available insurance products. The econometrician observes

the market share D(X|M) for each available product X ∈ M. Other consumers with

choices. Choi et al. (2007) avoid the bi-dimensionality by estimating preference heterogeneity for
choices under risk with known probabilities and using experimental variation of prices.
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unobserved types drawn from the same distribution H might be faced with a different

budget set, yielding variation in market shares.10 We aim to identify properties of the

distribution H from this observed market share variation.

Specific to our setting is that we assume that market shares arise according to

a known demand generating process: in particular, choices reflect expected utility

maximisation over final monetary pay-offs. Individuals are assumed to have a two-

dimensional type (π, σ), where π is a one-dimensional index that parametrises the

consumer’s risk (e.g., how likely it is that she will have an accident) and σ is a one-

dimensional index for her preferences (e.g., how much she is willing to tolerate risk).

The restriction to a one-dimensional index on each of the two dimensions usually entails

some a priori restriction to particular classes, such as constant absolute risk aversion

(CARA) for preferences and exponential distributions for risks. H(π, σ) is the distri-

bution of types in the population. We make no further assumption on H and treat it

non-parametrically. Observed market shares have to coincide with the theoretical de-

mands generated under distributionH.We exploit this to identify whether we can reject

homogeneity in either risks or preferences in H and - more ambitiously - whether one

can fully identify H or at least its key moments. Since we do not directly use informa-

tion on realised risks, our approach does not rely on rational expectations. However,

the observed demand can only identify perceived risks (which may differ from true

risks). We further discuss the use of claims data in Section 4.2. The following provides

more details on the most general model of demand we consider, while the subsequent

sections discuss specific cases.

Risk and Preference. Consumers each face uncertain costs k. Each agent sub-

jectively assigns cumulative distribution F (k|π) to his costs. We assume that the risk

type π ranks agents by first-order stochastic dominance: That is, for two types π1 > π2,

F (k|π1) ≤ F (k|π2) for all k. Let Π ⊆ R+ denote the domain of possible risk types.

Consumer preferences are represented by expected utility with differentiable Bernoulli-

utility function u (L|σ) over final losses L. The agent’s preference type is σ ranks in-

dividuals by their risk-aversion following Pratt (1964). This is naturally the case for

CARA preferences with u (L|σ) = − exp (σx) /σ, where σ1 > σ2 implies that individual

1 is more risk-averse than individual 2. We re-scale the preference type σ such that for

10Our framework is set up to illustrate the theoretical underpinnings of our model and the non-
parametric identification argument. Since we do not link individual decisions across multiple decisions,
both π and σ can either be stable long-run preferences or can be the result of temporary shocks
to risks or preference. We abstract, however, from additional idiosyncratic shocks to the utility of
particular plans. Such shocks have been useful in the empirical literature to rationalise a wide variety
of choices, especially when the number of types is assumed to be small. So in an empirical application,
the econometrician may want to specify the distribution of idiosyncratic errors. In particular, one
could estimate insurance choice using the discrete choice methods pioneered by McFadden (1973).
When assuming a parametric distribution of error terms and provided with the variation in contracts
characterised below, we can still rely on the same arguments to identify heterogeneity in risk perceptions
and preferences using choices alone.
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a risk-neutral agent σ = 0 and types with σ →∞ are infinitely risk averse, so that the

domain of possible preference types Σ coincides with R+.11

An insurance product X is characterised by a premium P and a mapping from each

cost k to an out-of-pocket expense x (k) ≤ k. We refer to X as an insurance plan or

contract. Purchasing no insurance means that the full costs are born by the individual.

The expected utility of a plan X for an agent of risk-preference type (π, σ) is

U (X|π, σ) ≡
∫
u (−P − x (k) |σ) dF (k|π) . (1)

While we assume that the (parametric) cost distribution F (·|π) and utility function

u (·|σ) are known, the type distribution H(π, σ) is not known.

Market Shares for a given Budget Set We want to infer the type distribution

from observed market shares. The market share for plan X ′ is determined by types

that find this product optimal given the budget set or menuM they face:

B
(
X ′|M

)
:=

{
(π, σ) |X ′ ∈ arg max

X∈M
U (X|π, σ)

}
.

The market share for any subset of products M′ ⊆ M thus arises from types in

U =∪X∈M′ B(C|M). If almost all of these types have a unique optimal choice, identi-

fication can simply exploit the fact that the measure of these types has to be equal to

the observed demand: ∫
X∈M′

dD(X|M) =

∫
(π,σ)∈U

dH (π, σ) . (2)

In case a measure of types is indifferent, the equality in (2) has to be replaced by weak

inequality "≤ ", as types choose less options than they find optimal.

Data and Identification An observation D in our data set consists of mar-

ket share distributions D(·|Mj), possibly across multiple budget setsM1,M2,M3, ...

Type distribution H is consistent with this observation only if the identification con-

dition (2) holds for each of its market share distributions D(·|Mj). This limits the

type distributions under consideration, given our specific demand-generating process.

Obviously, throughout the paper we will only consider observations for which at least

one consistent type distribution exists.

For a given variation in budget setsM1,M2,M3, ... we say that full identification

is possible if for each observation D there is a unique H that is consistent with it.

We establish this in the textbook insurance problem, in which individuals choose how

11Convergence to infinite risk aversion means that for any two gambles where the lowest possible
outcome in the first gamble is higher than the lowest possible outcome in the second, individuals with
high enough risk preference strictly prefer the former.
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much coverage to buy at a linear price. A more basic question relates to testing for

the presence of heterogeneity. The early (theoretical) literature on insurance markets

attributed variation in choices to heterogeneity in risks alone (given some homogeneous

preference for risk), while the recent (empirical) literature has argued that preference

heterogeneity is important. We therefore study whether one can in fact refute prefer-

ence homogeneity: i.e., does there exist budget set variation and corresponding market

share distributions such that any consistent type distribution H has at least two dif-

ferent preference types in its support?

More generally, we are interested in establishing bounds on the marginal distribution

of preference and risk types. For example, for a given observation D we aim to establish
a bound α′ > 0 on the mass of consumers that have preference types weakly below σ′.

That is, any type distribution that is consistent with D has a marginal distribution Hσ

over preference types such that Hσ (σ′) ≥ α′. If one can then establish a second bound
α′′ > 0 on consumers that have risk types above some σ′′ > σ′, this shows mass both on

preferences above σ′′ and below σ′ and, thus, the presence of preference heterogeneity.

We say that we cannot reject preference homogeneity if, given the variation in budget

sets, any observation can be rationalised with heterogeneity in risk alone, keeping the

support over preference types to a singleton. Obviously, the same questions can be

analysed for risk heterogeneity.

As it is useful for identification more generally, a bulk of our analysis aims to estab-

lish which type of budget set variation allows us to establish bounds on the marginal

distributions.

3 Identification in a Stylised Model

We start by considering a stylised model in which individuals face binary risks and

a binary choice. This stylised model helps us to demonstrate the potential for non-

parametric identification of type heterogeneity using only choice data, but exploiting

plan variation. In the next section, we then extend the model beyond binary risks and

budget sets to settings that more closely resemble actual health insurance coverage

choices to show the practical implementability of our choice-based approach.

Binary Risk and Choice Set Any individual (ex ante) faces a binary cost dis-

tribution k ∈ {0, L}, either losing L or nothing at all. For instance, the individual could
become sick and require costly treatment, but faces no medical costs when healthy. The

risk type πi of agent i is simply his probability of incurring the cost L. Agent i chooses

from a menuMi that offers the choice between two insurance options. We focus on the

simplest case where individuals can either choose no insurance (∅) or some insurance
(X), i.e.,Mi=

{
∅, Xi

}
.

Since the risk is binary, a plan is fully determined by the premium P and the

10



coverage q paid in case of loss, where we restrict attention to P < q (as no plan with

P ≥ q will ever be chosen). The expected utility of a plan X = (P, q) simplifies to

U (X|π, σ) = (1− π)u (−P |σ) + πu (−P − [L− q] |σ) ,

while remaining uninsured gives utility

U (∅|π, σ) = (1− π)u (0|σ) + πu (−L|σ) .

An individual prefers plan X over remaining uninsured if and only if

π

1− π
u (−P − [L− q] |σ)− u (−L|σ)

u (0|σ)− u (−P |σ)
≥ 1. (3)

The insurance plan entails a utility gain due to the coverage provided when the bad

state realises (with probability π), but entails a utility loss due to the premium paid,

even when the good state realises. The ratio of the utility gain relative to the utility

loss is increasing in the individual’s risk aversion (Pratt, 1964). As a consequence, an

individual’s willingness to buy the plan is not only increasing in the risk type π, but

also in her preference type σ. We use short-hand notation mg (X) and mb (X) to refer

to the net pay-offs of a plan X in the good and bad state respectively.

For this binary choice environment, the main tool for analysis is the type frontier

T (∅, X) which groups together all types that are indifferent between buying the plan

X and remaining uninsured, i.e.,

T (∅, X) = {(π, σ) |U (X|π, σ) = U (∅|π, σ)}

= B (∅|M) ∩ B (X|M) .

Represented in (π, σ)-space, the type frontier is monotonically decreasing as shown in

Figure 1. A risk-neutral individual (σ = 0) is only willing to buy the plan if her loss

probability exceeds the price per unit of coverage, i.e., π ≥ P/q. If the loss probability
converges to 0, an individual must become infinitely risk-averse to be willing to buy

the insurance plan.

Single-Crossing Property We assume a single-crossing property among the

types on a type frontier T (∅, X), similar to the one established in Barseghyan et al.

(2013; 2018).12 While all individuals on the type frontier have the same willingness-to-

pay for plan X, their marginal willingness-to-pay for additional coverage depends on

their specific risk and preference combination. We consider families of utility functions

with the following single-crossing property:

12See Proposition 3 in Barseghyan et al. (2013) and Result 1 in Barseghyan et al. (2018).
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Assumption 1 Along the type frontier T (∅, X) the marginal rate of substitution
π

1−π
u′(mb(X)|σ)
u′(mg(X)|σ) is increasing in π, and it converges to zero as π goes to zero.

We explicitly check this property for CARA preferences, which are typically adopted

in the empirical insurance literature (see Appendix A.1.2.1). The single-crossing prop-

erty arises because the marginal return to coverage is more rapidly decreasing for types

with higher risk aversion. To illustrate this, we can approximate the marginal rate of

substitution (MRS) between consumption in the good and bad state as:

π

1− π
u′ (mb (X) |σ)

u′ (mg (X) |σ)
∼=

π

1− π

{
1− u′′ (mg (X) |σ)

u′ (mg (X) |σ)
[mg (X)−mb (X)]

}
, (4)

relying on the third and higher-order derivatives of the utility function being small.

Like for the total willingness to pay, both a higher loss probability π and higher risk

aversion σ increase the marginal willingness to pay for coverage. However, the relative

weight of risk aversion in determining the marginal willingness to pay is smaller the

more coverage the plan already provides (i.e., the smaller the consumption wedge,

mg (X) − mb (X)).13 In the extreme case that a plan provides full insurance, the

willingness to pay for the last unit of coverage equals the loss probability. The role

played by the individual’s risk aversion has become of second order. This also allows

us to rank the willingness to pay for additional coverage amongst those types who have

the same willingness to pay for X. For two types on the type frontier T (∅, X), the

type with higher risk aversion (σ′ > σ) needs to face lower risk (π′ < π) for the total

willingness to pay to be the same. However, the difference in willingness to insure at the

margin is more affected by the difference in risks than by the difference in preferences,

implying that the willingness to pay at the margin is lower for the type with lower risk.

The above logic holds close to full insurance for any preferences satisfying Expected

Utility theory. Assumption 1 restricts our focus to utility functions for which it holds

for any coverage level (including CARA preferences).

