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Abstract
Exchanges of practical or financial help between people liv-
ing in different households are a major component of inter-
generational exchanges within families and an increasingly 
important source of support for individuals in need. Using 
longitudinal data, bivariate dynamic panel models can be 
applied to study the effects of changes in individual circum-
stances on help given to and received from non-coresident 
parents and the reciprocity of exchanges. However, the use 
of a rotating module for collection of data on exchanges 
leads to data where the response measurements are un-
equally spaced and taken less frequently than for the time-
varying covariates. Existing approaches to this problem 
focus on fixed effects linear models for univariate continu-
ous responses. We propose a random effects estimator for a 
family of dynamic panel models that can handle continuous, 
binary or ordinal multivariate responses. The performance 
of the estimator is assessed in a simulation study. A bivari-
ate probit dynamic panel model is then applied to estimate 
the effects of partnership and employment transitions in the 
previous year and the presence and age of children in the 
current year on an individual’s propensity to give or receive 
help. Annual data on respondents’ partnership, employment 
status and dependent children, and data on exchanges of help 
collected at 2- and 5-year intervals are used in this study.
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1 |  INTRODUCTION

Dynamic models, also known as autoregressive or lagged response models, have been widely used 
for the analysis of longitudinal data in a broad range of application areas such as unemployment 
(Arulampalam et  al., 2000), political preferences (Stegmueller, 2013), and health and well-being 
(Pudney, 2008; Steele et al., 2013). A common motivation for using a dynamic model is to investigate 
the relative contributions of persistence and unobserved heterogeneity as explanations for serial cor-
relation in a response y, where persistence (or inertia) is a causal effect of an individual’s past values 
of y on their current value and unobserved heterogeneity refers to individual differences in y due to 
unmeasured time-invariant characteristics. Dynamic models are also used to estimate the effects of 
time-varying covariates on change in y, and generalisations to multivariate responses allow the study 
of interdependencies among repeated measures on multiple correlated responses.

Standard discrete-time dynamic panel models assume that measurements of the response and 
time-varying covariates are taken at the same equally spaced occasions. As the correlation between 
an individual’s responses at two points in time t1 and t2 will typically decay with |t2− t1|, the coeffi-
cients of the lagged response and time-varying covariates capturing changes between t1 and t2 cannot 
be assumed invariant to spacing. The naïve treatment of unequally spaced observations as if they are 
equally spaced will lead to biased coefficients of the lagged response and serially correlated predictors 
(Millimet & McDonough, 2017; Sasaki & Xin, 2017). The usual approach to this problem is simply 
to exclude observations to achieve an equally spaced panel, which may lead to a large reduction in the 
number of measurement occasions available for analysis. Unfortunately, unequal spacing is a com-
mon feature of longitudinal studies, which may arise by design or because of wave non-response (see 
Millimet and McDonough (2017) for a number of examples from developed countries). Moreover, 
a common design feature of household panel studies is the use of rotating modules to reduce survey 
costs and respondent burden, which leads to some variables being measured less frequently, and often 
at unequal intervals, than variables collected in the core questionnaire at each (usually annual) wave.

This paper is concerned with dynamic models for the analysis of responses that are measured less 
frequently than time-varying covariates, and is motivated by a study of bidirectional exchanges of sup-
port between adult children and their parent(s). The data are from the British Household Panel Survey 
(BHPS) and its successor the UK Household Longitudinal Study (UKHLS). Information about the 
help that respondents give to and receive from their non-coresident parents was collected in a rotating 
module which was administered at five waves between 2001 and 2015, with gaps of 2 and 5 years. 
Our focus is the effects of changes in adult children’s circumstances on their capacity to give help to 
parents and on their need for help from parents, and the reciprocity of child–parent exchanges. We 
consider the effects of partnership and employment transitions in the previous year and the presence 
and age of children in the current year on an individual’s propensity to give or receive any help using 
annual data on respondents’ partnership and employment status and coresident children.

Although unequally spaced panel data are commonplace, there has been relatively little research 
on the topic and previous work has considered only linear models for univariate continuous responses 
with fixed effects to account for unobserved heterogeneity. Apart from the different collection sched-
ules for the responses and covariates, the BHPS/UKHLS data on intergenerational exchanges have 
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several other features that require extensions to existing approaches: exchanges of help are measured 
by binary responses, help given and received must be treated as a bivariate response and modelled 
jointly because of the interest in reciprocity, and there is missing data on some of the time-varying 
covariates. We therefore propose a random effects estimator for a general class of linear and non-lin-
ear dynamic panel models for potentially unequally spaced multivariate and categorical responses. 
The estimator can be implemented using Markov chain Monte Carlo (MCMC) methods in Bayesian 
modelling software.

While the proposed approach is motivated by an application to household panel data where co-
variate information is collected annually, it can be applied to birth cohort studies where waves of 
data collection are at unequal intervals but time-varying covariates for finer, regularly spaced, time 
intervals can be derived from retrospectively collected data on partnership, childbearing and employ-
ment histories. The same methods are applicable, under a missing at random assumption, to unequal 
spacing due to wave or item non-response or changes in a respondent’s membership of the target pop-
ulation for an analysis; in our application, for example we accommodate gaps of 4 years due to wave 
non-response. Other applications include medical settings where patients do not attend clinics at the 
scheduled (equally spaced) times (Rosner & Muñoz, 1988), and pseudo-panel data constructed from 
repeated cross-sectional surveys conducted at unequal intervals (McKenzie, 2001) where covariate 
data are available from external sources.

