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Adopt or Innovate: Understanding Technological 

Responses to  Cap-and-Trade†

By Raphael Calel*

One important motivation for creating  cap-and-trade programs 
for carbon emissions is the expectation that they will stimulate 
 much-needed  low-carbon innovation. I construct a new panel of 
British firms to investigate this hypothesis, finding that the European 
carbon market has encouraged greater  low-carbon  patenting and 
R&D spending among regulated firms without necessarily  driving 
 short-term reductions in carbon intensity of output. This stands in 
 contrast to past  cap-and-trade programs, which have  primarily 
spurred adoption of existing pollution control technologies, with 
 little effect on innovation. I discuss how to reconcile these  contrasting 
findings and implications for the future of carbon  markets. (JEL D22, 
O32, O34, Q52, Q54, Q58)

The feasibility of rapidly decarbonizing the world economy rests on the timely 

development of new  low-carbon technologies. Projections show that R&D 

spending needs to increase by an order of magnitude by 2030 to meet global  climate 

goals (Rockström et al. 2017). This is one important motivation for the creation of 

new  cap-and-trade programs for carbon emissions (European Commission 2005; 

Stavins 2007). More than 100 countries have now pledged to put a price on  carbon, 

and more than half of global greenhouse gas emissions could end up  covered by 

 cap-and-trade programs once these commitments are fully implemented (World 
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Bank 2017). Yet when past  cap-and-trade programs have been implemented—to 

regulate SO    2   , NO    X   , lead, and  ozone-depleting substances—the emissions reductions 

mainly resulted from adoption of techniques and equipment that were readily avail-

able. There was negligible development of new technologies (Taylor 2012). This 

paper asks whether carbon markets are repeating this historical pattern. The absence 

of an innovation response would present a serious challenge to meeting global cli-

mate goals.

In this paper, I examine firms’ technological responses to the world’s largest car-

bon market—the European Union’s Emissions Trading System (EU ETS). Early 

carbon trading experiments such as the EU ETS have naturally garnered a great 

deal of interest (Schleich and Betz 2005; Gagelmann and Frondel 2005; Grubb, 

Azar, and Persson 2005), but no study to date has been able to look comprehen-

sively at firms’ responses: their adoption of existing abatement technologies as well 

as their innovation of new ones. I have assembled a new dataset that links admin-

istrative data on British firms with business surveys and regulatory records. This 

is the largest firm-level database yet on three important measures of technology 

adoption and innovation: CO    2    intensity of production,  low-carbon patenting, and 

 low-carbon R&D expenditures. These measures provide the best picture yet of how 

firms have responded to the EU ETS.

I present evidence that relative to historically similar firms, the firms whose 

plants came under the EU ETS (i) do not appear to have adopted  off-the-shelf 

 low-carbon technologies on any substantial scale, but (ii) they have increased their 

 low-carbon patenting and R&D spending by roughly  20–30  percent. Under the 

conservative assumption that only the directly regulated firms responded to the 

EU ETS, my estimates imply that the program was responsible for an additional 

£ 350–£450 million in total R&D spending and  100–150 patents in  2005–2012. 

These estimates provide a lower bound, and the total effects could be as much as 

twice this once we take account of innovations by firms that were not directly reg-

ulated by the EU ETS.

To identify the effects of the EU ETS, I exploit two features of its implementation 

in Britain. First, only the firms that operate at least one “large” plant are required 

to comply with the EU ETS, even though firms that operate smaller plants may be 

just as large in total, as polluting, and as innovative. I estimate the EU ETS’s effects 

on adoption and innovation by comparing initially similar firms that were regulated 

differently because one of them, but not the other, operated a plant larger than the 

EU ETS  size thresholds. Second, the EU ETS thresholds differed sufficiently from 

Britain’s preexisting climate regulations so that many firms previously covered by 

the same regulations suddenly became subjects of different ones. Thus my setting 

allows me to condition on past policies at the firm level and isolate the EU ETS’s 

effects relative to those other carbon policies, something that has not been possible 

elsewhere.

This identification strategy exploits thresholds that affect the largest and most pol-

luting firms, so getting precise estimates depends on having a large starting popula-

tion. I have assembled data on the universe of 6 million British firms active between 

2000 and 2012, from which I have culled about 900 firms—half EU ETS and half 

 non-ETS—that operate in proximity to these thresholds. A sample of this size would 
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usually be more than adequate for obtaining considerable precision. But since 

 low-carbon patenting and R&D spending are rare activities for firms to  undertake, 

my estimates are more suggestive than definitive. The economic magnitudes are sen-

sitive to specification, in some cases shrinking toward zero. Nevertheless, they have 

qualitative consistency. The direction of my point estimates appears to be robust.

The contrast between the effects I observe under the EU ETS compared to what 

others have observed under past  cap-and-trade programs may rest on the fact that 

the EU ETS regulates carbon, a pollutant of relatively recent concern, whereas 

past programs addressed pollutants that were already targets of  long-standing 

 command-and-control regulations. So in past programs, firms were able to adopt 

abatement technologies that had matured under prior regulations, whereas technol-

ogy development naturally plays a bigger role for carbon dioxide.

A positive effect on innovation would have hopeful implications for the future 

of carbon markets. Cost savings from adoption plus innovation will be greater than 

from adoption alone. Future reductions in abatement costs therefore could be greater 

than experience from previous  cap-and-trade programs suggests. Lower costs of 

cutting carbon would make more ambitious emissions caps feasible, giving us a 

better chance of avoiding the worst effects of climate change.

I. Related Literature

According to the induced innovation hypothesis, a higher relative price of a fac-

tor of production spurs innovation that reduces the use of that factor. Along such 

lines, following Porter (1991), a considerable literature has emerged on the effects 

of environmental regulations on technological change (Palmer, Oates, and Portney 

1995; Ambec et al. 2013), especially in the context of climate change mitigation 

(Acemoglu et al. 2012, Aghion et al. 2016). Despite broad empirical support for 

such induced innovation (Jaffe and Palmer 1997; Newell, Jaffe, and Stavins 1999; 

Berman and Bui 2001; Popp 2002; Brunnermeier and Cohen 2003), empirical stud-

ies of  cap-and-trade programs have found little effect on the development of new 

technologies. They reduced emissions, instead, by encouraging adoption of avail-

able abatement techniques and equipment.

A. Evidence from Past  Cap-and-Trade Programs

The Acid Rain Program—a major  cap-and-trade program for SO    2    emissions from 

US coal plants that began in 1995—encouraged firms to adopt readily available 

 flue-gas desulfurization technology (or “scrubbers”) and to purchase coal with a 

lower sulfur content (sometimes known as “blending”) (Schmalensee et al. 1998).1 

Panel A1 of Figure 1 shows a large spike in adoption of scrubbers at the introduction 

of the Acid Rain Program, and panel A2 shows how the share of  low-sulfur coal 

1 Sometimes blending is referred to as a form of innovation (e.g., Burtraw 2000). I consider it to be adoption in 
line with the definition offered above and elaborated on in Section II.
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 continued through the transition.2 Although patenting for  higher-efficiency scrub - 

bers increased as a proportion after the 1990 Clean Air Act Amendments were  

passed (Popp 2003), the efficiency of newly installed scrubbers actually declined 

after the surge of installations in the  mid-1990s (B1). Overall, patenting for  

 low-sulfur technologies declined substantially after the introduction of  cap-and- 

trade (B2) (Taylor 2012). Most improvements in the performance and capital 

costs of scrubbers occurred well before the Acid Rain Program came into effect  

2 The graphs collected in Figure 1 are synthesized from the empirical literature to illustrate its main conclu-
sions. The conclusions themselves, however, are based on a much more comprehensive and rigorous assessment 
of available data.

Figure 1. Adoption and Innovation in Past  Cap-and-Trade Programs

Notes: These graphs are meant only as illustration of the findings from the empirical literature. Panels A1, A3, 
B2, and B3 are adapted from Taylor (2012). Panel A2 is adapted from Energy Information Administration (EIA) 
(2009). Panel B1 replicates and extends Popp (2003) using information from the  EIA-767 forms (as in Popp, I show 
a  three-year moving average). Panels A4 and B4 are adapted from Kerr and Newell (2003). 
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(Taylor,  Rubin, and Hounshell  2003,  2005). Nor did the program boost other 

 low-emission technologies (Hanemann 2010). Moreover, some of the US patents 

protected inventions from other countries that regulated SO    2    by means other than 

 cap-and-trade (Dekker et al. 2012).
Studies of other  cap-and-trade programs tell a similar story. The NO    X    Budget 

Trading Program spurred adoption of selective catalytic reduction (SCR)  technology 

(A3) (Fowlie, Holland, and Mansur 2012), but patenting for SCR and other 

   NO   X      - control technologies fell dramatically (B3) (Taylor 2012). The Environmental 

Protection Agency’s (EPA)  market-based  phaseout of leaded petroleum stimulated 

adoption of the main substitute technology,  pentane-hexane isomerization (A4), 
but the cost of the equipment did not come down markedly (B4), nor were any 

noteworthy new technologies introduced (Kerr and Newell 2003). When markets 

for chlorofluorocarbons were set up in the late 1980s, an economically competi-

tive replacement, hydrochlorofluorocarbons, already existed (Gorman and Solomon 

2002). Most industries modified their production processes with little difficulty, and 

where necessary technological advances did occur, they are attributable to invest-

ments made well before the trading program was in place (Falkner 2008).
These  cap-and-trade programs were implemented at different times, for different 

industries and pollutants, and required different abatement technologies. Yet there is 

a consistent pattern. Firms favored adoption over innovation.