The single-crossing property implies that we can replace contract X with a more

generous, but more expensive contract X ′ such that there is a cut-off point on the type

frontier T (∅, X) with all higher risks strictly preferring to buy the new plan and the

others strictly preferring not to. As we will show next, these crossings of type frontiers

are required to identify bounds on the marginal type distributions. Under Assumption

1, we can characterise the exact plan variation that leads to crossings of type frontiers.

For preferences not satisfying Assumption 1, we may have to resort to different plan

variation to obtain crossings and thus identification.
13For CARA preferences, which we use below, the MRS equals

−dmg

dmb
|U(X|π,σ) =

π

1− π × exp (σ (mg (X)−mb (X))) ,

again demonstrating the lower weight of risk aversion in the marginal value of coverage when a plan
provides higher coverage. (Taking a Taylor expansion of the exponential term centred at 0, we obtain
the first-order approximation in (4).)
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3.1 Identification using Plan Variation

We first consider a situation where each individual faces the same menuM = {∅, X},
as shown in Figure 1. With a single cross-section of choices and associated observations

zi = {Ci,M}, we cannot put meaningful bounds on the preference heterogeneity, nor
on the risk homogeneity. Neither can we reject preference homogeneity nor risk homo-

geneity. The intuition is straightforward. The share of individuals buying insurance,

α = D (X|M), corresponds to the mass of types that lie above the type frontier in the

left panel of Figure 1. We cannot exclude that the variation in the choice to buy the

plan is driven by heterogeneity in risk types only or by heterogeneity in preference types

only. Fix the fraction α of individuals who buy the plan.14 If agents have preference

type σ̄ but differ in risks so that exactly 1 − α of them have a type below π̄, exactly

1 − α would not buy insurance which would clearly rationalise the observed choices.
This case is illustrated by the dashed density above the horizontal gray line, and the

shaded area indicates the mass of individuals with risk type below π̄ that would not

buy insurance. Alternatively we could have assumed that all agents have the same risk

type π̄ but are heterogeneous in preferences such that exactly 1−α of them have types

below σ̄. Again, such a type distribution would rationalise the observed choices, which

is indicated by the dashed-dotted density above the vertical gray line, where again the

gray area indicates those types that would not buy insurance. Therefore, we can rule

out neither preference nor risk heterogeneity. Only very weak results can be obtained

in this setting. Since individuals are risk-averse, only types with π ≥ P/q would be

willing to buy insurance. The share of uninsured individuals 1−α places a lower bound
on the share of individuals with loss probability lower than P/q, i.e., Hπ (P/q) ≥ 1−α.

We now introduce discrete variation in the plans offered. We consider two plans

Xh and Xl, where plan Xh provides more coverage than plan Xl (i.e., qh > ql). We

continue to analyse binary menus Mj = {∅, Xj}, but different plans are offered to
different cross-sections of individuals. Section 4.3 shows that the same logic drives

identification when the different plans are offered jointly to a single cross-section of

individuals.

Consider two randomly selected cross-sections of individuals, where the first cross-

section is offered the menu Mh = {∅, Xh} and the second cross-section is offered the
menu Ml = {∅, Xl}. The share of individuals buying insurance when each plan is
offered separately equals αh = D (Xh|Mh) and αl = D (Xl|Ml) respectively.

If the high-coverage plan charges the same (or a lower) premium, it dominates

the low-coverage plan. All types who would buy insurance when offered the low-

coverage plan also buy insurance when offered the high-coverage plan (i.e., B (Xl|Ml) ⊂
B (Xh|Mh)). The high-coverage type frontier T (∅, Xh) is illustrated by the dotted line

in the left panel of Figure 2. The type frontier lies below the low-coverage type frontier

14 In the right panel of Figure 1 type (σ̄, π̄) is chosen as an arbitrary point on the type frontier,
implying that this type is indifferent between buying the contract or not.

13



Figure 1: The left panel shows the type frontier for a binary menu C = {∅, X} in (π, σ)-
space. Types above the frontier buy the plan, while types below the frontier remain
uninsured. The right panel illustrates an indifferent type (σ̄, π̄). If all other individuals
have the same risk type π̄ but a density of preferences as indicated by the dashed line,
choices can be rationalised. Alternatively, all individuals could have same preference
type σ̄, but differ in risks as in the dashed-dotted density, and again choices can be
rationalised.

T (∅, Xl) which is illustrated by the solid line. We can assign the observed increase in

shares αh−αl to the types in between the two frontiers T (∅, Xl) and T (∅, Xh) (i.e., to

B (Xh|Mh) \B (Xl|Ml)). This would be useful for identifying bounds on heterogeneity

in one dimension if we can exclude heterogeneity in the other dimension.15 However,

with heterogeneity in both dimensions, this type of plan variation sheds limited light

on the plausible heterogeneity in either dimension. The observed variation in plan

choices could either be explained by risk variation or by preference variation only. The

former is illustrated by the horizontal line in the left panel of Figure 2, on which all

types share the same preference σ̄. The risk distribution is simply chosen to ensure

that a fraction 1 − αh has low risk and buys neither contract, and fraction αh − αl
has intermediate risks and only buys the higher coverage contract, while αl would buy

either contract. Therefore, the observed plan shares do not allow us to put any bounds

on the preference heterogeneity.

If the high-coverage plan Xh is offered at a higher premium, it becomes less attrac-

tive than the low-coverage plan to some individuals, but remains more attractive to

others if the premium increase is relatively small (i.e., B
(
Xj′ |Mj′

)
* B (Xj |Mj) for

j′ 6= j). Assumption 1 implies that among those types that are indifferent at X, those

with high risks prefer to buy more coverage. This implies that that the type frontiers

cross only once, as shown in Lemma 1 below and depicted in the right panel of Figure 2.

The high-coverage type frontier T (∅, Xh), depicted by the dotted curve, is a clockwise

15Barseghyan et al. (2018) describe a similar identification strategy with only heterogeneity in
preferences (see also Chiappori et al., 2019, and Gandhi and Serrano-Padial, 2015), but this relies on
the absence of heterogeneity in risks.

14



Figure 2: The solid and dotted line in both panels show the type frontiers in (π, σ)-
space for the binary menu C = {∅, Xl} and C = {∅, Xh} respectively. In the left panel,
the type frontiers do not intersect as the high-coverage plan charges the same (or a
lower) premium and attracts all types that would also buy the low-coverage plan. In
the right panel, the type frontiers intersect at (π̄, σ̄). The cheaper low-coverage plan
charges a higher price per unit of coverage and differentially attracts types with high
risk aversion and low risk.

"rotation" around (π̄, σ̄) relative to the low-coverage type frontier T (∅, Xl), depicted

by the solid curve. Low risk types between the two curves (with π < π̄ and σ > σ̄)

buy the cheaper low-coverage plan but would remain uninsured when offered the more

expensive plan, while high risk types between the two curves (with π > π̄ and σ < σ̄)

remain uninsured when offered the cheaper low-coverage plan, but buy insurance when

the plan provides the additional coverage so long as the premium increase is not too

high. Note that the risk-neutral individual on the type frontier of plan Xj has risk

type π = Pj/qj . Only if its price per unit of coverage remains lower than for the low-

coverage contract (Ph/qh < Pl/ql), the high-coverage contract can differentially attract

some types to buy insurance.

Clearly, we could now set identify an individual’s type if we were to observe the

individual’s choice under the two menus. For example, an individual who switches

out of the insurance plan when offered Xh rather than Xl, must have a risk type

higher than σ̄ and a preference type lower than π̄. In this case identification is rather

straightforward. But since it is diffi cult in practice to observe multiple observations

for the same individual, we rely only on observing choices across random cross-sections

of individuals facing different menus. In that case, identification of types requires

substantially more care since one cannot simply link a contract choice in the one cross-

section to a contract choice in the other one. Still, observing the shares of individuals

that choose the different contracts allows us to put bounds on the type distribution, as

stated in the following Lemma:16

16This Lemma is related to Barseghyan et al. (2018); in their Result 1, they establish a single-crossing
property under similar conditions, (illustrated in their Figure 4). Lemma 1 here uses the single-crossing
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Lemma 1 Under Assumption 1, the type frontiers for the pairwise menus {∅, Xh}
and {∅, Xl} with qh > ql, have a unique intersection (π̄, σ̄) if and only if Ph > Pl, but

Pl/ql ≥ Ph/qh. Moreover,∫
π≥π̄

∫
σ≤σ̄

dH ≥ αh − αl ≥ −
∫
π≤π̄

∫
σ≥σ̄

dH. (5)

Proof. See appendix.

Very low risk types along the type frontier for contract Xl have near zero marginal

willingness to pay for insurance, so they will not buy the additional insurance offered

by Xh. This ensures that the dotted curve in the right panel of Figure 2 lies to the

right of the solid curve at low risks. Moreover, by Assumption 1, the willingness to

pay changes monotonically along the type frontier, so there can only be a unique type

where the type frontiers cross: at that point all lower risks on the type frontier for

contract Xl would buy the additional insurance while all higher risks would not. If

Pl/ql > Ph/qh, for risk-neutral preference (σ = 0) the dotted curve has to be to the

left of the solid one, and so there will be a crossing, as shown in the right panel of

Figure 2. On the other hand, if the expensive insurance plan offers less coverage per

dollar (i.e., Ph/qh > Pl/ql), the dotted curve would lie completely to the right of the

solid curve.17 In this case the type frontiers no longer intersect as the low-coverage

contract dominates the high-coverage contract, and plan variation does not allow us to

put bounds on preferences by a similar logic as that depicted in the left panel of Figure

2.18

The Lemma clearly describes the plan variation required for the type frontiers to

intersect: the high-coverage plan needs to be more expensive, but provide coverage at a

lower price per unit. If more people buy the high-coverage plan, the difference in plan

shares αh−αl places a lower bound on the share of individuals with π > π̄ and σ < σ̄.

The additional coverage is relatively more attractive to individuals with higher risk

than to individuals with higher risk aversion. If more people by the low-coverage plan,

the difference αl − αh imposes a lower bound on the share of individuals with π < π̄

and σ > σ̄. The exact shape of the type frontiers could help put tighter bounds on the

joint distribution, but the more important observation is that the intersection of the

frontiers enables placing bounds on the marginal distributions as well. For example,

if the high-coverage plan is more popular, the share differential places a lower bound

on the share of individuals with lower risk aversion, i.e., Hσ (σ̄) > αh − αl. This is in
contrast to the case discussed before where plan variation induced a shift in the type

frontier (left panel of Figure 2) rather than a rotation (the right panel of Figure 2).

property of contracts to identify bounds on the type distribution in the population, and also provides
additional information: it shows the conditions needed on the contract (i.e., Pl/ql ≥ Ph/qh) for the
single-crossing property to be informative for risk averse preferences.
17This is true since it lies to the right for both low and for high risks π (and can only cross once).
18Only that here the labels between Xh and Xl are reversed.

16



Intersections of the type frontiers are crucial for identification and more intersections

help us to further tighten the bounds on the marginal distributions to obtain partial

identification:

Proposition 1 Consider a binary cost k ∈ {0, L} and observations on the share of
consumers who buy insurance for different Mi ∈ {M1, ..,MJ}. There exist type dis-
tributions H for which we can (i) identify bounds on preference and risk heterogeneity

with at least two appropriately chosen menus M1 and M2 and (ii) reject preference

and/or risk homogeneity with at least three appropriately chosen menus M1,M2 and

M3.

Proof. See appendix.