The remainder of the paper is organised as follows. In Section 2, we give a brief overview of 
previous research on dynamic models and describe how our approach builds on this literature. The 
proposed random effects estimator is then described in Section 3, starting with a univariate continuous 
response before generalisations to binary or ordinal responses and multivariate responses. In Section 
4, the finite-sample performance of the proposed estimator is assessed in a small-scale simulation 
study which considers the impact of imbalance in the number of repeated measurements per person 
and the degree of autocorrelation in the response and in a time-varying covariate. The application to 
intergenerational exchanges is described in Section 5, and we conclude with remarks on directions for 
future research in Section 6.

2 |  OVERVIEW OF PREVIOUS RESEARCH ON 
UNEQUAL SPACING

Let yti = (y1ti, y2ti, … , yRti)
T be a R-variate response at time t (t  =  1, 2,  …,  T) for individual i 

(i = 1,  …,  n), where the elements of yti may be observed or latent continuous variables. Suppose that 
the underlying data generating process (DGP), and model of interest, for yti takes the form of a first-
order dynamic panel model 

where Γ is an R × R coefficient matrix, xti is a p-vector of covariates with R × p coefficient matrix B, 
ui is an R-vector of individual effects capturing unmeasured time-invariant influences (unobserved het-
erogeneity) and eti ∼ N(0, Ωe) is an R-vector of time-varying residuals. The diagonal entries of Γ are 
the autoregressive effects for each response yrti, representing persistence or state dependence, and the 
off-diagonal entries are the cross-lagged effects of all other responses on each response. (For simplicity, 
we assume yti and xti are mean-centred and omit the intercepts from B.) There has been much debate 
about whether to treat ui as fixed or random in panel models and more generally hierarchical models for 
clustered data (e.g. Clarke et al., 2015). In the case of continuous univariate yti, fixed effects models are 

(1)yti =Γyt−1,i+Bxti+ui+eti, t=2, 3, …, T
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often favoured because of the additional distributional assumptions required in random effects models. In 
the random effects approach, it is common to assume that ui are normally distributed. Although alterna-
tives such as discrete distributions (latent class models) and mixtures of normals are available, evidence 
from simulation studies for random effects logistic models estimated via maximum likelihood indicates 
that statistical inference is robust to departures from the normality assumption, especially within-cluster 
(or time-varying in a longitudinal setting) covariate effects (McCulloch & Neuhaus, 2011). More serious 
concerns with random effects models are the treatment of the initial conditions y1i and the assumption that 
unmeasured time-invariant influences on yti (represented by ui) are uncorrelated with the covariates. A 
common way to handle the initial conditions problem is to specify a model for y1i (see Section 3.4), while 
a straightforward way to relax the assumption that the time-varying covariates are independent of the ran-
dom effects is to use a correlated random effects model in which the individual means of the time-varying 
covariates are included as additional predictors (e.g. Mundlak, 1978). In the linear case, the estimates of B 
obtained from fitting a random effects model that includes the individual means of xti are equal to the fixed 
effects estimates of B. The Mundlak approach generalises to unbalanced panels (Wooldridge, 2019) and 
translates to probit models for binary responses (Wooldridge, 2010, pp. 615–617). Advantages of random 
effects models include the possibility to include time-invariant predictors and their greater flexibility, for 
example in handling multivariate categorical responses.

Following Millimet and McDonough (2017), we refer to the discrete unit of time for the DGP, that 
is the length of the interval (t − 1, t), as the unit period. In a discrete-time model for equally spaced 
panel data, the unknown unit period is usually taken as the time between measurements, referred to 
as the observation interval. In general, an irregular spacing arises whenever the observation interval 
differs from the unit period. We now review special cases of Equation (1), which have been considered 
in previous work.

In the classic dynamic panel model, R = 1, yti is observed and the observation interval coincides 
with the unit period. Several authors have considered departures from this setting where, for uni-
variate observed yti, the observation schedule leads to a form of data coarsening with both yti and xti 
observed together at M < T potentially unequally spaced time points. Such observation patterns may 
arise by design, where waves of a study are planned at unequal intervals, or because of non-response, 
in which case the observation intervals may vary across individuals. Rosner and Muñoz (1988) con-
sider a simplified form of the classic model without ui for M < T, while Millimet and McDonough 
(2017) and Sasaki and Xin (2017) specify ui as fixed effects. Pacini and Windmeijer (2015) consider 
a setting closest to ours where the data on yti may be missing at random while xti is observed at every 
wave. (Further details of the methods of estimation used in previous research are given in Section 
3.1.) While we restrict our attention to models with lagged responses as predictors, there has been 
related work on static panel models without a lagged response but with eti assumed to follow an AR(1) 
process (Baltagi & Wu, 1999; Jones & Boadi-Boateng, 1991), and in the time-series literature (see 
Millimet & McDonough, 2017 for a review).

In a separate strand of research, generalisations of the classic dynamic model have been developed 
to handle categorical and multivariate responses, but only for equally spaced yti. Examples include the 
semiparametric fixed effects approach of Honoré and Kyriazidou (2000) and random effects probit 
models (e.g. Wooldridge, 2010), which can be formulated as models for the dependency of an under-
lying latent continuous response y∗

ti
 on the observed lagged response yt−1,i. An alternative approach, 

proposed for a univariate ordinal response, is the random effects latent autoregression model in which 
the lagged predictor yt−1,i is replaced by y∗

t−1,i
 (Pudney, 2008). Bivariate dynamic models, with the lag 

of one response included as a predictor of the current value of the other and residual correlation be-
tween responses, are commonly used in the social sciences and particularly in psychology where they 
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are referred to as cross-lagged panel models (e.g. Selig & Little, 2012). Generalisations to bivariate 
binary data are also available (e.g. Alessie et al., 2004).