B. Evidence from the EU ETS

Early studies of the EU ETS suggested that emissions reductions could be largely 

explained by fuel switching in the power sector (Delarue, Ellerman, and D’haeseleer 

2010; Delarue, Voorspools, and D’haeseleer 2008). By bringing  gas-fired plants 

online before  coal-fired ones, the power producers could reduce the CO    2    intensity 

of output. That is a story of adoption. However, more recent research reaches the 

opposite conclusion. Studies of regulated firms in Sweden (Widerberg and Wråke 

2009, Löfgren et al. 2013), Norway (Klemetsen, Rosendahl, and Jakobsen 2016), 
Lithuania (Jaraitė and Di Maria 2016), and Ireland (Jaraitė and Di Maria 2011) have 

all struggled to find evidence that the EU ETS has encouraged adoption and any 

reduction in the CO    2    intensity of output.3

Findings on innovation are likewise contradictory. Early case studies and expert 

interviews found that firms were not putting resources into development of new 

 low-carbon technologies (Hoffmann 2007; Tomás et al. 2010; Anderson, Convery, 

and Di Maria 2011). These findings were bolstered by evidence from patent data 

(Aghion, Veugelers, and Serre 2009). However, more recent studies with larger, more 

disaggregated datasets have found that EU ETS firms are investing in  low-carbon 

innovation (Martin, Muûls, and Wagner 2011; Calel and Dechezleprêtre 2016).

3 These findings do not contradict evidence that  ETS-regulated firms have reduced the absolute level of 
emissions of regulated firms in Germany (Petrick and Wagner 2014), France (Wagner et al. 2014), and Norway 
(Klemetsen, Rosendahl, and Jakobsen 2016). The 2008 recession likely would have produced reductions even in 
the absence of adoption.
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The findings of these previous studies—which use different methodologies to 

obtain estimates from different countries and sectors—are difficult to reconcile. 

It is especially difficult to form a comprehensive picture of firms’ technological 

responses as no single study has looked at adoption and innovation together. This 

paper fills that gap.

II. Basic Theory

So far, I have used “adopt” and “innovate” to refer loosely to the use of existing 

abatement technologies and the development of new ones. Figure 2 represents the 

conceptual distinction. Adoption moves a firm along its marginal abatement cost 

curve; after adopting the cheapest available abatement option, it faces a higher mar-

ginal cost for the next increment of abatement. By contrast, innovation expands the 

technology set and creates opportunities for greater abatement at a given marginal 

cost. This shifts the marginal abatement cost curve inward.

For a firm under a  cap-and-trade program, the shaded area A represents the sav-

ings from adopting the cheaper abatement options instead of purchasing the emis-

sions allowances needed to cover its uncontrolled emissions. Firms not subject to 

the cap have no comparable incentive. Even if the emissions price is passed on to 

unregulated firms in the form of higher product prices, this incentivizes them to 

adopt technologies that rely less on  pollution-intensive intermediate goods rather 

than technologies that reduce their own emissions.

A firm regulated under a  cap-and-trade program can expect to earn a surplus B if 

it innovates. Its gains come both from the lower abatement costs for a given level of 

abatement and from a lower emissions price that occurs when the new technology 

comes into general use and reduces aggregate demand for emissions allowances. 

Figure 2. Incentives for Adoption and Innovation

Notes: In the absence of a regulatory constraint, a firm will produce emissions  E  up to the point where the marginal 
benefit from emissions goes to zero,   E 0    . The curve  MC  shows the marginal cost of reducing emissions below   E 0    . 
A firm that becomes regulated under a  cap-and-trade program is faced with paying  p  to obtain allowances at the 
margin but can reduce its compliance cost by adopting all abatement technologies with a marginal cost below 
the allowance price  p . The shaded area A shows the gain from doing so. Innovation increases the availability of 
 abatement technologies, illustrated as a pivot of the  MC  curve in the right-hand panel. Since the technology frontier 
shifts for all firms, innovation reduces aggregate demand for allowances, and the price  p  falls. The shaded area B 
shows the reduction in a regulated firm’s compliance cost that results from this innovation. See Requate (2005) for 
a  standard treatment of the incentives to adopt and innovate under  cap-and-trade.
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The emissions price will also incentivize firms that are not regulated by the cap, 

since uncapped firms can profit by selling the new  emissions-saving technology to 

capped firms. As long as a  third-party innovator cannot fully extract the capped firm’s 

 surplus, though, the same emissions price will provide weaker  innovation incentives 

for uncapped firms.4, 5 Theory does not tell us whether the wedge between the inno-

vation incentives of capped and uncapped firms is large or small, but Dechezleprêtre 

and Glachant (2014) and Calel and Dechezleprêtre (2016) find it is big enough to 

be empirically relevant.

Whether a  cap-and-trade program will primarily encourage adoption or inno-

vation will depend on the current abatement options (captured by the shape of the 

marginal abatement cost curve) and potential technological innovations (captured 

by the inward shift of the curve).6 Nevertheless, this stylized framework gives us a 

lens for viewing the body of evidence. In past programs, available technologies were 

sufficient to meet mandated emissions caps at reasonable cost, and the  cap-and-trade 

programs allowed firms enough flexibility to choose this  lower-cost strategy. The 

emphasis on adoption is rightly seen as evidence of their success (Burtraw 2000). 
It also implies, though, that past programs do not furnish a good test of whether 

 cap-and-trade can induce innovation when it is needed. If the curves for  low-carbon 

technologies are sufficiently different from those in previous programs, the response 

could be qualitatively different.

This simple model also makes one important prediction. A  cap-and-trade pro-

gram encourages adoption or innovation more strongly for capped than uncapped 

firms. The point is straightforward for adoption, but it also extends to innovation. Of 

course, to the extent that unregulated inventors can extract a portion of the innova-

tion surplus, a  cap-and-trade program can encourage  third-party innovation as well. 

A comparison between regulated and unregulated firms will then produce conser-

vative estimates for the program’s total effect. Nevertheless, for firms with similar 

levels of patenting and R&D spending prior to the new regulation—which ensures 

4 It is a standard assumption that an innovator cannot completely appropriate the gains from a new technology 
(Milliman and Prince 1989; Fischer, Parry, and Pizer 2003). Transactions costs, asymmetric information, substitut-
ability, and the fact that the gains from innovation partly come about through lower emissions prices all dissipate the 
rents that an inventor can extract. The degree of appropriability may be especially low for clean technologies, where 
technological spillovers are typically larger (Dechezleprêtre, Martin, and Mohnen 2014). Moreover, introducing a 
new abatement technology into a plant can require substantial  in-house development, which a  third-party innovator 
does not provide. If only the “research” portion of B is appropriable but not the “development” portion, this further 
reduces the share of B that a  third-party inventor can extract. This would be consistent with evidence that internal 
R&D is more valuable to firms (Arora, Belenzon, and Sheer 2017). If there is emphasis on process innovations, 
which may not be sold at all, the appropriable fraction of B could approach zero. Regulation also can increase the 
salience of pollution management within regulated firms compared to unregulated ones, leading them to be more 
aware of the costs of regulation (Martin et al. 2012) and to have systematically higher estimates of the gains from 
innovation, B (Martin, Muûls, and Wagner 2011).

5 Selling new  low-carbon technologies to capped firms is not the only reason why an uncapped firm will have 
an incentive to innovate. If the emissions price makes  pollution-intensive intermediate goods, such as electricity, 
more expensive, they will have an incentive to develop technologies that use less of these inputs. This indirect effect 
primarily concerns  energy-saving technologies rather than  emissions-saving technologies, however, which are not 
the main focus here. Moreover, higher electricity prices would induce parallel increases in the incentives for capped 
and uncapped firms and leave the difference between them unaffected. This effect would not affect my estimates, 
therefore, but does imply they might not fully capture the total effect of the  cap-and-trade program. I return to this 
issue later in the discussion of results and robustness.

6 Similarly, a more stringent emissions cap could favor either adoption or innovation, depending on how these 
curves are drawn.
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they balance the benefits and costs of innovation at the same level—the wedge intro-

duced by a  cap-and-trade program provides a way to empirically identify whether 

the EU ETS has had an effect.

III. Data and Methods

A. Policy Background

The design of the EU ETS plays a central role in my empirical strategy, so it is 

essential to understand how the program was rolled out in Britain.

Britain is one of Europe’s largest polluters, housing roughly 1,200 of the 12,000 

plants regulated under the EU ETS. But even before the program launched in 2005, 

Britain already had three carbon pricing policies in place: the Climate Change 

Levy (CCL), Climate Change Agreements (CCAs), and the UK Emissions Trading 

Scheme (UK ETS). The CCL was a tax on commercial energy use, amounting 

to an implicit carbon tax ranging from £4.50 to £8.50 per tonne of CO    2    depend-

ing on the energy source (Bowen and Rydge, 2011). The CCAs were  sector-wide 

 agreements to which individual plants could be signed up. A firm would thereby 

commit to  reducing emissions at that plant by a  prespecified amount and would in 

turn receive an 80 percent discount on its CCL bill. Once a firm signed onto a CCA, 

it also became eligible to trade its  CCA-specified emissions quota in the UK ETS. 

The government also purchased additional abatement commitments from a small 

 number of  non-CCA plants through a reverse auction. The 32 firms that won con-

tracts through this auction, known as “Direct Participants,” could also trade their 

emissions quotas in the UK ETS (Comptroller and Auditor General of the National 

Audit Office 2004).
The EU ETS was expected to provide greater incentives for adoption and inno-

vation but did not replace all these policies at once. Rather, plants participating in 

the UK ETS were exempted from the EU ETS until 2007, and plants covered by 

CCAs were exempted until 2008. As the exemptions expired, the number of firms 

with EU ETS-regulated plants grew from 272 in 2005 to 445 in 2008 (illustrated 

by the  shading in Figure 3). Crucially for identification, the EU ETS used different 

thresholds to determine eligibility. Participation in a CCA therefore did not per-

fectly predict EU ETS status. The same goes for participation in the UK ETS and 

a firm’s CCL bill. When a firm entered into the EU ETS, then—in 2005, 2007, 

or 2008— another one with the same regulatory history typically remained outside 

of the EU ETS.