This proposition follows relatively straightforwardly from Lemma 1.19 Consider

two menus {∅, Xl} and {∅, Xh} which generate type frontiers as depicted in the right
panel of Figure 2, with crossing point (π̄, σ̄). Assume an underlying distribution of

types such that more agents choose the low-coverage contract than the high-coverage

contract. That means that there are more types in the shaded area above σ̄ (and below

π̄) than in the shaded area below. This puts a lower bound on the number of agents

with preference types above σ̄ (and below π̄), but does not yet rule out that all agents

have the same preference or risk type. Consider now a third contract X ′h providing

even higher coverage than Xh and the corresponding type frontier crossing the type

frontier of the high-coverage contract Xh to the south-east of the intersection in the

right panel of Figure 2 (π̄′ > π̄, σ̄′ < σ̄). If more agents buy insurance when offered this

new generous contract than when offered the original high-coverage contract, we know

that there exists a set of types in the underlying distribution that have preference types

below σ̄′ (and risk type above π̄′). This places bounds on heterogeneity, since we can

be sure that there are agents both with preferences above σ̄ and below σ̄′. The same

holds for risks.

Proposition 1 suggests that more variation in insurance plans will further tighten

bounds as the observation of each additional plan may provide an additional cross-

ing relative to other plans.20 More and more intersections therefore create more and

more information about the underlying type distribution. Still, since we only rely on

observed market shares, it may not seem straightforward whether suffi cient plan vari-

19Barseghyan et al.’s (2013) Proposition 3 shows that choice with three contracts is necessary to
establish an intersection of two type frontiers. In our Proposition, we add the link between the single-
crossing property and the population shares, such that with two appropriately chosen menus (hence
three contracts), we can identify bounds on preference and risk. We further make the claim that three
appropriately chosen menus (from four contracts or more) is suffi cient - and in fact necessary - to reject
homogeneity in the population.
20For example, the previous construction can reveal a minimum share of types in the north-west

quadrant above (π̄, σ̄) in the right panel of Figure 2, but it does not yet reveal how close these types
are to (π̄, σ̄). Adding a fourth contract with crossing point within the north-west quadrant close to
(π̄, σ̄) can put bounds on the number of types that are close. The same argument applies for contracts
with crossing point within the south-east quadrant, but close to (π̄′, σ̄′).
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ation can allow for full identification and whether this depends on the underlying type

distribution. The next section will investigate exactly this.

3.2 Full Identification in the Textbook Model

The previous subsection demonstrated how plan variation can place non-parametric

bounds on the distribution of preferences and risks. This subsection turns to the ques-

tion whether variation in menus across otherwise identical populations can in principle

be enough for the full identification of any type distribution H.

In our binary setting, recall that a plan Xn is fully characterised by the premium

Pn and the amount of insurance qn. Defining the unit price of insurance as pn = Pn/qn,

one can equivalently characterise the plan by (pn, qn). The question is whether enough

variation in these two components identifies the underlying heterogeneity. This analysis

can be split into two parts. First, one can consider plans with identical unit price

pn = p̂ and determine the fraction of agents that choose plan (p̂, q̂) over any other plan

(p̂, q) through pairwise comparisons. Alternatively, one can ask individuals to directly

choose their preferred plan amongst all plans (p̂, q) with unit price p̂. This alternative

formulation entails less information, so identification here also implies identification

under pairwise comparisons.21 The alternative formulation is exactly the set-up in

textbook insurance models where individuals choose the optimal quantity of insurance

at given unit price to cover a binary risk (see for example Kreps, 1990; Varian, 1992;

Mas-Colell et al., 1995; Gravelle and Rees, 2004). In our notation, this corresponds to

the selection of an insurance plan from a menu Mp̂ = {(P, q) |P/q = p̂, q ∈ R+}, and
from choice data we can observe the fraction of agents D(q|Mp̂) buying an unrestricted

coverage level q ∈ R+ offered at unit price p̂, as well as the cumulative D̃(q|Mp̂) of

agents that choose a coverage level no larger than q. For notational convenience and

to highlight the connection to standard results, we continue with this textbook model,

instead of pairwise plan comparisons.22

21 Intuitively, for a given agent, pairwise comparisons provide strictly more information, since it
provides pairwise information even for choices that are not optimal for this particular agent. This
intuition does not simply generalise for our comparison: in the textbook model one observes the
optimal choice among many contracts for any given individual, while in the binary comparisons one
does not see the preferred choice for one particular individual but only the relative attractiveness overall
across individuals. Nevertheless, note that in the textbook model, for a given agent the optimal choice
q∗ is unique as his utility is strictly concave in q. Consider now an agent who has to choose between
two options q′ and q′′ that are either both larger or both smaller than his optimal q∗. Because of
concavity he prefers the choice that is closest to his optimal choice. Now consider a binary choice set
M = {Xq, Xq+ε} where both options have same unit price p but Xq has quantity q while Xq+ε has
quantity q + ε. By the preceding argument, all agents whose unconstrained choice q∗ is below q prefer
Xq, while those whose unconstrained choice is above q + ε prefer Xq+ε. For ε suffi ciently small, the
mass of agents that prefer the middle vanishes, and we have uncovered the fraction of agents that
have optimal choices below q as those that choose Xq. Formally, considering a sequence of populations
we have limε→0D (Xq+ε|{Xq, Xq+ε}) =

∫ q
D(x|Mp̂)dx. So pairwise comparisons entail at least the

information from the textbook model.
22While, as mentioned before, pairwise plan comparisons provide in this setting at least the same

information as what the textbook model provides, this is not generally true. We will discuss this further
in Section 4.
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This leads to the second step for identification: we also need variation in unit

prices. Observing the fraction of individuals choosing between different coverage levels

at constant unit price is not informative about risk or preference: following the logic of

Lemma 1, the type sets B (q|Mp̂) for any available coverage choice q do not intersect as

the price per unit of coverage remains constant, and we are in a choice environment akin

to those depicted in the left panel of Figure 2. However, consider randomly assigning

groups to different unit prices. That is, for a first random cross-section we observe

their insurance choices from Mph and for a second cross-section we observe choices

from Mpl . Consumers with the same coverage choice for the price ph may choose

different coverage levels at the reduced price pl < ph. The difference in willingness to

buy additional coverage as prices change depends on the difference in their preferences

and risks. In particular, due to the decreasing returns to coverage, the type with higher

risk aversion (but lower risk) will increase her coverage less when the price decreases to

pl. This implies that the type sets B (q|Mph) will be flatter than the type sets B (q|Mpl)

at their respective intersections and allows us to use the difference in coverage shares

to disentangle the heterogeneity in risk and preferences.

The textbook model allows for a direct illustration of this intuition. An individual

chooses the level of coverage such that the marginal rate of substitution for her type

equals the rate at which transfers can be made between the good and the bad state (as

implied by the unit price),

π

1− π
u′ (mb (q) |σ)

u′ (mg (q) |σ)
=

p

1− p . (6)

An individual buys more coverage than another because she faces a higher risk or

because she is more risk-averse. The variation in coverage choices across individuals

at a constant price p could therefore be entirely driven by heterogeneity in preferences

or heterogeneity in risks alone. Now taking logs on both sides of equation (6) and

approximating log [u′ (mb|σ) /u′ (mg|σ)] ∼= −u′′(mg |σ)
u′(mg |σ) [mg −mb], we find an individual’s

demand for coverage as a function of the unit price,

q ∼= A+B log (p/ [1− p]) (7)

with

A = L−
log
(

π
1−π

)
u′′ (mg|σ) /u′ (mg|σ)

and B =
1

u′′ (mg|σ) /u′ (mg|σ)
. (8)

While both higher risk and higher risk aversion increases coverage choices, the response

to a change in the price only depends on risk aversion. Those with higher risk aversion

tend to increase their coverage less and are thus less responsive to a change in the price.

The above approximation is exact for CARA preferences. For such preferences there

is a one-to-one mapping between (A,B) and (π, σ) , since A = L + log (π/(1− π)) /σ
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and B = −1/σ. Therefore, the distribution H can be identified from the distribution

of A and B in the population. We will show that suffi cient price variation allows for

such identification. The key step in this argument is to observe that prices determine

the share of people with (A,B) for whom αA+βB ≤ t along any ray defined by α and
β and for any parameter t. In particular,

Pr(αA+ βB ≤ t) = Pr

(
A+

β

α
B ≤ t

α

)
= D

(
t

α
|Mp(α,β)

)
, (9)

where D
(
t
α |Mp(α,β)

)
is the observed share of people that buy no more insurance than

q = t/α for for p(α, β) ≡ exp (−β/α) /[1 + exp (−β/α)]. With suffi cient price variation

this can be observed for any level of α, β and t. This amounts to observing the marginal

distribution (9) of the weighted sum of A and B, for all possible weights.

The remaining question is whether we can learn the joint distribution over A and

B from observing all such marginal distributions over the sums of A and B. Cai et

al. (2005) provide an affi rmative answer based on a proof in the space of characteristic

functions which we replicate in the appendix to make our arguments self-contained.

This yields the following insight:

Proposition 2 Consider a binary cost k ∈ {0, L}, a choice setMp with constant unit

price and any type distribution H with CARA risk preferences. When observing the

distribution of coverage choices inMp for each price p ∈ [0, 1], the type distribution is

fully identified.

Proof. See appendix.

Full identification of the non-parametric type distribution requires observing cov-

erage choices for the full support of prices. However, we can still uncover key moments

of the respective distributions with limited (exogenous) price variation, in line with

Proposition 1. Observing the distribution of coverage choices for two prices is suffi cient

to reject homogeneity in preferences, while three prices are suffi cient to identify the

variance in preferences. We show this formally in Appendix A.1.2.2.

4 From Theory to Practice

In this section, we do three things to show how to implement our identification ap-

proach in practice. First, we move beyond binary risks and simple insurance plans. In

practice, costs can take many values and insurance plans are often complex (including

deductibles, co-insurance rates, out-of-pocket maxima). The increase in the dimension-

ality of the contract space provides additional opportunities for identification. Second,

we briefly consider the use of claims data for identification and the additional assump-

tions this entails. We view our approach using plan variation as complementary to

the standard approach using claims data, allowing the researcher to test and relax the
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assumption of rational expectations. Finally, we show how within-menu plan variation

can be used for identification even if there is no between-menu plan variation (obtained

via random variation in menus faced by similar individuals). Even choices from a single

menu can be informative enough to place bounds on the distribution of types. This

approach is particularly useful, as within-menu plan variation naturally arises in many

settings, including in our empirical setting, while between-menu variation typically

requires experiments or quasi-experimental variation.

4.1 Plans and Expenses in Practice

We extend the previous insights for a known cost distribution F (k|π), parametrised

by the agent’s unknown risk type π.23 When costs are continuous, a plan X can in

principle specify any out-of-pocket expense x (k) for each possible cost k ∈ R+. We

focus on three pre-dominant coverage features of insurance plans: a deductibleD, below

which all costs are paid out-of-pocket by the individual, an out-of-pocket maximum M

above which the out-of-pocket expenses cannot increase, and a co-insurance rate β

determining the individual’s cost share in between. The out-of-pocket expense equals

x (k) =


k for k ≤ D,
D + β (k −D) for k ∈

[
D, 1

βM −
1−β
β D

]
,

M for k > 1
βM −

1−β
β D.

Simple Plans Covering High Expenses The logic for identification remains

essentially identical to the arguments from the previous sections if contracts cover high

but not low expenses: consider insurance plans that set the deductible equal to the

out-of-pocket maximum (i.e., Z ≡ D = M). This induces full cost sharing below Z

but no cost sharing above Z. Now, the setting resembles our stylised setting with

binary risks studied before. The valuation of the insurance plan depends crucially on

the probability 1− F (Z|π) that the coverage is received.