This paper brings together these two streams of research to develop a flexible random effects esti-
mator for dynamic panel models for any combination of the following types of data and measurement 
schedule: (i) unequally spaced measurements of yti, which may be measured more frequently than the 
time-varying covariates xti, (ii) continuous, binary or ordinal responses, (iii) multivariate responses, 
and (iv) missing data on xti. Our approach additionally incorporates models for the initial conditions 
y1i.

3 |  A GENERAL RANDOM EFFECTS MODEL FOR 
UNEQUALLY SPACED RESPONSES

We begin with the special case of a linear model for a univariate continuous response to fix ideas. We 
briefly describe how the research reviewed in Section 2 accommodates unequal spacing for a model 
with individual fixed effects before setting out our proposed random effects approach. This is fol-
lowed by generalisations for binary or ordinal and multivariate responses within this random effects 
framework.

3.1 | Linear model for univariate continuous responses

Consider a special case of (1) for a continuous univariate response yti: 

where γ is the autoregression parameter, with |γ| < 1 for a stationary process, β is a row vector of coef-
ficients, ui is an individual effect and eti ∼ i.i.d. N(0, �2

e
). It is straightforward to include time-invariant 

covariates, as described later.
Suppose that the observation schedule for y is such that two consecutive measures are spaced s unit 

periods apart. The dependency of yti on yt−s,i can be obtained by repeated substitution in Equation (2) 
to give 

using 
∑s−1

k=0
�k = (

1 − �s

1 − �
), where �ti =

∑s−1

k=0
�ket−k,i and var(�ti) = (

1 − �2s

1 − �2
)�2

e
.

Equation (3) has several important features: (i) the coefficient of yt−s,i depends on the gap s be-
tween observations, which, for a stationary process, implies that the autocorrelation in y decays with 
s, (ii) the coefficients of the time-varying covariates are non-linear functions of the parameters of 
interest γ and β, (iii) the covariates include not only xti for the waves at which yti is observed, but 
also the intermediate values xt−1,i, …, xt−s+1,i, (iv) the form of �ti implies that the residual variance 
depends on s, and (v) the contribution of ui depends on s. Point (iii) is especially important because 
excluding intermediate x values, so that they are absorbed in �ti, leads to omitted variable bias if xti 
are serially correlated. Most previous research considers settings where xti is available only when yti 
is observed, leading to missing data on xt−1,i, …, xt−s+1,i which is typically handled using some form 
of imputation.

(2)yti = �yt−1,i+�xti+ui+eti, t=2, 3,…, T

(3)yti = �syt−s,i+�

s− 1∑

k= 0

�k
xt−k,i+

(
1−�s

1−�

)
ui+�ti, t= s+1,…, T
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When ui = 0 in Equations (2) and (3) can be estimated directly via weighted non-linear least 
squares, with weights (1 − �2)∕(1 − �2s) to account for the heteroskedacity in �ti (Rosner & Muñoz, 
1988). For models with ui specified as fixed effects, the standard approach to estimation of Equation 
(2) is to take first differences yti − yt−1,i, in order to eliminate ui, and to use a generalised method of 
moments (GMM) estimator (Ahn & Schmidt, 1995; Arellano & Bond, 1991). A complication when 
observations are unequally spaced is that formulating (3) as a model for yti − yt−s,i does not eliminate 
ui; instead ui has a factor structure with a loading that depends on s. Millimet and McDonough (2017) 
therefore proposed two alternative approaches to GMM that are suitable for unequally spaced inter-
vals: quasi-differenced GMM, a type of differencing that removes ui, and a form of non-linear least 
squares with an instrumental variable for yt−s,i and the individual fixed effects replaced by a linear 
combination of the individual means of xti. Both estimators are consistent if it is assumed that the 
covariates are exogenous and serially uncorrelated. The assumption of serial independence in xti may 
be relaxed by imputation of x for the missing periods or linear interpolation as in Rosner and Muñoz 
(1988). Sasaki and Xin (2017) further investigate fixed effects dynamic models for unequally spaced 
panels, and provide details of the general spacing patterns required for model identification, which 
include those found in many UK and US longitudinal surveys such as the British birth cohort studies 
and the BHPS/UKHLS data on family exchanges analysed here. They then propose a GMM estimator 
for these patterns which, in contrast to quasi-differenced GMM, does not assume that time-varying 
covariates are serially uncorrelated or require imputation of covariates for the missing periods, pro-
vided that the covariance between pairs of y and x values over time is assumed constant for a given 
width of observation interval.

Turning to settings where yti is observed at M < T waves while xti is measured at all T waves, 
Pacini and Windmeijer (2015) note that traditional GMM discards any individual with yti observed for 
fewer than three consecutive periods, and propose a two-step GMM estimator that requires only that 
individuals provide at least three, possibly non-consecutive, observations. McKenzie (2001) considers 
a dynamic model for pseudo-panel data where cohorts, or some other fixed grouping of individuals, 
are followed over time. Assuming an individual-level DGP of form similar to (2), it is shown that 
the corresponding pseudo-panel model can be estimated using non-linear least squares provided that 
time-varying covariates, defined at the cohort level, can be obtained from external sources for the time 
periods between surveys.

In this paper, we adopt a random effects approach because of its flexibility for handling categorical 
and multivariate responses, as required for our application, and ease of implementation in Bayesian 
modelling software using MCMC. We first propose a random effects estimator for situations where 
univariate continuous yti is subject to data coarsening. We also consider estimation of the effects of 
transitions in a binary variable xti in the preceding unit period. Let m = 1, …, M index the occasions 
at which y is observed, and denote by tm the timing of measurement m and Δtm = tm − tm−1 the gap 
between consecutive observations, measured in the unit periods of the DGP of Equation (2). Using 
this notation, Equation (3) can be re-expressed as a model for the observed responses ytmi 

where �tmi =
∑Δtm−1

k=0
�ketm−k,i with var(�tmi) = (

1 − �2Δtm

1 − �2
)�2

e
, and we assume ui ∼ i.i.d. N(0, �2

u
).