This makes it possible to condition comparisons of EU ETS and  non-ETS firms 

on prior regulations but also cautions us against thinking of the  non-ETS condi-

tion as totally unregulated. As a counterfactual, we should imagine that EU ETS 

firms would instead have been subject to the policies experienced by similar firms 

outside the program.7 This helps to answer the policymaker’s question of whether 

 cap-and-trade encourages adoption and innovation beyond preexisting policies.

7 Note that if the earlier carbon policies were more stringent, the EU ETS could theoretically reduce the incen-
tives for adoption and innovation. Although I have described a  cap-and-trade program as inducing innovation, the 
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B. Data

Adoption and innovation can be challenging to measure. When the set of ger-

mane abatement strategies is small, it may be possible to observe adoption directly, 

as I do in Figure 1. More generally though, adoption can be inferred from its conse-

quence; firms emit less per unit of output. The absolute level of emissions is likely to 

be a poor indicator of adoption because output generally rises and falls for reasons 

unrelated to adoption, such as the business cycle. Emissions intensity will better 

proxy adoption decisions as long as emissions are locally proportional to output.8

Innovation is more difficult to distill into a single metric, which means there is 

an advantage to looking at multiple measures together (Martin 1996; Hagedoorn 

and Cloodt 2003; Lanjouw and Schankerman 2004; Arvanitis, Donzé, and Sydow 

2010). Patenting has been used extensively to measure innovation output (Popp 

2002, 2006; Johnstone, Haščič, and Popp 2010), while R&D expenditures are used 

to measure innovation input (Chavas, Aliber, and Cox 1997; Hirshleifer, Hsu, and 

effect could be negative in a more crowded policy space. In practice, it would be surprising to find a negative effect 
since the EU ETS was thought to be a more stringent policy that would encourage greater adoption and innovation. 
But whether the effect is positive or negative, the difference between capped and uncapped firms will still measure 
the effect of the EU ETS relative to the policies experienced by similar firms outside the program.

8 Output can rise or fall in response to the emissions price too. Producing less is a valid strategy to reduce 
emissions, but I do not consider it a form of adoption. This is one more reason to favor emissions intensity as a 
proxy. Since output reduction would reduce both the numerator and denominator in equal proportion, it would not 
be counted as evidence of adoption. In practice, output reduction is so expensive at the margin anyway that it is 
unlikely to be used as an abatement strategy under a  cap-and-trade program like the EU ETS.

Figure 3. Trends in Efficiency and Innovation

Notes: The darkening gray shading indicates the growing number of firms that operated plants regulated under the 
EU ETS over time. There were 272 ETS firms as of 2005, 278 as of 2007, and 445 as of 2008. Panel A plots the 
average number of tonnes of CO    2    emitted (in green, or gray when printed in  black and white) and people employed 
(in solid black) by British industry per £1,000 of gross value added, obtained from the Office of National Statistics. 
Panel B plots the annual counts of UK patents filed by British firms to protect  low-carbon technologies (in green, 
or gray when printed in black and white) and to protect all other technologies (in black), obtained from PATSTAT. 
Panel C plots total corporate R&D spending and that part specifically directed toward developing  low-carbon tech-
nologies. Estimates of total corporate R&D spending are obtained from Eurostat, while estimates of corporate 
low-carbon R&D spending are collected from Weisenthal et al. (2009, 2012), Corsatea et al. (2015), and Fiorini 
et al. (2016), four studies that use a broadly consistent methodology to produce  single-year estimates. The four esti-
mates are connected by a dashed line to make it easier to see the trend, but they do not strictly form a single time 
series.
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Li 2013; Arora, Belenzon, and Sheer 2017). Patenting and R&D both have the 

advantage of being technology specific, so that it should in principle be possible to 

distinguish  low-carbon innovation from innovation in other areas. These measures 

obviously do not fully capture all aspects of innovation, but they provide useful 

proxies for firms’ efforts and success in expanding the technology set (see OECD 

2009 and OECD 2015 for surveys).
Figure 3 shows how these measures of adoption and innovation evolved in Britain 

during the period covered in this study. Panel A shows substantial  economy-wide 

reductions in CO    2    intensity in this period. From 2000 to 2010, the CO    2    intensity 

of British industry fell by 25 percent. But there was no obvious break in the trend 

around the time the EU ETS was implemented, and the decline in CO    2    intensity was 

mirrored by declines in labor intensity, suggesting it may reflect generic efficiency 

improvements.

Measures of innovation exhibit a different pattern (although it is somewhat muted 

by the logarithmic scale). The number of  low-carbon patents (panel B) was grow-

ing at 9 percent per year in the early part of the decade, but the growth rate more 

than doubled in 2005, a change that was sustained for the next few years before 

eventually settling back to 9 percent by the end of the decade. There is a clear struc-

tural break in 2005 ( F -test,  p = 0.003 ). Meanwhile, the number of patents filed 

to protect all other technologies changed more slowly throughout the period, with 

no apparent break in trend. As a result, the share of  low-carbon patents rose from 

3  percent in 2000 to 13 percent in 2010.

To distinguish  low-carbon patents from all other patents, I use a new patent 

class—the  Y02 class—developed by the European Patent Office (EPO). This patent 

class is the result of an unprecedented effort by patent examiners and external experts 

specialized in each technology to develop a tagging system for all patents ever filed 

at the EPO that relate to climate change mitigation.9 The focus is on technologies 

with potential to reduce or prevent greenhouse gas emissions directly—for example, 

renewable energy generation, biofuel production, nuclear, carbon capture and stor-

age, and combined heat and power. The  Y02 class also includes some technologies 

aiming to improve energy efficiency, though to a much lesser degree.10 This provides 

the most accurate tagging of climate change mitigation patents available today and is 

becoming the international standard for research on  low-carbon innovation.

Corporate R&D spending seems to display a similar pattern to patents (Figure 3, 

panel C).11 Though we lack official statistics prior to 2005, corporate  low-carbon 

R&D spending quadrupled after implementation of the EU ETS, with annual growth 

9 Patents are designated as “low-carbon” by the patent office without consulting the inventor, so a firm that 
becomes regulated has no ability to  reclassify patents (nor would they have an incentive to do so since the regulator 
does not track this). Importantly, the tagging is applied consistently to patents filed both before and after the EU 
ETS was introduced. See Veefkind et al. (2012) for additional details, as well as the online Appendix.

10 A small number of  Y02 subclasses include energy efficiency patents. Beyond these, some patents cannot 
be easily categorized as reducing emissions or energy use. A single patent can be tagged in multiple technology 
categories, or the technology can have different effects depending on its application, e.g., new building insulation 
materials reduce emissions in buildings heated by traditional boilers but save electricity for electrically heated 
buildings. I estimate that at most, 12 percent of Y02 patents are primarily energy efficiency patents. See the online 
Appendix for a more detailed description of the  Y02 class.

11 Here, I use the definition from Wiesenthal et  al. (2009, 15), who estimate “industrial R&D investments 
directed towards  SET-Plan priority technologies in the EU. These comprise wind energy; concentrating solar power 
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rate greater than 25  percent.12 Total corporate R&D spending grew at a more 

 modest rate of 3 percent per year, although it grew much faster in 2006 and 2007  

(15  percent and 10 percent, respectively). Most of this growth spurt vanishes if we 

net out the  low-carbon R&D figures from the annual totals, suggesting that the faster 

growth may primarily be a consequence of rising  low-carbon R&D spending.

These statistical aggregates provide an informative starting point, but it would 

be naïve to attribute these patterns to the EU ETS without first accounting for other 

factors that affect adoption and innovation. For instance, the price of oil rose sharply 

over the same period, as did the amount of  government-funded R&D (Figure 4). 
Both are known drivers of  low-carbon innovation. Because these factors could con-

found the aggregate trends, identifying the effects of the EU ETS requires us to 

distinguish more carefully between the outcomes of the firms that became regulated 

under the EU ETS and those that did not.

I have constructed a new dataset for this purpose, merging several  restricted-access 

 micro-datasets held by UK Data Service13 with the EPO Worldwide Patent Statistical 

Database as well as regulatory databases gathered from the UK’s Environment 

Agency, Department of Energy and Climate Change (DECC), and the European 

Commission. Aside from standard firm characteristics, such as revenues and 

employment, this database includes several key measures of adoption and innova-

tion. Due to the wide range of sectors and activities that are being regulated under 

the EU ETS, I do not measure adoption of individual abatement technologies but 

rather observe firms’ CO    2    intensities. I use both patenting and R&D spending to try 

to get a clearer empirical signal of the innovation response. The EPO’s  Y02 class 

identifies patents protecting  low-carbon technologies, and DECC’s low emissions 

R&D survey measures R&D spending devoted specifically to  low-carbon technolo-

gies.14 I also keep track of labor intensity, total patenting, and total R&D spending 

to see whether adoption and innovation in  low-carbon technologies have crowded 

out investments elsewhere.

The full dataset covers more than 6 million firms active between 2000 and 2012, 

although data are missing for many variables and years due to the varying coverage 

of the underlying datasets and inactivity by many firms for part of the period. This 

is one place where one can imagine  low-cost measures that would  substantially 

(CSP) and solar photovoltaic (PV); carbon dioxide capture and storage (CCS); smart grids; transport biofuels; 
hydrogen and fuel cells; nuclear fission (with a focus on generation IV reactors); and nuclear fusion.”