Both high risk aversion and high expected costs increase the willingness to pay for

such a plan. We can compute the marginal willingness to reduce the threshold Z when

the plan charges a premium P , which can be inverted to get an expression analogous

to the marginal rate of substitution (4) that guided our understanding in the binary

risk case:

dP
dZ |U(X|π,σ)

1− dP
dZ |U(X|π,σ)

= − [1− F (Z|π)]u′ (−P − Z|σ)∫ Z
0 u′ (−P − k|σ) f(k|π)dk

= −1− F (Z|π)

F (Z|π)

u′ (−P − Z|σ)

E [u′ (−P − k|σ) |k ≤ Z;π]
. (10)

23 In principle, an agent’s risk type can be multi-dimensional (e.g., mean and variance of lognormally
distributed costs), but more plan variation would be needed to identify the different risk dimensions.
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The basic structure of this expression is very similar to (4) in the binary case. When

risk types are ranked in a first-order stochastic dominant way (i.e., F (k|πi) ≤ F (k|πj)
for all k), individuals with higher risk or higher risk aversion have a higher willingness-

to-pay for additional coverage. However, the returns to coverage tend to decrease more

rapidly for individuals with higher risk aversion. If among the marginal buyers of a

plan, the marginal willingness to pay is indeed higher for those with higher risk but

lower risk aversion, we can again invoke Lemma 1 and establish rotations of the type

frontiers by changing the coverage and price paid.24 Suffi cient variation in prices and

coverage allows us to uncover the underlying heterogeneity in the spirit of Proposition

2.

Plans Covering High vs. Low Expenses In practice, plans also differ in

the type of expenses they cover: a plan could have lower deductible, but a higher

out-of-pocket maximum, as well as different coinsurance rates. These different plan

characteristics offer additional channels for identification.

The marginal expected utility from lowering the out-of-pocket expense x (k) for a

given cost k equals

dU (X|π, σ) = f (k|π)u′ (x (k) |σ) dx.

The willingness to purchase additional coverage depends on the probability of the

underlying cost (which is determined by the risk type π) and the utility from reducing

the out-of-pocket expense (which is determined by the risk preference σ).

Arbitrary non-linear insurance plans could vary the out-of-pocket expenses for each

cost realisation k. Such plan variation allows separating heterogeneity in risk and

preferences. Yet even standard insurance contracts provide valuable identification. Out-

of-pocket maxima, for example, affect the coverage for high expenses, while deductibles

affect coverage for low expenses. For given risks, individuals with high risk aversion

care more about reducing high out-of-pocket expenses than reducing low out-of-pocket

expenses. In particular, a type with extreme risk aversion chooses based on the out-

of-pocket maximum and premium only, trying to reduce spending in the worst case, in

which both are paid. As a result, decreasing the wedge between out-of-pocket maximum

and deductible attracts the more risk-averse and discourages the less risk-averse types

from buying insurance. This tends to rotate the decreasing type frontier counter-

clockwise.

How much individuals with different risk care about reducing the out-of-pocket

maximum rather than the deductible depends on the likelihood ratio of the different

expenses. Starting from a contract for which deductible and out-of-pocket maximum

coincide at Z, the marginal willingness to reduce the deductible relative to the out-of-

24Note that a risk-neutral type is indifferent about buying when (1− F (Z|π))E (k − Z|k > Z, π) =
P . By analogy to the binary case, to obtain a crossing of the type frontiers, we would need the expected
coverage to increase by more than the price for this indifferent risk-neutral type.
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pocket maximum simplifies to the product of co-insurance and hazard rate:

dM

dD
|U(X|π,σ) = (1− β)

f (Z|π)

1− F (Z|π)
. (11)

If the hazard rate were to decrease for higher risk types, they care more about reduc-

ing the out-of-pocket maximum.25 Decreasing the wedge between the out-of-pocket

maximum and deductible then tends to rotate type frontiers clockwise.

A formal characterisation of the plan variation needed for identification (like the

variation in P/q for the binary risk case) is challenging and would require specifying

the feasible risk types F (·|π) and preference types u (·|σ). Still, the insight that plan

variation can help separating risk and preference types clearly extends beyond the

binary risk case. We also illustrate this in our empirical application.

4.2 Using Claims Data

Our approach does not require the availability of claims data as we are not using

information on realised costs. Claims data can help with the identification of preferences

and risk heterogeneity, but this would always rely on two further assumptions.

The first is an assumption of rational expectations, or at least some model of how

perceived risks relate to true risks. Most of the empirical literature studying insurance

choices simply assumes rational expectations on risks. The importance of this assump-

tion is well understood and some recent work has estimated models of risk distortions

(e.g., Barseghyan et al., 2013). Our approach can be viewed as an alternative method

to relax assumptions on the relation between perceived and true risks. When claims

data is available and linkable to choice data, it could also be simply used - without

further identifying assumptions - to compare the realised risks to the perceived risks as

revealed by the contract choices. This allows investigating whether individuals assess

their risks correctly or over-/under-estimate it.

The second is an assumption on the functional form of the type distribution. The

key challenge is to infer the distribution of (ex ante) risk types from a distribution of

(ex post) risk realisations. For example, in the binary risk case, let πa ∈ (0, 1) denote

the average probability of a loss in the population. Without further information on

people’s insurance choices, the average loss probability is not helpful in identifying risk

heterogeneity. In particular, individuals could all have the same risk type (i.e., πi = πa

for all i), all be certain to face the loss or not (i.e., πi = 1 for share πa of individuals

and πi = 0 for the remaining share 1 − πa of individuals), or anything between as

long as the average loss probability equals πa. This identification problem, even under

rational expectations, is a general one that extends beyond binary risks for any family

25Note that when risk types are ranked by first-order stochastic dominance, the hazard rate and thus
the marginal rate of substitution between D and M needs not to be monotone. A monotone likelihood
ratio property for the risk types (i.e., f (k + ε|π) /f (k|π) increasing in π for ε > 0), however, would
imply both a first-order stochastic dominance ranking and a monotone hazard rate function.
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of distribution functions that is convex in the sense that a convex combination of any

two distributions is still in the family.26

The joint observation of plan choices and cost realisations helps circumventing this

problem, but only partially. For example, in our binary choice setting, let π∅ = D(L|∅)
denote the average probability of a loss amongst individuals who do not buy insurance

and let πX = D(L|X) denote the average probability among individuals who buy a

contract. If these probabilities are not the same, the population who buys insurance

faces a different risk on average than those who do not. While we can reject homogene-

ity in risks, we cannot bound the risk distribution much more, as we cannot identify

the risk heterogeneity among those making the same choice, who again could all have

the same risks (i.e., π = π∅ for those who don’t buy insurance) or might be more het-

erogeneous with same average. In fact, as long as there is adverse selection (πX ≥ π∅),
we will not be able to rule out preference homogeneity.27 The same issue arises in the

textbook model. Assuming CARA preferences, claims data can be suffi cient to reject

homogeneity in preferences, but will not allow identification of any additional moments

capturing the variation in preferences. The issue is again that we cannot establish

or reject homogeneity in preferences (nor in risk types) for the individuals choosing

the same coverage level q at unit price p. The observed share of losses D (L|q, p) pins
down only the average risk type among these individuals and a preference type that

rationalises the coverage choice given this average risk type. Hence, there is no way to

identify heterogeneity in preferences or risks beyond these average types that rationalise

the respective coverage choices.

A standard approach in the literature is therefore to rely on parametric assump-

tions about the type distributions instead and to use cross-sectional risk realisations to

identify the distribution of risk types under specific functional forms (see Barseghyan et

al., 2018). Clearly, better data containing multiple observations of risk realisations for

individuals or observables that help predicting an individual’s risk type (e.g., Handel,

2013), or data from surveys eliciting beliefs about risks that help estimating perceived

risks (e.g., Handel and Kolstad, 2015) could further relax this identification problem.

26For example, the convex combination of two normal distributions tends to have two peaks and is
no longer normal. In this case the shape of the overall distribution of risks can identify the distribution
of underlying types, but this relies very much on the choice of the underlying family of distributions.
Putting structure on the risk distribution can be informative to varying degrees. Aryal et al. (2016)
show that with the assumption of a Poisson distribution and information on the number of realised
claims, non-parametric identification is possible. Then Aryal et al. (2010) show in the same set up
that if risk is defined as having any realised claims, then the model is still not identified.
27To see this, let α be the share of individuals buying the plan, and let σX and σ∅ be the preference

types such that a person with either type (πX , σX) and type (π∅, σ∅) is indifferent to buying insurance.
Any individual with intermediate preference type σ̂ ∈ (σX , σ∅) would buy insurance when having the
high risk type πi = πX , but not with low risk type πi = π∅. Hence, even if one presumed that all
individuals share the same intermediate preference type, one could still rationalise the observed choices
and costs by simply assigning the risk type πX to share α of individuals and risk type π∅ to the
remaining share.
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4.3 Using Within-Menu Plan Variation

In practice, we often observe individuals picking a plan out of a menu providing the

choice between several, different plans. We demonstrate how within-menu variation in

plans can still be exploited for identification and link this to the between-menu variation

in plans analysed before.

The first practical insight is that if identification is not possible for plans offered in

different menus (i.e., from between-menu variation, as in our previous setting), identi-

fication is not possible either when these plans are offered together (i.e., from within-

menu variation). This is the case when type frontiers do not intersect, as in the left

panel of Figure 2. Consider again our original binary risk setting, but now with con-

tractsXh andXl offered together in a three-plan menuM = {∅, Xl, Xh}. If contractXh

provides more coverage at higher unit price (such that T (∅, Xh) lies above T (∅, Xl)),

identification is not possible using choices from this menu, as any different choice can

be explained either by higher risk aversion or higher risk. Starting from a type that

buys no insurance, an agent switches first to the low-coverage plan Xl, when increasing

either her risk or preference type, and eventually to the high-coverage plan Xh.

The counterpart of this result is that plan variation that leads to identification

across menus can also provide identification when plans are offered together in one

menu. Consider any two plans Xj and Xj′ for which the type frontiers T (∅, Xj) and

T
(
∅, Xj′

)
intersect, as illustrated before in the right panel of Figure 2. The type (π̄, σ̄)

at the intersection of the two frontiers is indifferent between all three options (including

the outside option ∅). This type (π̄, σ̄) is a natural candidate to provide a bound on

the support of one of the two plans.

We briefly illustrate this in our original binary risk setting. Consider again contracts

Xh and Xl, but with Xh providing more coverage at lower price per unit. Figure 3 plots

the different type sets corresponding to the choice of each of the plans when the plans

are offered within the same menuM = {∅, Xl, Xh}. The low-coverage plan provides an
intermediate option, but as it charges a higher price per unit of coverage, this is only

attractive to individuals with relatively high risk aversion (and relatively low risk type).

Such individuals strongly value the basic coverage provided by the low-coverage plan,

but place less value on the additional coverage provided by the high-coverage plan.

Hence, when increasing the risk type of an individual with risk aversion higher than

σ̄, she will first switch from no insurance to the low-coverage plan before eventually

switching to the high-coverage plan. In contrast, individuals with risk aversion lower

than σ̄ will never buy the low-coverage plan. Their marginal valuation of coverage is

more constant. As a consequence, these individuals remain uninsured when their risk

type is low, but switch immediately to the high-coverage plan (charging a low price per

unit) when their risk type is high.

In Figure 3 this gives rise to an area above σ̄ where agents buy Xl, but not below.

As a consequence, the share of individuals buying the low-coverage plan Xl places
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Figure 3: The figure shows the choices for types in (π, σ)-space from the menu
C = {∅, Xl, Xh}. The lines show the type frontiers for any binary choice. All type
frontiers intersect at (π̄, σ̄). Like in Figure 2, the low-coverage plan charges a higher
price per unit of coverage and therefore differentially attracts types with high risk
aversion (and low risk).

a lower bound on 1 − Hσ (σ̄). The following Lemma summarises identification using

within-menu variation, in line with the potential of between-menu variation described

in Lemma 1:

Lemma 2 Under Assumption 1, the three type sets rationalising the respective plan
choices from the menu M = {∅, Xl, Xh} with qh > ql meet at a unique pair (π̄, σ̄) if

and only if Ph > PL and Pl/ql > Ph/qh. Moreover,∫
π≤π̄

∫
σ≥σ̄

dH ≥ D (Xl|M) .