Thus for Δtm = 2, for example, xtm,i and its first-order lag xtm−1,i are included as covariates with 
coefficients β and β γ, respectively. From (4), it is clear that Δtm must be an integer, which has implica-
tions for the unit period assumed in the DGP. For example, in our application, observations are spaced 
2 and 5 years apart, but setting the unit period equal to the minimum observation interval would give 

(4)ytmi = �Δtm ytm−1,i+�

Δtm − 1∑

k= 0

�k
xtm−k,i+

(
1−�Δtm

1−�

)
ui+�tmi, m=2,…, M
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Δtm = 1 and 2.5. We therefore assume the DGP operates for annual yti, which also corresponds to the 
frequency of measurement of xti. The model of Equation (4) assumes a balanced design with fixed 
measurement occasions, but M and tm (and therefore Δtm) may vary across individuals.

In our application, the covariates of primary interest are indicators of transitions (or events) occur-
ring in the year before t. In the simplest case, a transition is a move between two possible states. For a 
binary state indicator xti, there are four possible transitions (xt−1,i, xti), including remaining in the same 
state: (0, 0), (0, 1), (1, 0) and (1, 1). Taking (0, 0) as the reference, and omitting i subscripts, the effects 
of transitions can be modelled in Equation (2) as 

where �1 contrasts individuals remaining in state 1 (1, 1) with those remaining in state 0 (0, 0), �2 contrasts 
(0, 1) with (0, 0) and is therefore the effect of a transition from state 0 to state 1, and �3 is the effect of a 
transition from 1 to 0. By expressing the transition indicators in terms of xt−1 and xt, model (4) for the ob-
served y can be generalised to allow for transition effects by including the three functions of x in Equation 
(5) and their kth-order lags (k = 1, … , Δtm−1) with coefficients constrained to � j�

k (j = 1, 2, 3). For a 
time-invariant covariate x,βx in Equation (2) becomes �x(1 − �Δtm ) ∕ (1 − �) in (4). In the case of a deter-
ministically varying covariate such as age, we use xtm

= xtm−k + k for k = 1, 2, … to derive its contribution 
to Equation (4) (see Rosner and Muñoz (1988) for details).

3.2 | Latent autoregression model for binary and ordinal responses

The dynamic model for equally spaced data of Equation (2) can be generalised to categorical re-
sponses. For an ordinal response with C categories, for example a logit or probit model can be speci-
fied for Pr(yti ≤ c), c = 1,  … , C − 1. An ordered logit or probit model may also be expressed in terms 
of an underlying continuous response y∗

ti
, which is related to the observed ordinal yti by 

where �c are threshold parameters with �0 = −∞ and �C = ∞. Binary responses (C = 2) are a special case 
with a single threshold, or intercept, �1.

The standard dynamic model for categorical data includes dummy variables for categories of the 
lagged observed response as explanatory variables, leading to a state dependence model (Heckman, 
1981). Alternatively, the lagged latent response may be included to obtain a latent autoregression 
model (Pudney, 2008) so that Equation (2) becomes: 

where e∗
ti
 is assumed to follow a standard normal distribution for a probit model and a standard logistic 

distribution for a logit model.
The latent autoregression model has been used in studies of subjective well-being (Pudney, 2008), 

and political preferences (Stegmueller, 2013). In these applications, y∗
ti
 is viewed as the ‘true’ level of 

well-being or preference which is measured on a discrete scale, and it is argued that the dynamics in 
y∗

ti
 are of greater substantive interest than the effect of past observed survey responses yt−1,i on y∗

ti
. This 

is typically the case for ordinal variables but, as noted by Pudney, the state dependence model may be 
more natural in situations where the response is inherently discrete, for example a binary indicator of 

(5)�1xt−1+�2(1−xt−1)xt+�3xt−1(1−xt)

yti = c⟺ y∗
ti
∈ [�c−1, �c), c=1,…, C

(6)y∗
ti
= �y∗

t−1,i
+�xti+ui+e∗

ti
, t=2, 3, … , T
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employment status. However, for unequally spaced panel data, the advantage of assuming a DGP of 
the form (6) is that it allows the application of repeated substitution to obtain a model for the depen-
dency of y∗

ti
 on y∗

t−s, i
 that has the same form as (3) with yt−s, i replaced by y∗

t−s, i
. It follows that the model 

for an ordinal (or binary) response at measurement occasion m can be expressed as Equation (4) with 
(ytmi, ytm−1, i, �tmi) replaced by (y∗

tmi
, y∗

tm−1, i
, �∗

tmi
) where �∗

tmi
=
∑Δtm−1

k=0
�ke∗

tm−k,i
.

3.3 | Multivariate responses

The above models for univariate continuous and ordinal data can be generalised to multivariate re-
sponses. We consider the special case of a bivariate continuous response where each response may 
influence the other over time. Denote by yrti the response on variable r (r = 1, 2) at time t for individual 
i. For a pair of continuous responses, the bivariate generalisation of the DGP Equation (2) is 

where ui = (u1i, u2i)
T ∼ N2(0, Ωu) and eti = (e1ti, e2ti)

T ∼ N2(0, Ωe), and �r and �r are the response-spe-
cific autoregression parameter and coefficient vector of x. The model allows for association between the 
two processes in three ways: (i) a cross-lag effect �r, (ii) correlation between time-invariant unmeasured 
influences on the two responses, cor(u1i, u2i), and (iii) residual correlation between the two responses at 
the same time, cor(e1ti, e2ti). For an ordinal (or binary) response, an ordered probit model can be used 
where (7) is specified in terms of underlying latent variables y∗

rti
 and their lags y∗

r,t−1,i
.