12 This estimate is based on four studies that use a broadly consistent methodology to produce  single-year esti-
mates (Wiesenthal et al. 2009, 2012; Corsatea et al. 2015; Fiorini et al. 2016). The Business Enterprise Research 
and Development (BERD) survey compiled by Eurostat reports corporate R&D spending by the energy sector. This 
is sometimes used as an alternative proxy for corporate  low-carbon R&D spending. It excludes much of corporate 
 low-carbon R&D and includes things that would not be classified as  low carbon. Yet for comparison, this time series 
had an annual growth rate of 11 percent between its inception in 2007 and 2012.

13 The Business Structure Database (Office for National Statistics 2012), the Quarterly Fuels Inquiry (Department 
of Energy and Climate Change 2011), the UK Innovation Survey (Department for Business, Innovation and Skills, 
Office for National Statistics, and Northern Ireland Department of Enterprise, Trade and Investment 2012), the 
BERD survey (Office for National Statistics 2011), and the DECC Low Emissions R&D Survey (Department of 
Energy and Climate Change and Office for National Statistics 2012).

14 DECC’s low emissions R&D survey defines the term as “R&D activity undertaken with the main purpose 
of reducing carbon dioxide and other greenhouse gas emissions. Included in this definition is the trialing of a 
new material, product or process in a  pre-commercial working environment, often referred to as deployment and 
demonstration.” The full survey instrument is made publicly available through the UK Data Service (Department of 
Energy and Climate Change and Office for National Statistics 2012).
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improve the scope for future evaluations, such as strategically expanding  fuel-use 

and R&D surveys to cover a higher proportion of the firms that are to be  regulated 

under some new program as well as more of their unregulated competitors. This is 

especially valuable for activities that are rare and rarely surveyed, such as  low-carbon 

R&D. The database identifies firms regulated under Britain’s prior domestic climate 

change policies as well as 445 firms that operated plants regulated under the EU 

ETS.15

Table 1 summarizes the firm characteristics and data availability prior to 2005. 

EU ETS firms were far from representative of the business community at large. 

They had on average 650 times greater annual revenues than the average firm and 

260 times as many employees. Firms in the electricity and gas sector (7 percent) 
and in manufacturing (49 percent) are heavily overrepresented. Data on efficiency 

and R&D spending are much more limited but indicate that  would-be EU ETS firms 

emitted nearly four times as much CO    2    per £1,000 of revenue and employed only 

half as much labor. They filed patents at substantially higher rates than other busi-

nesses and invested much more heavily in R&D. The fact that these firms already 

had substantial innovation capacity supports the expectation that they would respond 

to the EU ETS by, at least to some degree, innovating  in-house.

15 These firms collectively operated 992 EU ETS-regulated plants. I exclude 216 other British EU ETS-regulated 
plants that were operated by hospital trusts, city councils, the Ministry of Defence, and other  nonfirm entities. Their 
behavior is beyond the scope of this study.

Figure 4. Potential Confounders

Note: As in Figure 3, the shading indicates the increasing number of firms that became regulated under the EU ETS 
as the program was rolled out in the United Kingdom.

Sources: Annual public R&D spending is taken from the International Energy Agency, and annual average oil prices 
are from the BP Statistical Review (Dudley 2015). 
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C. Matching Design

Because EU ETS firms were so different from typical  non-ETS firms going in, 

any number of factors could explain differences in their outcomes. But buried among 

these millions of firms is something closely resembling a policy experiment.

Two features of the EU ETS’s design tell us that the treatment received by suit-

ably matched firms is plausibly uncorrelated with their potential adoption and 

innovation outcomes. First, the regulatory thresholds of the EU ETS apply at the 

plant level, and to control administrative costs, only “large” plants are covered. For 

instance, only ceramics factories with a daily production capacity in excess of 75 

tonnes are covered and only paper mills with a production capacity exceeding 20 

tonnes per day.16 Smaller plants are not regulated under the EU ETS, although the 

firms that operate them may be just as large in total, as polluting, and as innovative. 

16 There is no evidence that British firms successfully manipulated these thresholds or manipulated their plant 
capacities around the thresholds. It also seems unlikely that they would have much incentive to change plant 
 capacities, given the high cost of doing so and the relatively low cost of EU ETS compliance.

Table 1—Average Annual Firm Characteristics before the EU ETS,  2000–2004

EU ETS firms
( N = 445 )

 Non-ETS firms
( N = 6,022,188 )

Mean SD % missing Mean SD % missing

Firm basics

 Revenues a (£1,000) 770,417 2,795,245 18 1,191 94,127  39

 Employees a 2,349 8,081 18 9 282  39

 Electricity and gas a 0.07 0.25 0  <  0.01 0.01   0

 Manufacturing a 0.49 0.50 0 0.06 0.23   0

 Agriculture and servicesa 0.23 0.42 0 0.63 0.48   0

Efficiency

 CO    2    intensity a, b * (tCO    2    / £1,000) 0.42 0.62 78 0.11 0.21  99

 Labor intensity a (employees / £1,000) 0.01 0.01 20 0.02 0.02  43

Patenting

 Low-carbon      c 0.11 1.13 0  <  0.01 0.01   0

 Total c 2.61 16.05 0  <  0.01 0.12   0

R&D spending

 Low-carbon      d (£1,000) — — 100 — — 100

 Total e, f  **(£1,000) 20,978 74,437 67 789 1,405  99

 *  Computed by dividing CO    2    emissions (from the Quarterly Fuels Inquiry) by revenue (from the Business 
Structure Database), where both are observed. 

  **   Computed by taking the UKIS estimate whenever available and imputing the BERD estimate when only it 
is available. Alternative procedures for combining the UKIS and BERD estimates do not yield substantially 
different results.

Sources:
 a Business Structure Database (Office for National Statistics 2012)
 b Quarterly Fuels Inquiry (Department of Energy and Climate Change 2011)
 c EPO Worldwide Patent Statistical Database
 d  DECC Low Emissions R&D Survey (Department of Energy and Climate Change and Office for National 

Statistics 2012)
 e  UKIS (Department for Business, Innovation and Skills, Office for National Statistics, and Northern Ireland 

Department of Enterprise, Trade and Investment 2012)
 f BERD survey (Office for National Statistics 2011)
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Because regulatory status is determined at the plant level but efficiency and inno-

vation are firm-level characteristics, I can, in principle, find firms that have recently 

fallen under different regulatory regimes but are of similar size and have historically 

similar input intensities. The plant-level thresholds, hence, give rise to  within-pair 

variation in firm-level treatment that looks as if it were generated by flipping a coin.17 

My  identifying assumption is that conditional on firm-level  characteristics, variation 

in plant capacity does not drive future adoption and innovation outcomes except 

through its effect on EU ETS status.18

A second important feature of the EU ETS is that it used different eligibility cri-

teria from previous carbon pricing policies. This makes it possible to condition on 

past regulations at the firm level without removing all variation in EU ETS status. 

This is desirable, too, since I do not have detailed data on the nature of production at 

each plant. The fact that two firms previously were subject to the same carbon regula-

tions suggests similarities in their production activities beyond what other firm-level 

variables may reveal. Moreover, this unobserved similarity in the nature of their pro-

duction makes it more likely that the two firms would have been subject to the same 

carbon regulations in the future, absent the EU ETS. Control firms previously subject 

to the same carbon regulations therefore provide the best indication of the counterfac-

tual policy to which EU ETS firms would otherwise have been subject. Conditioning 

on past regulations mitigates these omitted variable concerns. As discussed earlier, 

this means that the differences in outcomes measure the EU ETS’s effect relative to 

the counterfactual policies experienced by similar firms outside the program.

One might be worried that firms strategically signed up to CCAs or the UK ETS to 

delay entry into the more stringent EU ETS. Even if I made sure that the control firms 

signed up as well, they might have done so expecting adoption and innovation would 

be so easy that they could overcomply and earn rents from their participation. This 

would bias the matched comparison against EU ETS firms. There are two important 

problems with this story, though. First, the main draw of CCAs was that signatories 

earned an 80 percent discount on the Climate Change Levy. This provided a strong 

incentive to sign up for CCAs whether or not a firm was anticipating future regulations 

under the EU ETS, and indeed, the main driver of participation was eligibility (Martin, 

de Preux, and Wagner 2014). If we are concerned that EU ETS firms signed up to avoid 

stricter climate regulations, it seems  non-ETS firms signed up for exactly the same 

reason. Second, and more importantly, the list of firms that qualified for delayed entry 

into the EU ETS was not amended after the exemptions were announced in 2003.19  

So the firms that received exemptions could not have known this at the time they 

signed up for CCAs and the UK ETS.

17 Of course, it is possible for a firm with multiple plants to have only some covered by the EU ETS, but without 
much loss of information, I define an “EU ETS firm” simply as one that operates at least one plant covered by the EU 
ETS. This binary approximation of the treatment variable can be used without much sacrifice since there appears to 
be little variation in the actual share of regulated activities. Based on a sample of 205 EU ETS firms whose plant-level 
emissions are recorded in the UK’s Pollution Inventory (UK Environment Agency 2017), I estimate that the average 
share of  regulated  emissions exceeds 90 percent, and nearly  three-quarters of ETS firms have a regulated emissions 
share of 100 percent. See the online Appendix for details and further discussion of  multiplant firms.