Proof. See appendix.

Comparing Lemmas 1 and 2, we note three important differences from observing

plan shares when plans are offered jointly rather than pairwise. First, for a given set of

plans, the market shares when all plans are offered jointly allow for tighter bounds, since

for pairwise comparisons the bounds need to be constructed using share differentials.

Second, with all plans offered jointly, the bounds only go in one direction (i.e., π ≤ π̄,
σ ≥ σ̄). This, however, is due to the contract space we consider. For example, extra risk

in the payments of the coverage would discourage the more risk-averse types and allow

for bounds in the opposite direction.28 In general, one-sided bounds are not an issue

in more complex contractual environments for which the dimensionality exceeds the

dimensionality of the type space as we demonstrate in our empirical application in the

next section. Finally, we require the different plans to be offered jointly at the specified

28That is, a random contract Xr that covers the loss in case of accident with probability r > 0 would
allow us to establish such bounds.
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prices. A concern in the absence of random variation is whether the menus offered in a

market equilibrium contain the plan variation that is required for identification.29 By

the same token, the fact that no random plan variation is needed is of course a major

advantage for the applicability of the approach using within-menu variation. This is

also what we exploit in our empirical application, in which the offered menu of health

plans allows us to construct informative bounds. We turn to this now.

5 Application toMassachusetts’Health Insurance Exchange

In this section, we use health insurance plan choices by consumers on the Massa-

chusetts Health Insurance Exchange (HIX) to illustrate our identification method. We

use within-menu plan variation (as opposed to price variation) and derive informative

bounds on the CDFs of risk preferences and expected costs of these consumers.

5.1 Exchange Context

Established by the 2006 Massachusetts Health Reform, the Massachusetts HIX was the

forerunner of the HIXs established across the U.S. by the 2010 Affordable Care Act

(ACA). Data from the Massachusetts HIX allow us to examine consumer choice from a

menu with a variety of plans, offered at posted prices on a guaranteed issue, non-health

rated basis. The menu was designed by the HIX regulator, while prices were set by

individual insurers; premiums vary by plan tier and insurer. The exchange we study

is unsubsidised and open to consumers with incomes over 300% of the federal poverty

level who were not offered insurance through an employer. We restrict attention to

consumers age 27-64; younger consumers are eligible for alternative plans while older

consumers are eligible for Medicare. We further restrict attention to individual plans

to avoid modelling household decision-making (see e.g. Adams et al., 2014). Our

data come from January and February of 2010. We examine the choices of first-time

choosers on the exchange to avoid modelling consumer inertia (Ericson, 2014; Handel,

2013). Additional details on consumer choice, including screenshots of the exchange

website, are available in Ericson and Starc (2016), and the background of the exchange

is described in detail in Ericson and Starc (2012a,b).

To purchase an exchange plan, a consumer first enters their demographic informa-

tion (age and location). Based on the information provided, consumers are shown the

six standardised30 benefit designs (“tiers”): bronze low, bronze medium, bronze high,

29With only heterogeneity in binary risks (Rothschild and Stiglitz, 1976), we would expect the
equilibrium plans providing more coverage to charge a higher price per unit of coverage (i.e., Pl/ql <
Ph/qh). However, even in binary risk settings, multi-dimensional heterogeneity, but also regulatory
interventions or fixed costs (Cawley and Philipson, 1999) may give rise to the plan variation required
for identification.
30Ericson and Starc (2016) describes the standardisation process in more detail. The Massachusetts

HIX tiers in this time period are slightly different from the ACA tiers– for instance, gold on the
Massachusetts HIX is similar to Platinum on the ACA exchanges.
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silver low, silver high, and gold. Each metal tier has the same cost-sharing character-

istics: for instance, all bronze low plans have a $2000 deductible, 20% coinsurance for

hospital charges, and a $5000 out-of-pocket maximum. Similarly, all gold plans have

the same financial features as each other. Each tier offers a higher actuarial value (the

fraction of health care costs that would be insured for a representative sample of the

population) than the tier below. Once picking a tier, consumers can then choose among

different insurance carriers. Insurers are differentiated based on price and provider net-

works, but not based on plan design.

Due to modified community rating regulation, the premium for a given insurer-

plan combination can only vary by geography and age. In particular, premiums are

only allowed to differ for each 5-year age group. Thus, there is menu of several plans

differing in coverage tier and price that is offered to each 5-year age group.31 We use

this within-menu plan variation for identification (as analysed in Subsection 4.3).

5.2 Choice Menu

In order to model consumer choice from the menu of plans, we translate each plan design

into a simplified plan design characterised solely by a deductible D, a coinsurance rate

β, and maximum out-of-pocket spendingM . In a contract characterised solely by these

parameters, an individual’s out of pocket spending is simply a plan-specific function

of their total spending. This simplification is motivated by the fact that contracts are

in fact quite complex, with per-visit co-payments that vary based on service used and

per admission charges to the hospital. Modelling choice from such a complex contract

would require modelling a very detailed level of health care utilisation: for instance, how

often consumers expect to use each type of specialist, each tier of prescription drug, and

differentiating between expenditures for lab tests, durable medical equipment, allergy

treatment, and inpatient spending. Our simplification procedure is also reasonable since

it is unlikely that consumers observed, understood, and had well-formed expectations

of the probability that they would use each of these varied services.

To translate the actual plan design into a simplified plan design X, we entered

the original characteristics of each plan into the Center for Consumer Information &

Insurance Oversight’s (CCIIO) actuarial value calculator– including details such as

per visit co-payments, which produced an estimated actuarial value (AV) for that plan.

Then, we solve for the coinsurance rate (given that plan’s actual deductible D and

maximum OOP M) that would produce the same AV for the simplified version of

each plan characterised by (D,β,M).32 We explore results using a variety of other

31The discontinuities in price created by the 5-year age group pricing regulation provides arguably
exogenous price variation for comparable populations around age cut-offs, but one would need a larger
sample to achieve suffi cient statistical power to use this between-menu plan variation (as analysed in
Subsection 3.1).
32However, because the actual plans did indeed provide some coverage for spending below deductible

(e.g. a $100 doctor’s visit resulted in a $30 copay even if the deductible was not met), our method
underestimated the degree of coinsurance. While the results were reasonably representative of the plans’
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alternative plan translations in the Empirical Appendix (see Appendix Figure A.2).

Table 1 presents the results of this exercise, while Table A.1 describes the detailed

design of the plans as sold on the Massachusetts HIX.33 Premiums are different for

each 5-year age group; we present the premiums for the lowest and highest priced age

group, and focus our analysis on these groups.34

Plans in the table are ordered by their actuarial value, from least to most generous.

While the actuarial values of the Bronze plans are quite similar, the plans vary in

where they apply coverage: Bronze High has a very low deductible but correspondingly

higher coinsurance than Bronze Medium; all Bronze plans have the same maximum

OOP. (Note that despite having a slightly higher actuarial value than Bronze Medium,

Bronze High is priced slightly lower.) Silver Low is quite different as it has a lower

maximum OOP, but a higher deductible relative to Bronze High. Silver High and Gold

are quite similar again: both have zero deductible and a maximum OOP of $2000.

While Gold is more generous based on actuarial value and has a lower coinsurance

rate, it has higher premiums.

While multiple insurers offer plans, we focus our analysis on the price menu of the

most popular insurer (Neighborhood Health Plan), which has approximately 50% mar-

ket share. (The price for each plan design varies across insurers; we have explored using

the prices for other insurers, which give similar results.) In all cases, our results apply

to the population of individuals who chose this insurer. We do not explicitly model

individual’s choice of insurers. Tighter bounds could be obtained by modelling indi-

viduals’pattern of substitution between insurers, but we have limited data to identify

these patterns.35

The final columns of Table 1 present market shares for the plan designs, broken

down by broad age groups. Though prices vary by 5 year age groups, we group those

characteristics, this method produced a 0% coinsurance rate for the Bronze Medium plan, even though
this plan in fact did include cost-sharing after the deductible. We used a corrected coinsurance of 5%
for Bronze Medium, based on dividing the $500 hospital copay (as in the original plan characteristics)
by the mean 2010 hospital stay cost of $9700 (as reported in Pfuntner et al., 2013).
33 In some months, a Silver Medium plan is also offered; when it is, we drop it from our plan menu,

along with the small number of people who choose it from our calculation of market shares. Because
the remainder of the individuals revealed they preferred one of the other plans to Silver Medium,
our bounds are still describing the preferences and beliefs of our sample population. (The bounds we
present are slightly looser than if we had used information about Silver Medium.)
34Premiums are averaged over the two months (there is small variation between January and Febru-

ary) and across zipcodes for all people offered the Neighborhood Health Plan (most people live in the
Boston region).
35Our model is consistent with a variety of different ways in which individuals trade off their preferred

plan design versus price and preferred insurer. For instance, individuals could make a hierarchical
decision, choosing their preferred insurer first (based on insurer network versus insurer’s average price),
then choosing their preferred plan design. Then, our results simply describe the population of people
whose preferred insurer was Neighborhood Health Plan. Alternatively, an individual may have a more
complex pattern of substitution– for instance, a Blue Cross Bronze High plan may be the closest
substitute to a Neighborhood Health Plan Silver Low plan. In this case, our bounds on preferences and
beliefs still describe the population of individuals whose preferred plan was offered by Neighborhood
Health Plan, since the plan they chose was indeed revealed preferred to all other plans offered by this
insurer.
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above and below age 45 to get more accurate estimates of market shares (doing so

reduced sampling error). See Appendix Table A.2 for detailed market shares within

each 5 year age bin category.

5.3 Individual Model of Choice

We model individuals as having CARA utility over consumption: u (−P − x (k)) =

− exp (σ (P + x (k))) /σ, where OOP expenses x (k) are a function of the individual’s

healthcare spending k and the insurance plan they choose. Individuals vary on two

dimensions. First, they vary in their CARA coeffi cient σ. Second, they vary in their

beliefs about the distribution of their own healthcare spending. While there are many

dimensions on which individuals might vary in their distributional beliefs, we sum-

marise variation in expected claims in a single risk-type index, π. For each risk-type

π, the expected claims distribution is assumed to follow a log normal distribution with

mean = π and variance = π
4053

[
1
2 × 10451

]2
.36 Note that variance of expenditures

scales with the mean expected risk. We take the $4053 mean spending number from

the 2010 Medical Expenditure Panel Survey, persons with private insurance. The stan-

dard deviation of expenses is $10451. Someone with π = 4053 has the population

average as his or her mean claim, but because individuals have information about their

own risk type (age, gender, particular diseases, and expected patterns of care), we

assume the individual’s expected standard deviation is half the population standard

deviation. Little is known about risk types and their structure. Under our assumptions,

the variance of claims is lower for an individual with lower mean expected claims. We

have explored alternative variance assumptions, including a model of constant variance

of claims across all risk types.37 Note as well that we have assumed no moral haz-

ard: expected healthcare spending is the same, regardless of which contract individuals

choose.

To determine what can be learned from consumers choosing from the menu of

options in Table 1, we construct a grid of (π, σ) pairs, with σ ranging from 10−15

to 0.5× 10−2 and π ranging from 1/100 the population expected claims (about $40 in

expected claims) to 5 times the population expected claims (about $20, 000 in expected

claims). Each (π, σ) pair represents a combination of expected healthcare costs and

risk aversion. We then calculate the plan that maximises expected utility for each pair.

The first column of Figure 4 displays the optimal plan choice for the youngest group

(Panel A, upper panel) and oldest group (Panel B, lower panel). Recall that prices vary

between age groups, and the older group faces a higher marginal cost of more generous

coverage. For both groups, only individuals with relatively low expected costs choose

the Bronze Low (dark black) plan: it is chosen for only the lowest value of π in Panel

36The mean π and variance are functions of the underlying parameters of the lognormal distribution
that can be written as π = exp(µ+ σ2/2) and variance = exp(2µ+ σ2)

(
exp(σ2)− 1

)
.