For consecutive responses spaced s unit periods apart, the dependency of yrti on the lag yr,t−s,i and 
cross-lag yr�,t−s,i can be derived by repeated substitution as in Equation (3). However, the inclusion of 
the cross-lag requires a double substitution which leads to more complex expressions for the coeffi-
cients, random effects and residual covariance structure than in the univariate case. Details are given 
in the supplementary material.

3.4 | Modelling the initial condition

The dynamic model of Equation (4) can be extended to allow for the possibility that y at the first 
measurement occasion is endogenous. This source of selection bias is widely referred to as the initial 
conditions problem, and arises when the start of the observation period does not coincide with the start 
of the process of interest. In our application, for example, the majority of survey respondents would 
have left the parental home, thereby joining the target population for studying exchanges between 
non-coresident relatives before their entry to the panel.

In a random effects model, the inclusion of lagged responses in Equations (2) and (4) may in-
validate the standard assumption that the individual effects ui are uncorrelated with the explanatory 
variables when the initial condition yt1i is assumed exogenous. One way to allow for an endogenous 
initial condition is to specify a model for the response at m = 1 which shares random effects, and must 
therefore be estimated jointly, with model (4) for m > 1 (Kazemi & Crouchley, 2006): 

where xt1i is a vector of covariates, which may be time-invariant or specific to the first measurement oc-
casion, α is a vector of parameters, �1 is a loading for the individual random effect and �t1i ∼ N(0, �2

�1
).  

(7)yrti = �ryr,t−1,i+�ryr�,t−1,i+�rxti+uri+erti, r=1, 2; r�≠ r; t=2, 3,…, T

(8)yt1i =�xt1i+�1ui+�t1i
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The inclusion of ui in both (8) and (4) allows for the presence of unobserved time-invariant factors af-
fecting responses at all occasions, while �1 allows their contribution to differ for the first and subsequent 
observations of y.

3.5 | Estimation

For a univariate continuous response, the contribution to the likelihood for individual i is 

 where f1( ⋅ ) and f(·) are the pdfs of normal distributions with means given by the linear predictors of (8) 
and (4), respectively, and variances var(�tmi) (m = 1, …, M), and G(·) is the cdf of a normal distribution 
with mean zero and variance �2

u
. The sample likelihood (�, �, � , �2

u
, �2

e
, �2

�1
) is obtained by taking the 

product of i over the n individuals in the sample. (The likelihood for the generalisation to multivariate 
responses is given in supplementary materials.) The model cannot be fitted using standard software for 
random effects models because of the non-linear constraints on the coefficients, random effects loading 
and residual variance. However, maximisation of the log-likelihood function can be carried out using stan-
dard optimisers available in statistical software. Alternatively, Bayesian estimation methods may be used.

For a univariate binary or ordinal response, the generalisation of the latent autoregression model 
for unequally spaced observations described in Section 3.2, together with a probit formulation of the 
model for the initial condition of Equation (8), can be framed as a type of multivariate probit model. 
The form of the likelihood is given in the supplementary materials. The latent autoregression model 
for equally spaced measurements on a univariate ordinal response can be estimated using maximum 
simulated likelihood (Pudney, 2008) or Bayesian methods (Stegmueller, 2013). We use Bayesian es-
timation via MCMC, extending Stegmueller’s approach to handle unequally spaced multivariate re-
peated measures.

All model estimation in the simulation study and in the real-data application in Sections 4 and 
5 was carried out using MCMC (specifically Gibbs sampling) as implemented in JAGS (Plummer, 
2003) via the runjags R package (Denwood, 2016) (see Supplementary Materials for annotated 
code). Assuming a bivariate response, the following prior distributions were specified:

1. U(−1, 1) priors for the autoregression parameters γ and N(0, 1000) priors for all other re-
gression coefficients and random effect loadings.

2. For univariate data, we assign Gamma priors for the random effect precisions and, for continuous 
responses, the residual variance: �−2

u
, �−2

e
∼ Gamma(0.001, 0.001).

3. For bivariate data, we specify Wishart priors for the random effects precision matrix: 
Ω−1

u
∼Wishart(�, S

−1) with degrees of freedom ν = R = 2 and scale matrix S = I2. These common 
choices for ν and S imply a relatively uninformative prior, but may be informative when the vari-
ances are small leading to overestimation of the variances which may affect estimates of the other 
parameters (Schuurman et al., 2016). We therefore consider the sensitivity of estimates to setting S 
with diagonal elements equal to variance estimates obtained from fitting univariate models to each 
response and assuming Gamma priors for the random effects precisions.

4. For continuous bivariate responses, the same Wishart priors were assumed for Ω−1
e

. For binary or 
ordinal bivariate responses, where the residual variances are constrained to 1 for identification, we 
specify a hyperbolic tangent function for the residual correlation 

(9)i =�
∞

−∞

f1(yt1i|xt1i, ui)

M∏

m= 2

f(ytmi|ytm−1,i, xtmi, xtm−1,i,…, xtm−1+1,i, ui) dG(ui)
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and assign the prior θ∼N(0, 1000).
If the model of interest includes xt as a predictor, we require data for (xtm

, xtm−1, … , xtm−s+1) when 
the spacing between two consecutive measurements on y is Δtm = s unit periods. In the application 
that follows, we additionally require xtm−s because of interest in transitions in x between t − 1 and t. In 
practice, it is likely that there is missing data on at least one of the lags and we treat these missing val-
ues as parameters to be estimated in the Bayesian framework. We estimate an autoregressive logistic 
model for missing binary xt 

 and specify N(0, 1000) priors for �k (k = 1, 2, 3).