18 See the online Appendix for a longer discussion of this assumption and its motivation.
19 Based on personal communications with Environment Agency staff responsible for implementing the 

EU ETS.
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The design and implementation of the EU ETS make it clear that variation in 

treatment within suitably matched pairs is driven by exogenous plant-level capac-

ity thresholds. I match on all variables listed in Table  2 to construct these pairs 

and impose the further restriction that both members of a pair must be drawn from 

the same economic sector.20 Aside from a few basic firm characteristics (average 

 pretreatment revenues, employees, economic sector, age of the firm) and their regu-

latory histories, the matching variables are the same as the outcomes I will analyze 

20 Economic sectors are defined at the  three-digit level for the NACE industry classification. To give a sense 
of how these sectors are defined, in the power sector, “electric power generation, transmission and distribution” is 
separate from “manufacture of gas; distribution of gaseous fuels through mains,” and “steam and air conditioning 
supply.” Within manufacturing, “manufacture of pulp, paper and paperboard” is separate from “manufacture of 
articles of paper and paperboard,” and “manufacture of motor vehicles” is separate from “manufacture of bodies 
( coachwork) for motor vehicles; manufacture of trailers and  semi-trailers,” and “manufacture of parts and accesso-
ries for motor vehicles.” “Preparation and spinning of textile fibres” is distinct from “weaving of textiles,” which is 
distinct from “ finishing of textiles.”

Table 2—Equivalence Tests for Matched EU ETS ( N = 403 ) and  Non-ETS Firms ( N = 446 )

EU ETS  Non-ETS Equivalence  Signed-rank Paired  t -test
mean mean range test  p -value  p -value

Firm basics

 Revenues (£1,000s) 520,473 367,531  ±  461,220  <  0.001  <  0.001
 Employees 1,595 1,059  ±  796  <  0.001 0.011
 Year of birth 1988 1988  ±  2  <  0.001  <  0.001
 Economic sector ( 3-digit) Exact match — — — —

Efficiency

 CO    2    intensity (tC  O 2    / £1,000) 0.292 0.252  ±  0.093 0.015 0.025

 Labor intensity (employees / £1,000) 0.011 0.012  ±  0.003 0.004 0.005

Patenting
 Low-carbon patents 0.018 0.015  ±  0.029 0.642      LP  0.002
 All other patents 0.613 0.616  ±  0.635 0.049  < 0.001

R&D spending
 Low-carbon patent share 0.004 0.002  ±  0.007 0.783      LP  0.028

 R&D spending (£1,000s) 10,193 7,996  ±  8,975  <  0.001 0.005

Regulatory history
 CCA participation 0.479 0.367  ±  0.049 — 0.781
 UK ETS participation Undisclosed Undisclosed — — —

 CCL bill (£1,000) 98 81  ±  35 0.044 0.024

 R&D support (£1,000) 845 888  ±  1,656  <  0.001  <  0.001

Notes: The first two columns report the means for matched EU ETS and  non-ETS firms, using all  pretreatment years 
in the data. Economic sector is exactly matched at the  three-digit level. CCA and UK ETS participation are reported 
as proportions. The empirical distributions of EU ETS and  non-ETS firms are judged to be  substantively  equivalent 
if the difference lies within the “equivalence range” reported in the third column, specified as  ±  0.2   standard 
 deviations of the pooled sample (Cochran and Rubin 1973, Ho and Imai 2006). The fourth and fifth columns report 
the  p -values for Wilcoxon’s  signed-rank test and the paired  t -test of the null hypothesis that the difference between 
distributions lies outside the equivalence range.  LP  indicates low statistical power. The  signed-rank  statistic depends 
only on  discordant pairs, so the effective sample size is small for covariates with a large proportion of zeros, in this 
case  patent filings and R&D spending. The test can then fail to reject at the 5 percent level both that the difference is 
inside and outside the equivalence range. The paired  t -test treats concordant pairs as evidence against the  hypothesis 
of difference and will therefore tend to reject it in favor of equivalence when a covariate has a large proportion of 
zeros. I report the results from both tests, although favor the  signed-rank test for patenting and R&D spending 
as concordant  zero-pairs do not seem to provide much evidence against the hypothesis of difference. Wilcoxon’s 
 signed-rank test cannot be performed for CCA and UK ETS participation since they are binary variables. Figures on 
UK ETS participation could not be publicly disclosed but are available through the UK Data Service.
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later. Finally, firms are matched on the pattern of missing values to account for the 

possibility that data are not missing at random.21

Each EU ETS firm was first matched to its nearest neighbors.22 I then excluded 

iteratively pairs that most undermine covariate balance. This resulted in the removal 

of 42 EU ETS firms that lacked close matches. The final matched sample includes 

403 ETS firms and 446  non-ETS firms. I have taken the average when I find several 

equally close matches so that I have the weighted equivalent of one  non-ETS firm 

for every ETS firm. This matched sample was  locked in before viewing the data on 

outcomes. Even so, to show that my conclusions are not sensitive to this precise 

 bias-variance  trade-off, I  reestimate the main results without first omitting the 42 

unbalanced pairs.

This procedure achieves a high degree of covariate balance (Table 2). EU ETS 

firms are somewhat larger than their matches, although the differences are small rel-

ative to the standard deviation. The final two columns of Table 2 report the results of 

tests for the equivalence of ranks and means, and I can confidently reject the hypoth-

esis that the groups are substantively different. “Difference” is the null hypothesis, 

and I only reject in favor of “equivalence” if I have sufficient evidence that the dif-

ference is within the equivalence range (of 0.2 standard deviations). A small  p -value 

is therefore evidence of equivalence. This is a more stringent test of balance than 

merely failing to reject the null of equivalence (Hartman and Hidalgo 2014).
The sectoral distribution is identical. The baseline levels of efficiency, patent-

ing, and R&D spending also appear similar across the two groups.23 EU ETS firms 

tended to have slightly larger CCL bills and receive marginally more government 

support for R&D, but these differences are neither substantively nor statistically sig-

nificant. While ETS firms were somewhat more likely to have participated in a CCA 

or the UK ETS, it amounts to no more than a dozen firms. In any case, it will be 

prudent later to check that whatever outcomes I observe are not strongly correlated 

with these imbalances.

The  quantile-quantile plots in Figure 5 show that not only are the central tenden-

cies similar but so are the whole distributions of efficiency, patenting, and R&D. 

Figure 6 reveals that the outcome variables also exhibit similar  pretreatment trends, 

and in later sections we will see that matching appears to have achieved balance even 

21 See the online Appendix for a longer discussion of the choice of matching variables.
22 The matches were found by conducting a genetic search over the space of generalized Mahalanobis dis-

tance metrics. The algorithm, developed by Sekhon (2011), starts by calculating hundreds of variations of the 
Mahalanobis distances between firms, using different covariate weights, and matching each firm to its nearest 
neighbors as defined under each distance metric. The matched sets created by this procedure are then evaluated by 
running the  Kolmogorov-Smirnov test for equality of distributions for each covariate. The best distance metric is 
the one that maximizes the minimum  p -value for any covariate. In the next generation, hundreds of new distance 
metrics are generated by perturbing randomly the previous generation’s winner, and so on. The process is stopped 
only once covariate balance reaches a plateau. The final matches are therefore chosen after testing systematically 
thousands of different distance metrics, so we can be confident that no superior set of matches can be found among 
the six million  non-ETS firms. For technical reasons, it was not computationally feasible to execute this genetic 
search algorithm on the entire population of firms. I therefore used coarsened exact matching as an initial step to 
discard quickly and efficiently a large number of unregulated firms that were poor candidates for matching (Iacus, 
King, and Porro 2012). See the online Appendix for additional details on the matching.

23 I have used the share of  low-carbon patents to proxy  low-carbon R&D spending, since the latter is only 
observed in the treatment period, from DECC’s low emissions R&D survey. This is in line with other studies that 
have tried to proxy firm-level corporate  low-carbon R&D spending.
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on some variables that were not explicitly matched. All of this provides  reason to 

believe that the matched set approximates the statistical conditions of a true exper-

iment. These EU ETS and  non-ETS firms are statistically indistinguishable on the 

Figure 5. Comparison of Matched EU ETS and  Non-ETS Firms

Notes: Panel A shows the empirical  quantile-quantile ( e-QQ) plot for average annual CO    2    intensity (in green, which 
looks like gray circles when printed in  black and white) and labor intensity (in black) between 2000 and entry into 
the EU ETS. The points would all be on the 45° line if the distributions of the EU ETS and  non-ETS firms were 
exactly the same. Panel B shows the  e-QQ plot for the average annual number of  low-carbon patents filed (in green, 
gray when printed in black and white) and all other patents (in black) over the same period. Panel C shows the  e-QQ 
plot for the average annual R&D spending, which cannot be separated into  low-carbon and other. Scales are loga-
rithmic. To comply with UK Data Service disclosure rules, each point represents a  percentile pair rather than a  firm 
pair. The  firm-pair version of this graph is available to view through the UK Data Service.

Figure 6. Adoption and Innovation of Matched EU ETS and  Non-ETS Firms

Notes: The gray shading indicates how many of the EU ETS firms were regulated under this program at different 
points in time. Panel A plots average annual tonnes of CO    2    and number of employees that matched firms used per 
£1,000 of revenues they generate. Panel B plots the total number of patents filed annually to protect  low-carbon and 
other technologies, respectively. Panel C plots total annual R&D spending and, for the year 2008, the total R&D 
spending directed toward developing  low-carbon technologies. The colors in the titles provide an implicit legend: 
the green lines refer to  low-carbon measures, while the black lines refer to their complements. When printed in 
 black and white, the green looks like lines and circles filled in with gray. To deal with the fact that  non-ETS firms 
filed zero  low-carbon patents in 2010, the scale of panel B is adjusted to reflect that I have added 1 to all counts 
before taking the logarithm.
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eve of regulation, so we have no basis on which to predict that one group will adopt 

or innovate more than the other, aside from the influence of the EU ETS.

D. Estimation Method

The matched dataset looks like any other panel, so it is straightforward to com-

pute standard estimators such as  difference-in-means and  difference-in-differences. 