37Appendix Figure A.1 shows how choices would shift if alternative variance structures were assumed.
Intuitively, higher variance at a given amount of expected costs tends to increase demand for insurance.
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A, and the lowest two values of π in Panel B. It is attractive for all individuals with

such low expected costs regardless of risk aversion. Bronze Medium is similar to Bronze

Low but with a lower coinsurance rate and priced slightly higher. It is only chosen by

the older consumers at this set of relative prices (it does not appear in Panel A), and

attracts relatively risk averse, but low-risk individuals. Bronze High is the most popular

plan with a market share of 40.2% and 29.0% for the young and old respectively. The

plan is attractive to relatively risk-neutral individuals with a wide range of expected

claims, and to low expected-cost individuals with a wide range of risk aversion. The

plan has a low deductible ($250 vs. $2000 for the other Bronze plans) and is cheaper

than Bronze Medium, but has a higher co-insurance rate above the deductible.

Turning to Silver plans, we find that individuals with the highest expected costs

choose Silver Low rather than Silver High; individuals with intermediate expected costs

choose Silver High. While the two silver plans have the same maximum OOP, the Silver

High plan has a lower deductible but higher coinsurance; from the perspective of risk

averse individuals, paying for first dollar coverage is less valuable than paying for lower

coinsurance. Despite the fact that Silver Low is preferred for many (π, σ) pairs, the

market share of Silver Low is relatively small: only about 3%. This indicates that there

is not a large subset of the population with both very high risk aversion and very high

expected claims.

Finally, note that no one in this menu chooses a Gold plan: its only advantage

over Silver High is lower coinsurance, but it has substantially higher premiums. Thus,

even though the Gold plan has the highest actuarial value, it exposes individuals to

a worse worst-case scenario than the Silver plans. Someone who hits the maximum

OOP of $2000 in both Silver High and Gold will spend more in the Gold plan due to

the higher premiums (an additional $1392 at the premiums faced by older individuals).

This explains why Gold is actually less attractive than Silver for someone who is very

risk averse and expects to hit the OOP maximum.38

5.4 Bounds from Plan Choices

Since Figure 4 shows the optimal plan choice for each π and σ pair, we can combine

its results with the plan shares in Table 1 to construct bounds on the CDFs of π and

σ. Intuitively, about 20% of the younger age group chose bronze low; since bronze

low is only rationalisable for the lowest value of expected claims, at least 20% of the

population must fall in this risk type, providing a lower bound on the CDF.39 Column

38The market share of Gold is relatively small (only 8% for the old), but non-zero. In exploratory
analysis, we do find that the plan becomes rationalisable under certain menus and variance assumptions.
39We do not find values of π, σ that rationalise the choices of Bronze Medium and Gold for the

younger group. When we present our CDFs, we rescale them to represent the CDF for the population
who chose one of the rationalised plans. In an alternative parameterisation discussed in the appendix,
we are able to rationalise Bronze Medium for a limited range of risk aversion parameters (high-variance
specification, Panel B of Appendix Figure A.1).
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2 of Figure 4 presents CDFs of π and σ independently.40 The upper panel shows that

choice provides virtually no restriction on the distribution of risk preferences in the

population facing the young prices. Any single choice of the risk aversion parameter σ

(except the most risk neutral one) could rationalise all the choices. The only restriction

on the distribution is that individuals choosing Silver Low cannot have the most risk

neutral value of σ. This bound, however, is coming from our restriction on the domain of

risk types, having assumed that an individual’s expected claims cannot exceed $20, 000.

The bottom panel of Figure 4 shows that there must be at least some relatively

risk-averse individuals to rationalise choice for older individuals given the prices they

face. The bound is coming from the difference in plan features between Bronze and

Silver plans which differentially attract types along the risk and preference dimension.

Bronze Medium offers relatively generous coverage for intermediate costs and only

attracts types with risk aversion σ ≥ σ̄I = 9.32× 10−4. Types with lower risk aversion

should either buy Bronze High, providing more generous coverage for low costs, or

Silver Low, providing more generous coverage for high costs. Similarly, we find that

Silver High only attracts types with risk aversion σ ≥ σ̄II = 0.0011.41

In line with Lemma 2, the share of older individuals with risk aversion greater than

σ̄II = 0.0011, 1 − Hσ (σ̄II), is at least as high the market share of Silver High and

thus provides an upper bound on the CDF. The share of individuals with risk aversion

above σ̄I = 9.32 × 10−4 is at least the sum of the market shares of Silver High and

Bronze Medium, providing a tighter upper bound on the CDF for this lower level of

risk aversion. Despite our informative upper bound on the CDF, we cannot reject

homogeneity in risk preferences since we cannot place a lower bound on the CDF for

σ < σ̄II = 0.0011. As a consequence, we can fit a degenerate CDF that jumps from

zero to one for risk-aversion levels above σ̄II = 0.0011. Note that the offered plans

do not place any lower bound on the CDF for the preference range shown in Figure

4. So while we can reject that all individuals would have relatively low risk aversion,

we cannot reject that all individuals have some relatively high yet homogeneous risk

aversion.

Turning to the distribution of risk types (π), we note that for each bound on risk

aversion coming from the plan variation corresponds to a bound on risk as well. For

example, Bronze Medium attracts types who not only have relatively high risk aversion

(σ ≥ σ̄I), but also expect low costs (π ≤ π̄I = $1170). Types with higher expected

costs prefer the higher actuarial value of Bronze High or Silver depending on their risk

preferences. The same is true for Silver High, which only attracts types with expected

expenses π ≤ π̄II = $1067. In addition, the choice of Bronze Low, which provides

40 In the Appendix, we also perform a bootstrap analysis to assess how sampling error would affect
our bounds. See Appendix Figure A.3.
41Types with lower risk aversion and relatively low risk should buy Bronze, providing lower coverage

but at substantially lower premium. Types with lower risk aversion but high risk should again buy
Silver Low.
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the lowest coverage, can only be rationalised for types with very low expected costs

(π ≤ π̄III = $383). The cumulative market shares of Bronze Low, Silver High and

Bronze Medium provide a lower bound on the CDF of expected costs at respectively

π̄III , π̄II and π̄I . This is illustrated in the bottom figure of Column 2 of Figure 4

For the distribution of risk types, the market shares can also be used to provide

upper bounds on the CDF. When risk preferences cannot exceed the extremely risk

averse42 σ = 0.005, as illustrated in Column 1 of Figure 4, we find strictly positive

lower bounds on the support of expected expenses for each of the plan choices other

than Bronze Low. The market shares for these plans allow us to construct upper

bounds on the CDF of expected costs. Note that when we relax the constraint on

the preference domain, we still find informative lower bounds on the support for some

plans. For example, for the older individuals, Silver High (Bronze Medium) will only

attract types with expected expenses above $1069 ($383), regardless of what their risk

preferences could be.43

The derived upper and lower bounds on the CDF imply that we can reject homo-

geneity in expected expenses. (We cannot fit a degenerate CDF jumping from 0 to

1 for some π.) Hence, while we can rationalise the different plan choices with only

heterogeneity in expected expenses, we cannot do it with only heterogeneity in risk

preferences. Note that we have considered a wide candidate range for (σ, π). To the

extent you are willing to put further restrictions on the range of reasonable parameters,

tighter bounds can be obtained.

5.5 Discussion

A large empirical literature has argued that heterogeneity in risk preferences is a key

feature of insurance markets and explains why adverse selection is a minor issue in

several markets. The implementation of our non-parametric approach does not allow

us to validate this claim in our empirical context. We cannot reject that all individuals

have the same preferences, while they must differ in their (perceived) risks. However,

the non-parametric bounds on risk preferences, using only plan variation, do not allow

us to distinguish between quite extreme forms of preference heterogeneity either. A

more structural approach could help to tighten bounds on preferences and prove com-

plementary to our approach, but the tighter bounds would rely on the validity of the

imposed structure.

For comparison, Figure 5 plots our bounds on CARA preferences for the old group

with some well-known examples in the insurance literature of parametric estimates

of CARA distributions using standard random utility models. These estimates are

42For σ = 0.005, an individual is indifferent between getting $139 for certain and a 50-50 gamble for
$10,000 or $0.
43Since in the high-variance specification in Panel B of Appendix Figure A.1, we can only rationalise

Bronze Medium for a limited range of risk aversion parameters, the market share of Bronze Medium
provides both a lower and upper bound on the CDF of risk types and preference types.
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Figure 4: Choices and Implied Bounds on Risk Preferences and Risk Perceptions.
Note: “Plan Choices”column presents the utility maximising plan for each π, σ type.
“Implied CDFs”combine market shares of each plan with optimal plan choices to derive
lower and upper bounds on the distributions of π and σ for the population of people
who choose one of the plans shown in the “Plan Choices”column.
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Figure 5: Comparing Bounds on Risk Preferences for Older Individuals on the Massa-
chusetts HIX to Estimates from the Literature

obtained from different contexts and potentially very different populations. Our bounds

do not reject the vast dispersion in risk aversion estimated by Cohen and Einav (2007),

but are also consistent with the more homogeneous distribution estimated in Handel

and Kolstad (2015). Interestingly, this is no longer true for the estimates in Handel

and Kolstad (2015) obtained by augmenting the standard random utility model with

survey data on information frictions. This could indicate that it is not suffi cient to

account for people’s risk perceptions, and that our expected utility model should be

augmented with other informational or behavioural frictions to provide consistent and

tighter bounds on preference heterogeneity. Finally, more plan variation would allow

us to further tighten bounds as well. The regulation of plan features or prices could

provide promising variation for identification.44

6 Conclusion

This paper has shown how to identify both consumer risk preferences and their risk

perceptions, using only insurance choice data. Our method uses variation in insurance

plans that differentially attracts individuals along the preference and risk type dimen-

sions, exploiting the fact that marginal willingness to buy insurance is more rapidly

44The discussed price variation across age groups would be useful for identification in combination
with within-menu plan variation. Comparing the type sets at the young prices and the old prices reveals
that changes in prices change the parameter values that bound the support of particular plans. When
the price variation is exogenous, plan share differentials may be attributable to particular parameter
ranges and thus provide further bounds.
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decreasing in coverage for individuals with high risk aversion (but low risk) than for

individuals with low risk aversion (but high risk).

Our approach allows us to relax strong assumptions about (rational) expectations

and parametric type distributions, as well as to identify preferences and risk perceptions

when claims data is unavailable. We applied our method to the Massachusetts HIX.

For these individuals, we can reject homogeneity in risks, but not homogeneity in

preferences. We estimate bounds on the distribution of preferences that are consistent

with other papers, but provide limited power for identification. We also highlight

the type of variation that is necessary to obtain tighter bounds on the distribution

of preferences, which may be useful for experimentalists eliciting preferences. Future

empirical work could pair our approach with claims data to directly test the assumption

of rational expectations about individuals’distribution of insurance claims, since the

accuracy of risk perceptions is relevant for welfare and policy analysis in insurance

markets (Handel et al., 2019; Spinnewijn, 2017). Moreover, future theoretical work

could change the micro-foundations of the choice model (e.g., by adding loss aversion

or ambiguity aversion) and then analyse which type of plan variation would allow to

identify the primitives of that model.