4 |  SIMULATION STUDY

4.1 | Study design

A simulation study was carried out to assess the finite-sample performance of the methods proposed in 
Section 3 to handle unequally spaced panel data for continuous and binary responses. Univariate continuous 
yti were generated from a dynamic model of form (2), while univariate binary yti were generated from the 
latent autoregression model of Equation (6). We also considered bivariate responses yrti (r = 1, 2) with lag 
and cross-lag effects, generated from Equation (7) and its latent generalisation for binary responses. In each 
case, the parameters of primary interest are the coefficients of a set of indicators for binary state transitions 
between t − 1 and t, parameterised as in Equation (5). All DGPs incorporate a model for the initial condition.

Responses were initially generated for T = 15 unit periods, the length of the observation window 
(in years) in the application of Section 5. Unequal spacing was generated to follow the measure-
ment schedule in the BHPS/UKHLS family network module by selecting observations ytmi where 
{tm} = (1, 6, 11, 13, 15), corresponding to the spacing {Δtm} = (5, 5, 2, 2). For bivariate responses, 
we also considered a measurement schedule that included intervals equal to the unit period by setting 
T = 7 and selecting observations at {tm} = (1, 3, 5, 6, 7) to produce spacing {Δtm} = (2, 2, 1, 1).

Our objective is to estimate the parameters of the DGP using the 5 observed unequally spaced ytm
 

and 15 (or 7) annual measurements of xt. Combinations of the following simulation conditions were 
considered, each with n = 1000 individuals:

1. Balanced (M  =  5) and unbalanced (Mi ≤ 5 with M = 3.6) panels generated from a dropout 
model that assumes an increasing probability of dropout with occasion m.

2. Strong (γ = 0.8) and moderate (γ = 0.4) autoregression effect, as in Millimet and McDonough 
(2017).

3. Uncorrelated and serially correlated xti. While Millimet and McDonough (2017) assumed a con-
tinuous time-varying covariate, we focus on changes in a binary xti between t−1 and t, as in our 
application. High, moderate and low transition probabilities were considered to assess the impact 
of the amount of within-person variation in xti. High transition probabilities (corresponding to 
uncorrelated xti) were generated by taking independent Bin(1, 0.5) draws of xti for t = 1,  …, T, 

cor(e∗
1ti

, e∗
2ti

)=
exp(�)−1

exp(�)+1

logit[Pr(x
t
m
−s,i =1)]=�2

logit[Pr(x
ti
=1|x

t−1, i)]=�0+�1x
t−1,i(t= t

m
−s+1,…, t

m
)
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leading to transition probabilities of 0.25 in both directions. The moderate case assumed transition 
probabilities of 0.1, while the low case assumed a probability of 0.1 in one direction and 0.02 in the 
other, based on annual partnership transition probabilities in the BHPS/UKHLS data. For both the 
moderate and low scenarios, xti was generated from a logistic regression model with predictor xt−1,i 
to impose serial correlation.

Three additional conditions were considered for univariate continuous and binary yti: a reduction in 
the number of individuals to n = 500; a reduction in the number of waves in the DGP and observations 
to T = 10 and Mi ≤ 4, respectively, with spacing {Δtm} = (5, 2, 2); and a skewed normal distribution 
(with a skewness coefficient of 0.75) for the individual random effects in the DGP. In each of these 
cases, we assumed an unbalanced design with γ = 0.8 and low transitions probabilities for xti.

Apart from γ, all other parameters of the dynamic model for t > 1 were fixed across simulation 
conditions at the values given in Table 1 and Tables S1–S5. The parameter values of the DGPs for the 
initial condition are given in the supplementary material. For univariate yti, 500 data sets were gener-
ated for each scenario. The number of replications for bivariate responses was reduced to 100 due to 
the increased estimation times. Joint models of the form (4) and (8), and its bivariate extension (see 
Supplementary Material), were fitted to the simulated data for ytmi (m > 1) and yt1i, respectively, with 

T A B L E  1  Simulation results for 500 replicates of unbalanced designs with univariate binary y observed at 
intervals of (5, 5, 2, 2) for n = 1000 individuals. Estimates from dynamic model for m > 1, varying the autoregression 
parameter γ and the annual transition rate for binary x

t

Parametera True

γ = 0.8 γ = 0.4

Meanb 
Mean 
SEc SDd 

95% 
cove Mean

Mean 
SE SD

95% 
cov

Pr(xt = s|xt−1 = s�) = 0.25 for s, s� = 0, 1; s ≠ s′

�0 0 −0.005 0.082 0.084 0.930 −0.004 0.068 0.071 0.920

γ 0.8/0.4 0.799 0.033 0.037 0.910 0.385 0.064 0.065 0.940

�1 −0.2 −0.200 0.106 0.109 0.948 −0.203 0.089 0.093 0.944

�2 −0.6 −0.613 0.161 0.161 0.948 −0.599 0.103 0.108 0.950

�3 0.6 0.612 0.161 0.165 0.952 0.606 0.104 0.106 0.948

�2
u

1 1.054 0.176 0.182 0.944 1.066 0.167 0.170 0.936

Pr(xt = 1|xt−1 = 0) = 0.11 and Pr(xt = 0|xt−1 = 1) = 0.02

�0 0 −0.001 0.078 0.078 0.952 0.001 0.077 0.076 0.950

γ 0.8/0.4 0.797 0.034 0.037 0.910 0.377 0.065 0.068 0.914

�1 −0.2 −0.205 0.082 0.081 0.950 −0.208 0.081 0.079 0.954

�2 −0.6 −0.628 0.329 0.335 0.956 −0.613 0.241 0.228 0.970

�3 0.6 0.599 0.378 0.382 0.952 0.588 0.267 0.275 0.940

�2
u

1 1.062 0.179 0.191 0.930 1.080 0.170 0.174 0.930
aParameters are intercept (�

0
), effect of transitions in binary x

t
, as in Eq. (5), 11 versus 00 (�

1
), 01 versus 00 (�

2
), 10 versus 11 (�

3
) and 

random effect variance (�2

u
). 