I  report both later. But patenting and R&D spending are both censored at zero, 

and it is a common feature of these data that most firms do not innovate at all. The 

traditional Tobit estimator is often used to account for this kind of censoring, but it 

does not lend itself to my setting. I would have to explicitly model the propensity to 

innovate. This is by no means straightforward, and the possibility of misspecifying 

the model carries with it the risk of introducing new unknown biases. The analogous 

maximum likelihood estimator will also generally be inconsistent (Chay and Powell 

2001).
Fortunately, the matched design can be leveraged to obtain a parsimonious and 

powerful estimator that adjusts for  zero-censoring without an explicit  first stage 

and without exclusion restrictions (Rosenbaum 2010, Calel and Dechezleprêtre 

2016). It starts from the observation that if the EU ETS had no effect, being labeled 

an “EU ETS firm” holds no predictive power. In a given treated  firm-control firm 

pair  n , the outcome of the treated firm,   T n   , would turn out larger than the control 

firm’s,   C n   , just as frequently as it turned out smaller ( n  indexes pairs). The observed 

 treated-minus-control differences,   δ n   , would be positive as often as they were 

negative.

If the EU ETS caused treated firms to file  τ  extra patents, however, one would 

observe an excess of positive   δ n   s compared to what is expected by chance. I can then 

recover the effect on patenting by subtracting different hypothetical values,   τ ˆ   , from 

the treated outcomes and testing to see which one restores the data to the known  null 

distribution of   δ n   s. That is the  Hodges-Lehmann point estimate, and its confidence 

interval is formed by the set of   τ ˆ   s that cannot be rejected at a given  significance level 

(Rosenbaum 2013).
To calculate   δ n    for different values of   τ ˆ   , I use the simplest additive treatment 

effect model that also adjusts for censoring at zero:

(1)   δ n   =   { 
max ( T n   −  τ ˆ  , 0)  −  C n  

  
if  τ ˆ   ≥ 0

    
 T n   − max ( C n   −  τ ˆ  , 0) 

  
otherwise.

    

I follow standard practice and use Wilcoxon’s  signed-rank test to determine whether 

the   δ n   s deviate from the null distribution. This test has the advantage that it is built 

on exactly the same statistical logic as a paired randomized experiment. The only 

assumption it makes is that matched firms had conditionally equal ex ante chances 

of achieving superior outcomes, which is precisely what I hope I have accomplished 

by matching.24

24 One further advantage of this estimator is that it retains statistical power even with highly  nonnormal data, 
which I have. Statistical power is very valuable since I am working with a relatively small number of matched 
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IV. Results

A. Efficiency

My estimates suggest that the EU ETS has not encouraged substantial adoption 

among capped firms. Matched ETS and  non-ETS firms followed similar trends in 

the  pretreatment period (see Figure 6). If the EU ETS had spurred widespread adop-

tion of abatement technologies, we would then expect CO    2    intensities to decline, 

but panel A of Figure 6 instead shows an increase for ETS firms. Indeed, the point 

estimate, reported in Table 3, is that the EU ETS caused a typical regulated firm to 

increase the CO    2    intensity of its output by 0.078 tonnes per £1,000 of revenue. This 

translates into an average increase of 20.7 percent. For the median revenue earner, 

this would imply an additional 4,225 tonnes of CO    2    annually, assuming that the EU 

ETS did not also affect revenues.

This conclusion depends on a few highly leveraged observations, though, and 

disappears with the removal of only a few pairs.25 Together with the late timing of 

the divergence of CO    2    intensities seen in Figure 6, this estimate should not be read 

as strong evidence that the EU ETS has caused CO    2    intensities to increase. Rather, 

it adds to the number of studies that have looked for reductions in CO    2    intensity 

in the EU ETS and turned up no evidence of it (Löfgren et  al. 2013; Widerberg 

and Wråke 2009; Klemetsen, Rosendahl, and Jakobsen 2016;  Jaraitė and Di Maria 

2016). The absence of evidence is now starting to show, instead, that the EU ETS 

has not spurred adoption.

The apparent lack of adoption could, in principle, be explained by some unob-

served factor that makes EU ETS firms slower to adopt  efficiency-enhancing 

pairs, a significant proportion of which have identical zero outcomes.
25 Removing a single outlying pair raises the  p -value above 0.05, and with the removal of five pairs it exceeds 

0.25. Meanwhile, the point estimate falls from 0.078 to 0.065 to 0.025. See the online Appendix for full details, 
 including an examination of outlier sensitivity of all key estimates.

Table 3—Matching Estimates of the Effects of the EU ETS

 Hodges-Lehmann point estimate  p -value

Efficiency (tCO    2    or employees per £1,000)
 CO    2    intensity 0.078 0.042
 Labor intensity −0.002  <  0.001

Patenting (number of patents)
 Low-carbon patents 0.415 0.079
 Other patents 0.130 0.167

R&D spending (£1,000s)
 Low-carbon R&D 200.000 0.046
 Total R&D 514.000  <  0.001

Notes: The first column reports the location shift parameter that maximizes the  p -value of 
Wilcoxon’s signed-rank statistic. The accompanying  p -values are computed under the null 
hypothesis that the EU ETS has had no effect.
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 technologies in general. This alternative explanation seems implausible, however, 

given that they reduced their labor intensity by 0.002 employees more per £1,000 of 

 revenue than their unregulated counterparts or 16.7 percent in proportional terms.26

B. Patenting

My estimates suggest that the EU ETS has encouraged substantial  low-carbon 

patenting among capped firms. The most dramatic feature of Figure 6 is the diver-

gence of  low-carbon patenting after the introduction of the EU ETS. I estimate that 

the EU ETS has encouraged regulated firms to file an additional 0.415  low-carbon 

patents per year (Table 3), which is remarkably close to the two additional patents 

over a  five-year period reported by Calel and Dechezleprêtre (2016). The effec-

tive sample size is small since most firms never file  low-carbon patents, but the 

90   percent confidence interval narrowly excludes 0 (0.09, 11.89). Under the con-

servative assumption that the matched  non-ETS firms are not responding to the EU 

ETS, these numbers imply that ETS firms collectively would have filed 29 (10, 138) 
fewer  low-carbon patents under the control condition, which translates into the EU 

ETS having caused  low-carbon patenting to increase by 25 percent compared with 

the counterfactual. Assuming the effect was the same for the 42 omitted ETS firms 

(to which I return later), the estimate implies a total of 64 additional  low-carbon 

 patents in  2005–2012, a 10 percent increase against the counterfactual.27

Patenting for all other technologies fell in both groups, albeit slightly faster among 

unregulated firms. The estimated treatment effect of 0.13 (−0.10, 0.43) implies that 

EU ETS firms filed 62 (−51, 157) more  non-low-carbon patents than they otherwise 

would have or a 4 percent (−3 percent, 11 percent) increase. If the effect was the 

same for the 42 omitted ETS firms, a total of 90 additional  non-low-carbon patents 

were filed in  2005–2012 or a 1.3 percent increase. The confidence interval admits 

the possibility that the EU ETS increased  low-carbon patenting at the expense of 

patenting for other technologies (Popp and Newell 2012) but assigns much greater 

probability to the outcome that regulated firms increased their overall patenting 

while disproportionately favoring  low-carbon technologies.

The EU ETS regulates only a small fraction of British firms, and when averaged 

across the whole country, these effects amount to a 0. 10–0.25 percent increase in 

total  low-carbon patenting and a 0. 02–0.04 percent increase in all other  patenting. 

While such changes may seem small, it is instructive to consider how much it would 

cost to accomplish the same outcome by other means. I estimate that the EU ETS 

is responsible for adding 91 patents over the period (29  low-carbon and 62  others) 
or 154 if I extrapolate the point estimates to the full population of British ETS firms 

(64  low-carbon and 90 others). Dechezleprêtre et al. (2016) estimate that £1  million 

spent through the UK’s R&D Tax Relief Scheme yields about 1.12 additional pat-

ents. If this is accurate, it would take on average  £ 81–138 million in targeted tax 

26 As a matter of economic theory, there is no difficulty explaining why a regulation that increases the relative 
price of one factor of production would encourage increased efficiency in another. Efficiency improvements in the 
latter factor may be technologically complementary.

27 The denominator increases disproportionately since the omitted firms file more patents than the average. Even 
though the absolute increase is larger, the proportional increase is smaller.
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expenditures to bring about the same increase in  patenting as the EU ETS. By 

contrast, the EU ETS raised £1.3 billion in this period for the British government 

from the auctioning of emissions permits (UK Department of Energy and Climate 

Change and Barker 2012) while creating important benefits beyond innovation, such 

as emissions reductions.

My estimated effects on patenting are also conservative for several reasons. 

Although some new energy efficiency patents are included in the  Y02 class, they 

would not be counted as evidence of  low-carbon innovation here. Even if the EU 

ETS led to higher electricity prices and an increase in energy efficiency patents, that 

would have affected all firms, whether covered by the EU ETS or not. The compar-

ison of the patenting of capped and uncapped firms will then difference out those 

energy efficiency patents. My estimate therefore refers specifically to technologies 

aiming to reduce direct emissions, and any effect of the EU ETS on energy effi-

ciency patenting should be added to my estimates to get the EU ETS’s total effect. 

More generally, any patents by unregulated firms will not be counted as an effect of 

the EU ETS, even if those innovations were designed to be sold to regulated firms. 