Ericson: Boston University

Kircher: University of Edinburgh

Spinnewijn: London School of Economics

Starc: Wharton School
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Table 1: HIX Plan Menu

Monthly Premium Market Share

Deductible Coinsurance Max OOP AV Youngest Oldest Under 45 Over 45

Bronze Low 2000 11.20% 5000 73.1 $193 $388 17.9% 19.9%

Bronze Medium 2000 5.00% 5000 79.8 $210 $420 7.0% 14.9%

Bronze High 250 15.40% 5000 85.2 $202 $405 40.2% 29.0%

Silver Low 1000 2.50% 2000 85.6 $273 $540 3.4% 2.9%

Silver High 0 12.20% 2000 92.2 $275 $543 19.6% 25.4%

Gold 0 10.30% 2000 93 $336 $659 12.0% 8.0%

Note: Deductible and maximum OOP are taken directly from the original plan design. Coinsurance rate calculated as defined in
the text. Actuarial values are calculated from original plan design using the CCIIO calculator. Premiums and market shares are
for Neighborhood Health Plan, Jan. and Feb. 2010. Premiums are averaged across the two sample months and across ZIP codes.
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A.1 Theory Appendix

A.1.1 Proofs

Proof of Proposition 1
This proof provides rigor to the outline in the main text. Using Lemma 1, we

can find two menus {∅, Xh} and {∅, Xl} with qh > ql that intersect at an interior

intersection (π̄, σ̄). If αh = D (Xh| {∅, Xh}) is higher than αl = D (Xl| {∅, Xl}), we
know that Hσ (σ̄) ≥ αh − αl and thus Hσ (σ) ≥ αh − αl for any σ ≥ σ̄ since the CDF

is (weakly) increasing. At the same time, 1 − Hπ (π̄) ≥ αh − αl and thus Hπ (π) ≤
Hπ (π̄) ≤ 1−[αh − αl] for any π ≤ π̄. Hence, the plan share difference αh−αl provides a
lower bound on the CDF of preferences (for σ ≥ σ̄) and its complement an upper bound
on the CDF of risks (for π ≤ π̄). Similarly, if αh < αl, the plan share difference αl−αh
places an upper bound on the CDF of preferences (for σ ≤ σ̄) and its complement an

upper bound on the CDF of risks (for π ≥ π̄). Hence, any permissible distribution with
αh 6= αl places a bound on the marginal CDFs.

Consider now a third menu {∅, X ′h}, where the plan X ′h provides more coverage than
the previous high-coverage planXh (i.e., q′h > qh > ql). If the price of the new plan were

set at P ′h such that the price per unit of coverage remains unchanged relative to the old

high-coverage plan (P ′h/q
′
h = Ph/qh), the type (π̄′, σ̄′) that is indifferent between these

two plans is the risk-neutral type (Ph/qh, 0), while otherwise Assumption 1 implies that

the type frontier T {∅, X ′h} would be strictly steeper and therefore strictly above the
type frontier of the previous plan T {∅, Xh}. Instead of this price, assume the price P

′
h

is set slightly lower so that P
′
h/q
′
h < Ph/qh but still P

′
h/q
′
h ≈ Ph/qh. The risk-neutral

type (Ph/qh, 0) now strictly prefers the new plan over the old high-coverage plan, but

by continuity the intersection (π̄′, σ̄′) between T {∅, X ′h} and T {∅, Xh} remains close
to (Ph/qh, 0). Since the intersection (π̄, σ̄) between the original plans T {∅, Xh} and
T {∅, Xl} was placed in the interior of the type space, it had strictly higher risk-aversion
and strictly lower risk than this risk-neutral type, and we have σ̄ > σ̄′ and π̄ < π̄′.

If now for a permissible distribution more agents choose the low contract Xl over
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no insurance than choose the high contract Xh over no insurance (αl > αh), but also

more agents choose the new contract X ′h over no insurance than those that choose the

old high contract over no insurance (αh < α′h ≡ D (X ′h| {∅, X ′h})), we will have that
Hσ (σ̄) ≤ 1 − [αl − αh] < 1 while Hσ (σ̄′) ≥ α′h − αh > 0 by the logic of the first

paragraph of this proof. Since a CDF is weakly increasing and σ̄′ < σ̄, we cannot

fit a degenerate CDF between this lower and upper bound. That is, the lower bound

becomes binding at σ̄′, before the upper bound stops binding at σ̄. We can thus reject

homogeneity in preferences. The same is true for risks.

The final step in the proof is to show that such a distribution exists. To do this,

define for any risk π the preference σl(π) that makes the person indifferent between no

insurance and the low contract, i.e., (π, σl(π)) ∈ T {∅, Xl}, when it exists. Otherwise,
σl(π) = 0. Define σh(π) (σ′h(π)) analogously via indifference between no insurance

and the high insurance (new higher insurance) contract. The non-empty set of types

∆l,h = {(π, σ)|σh(π) > σ > σl(π)} then prefer the low contract to no insurance which
they prefer to the original high contract. Similarly, the non-empty set of types ∆h′,h =

{(π, σ)|σh(π) > σ > σ′h(π)} prefer the new contract to no insurance which they prefer to
the old high coverage contract. Now we can construct a type distribution H by placing

strictly positive mass on types both in ∆l,h and in ∆h′,h, but nowhere else. This implies

that αl > 0, α′h > 0 but αh = 0, which fulfils the premise of the previous paragraph (as

do an uncountable number of other distributions with less stark properties).�

Proof of Proposition 2
Equation (9) in the main text showed that F(α,β)(t) = Pr(αA+βB ≤ t) is observed

for all α, β and t. So we observe the marginal distribution F(α,β) of αA + βB, for

all α, β. Therefore we know its characteristic function F̂(α,β)(τ) for all α and β. We

are interested in the joint cumulative distribution function F (A,B) over A and B, or

equivalently in its characteristic function F̂ (a, b).

The following just recalls the definition of the characteristic function for a random

vector in Rk with cumulative distribution function G(x) with x ∈ Rk. Its characteristic
function Ĝ(ω) with ω ∈ Rk is defined as

Ĝ(ω) =

∫
eiω

T xdG(x)

where ωT is the transpose of ω and i is the imaginary unit.

The remaining identification follows the proof in Cai et al. (2005). At any value

of α and β we can apply the definition of the characteristic function twice (once for

the two-dimensional random vector and once for the one-dimensional marginal random
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vector) to obtain

F̂ (ατ, βτ) =

∫
ei(ατA+βτB)dF

=

∫
eiτ(αA+βB)dF = F̂(α,β)(τ).

Therefore, F̂(α,β)(1) varied over all α and β identifies F̂ (α, β) and therefore identifies

F (A,B). Finally, by the one-to-one mapping between (A,B) and (π, σ) in case of

CARA preferences, this identifies the distribution of risk and preference types as well.�

Proof of Lemma 1.
This proof follows the outline in the main text. We consider the type frontiers for

two menus Mh = {∅, Xh} and Ml = {∅, Xl} with qh > ql. We first establish that if

the two type frontiers intersect, they only intersect once and the high-coverage type

frontier T (∅, Xh) is a clockwise rotation of the low-coverage type frontier T (∅, Xl).

Denote the type at which the two frontiers intersect by (π̄, σ̄). Consider the case where

qh = ql + ε for some small ε. By Assumption 1, any type with higher risk π (lower

preference σ) on T (∅, Xl) than the type at the intersection, who is indifferent between

the high-coverage and low-coverage plan, has higher marginal willingness to pay for the

additional coverage. Therefore, they strictly prefer Xh to both Xl and ∅, which they
are indifferent about. Hence, the type frontier T (∅, Xh) lies to the left of T (∅, Xl)

for π > π̄ and σ < σ̄. Any type with lower risk π (higher preference σ) has lower

willingness to pay for the additional coverage and thus strictly prefers Xl and ∅ to Xh.

Hence, the type frontier T (∅, Xh) lies to the right of T (∅, Xl) for π < π̄ and σ > σ̄.

This proves that T (∅, Xh) intersects T (∅, Xl) once and clockwise, if the two intersect.

Now for a larger difference in coverage, we can find a sequence of contracts Xk with

coverage qk and price Pk, starting from Xl and converging to Xh, such that type (π̄, σ̄)

is indifferent among any two contracts. The reasoning above now applies for any two

consecutive contracts. Our sequence thus corresponds to a sequence of type frontiers

that intersect only once and imply clockwise rotations around (π̄, σ̄). Hence, this is

also true for T (∅, Xh) relative to T (∅, Xl).

We now establish when the two type frontiers intersect. Consider first the case

Ph/qh > Pl/ql (i.e., the average price per unit is higher for the high-coverage contract

Xh). This implies that the risk-neutral type with π = Pl/ql strictly prefers Xl and ∅
(which he is indifferent about) to buying Xh. Hence, the type frontier T (∅, Xh) lies to

the right of the type frontier T (∅, Xl) for σ = 0. This implies that the two frontiers

cannot intersect, since T (∅, Xh) would be a clockwise rotation of T (∅, Xl) and thus to

the left of it for σ = 0 in case the type frontiers were to intersect.

Consider now the case that Ph/qh ≤ Pl/ql. In this case, the risk neutral type with

π = Pl/ql prefers Xh above Xl and ∅. Moreover, since the marginal willingness to
pay for the additional coverage converges to zero when moving up along the frontier
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T (∅, Xl), there is a type with suffi cient low risk (and high preference) that prefers Xl

(and thus ∅) above Xh as long as Ph > Pl. Hence, the two type frontiers intersect.

However, if Ph ≤ Pl, all types on T (∅, Xl) strictly prefer Xh above Xl and thus ∅. The
two type frontiers again do not intersect. This proves the first part of the Proposition.

Since T (∅, Xh) is a clockwise rotation of T (∅, Xl) around (π̄, σ̄), the high-coverage

contract Xh differentially attracts types with high risk, but low preference. Types that

prefer Xh above ∅, but ∅ above Xl (i.e., B (Xh| {∅, Xh}) \B (Xl| {∅, Xl})), need to have
preference σ ≤ σ̄ and risk π ≥ π̄. Only individuals with such types could rationalise

that plan Xh attracts a larger share of the population than plan Xl. Similarly, types

that prefer Xl above ∅, but ∅ above Xh (i.e., B (Xl| {∅, Xl}) \B (Xh| {∅, Xh})), need to
have preference σ ≥ σ̄ and risk π ≤ π̄. Only these types could rationalise that plan Xl

attracts a larger share of the population than plan Xh. Hence, we have∫
π≥π̄

∫
σ≤σ̄

dH ≥
∫
B(Xh|{∅,Xh})\B(Xl|{∅,Xl})

dH

≥
∫
B(Xh|{∅,Xh})\B(Xl|{∅,Xl})

dH −
∫
B(Xl|{∅,Xl})\B(XH |{∅,XH})

dH

= αh − αl
≥ −

∫
B(Xl|{∅,Xl})\B(XH |{∅,XH})

dH

≥ −
∫
π≤π̄

∫
σ≥σ̄

dH,

which proves the second part of the proposition. Note that if the type frontiers do not

intersect, the support of the set of types that prefer the one plan, but not the other,

covers the entire range of the preference domain. The differential plan share no longer

places a bound on the distribution of preferences.�

Proof of Lemma 2.
By Lemma 1, we know that type frontiers T (∅, Xh) and T (∅, Xl) intersect if and

only if Ph/qh ≤ Pl/ql and Ph > Pl. We denote this intersection by (π̄, σ̄). In this

case, the type frontier T (Xh, Xl) intersects both frontiers again at (π̄, σ̄), since this

intersection type is indifferent among both plans and the option not to buy insurance.

Moreover, the type frontier T (Xh, Xl) is a clockwise rotation of T (∅, Xh), which is

a clockwise rotation of T (∅, Xl). Note first that the willingness to choose the high-

coverage plan over the low-coverage plan is increasing in both risk and preference.