bMean of the parameter estimates across replications where the estimates for a given replicate are computed as the posterior means of 
the chain values. 
cMean of the posterior standard deviations. 
dEmpirical SE, calculated as the standard deviation of the posterior means. 
eProportion of replications where the 95% credible interval includes the true parameter value. 



12 |   STEELE and GRUNDY

the transition indicators and their lags replacing xtm−1+1,i, …, xtm,i in Equation (4). All models were 
fitted using MCMC as implemented in JAGS, with the priors given in Section 3.5.

4.2 | Results

Selected results for univariate continuous ytm
 with observation intervals of (5, 5, 2, 2) are given in 

Table S1. We focus on unbalanced designs because the estimators were unbiased with good confi-
dence interval coverage for the balanced case. The proposed random effects estimator for a univariate 
continuous response performs well in terms of bias and accuracy for different values of the autore-
gression parameter γ and of the within-person correlation in the binary predictor xt (as measured by 
the transition probabilities between t − 1 and t). For all scenarios, the mean and empirical standard 
errors are similar and the confidence interval coverage probabilities are in general close to the nominal 
95% level. Performance was also good for the three additional conditions described above (n = 500, 
Mi ≤ 4 and skewed random effects distribution; see Table S2).

In the case of univariate binary ytm
, accuracy and confidence interval coverage are acceptable for 

all conditions, but there are slightly larger biases in some parameters (Table 1 and Table S2). We find 
that γ is underestimated when γ = 0.8, with a relative bias of 3.8% or 5.8% according to the extent 
of within-person variation in xt. When the transition probabilities for xt are very low, there is some 
bias in the parameters associated with xt regardless of the value of γ, with the largest relative bias 
estimated as 4.7% (for �2 when γ = 0.8). We also note that in the binary case the standard errors of 
the parameters for the x transitions depend on the within-person variance in both x and y, where the 
latter is varied in the simulations by changing γ as �2

u
 is fixed throughout; the effects of transitions in 

xt are most precisely estimated when γ is small and the transition probabilities for xt are large. Finally, 
in all scenarios, there is an upward bias of 5–8% in �2

u
, which was also apparent for balanced designs 

(results not shown). We would expect that increasing the number of observations of y per person, and 
the number of individuals, would lead to bias reduction. However, we do not consider this here as the 
fixed effects parameters are of primary substantive interest in our application.

Results for bivariate continuous and binary responses for an unbalanced design with moderate 
transition probabilities for xt are given in the supplementary materials. We began with a full bivariate 
model with correlated residuals, random effects and cross-lag effects with observation gaps of (5, 5, 
2, 2). For continuous yrtm

, there are small biases for some parameters, but the empirical standard errors 
were considerably larger than the mean standard errors, suggesting that the estimator is unstable (Table 
S3). However, the estimators for a simplified model without the cross-lag terms performs well (see 
Table S4 for binary yrtm

). Further investigation of the full bivariate model revealed that the instability 
in estimation was due to the observation intervals all being larger than the unit period in the DGP. 
Reducing the observation gaps to (2, 2, 1, 1) led to low bias and close agreement between the mean and 
empirical standard errors for both continuous and binary responses (Tables S5 and S6). This finding 
led us to exclude cross-lagged effects from the bivariate models fitted to the BHPS/UKHLS data.

5 |  APPLICATION

5.1 | Background and research questions

In all societies, intergenerational transfers have major implications for individual, family and societal 
well-being (Mason & Lee, 2018). Private transfers between adult children and their parents are an 
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important element of intergenerational linkages and a means of providing support to those in need and 
spreading risks across the life course (Kunemud et al., 2005). In contemporary low-mortality socie-
ties, generational overlap is much higher than in the past and the co-survival of parents and their adult 
children often extends for longer than the child-rearing phase of life (Murphy et al., 2006). Associated 
increases in the numbers and proportions of older people imply an increase in the volume of help 
needed by those with age-related functional limitations. Needs for assistance may also be increasing 
in other age groups as a result of delayed transitions to adulthood, precarious employment, and in-
creasingly diverse and complex family life courses (Henretta et al., 2018; Lesthaeghe, 2014). For all 
these reasons, extending our understanding of factors associated with exchanges of support between 
adult children and their parents is important.

The three main ‘currencies’ of intergenerational exchange between older parents and adult 
children are coresidence, provision of practical help and financial transfers. In the United States 
and some European countries, including the United Kingdom, the long-term trend towards de-
clining intergenerational coresidence has recently been interrupted by a slight increase in cores-
idence rates between young adults and their parents, a trend attributed to the greater challenges 
young people now face in establishing and maintaining separate households (Stone et al., 2011). 
Exchanges of instrumental support (practical or financial help) between people living in differ-
ent households nevertheless remain a more important component of intergenerational exchanges 
within families. Although practical help and financial gifts are somewhat different, they are to 
some extent substitutable, for example better-off adult children who are more engaged in labour 
market work provide more financial assistance, but less time help, to older parents (Bonsang, 
2007).