If the effects on these other firms and technologies are significant, my estimates 

provide a lower bound on the EU ETS’s effect on directed technological change.28

C. R&D Spending

My estimates suggest that the EU ETS has encouraged substantial  low-carbon R&D 

spending among capped firms.  Low-carbon R&D spending can tell us whether firms 

are merely rushing to patent what is already in their pipelines or making new invest-

ments in innovation. These expenditures are almost never observable, but a unique 

survey was conducted in the United Kingdom. Data were collected for 2008, record-

ing  low-carbon R&D spending for 27 of the ETS and 21 of the  non-ETS firms in my 

matched sample.29 Based on this sample, EU ETS firms were substantially more likely 

to undertake  low-carbon R&D (odds ratio  = 6.76 ,  p = 0.064 ). I estimate that the 

EU ETS increased  low-carbon R&D spending by £200,000 (with a 90  percent confi-

dence interval of £65,000 to £656,000), which translates into a 32 percent (11 percent, 

126  percent) increase.30 If 2008 was a representative  posttreatment year, it would 

mean that the EU ETS induced regulated firms to spend an additional £5.8 million 

on  low-carbon R&D in  2005–2012 (£2.4 million, £14.0 million). If the omitted EU 

ETS firms responded the same way, the total increase would have been £11.6  million 

(£4.3 million, £29.6 million) or a 7 percent increase (2 percent, 19 percent).

28 See the online Appendix for a lengthier discussion of how the measurement and mismeasurement of 
 low-carbon patents would bias my analysis against finding an effect.

29 The DECC  low-carbon R&D survey was sent to a sample of roughly 4,500 of the largest innovators in the 
United Kingdom and had a response rate of just over 50 percent. The sampling frame does not overlap well with 
the set of matched ETS and  non-ETS firms. Only 83 ETS firms and 42  non-ETS firms in my matched sample were 
surveyed, and only 27 of the ETS and 21 of the  non-ETS firms responded. The difference in response rates is just 
about significant at conventional levels; odds ratio  = 0.485 ,  p = 0.079 .

30 Because  low-carbon R&D spending is observed for relatively few firms, the magnitude of the point estimate 
does respond to the removal of the most outlying pairs. Leaving out the five farthest outliers reduces the point esti-
mate to £65,000, though it remains just about significantly positive, with  p = 0.084 . The online Appendix provides 
full details, including an examination of outlier sensitivity of all key estimates.
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Additional evidence comes from total R&D spending, which I observe over the 

whole study period and also for more firms. Absent  low-carbon R&D crowding out 

other R&D activities, I would expect the effect on total R&D to be at least as large 

as on  low-carbon R&D. On the other hand, an estimated increase on total R&D 

spending that is much larger would be implausible. I estimate that the EU ETS 

was responsible for an additional £514,000 (£251,000, £1,002,000) per firm and 

year, which translates into a proportional increase of 3 percent (2 percent, 5 percent) 
of total R&D spending. Cumulatively, this implies an additional expenditure of 

£346.7  million (£192.5 million, £579.9 million) from  2005 to 2012. Extrapolation 

to include the omitted EU ETS firms gives a total increase of £443.3  million 

(£242.9   million, £754.4  million). These estimates suggest that the EU ETS has 

had a disproportionate positive impact on  low-carbon R&D without cannibalizing 

resources intended for other R&D activities. If anything, they suggest a mild crowd-

ing-in, consistent with my estimates of increased patenting. The signs and magni-

tudes of these estimates are comparable to the effects on patenting, suggesting that 

my estimates of innovation are picking up a genuine signal.

My estimates imply the EU ETS was responsible for roughly a  1–2  percent 

increase in overall corporate  low-carbon R&D spending (using the DECC  survey’s 

estimated total of £66 million in 2008) and a 0. 4–0.5 percent increase in total cor-

porate R&D spending. I can also  recast my estimates in equivalent spending on  tax 

credits. Dechezleprêtre et al. (2016) estimate that £1 million spent on the UK’s R&D 

Tax Relief Scheme yields £1.7 million of corporate R&D spending. It would then 

take on average £ 200–260 million in additional tax spending to bring about some-

thing like the £ 350–450 million increase in private sector spending that I  attribute 

to the EU ETS.31

V. Robustness

This section  will investigate the robustness of my interpretations to a number 

of challenges. Unfortunately, available data are sometimes inadequate to obtain 

small  p -values for my estimates. Nevertheless, consistency across outcomes, and 

across studies, provides other reasons for confidence in the general pattern of effects 

I have estimated.

A. Alternative Specifications

Since my matching and estimation involved several judgment calls, it behooves 

me to examine the sensitivity of my conclusions to some of these choices. One 

key choice was to match exactly within economic sectors defined at the  three-digit 

level. This would ensure, for example, that I match one firm involved in the 

“manufacture of articles of paper and paperboard” to another, but I can distin-

guish only at the four-digit level between firms manufacturing different articles of 

paper—“corrugated paper,” “paper stationery,” “wallpaper,” and so on. Matching 

31 The figure would likely be even larger if we could account for the incentive to overstate R&D spending 
 created by the tax credit but not by the EU ETS.



192 AMERICAN ECONOMIC JOURNAL: ECONOMIC POLICY AUGUST 2020

within  four-digit sectors results in weakly greater imbalances on other covariates, 

but it might still be worth it if the imbalances are not too large. The estimates are 

reported in Table 4. Table 4 also reports the conventional  difference-in-means and 

 difference-in-differences for the original sample of firms matched at the  three-digit 

level.32

When firms are matched at the  four-digit level, the estimate on CO    2    intensity 

shrinks toward zero and becomes statistically insignificant. It so happens that CO    2    

intensity is more balanced in the  pretreatment period for this matched sample, so 

this estimate might further justify a cautious reading of the sign of the main esti-

mate. It is more challenging to interpret the innovation estimates since patenting 

and R&D are substantially less balanced in this sample. The estimate on  low-carbon 

patents is much smaller than before, and the estimate on other patents is much 

larger. Both estimates on R&D are higher than before, but the increase is greatest 

for  non-low-carbon R&D. Given the much higher baseline levels of patenting and 

spending on  non-low-carbon technologies, though, the proportional increases in pat-

enting and R&D are still largest for  low-carbon technologies.

The magnitudes of the  difference-in-means and  difference-in-differences 

 estimates are not strictly comparable since they do not adjust for censoring. For 

CO    2    intensity and labor intensity, where censoring is not a concern, the estimates 

are similar to before. For the innovation outcomes, the estimates are generally 

smaller and less precise, as expected. The estimate on total R&D spending is 

surprisingly much larger than before as a result of a few outliers. Means are 

32 All of these alternative specifications are reported in full in the online Appendix.

Table 4—Alternative Estimates of EU ETS’s Effects

 Hodges-Lehmann Difference-in- Difference-in-
( 4-digit)  means  differences

Efficiency

 CO    2    intensity (tCO    2    / £1,000) 0.029 0.111 0.076

(0.191) (0.031) (0.150)

 Labor intensity (employees / £1,000) −0.002 −0.002 0.000

( <  0.001) (0.009) (0.994)

Patenting
  Low-carbon patents 0.155 0.038 0.035

(0.198) (0.251) (0.246)

 All other patents 0.630 0.135 0.138

( <  0.001) (0.429) (0.392)

R&D spending (£1,000s)
  Low-carbon R&D 334.500 58.000 —

(0.158) (0.183)

 Total R&D 2,144.000 3,269.000 4,791.000

( <  0.001) (0.229) (0.303)

Notes: The parenthetical number below each estimate is the  p -value associated with a test of the null hypothesis of 
zero effect. It has not been possible to estimate the  difference-in-differences for  low-carbon R&D since this variable 
is only observed during the  posttreatment period.
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more sensitive to outliers than  rank-based estimators, which the larger  p -values 

testify to. Since these  estimates need to be extrapolated to all treated firms, not 

just the  innovators, they imply somewhat larger aggregate effects on innovation. 

The emphasis on  low-carbon  technologies remains but is less pronounced than  

before.

To summarize, these specifications all produce the same general pattern 

of  estimates: no evident decrease in CO    2    intensity, an increase in  low-carbon 

 patenting  and R&D, along with a proportionately smaller increase in other pat-

enting  and R&D  spending. We should clearly acknowledge that quite a bit of 

 uncertainty  remains about the  precise economic magnitude of the EU ETS’s 

effects, but the general  pattern of those effects replicates across specifications.

B. Selection

Another concern is that my conclusions might be driven by some form of selec-

tion. The most obvious source is the omission of 42 EU ETS firms. These firms 

were set aside precisely because of being exceptional—larger, more polluting, and 

more innovative. Mindful of using a less credible counterfactual, then, I  reestimate 

my main results with the inclusion of these 42 firms and their closest controls. The 

substance of the findings is unchanged. If anything, the estimates are slightly larger 

with greater statistical significance (see the online Appendix for full results).
Another potential source of bias comes from selective exit. If the EU ETS 

 selectively drove out less innovative ETS firms, average patenting and R&D 

spending would be inflated without any change in behavior. This is unlikely for at 

least three reasons. First, because the least innovative firms were also less efficient 

than the average, one would expect their exit to give rise to lower CO    2    intensities. 

I find the opposite. Second, the differences in patenting and R&D are partly due 

to declining investments among control firms. The most innovative control firms 

would have had to exit to explain this pattern. Finally, EU ETS firms were less 

likely to exit than  non-ETS firms (odds ratio  = 0.43 ;  p < 0.001 ), nor were there 

obvious  pretreatment differences between the exiting firms and their matched 

controls.