The type frontier is monotonically decreasing in (π, σ)-space, just like the original two

frontiers. Now consider a type on the frontier T (∅, Xh) above the intersection (with

low risk, but high preference). This type strictly prefers Xl to ∅ and thus Xh, since

T (∅, Xh) is to the right of T (∅, Xl). Hence, the type frontier T (Xh, Xl) is to the right

of T (∅, Xh). The set of types choosing Xl above both Xh and ∅, i.e., B (Xl|{∅, Xl, Xh})
corresponds to this region between the two frontiers T (∅, Xl) and T (Xh, Xl) above
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(π̄, σ̄). Indeed, consider a type on the frontier T (∅, Xh) below the intersection (with

high risk, but low preference). This type strictly prefers ∅ and thus Xh to Xl. Hence,

the type frontier T (Xh, Xl) is to the left of T (∅, Xh) (and thus to the left of T (∅, Xl)).

This implies that no type with σ < σ̄ or π > π̄ will choose the low-coverage plan. It

immediately follows that the share of individuals buying the low-coverage plan (out of

this 3-options menu) puts the following lower bound,∫
π≤π̄

∫
σ≥σ̄

dH ≥
∫
B(Xl|{∅,Xl,Xh})

dH ≥ D (Xl|C) .

For completeness, the set of types choosing Xh above Xl and ∅, i.e., B (Xh|{∅, Xl, Xh})
corresponds to the region to the right of T (∅, Xh) below (π̄, σ̄) and to the right of

T (Xh, Xl) above (π̄, σ̄), as illustrated in Figure 3.

Note that if Ph ≤ Pl, no type will ever buy the low-coverage plan. Hence, the

only relevant type frontier is T (∅, Xh). If Ph > Pl and Ph/qh > Pl/ql, none of the

type frontiers intersect. The type frontier T (Xh, Xl) now lies to the right of the type

frontier T (∅, Xh), which lies to the right of type frontier T (∅, Xl). Types to the right

of T (Xh, Xl) will buy the high-coverage plan. Types to the left of T (∅, Xl) will buy

no insurance. Types in between will buy the low-coverage plan. Since the support of

any of the choices corresponds to the full preference domain, we can place no bounds

on the distribution of preferences.�

A.1.2 Additional Results

A.1.2.1 CARA Preferences

We show that Assumption 1 holds for CARA preferences u(k|σ) = −e−σk/σ. The
marginal rate of substitution (4) can be written as

MRS ≡ −dmg

dmb
|U(X|π,σ) =

π

1− π
eσ(P+L−q)

eσP
(12)

The type frontier T (∅, X) is the set of types (π, σ) for which (3) holds with equality,

which for CARA preferences reads as:

π

1− π
−eσ(P+L−q) + eσL

−1 + eσP
= 1 (13)

Note that smaller π are associated with larger σ, and π → 0 is associated with σ →∞.
Since we evaluate (12) only along (13), we can substitute the latter into the former to
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obtain a marginal willingness to pay along the type frontier of

MRS|(π,σ)∈T (∅,X) =
−1 + eσP

−eσ(P+L−q) + eσL
eσ(P+L−q)

eσP

=
1− e−σP

−1 + eσ(q−P )
.

Since P < q, it is immediate that limσ→∞ MRS|(π,σ)∈T (∅,X) = 1/∞ = 0, which es-

tablishes that MRS goes to zero as π goes to zero. Moreover, MRS is monotonically

decreasing in σ along the type frontier (and thus monotonically increasing in π) if

d MRS|(π,σ)∈T (∅,X)

dσ
=
Pe−σP

(
−1 + eσ(q−P )

)
− (q − P )eσ(q−P )

(
1− e−σP

)(
−1 + eσ(q−P )

)2
is strictly negative. This arises if the denominator is strictly negative, i.e., if

Pe−σP
(
−1 + eσ(q−P )

)
− (q − P )eσ(q−P )

(
1− e−σP

)
< 0

⇔ −q(1− e−σP ) + P (1− e−σq) < 0

⇔ P
(
1− e−σP

)−1 − q(1− e−σq)−1 < 0.

which holds since P < q and x/(1− e−σx) is increasing in x.�

A.1.2.2 Limited Price Variation in Textbook Model

Proposition 3 Consider a binary risk k ∈ {0, L}, choice sets Mp with constant unit

price and CARA preferences. Rejecting homogeneity in preferences (risks) is possible

when observing the distribution of coverage choices in Mp for two prices in the unit

interval. We can identify the variance in (inverse) preference types when observing the

distribution of coverage choices inMp for three prices.

The demand specification in (7) for CARA preferences implies

V ar (q|p) = V ar (A) + V ar
(
σ−1

)
× p̃2 − 2Cov

(
A, σ−1

)
p̃ (14)

for p̃ = log (p/ [1− p]) . Hence, with two exogenous prices, we obtain

[V ar (q|p1)− V ar (q|p2)] / [p̃1 − p̃2] = V ar
(
σ−1

)
× [p̃1 + p̃2]− 2Cov

(
A, σ−1

)
. (15)

We can use this to test for homogeneity in preferences and risks. This is easy to see for

the preference types. Whenever the difference in variances in equation (15) is different

from 0, we can reject that σ (or σ−1) is constant and thus that the preference type is

homogeneous. For a constant σ, both V ar
(
σ−1

)
and Cov

(
A, σ−1

)
would be equal to

0.
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It is left to show that we can test for homogeneity in risks with two prices. For this

we can use equations (14) - (15) for the variance and we can exploit similar expressions

for the average:

E (q|p) = E (A)− E
(
σ−1

)
× p̃, and

E (q|p1)− E (q|p2) = E
(
σ−1

)
× [p̃2 − p̃1] (16)

Using the fact that A = L+ log
(

π
1−π

)
σ−1 under CARA, we know that if the the risk

type π were to be homogenous, we could infer the homogeneous risk type from

E (q|p) = E (A)− E
(
σ−1

)
× p̃

= L+ log

(
π

1− π

)
E
(
σ−1

)
+ E

(
σ−1

)
× p̃,

where we know E
(
σ−1

)
from the difference in coverage choices in (16). For a homoge-

neous risk type, we also know that

V ar (A) = log

(
π

1− π

)2

V ar
(
σ−1

)
Cov

(
A, σ−1

)
= log

(
π

1− π

)
V ar

(
σ−1

)
.

and thus

V ar (q|pk) = V ar (A) + V ar
(
σ−1

)
× p̃2

k − 2Cov (A,B) p̃k

=

[
log

(
π

1− π

)2

+ p̃2
k − 2 log

(
π

1− π

)
p̃k

]
V ar

(
σ−1

)
.

Hence, we can reject homogeneity in risk types if

V ar (q|p1)

V ar (q|p2)
6=

log
(

π
1−π

)2
+ p̃2

1 − 2 log
(

π
1−π

)
p̃1

log
(

π
1−π

)2
+ p̃2

2 − 2 log
(

π
1−π

)
p̃2

.

Finally, when observing three (exogenous) prices, we can also identify the variance

of the inverse of the coeffi cient of absolute risk aversion

V ar
(
σ−1

)
=
[
V ar(q|p1)−V ar(q|p2)

p̃1−p̃2 − V ar(q|p2)−V ar(q|p3)
p̃2−p̃3

]
/ [p̃1 − p̃3] .

�
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A.2 Empirical Appendix

A.2.1 Alternative Modeling Assumptions

In this Appendix, we present the optimal plan choice results under different assump-

tions. In Figure A.1, we model alternative relationships between the mean and vari-

ance of claims. In our main analyses, for risk type π, the expected claims distribu-

tion is assumed to follow a log normal distribution with mean = π and variance =
π

4053

[
1
2 × 10451

]2
For comparison purposes, we show, once again, the optimal choice for each π, σ

pair for older individuals in Panel C of Figure A.1. We then model choice with more

or less variability in claims. In Panel A of Figure A.1, we show the choice assum-

ing that the variance of claims is half of that in our main specifications: variance=
1
2

π
4053

[
1
2 × 10451

]2
. This would correspond to a case in which individuals have addi-

tional information predicting about their expected costs, reducing variability. Then,

in Panel B, we run a high variance specification where variance is twice that in our

main specifications: variance = 2× π
4053

[
1
2 × 10451

]2
. The results are intuitive: more

variability increases the demand for more generous insurance.

We then turn to alternative menu designs in Figure A.2, again showing optimal

choices for older individuals. Panel A examines a modified menu, in which the Bronze

Medium plan has a deductible of $1462 instead of $2000; we make this modification so

that the actuarial value of the Bronze Medium plan as modelled matches the actuarial

value of the more complex Bronze Medium plan on the exchange. This menu leads

to some modest changes in choice as compared to our main specification. In Panel

B, we consider the case in which the Bronze Medium plan has zero coinsurance as

produced by our original method described in the text. Unsurprisingly, this leads to

Bronze Medium being a very favoured plan. However, this is unlikely to be a faithful

representation of the Bronze Medium characteristics. Finally, Panel C of Figure A.2

examines a very different menu design. For Panel C, we construct coinsurance values

(for plans that have co-payments instead of coinsurance) by taking the hospital co-

payment value and dividing by the mean cost of a hospital admission of $9700. This

method, however, does not do a good job modelling the relative quality of Silver Low,

as Silver Low requires paying the deductible and then has zero hospital co-payment.

We then drop Silver Low from this menu. The menu of coinsurance values used in

Panel C is given below:

Coinsurance for Panel C of Figure A.2

Bronze Low 0.2

Bronze Medium 0.05

Bronze High 0.35

Silver High 0.05

Gold 0.02
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A.2.2 Bounds

We perform a bootstrap analysis to assess how sampling error would affect our bounds.

We drew 100 samples of consumers with replacement. Given consumer choices, we

calculated market shares and used the method described in the paper to calculate the

implied bounds. (Given the small range of parameters for which both the upper and

lower bounds are informative, we do not consider the case in which the bounds cross,

making the bootstrap invalid.) We superimpose the 5th and 95th percentile of the

implied distribution point-by-point on original Figure 4. The figure shows that when

the bounds are informative, they are fairly precisely measured.
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Figure A.1: Optimal Plan Choices for Older Individuals under Alternative Variance
Assumptions.
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Figure A.2: Optimal Plan Choices for Older Individuals under Alternative Menu De-
signs.
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Figure A.3: Bounds with Bootstrapped Confidence Intervals. Note: Plots the 5th and
95th percentile of the implied distribution from a bootstrap procedure point-by-point
on original Figure 4. Our bootstrap drew consumers (with replacement) to obtain
100 vectors of market shares. For each vector of market shares, we used the method
described in the paper to calculate the implied bounds.
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Table A.1: Summary of detailed plan parameters, taken from the HIX’s website

Plan Design Deductible Max OOP Doctor Visit Generic Rx Emergency Room Hospital Stay

Bronze Low $2000 $5000 deduct., then $25 copay deduct., then $15 copay deduct., then $100 copay deduct., then 20% co-insurance

Bronze Medium $2000 $5000 $30 copay $10 copay deduct., then $150 copay deduct., then $500 copay

Bronze High $250 $5000 $25 copay $15 copay $150 copay deduct., then 35% co-insurance

Silver Low $1000 $2000 $20 copay $15 copay deduct., then $100 copay deduct., then no copay

Silver High $0 $2000 $25 copay $15 copay $100 copay $500 copay

Gold $0 None $20 copay $15 copay $75 copay $150 copay
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Table A.2: Detailed Plan Shares, among individuals who chose Neighborhood

Health Plan.

Age Group

27-29 30-34 35-39 40-44 45-49 50-54 55+

Bronze Low 13.3% 20.0% 20.0% 18.0% 20.5% 21.6% 18.2%

Bronze Medium 7.1% 7.3% 6.0% 8.0% 10.3% 18.2% 15.5%

Bronze High 49.0% 38.2% 35.0% 38.0% 37.2% 15.9% 33.6%

Silver Low 1.0% 4.5% 5.0% 2.0% 1.3% 3.4% 3.6%

Silver High 19.4% 19.1% 19.0% 22.0% 21.8% 28.4% 25.5%

Gold 10.2% 10.9% 15.0% 12.0% 9.0% 12.5% 3.6%
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