C. Leakage

Strategic shifts of emissions away from firms’ EU ETS plants could confound the 

link between adoption and CO    2    intensity. A firm is required to surrender emissions 

allowances from a  coal-burning generator (direct emissions), for instance, but not 

for electricity purchases (indirect emissions). Since only about  one-third of the car-

bon price was passed on in the form of higher electricity prices in Britain (Fezzi and 

Bunn 2010), it would have been relatively cheap to comply with the EU ETS by out-

sourcing energy production (except for electric utilities, of course, which are a small 

minority of regulated firms). If outsourcing of energy production is considered leak-

age rather than a legitimate form of adoption, then the link between adoption and 

CO    2    intensity breaks down. As it happens, though, the proportion of total emissions 

from electricity consumption did not change markedly (Figure 7, panel A). Treated 
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and control firms track each other closely both before and after the EU ETS came 

into effect.33

Another possibility is a shift in production within  multiplant firms toward unreg-

ulated plants. If the large ETS plants are more efficient to start, this kind of response 

could account for the observed increase in CO    2    intensity.34 I cannot totally rule out 

this possibility since I do not observe the CO    2    intensity of every plant. There is no 

sign that emissions shifted in this way, however, for the sample of 205 EU ETS firms 

where I observe historical plant-level emissions (Figure 7, panel B).35

D. Other Policies

Changes in other policies affecting ETS and  non-ETS firms differently at the time 

of introduction of the EU ETS could lead me to misattribute differences in outcomes 

to the EU ETS. The first place to look is Britain’s other carbon pricing policies, 

which, as we know, were superseded with the  rollout of the EU ETS for some firms. 

Although the matched sample was not perfectly balanced with respect to all these 

preexisting policies,  regression adjustment of the outcomes does not alter the sub-

stance of my findings (see the online Appendix).

33 Indirect emissions from electricity purchases or their share of total emissions were not part of the original 
plan of analysis since they are not covered by the EU ETS. An anonymous referee suggested that this kind of 
switching to electricity might explain my results and that I could investigate it by multiplying electricity purchases 
by  grid-averaged emissions factors. I report this as a separate robustness test here, and given that ETS and  non-ETS 
firms turn out to have been balanced on this variable all along, there is no reason to  re-match with this  late-addition 
covariate. Rather, balancing on covariates not included in the matching provides circumstantial evidence that the 
match succeeded in creating a sample with the statistical properties needed for identification.

34 I am grateful to an anonymous referee for this suggestion.
35 See the online Appendix for a full discussion of the data on  multiplant firms.

Figure 7. Emissions Leakage

Notes: Panel A plots the average share of total emissions (direct plus indirect) that are from electricity consumption. 
Indirect emissions are calculated by scaling electricity purchases by the average carbon intensity of  grid-delivered 
electricity. Panel B plots the share of CO    2    emissions from EU ETS plants, calculated for a sample of 205 EU ETS 
firms in the UK’s Pollution Inventory (UK Environment Agency 2017). See the online Appendix for details on this 
dataset.
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Another suspect is government R&D support. There was an increase in public 

R&D spending during this period (Figure  4), and although the matching made 

sure that firms received similar  pretreatment levels of support, the later change 

might have favored ETS firms. As it happens, though, ETS firms received less 

 government R&D support. Both groups received roughly £850,000 per firm per 

year in R&D  support prior to the EU ETS. After the program started, support for 

 non-ETS firms fell slightly to £753,000, while support for ETS firms fell dramati-

cally to £102,000. The UK’s R&D support was targeted more heavily at small and 

medium-sized  businesses. The distribution of government support in my matched 

sample is highly skewed, so both the magnitude and significance of this change are 

sensitive to outliers. The sign of the change is robust, however.36 Moreover, there 

is no  significant difference in the odds that ETS and  non-ETS firms received R&D 

support specifically for  low-carbon R&D projects.

E. Spillovers

The possibility that the EU ETS also encouraged innovation by  non-ETS firms 

makes my results more difficult to interpret. My identification uses the difference 

between regulated and unregulated firms, but that means that I cannot see any effect 

the program might have had on the matched unregulated firms. I do not observe 

much increase in innovation among the matched  non-ETS firms, though, so it is 

unlikely that this effect is large. The bigger question, economically speaking, is how 

the rest of British innovators responded to the EU ETS.

Two studies of the EU ETS have attempted to estimate this spillover effect using 

patent data. Calel and Dechezleprêtre (2016) compare unregulated firms that had 

filed past patent applications jointly with the newly regulated EU ETS firms with 

otherwise similar unregulated firms, but their estimated spillover is small and insig-

nificant. Miller (2014) makes stronger identifying assumptions and finds a small 

 per-firm spillover that aggregated over all  non-ETS firms would be as big as the 

direct effect itself. This would suggest a doubling of my estimated totals.

To get a sense of the appropriate multiplier in my setting, I look at  

“top  innovators.” They are often not regulated polluters themselves nor matched to 

them, yet they could respond to policy changes that create demand for new technol-

ogies. Figure 8 plots the total  low-carbon patenting for EU ETS firms along with the 

100 most prolific  non-ETS patent filers.  Low-carbon patenting increases for both 

groups after 2005, with slight differences in timing. The increase of  low-carbon 

patenting by  non-ETS “top innovators” is approximately as large as my estimate 

of the increase for ETS firms. My estimates then provide a lower bound on the EU 

ETS’s effects on innovation, with an upper bound that could be as much as double 

that amount.

36 The  difference-in-differences is −£655,706 and varies from −£619,900 to −£274,700 in a simple 
 leave-one-out exercise. The  p -value from a paired  t -test ranges from 0.04 to 0.36.
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VI. Discussion

One important objective of carbon markets is to achieve abatement by encour-

aging firms to innovate and become more efficient (Stavins 2007, European 

Commission 2005, 2012). Historically, emissions reductions under  cap-and-trade 

programs have been achieved primarily through adoption of existing abatement 

technologies rather than through technological innovation. I find evidence that the 

EU ETS may have reversed this pattern. Regulated firms have not widely adopted 

technologies that reduce their CO    2    intensity, yet they have increased their patent-

ing and R&D spending. In particular,  low-carbon patenting and  low-carbon R&D 

spending have increased faster than for other technologies (roughly  20–30 percent 

versus  3–5 percent).
New findings that contradict historical patterns should always be viewed with 

skepticism, and the present study is no exception. Nevertheless, this finding perhaps 

should not come as a great surprise. Previous  cap-and-trade programs have targeted 

pollutants and polluters that had technologies available to achieve the  regulator’s 

 long-term abatement targets at reasonable cost. The US  phaseout of leaded 

 petroleum, for instance, was specifically aimed at encouraging adoption of existing 

refining technologies (Kerr and Newell 2003). By the time tradable quotas for CFCs 

were set up, an economically competitive replacement already existed (Gorman 

and Solomon 2002, Falkner 2008). At the time when the Acid Rain Program was 

launched, the technology to scrub sulfur from exhaust was already widely avail-

able. On its own, it could have achieved greater emissions cuts than required by 

the Acid Rain Program (Schmalensee et al. 1998). When relatively mature abate-

ment technologies exist, new technologies are less likely to create major savings in 

Figure 8. Top Innovators

Note: Total granted  low-carbon patents, by filing year, for EU ETS-regulated firms as well as the 100  non-ETS firms 
that filed the most patents in the years 2000 through 2004.
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 compliance costs. It is therefore not surprising that one observes adoption, but not 

innovation, in these circumstances.

The same  preconditions did not exist for the EU ETS, nor do they in carbon markets 

more generally. The abatement potential of  low-cost strategies, such as fuel switch-

ing, is limited (Delarue, Voorspools, and D’haeseleer 2008). Achieving  longer-term 

decarbonization goals requires new abatement technologies (Rockström et al. 2017). 
This leads emitters to ask: Why adopt current abatement technologies that may soon 

become obsolete anyway, especially as the emissions caps are not binding in the short 

term? Why not instead develop new  low-carbon technologies that will reduce abate-

ment costs more dramatically by the time emissions caps become more  stringent? 

These dynamic considerations shift resources from adoption to innovation (Aghion 

and Howitt 1992, Mauritzen 2014). They also square well with survey evidence. 

According to Martin, Wagner, and de Preux (2009), EU ETS firms that expect higher 

future carbon prices are also more likely to innovate.

If this explanation is correct, it should change how we read evidence from carbon 

markets. Increased patenting and R&D signal that new  low-carbon technologies 

are being developed. These technologies should cause abatement costs to decline. 

We may therefore see greater  cost-savings from carbon markets than we have seen 

from previous  cap-and-trade programs, making it feasible to set more ambitious 

emissions caps and giving us a better chance of ameliorating the worst outcomes of 

climate change.

Finally, it is worth commenting on the constraints that this and other studies face 

when trying to answer questions about the effects of carbon markets. I have argued 

that the estimates presented here and elsewhere show a consistent pattern, but the 

evidence is ultimately weak by conventional statistical measures. This reflects the 

unfortunate reality that even after a decade of the world’s largest  cap-and-trade exper-

iment, the data needed to learn about the effects of the program are still not available. 

Despite painstaking efforts to obtain the best and most comprehensive data, the effec-

tive sample sizes are often small, several of my estimates hover around conventional 

thresholds of statistical significance, and the economic magnitudes are sensitive to 

specification. This is an important finding in its own right. Imprecise estimates too 

often end up in the  file drawer even when they reflect our best understanding, but these 

findings provide critical evidence of the need for improved data collection (DeLong 

and Lang 1992, Ioannidis and Doucouliagos 2013). Although one may be limited in 

what can be inferred from imprecise estimates for now, it reminds us—just as China 

readies itself to launch an even larger carbon market—that the first step in improving 

regulatory design is to improve data collection practices. More deliberate collection of 

data on key outcomes at the start of new programs provides a  low-cost opportunity to 

improve our understanding of the effects of future carbon markets.
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Jaraitė, J., and C. Di Maria. 2011. “Did the EU ETS Make a Difference? A Case Study of Ireland 
and Lithuania.” Presented at European Association of Environmental and Resource Economists 
(EAERE) 18th Annual Conference, Rome, Italy. Cited with author permission.
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