Previous research indicates that family transfers operate within an exchange framework in 
which reciprocity, either contemporaneous or over the life course, is an important motivating 
factor (e.g. Silverstein & Bengtson, 1997) albeit one moderated by family culture (Grundy & 
Henretta, 2006). Grundy (2005), for example in a British study which used the same measure of 
help as employed here, found a strong reciprocal element to help given to and received from chil-
dren by parents in late mid-life. Our analysis extends earlier work on intergenerational exchanges 
in two major ways. First, we use longitudinal data to examine the dynamics of exchanges of 
instrumental support between adult children and their parents, and in particular, the relationship 
between exchanges and time-varying child characteristics. Second, unlike most previous studies 
which have analysed support given separately from support received, we employ a bivariate 
model to estimate the degree of reciprocation between parents and children. We investigate the 
following research questions:

1. To what extent is the giving and receipt of help persistent over time? We expect that ex-
changes will have a strong persistence component until the occurrence of a ‘shock’ (e.g. 
changes in the child’s situation).

2. Are adult children with greater needs more likely to receive help from their parents? We consider 
indicators of need that relate to partnership and employment transitions and presence of young 
children.

3. Do changes in adult children’s circumstances affect their capacity to provide help to parents? For 
example, respondents with young children may have limited time and money to offer parental 
support.

4. Are exchanges reciprocated contemporaneously and over time? The bivariate model allows for 
correlations between giving and receiving help, which are expected to be positive.
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5.2 | Data and measures

The BHPS began in 1991 with a sample of around 5500 households and 10,300 adults. These origi-
nal sample members (OSMs) have been followed up and interviewed annually, and at wave 18 were 
asked to join the larger UKHLS. Information on exchanges of help with relatives living outside a re-
spondent’s household was collected as part of the rotating ‘family network’ module which was admin-
istered in 2001, 2006 (BHPS waves 11 and 16) and biennially thereafter in 2011–2013, 2013–2015 
and 2015–2017 (UKHLS waves 3, 5 and 7). We analyse data for all five waves using a harmonised 
file with variables coded consistently across the two studies (ISER, 2017).

Respondents with a non-coresident parent were asked whether they had given the following types 
of help to their parent(s) ‘regularly or frequently’: lifts in a car, help with shopping, providing or 
cooking meals, help with personal needs, washing or cleaning, personal affairs, DIY or gardening, 
and financial help. The same questions were asked about receipt of support from parents, but with 
‘personal needs’ replaced by help with childcare. We define two binary responses indicating whether 
any support was given to parents (y1tmi) or received from parents (y2tmi) by child (respondent) i at year 
tm, the timing of measurement occasion m = 1, 2, …, Mi where Mi ≤ 5.

The analysis sample was first restricted to 18,999 person-wave observations contributed by BHPS 
OSMs when they were aged 18 or over and had at least one non-coresident parent living in the United 
Kingdom but no coresident parent. There were 1069 observations of yrtmi when respondents were 
living with one parent, mainly from younger respondents who had not yet left the parental home; they 
were excluded because the nature of their exchanges with the non-coresident parent are likely to differ 
from those of respondents who do not live with either parent. Individuals may move in and out of the 
target population over time; for example, a respondent becomes eligible for inclusion after leaving 
the parental home and becomes ineligible following the death of both parents or a parent moving into 
their household. These respondents will have Mi < 5, as will individuals who do not respond to the 
survey request at every wave. Our approach accommodates increased gaps between observations for 
either reason under a missing at random assumption. In the case of wave non-response (or attrition), 
an alternative approach which allows for the possibility that data are not missing at random would 
be to estimate a non-response model jointly with the model of interest (e.g. Washbrook et al., 2014). 
Respondents with measurements of yrtmi at only one wave (n = 2587) were excluded because they 
contribute only to the estimation of the parameters of the model for the initial condition. The sample 
was further restricted to person-waves m such that Δtm ≤ 5 years, leading to a further drop of 270 
observations.

We consider the following covariates: respondent’s gender, travel time to the nearest (UK-based) 
parent, and time-varying measures of a respondent’s age (which is highly correlated with parental 
age), their current partnership and employment status, the presence of children and the age of the 
youngest child, and partnership and employment transitions in the last year. Travel time was measured 
on a 5-point ordinal scale, dichotomised at a threshold of 1 h. This variable was collected at the same 
waves as the parental exchange data but remained constant across the observation period for 89% of 
respondents. We therefore use a time-invariant variable based on the first observation. All time-vary-
ing covariates are based on annual data and were computed for each year between a person’s first 
and last measurements of help given and received. At each wave, the partnership status and age of 
each individual in a responding household, and their relationship to the household reference person, 
was collected at the interviewer’s first contact with an adult member of the household. This informa-
tion was used to derive time-varying indicators of partnership status, annual partnership transitions 
and the presence of biological or adopted children of different ages. Indicators of employment status 
and transitions were derived from data collected directly from respondents through the individual 
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questionnaire. In preliminary analysis allowing the effects of employment transitions to differ for men 
and women, economic activity was grouped into four categories: employed full-time (60.5% of per-
son-waves), employed part-time (17.0%), unemployed (3.3%) and out of the labour market (19.2%). 
Based on this analysis, a simple binary classification (employed vs. non-employed) was found to be 
adequate for both men and women.

Complete data on partnership status and the number and age of children were available at all occa-
sions m at which yrtmi was measured, and data on economic activity were missing for only six records. 
However, there were some missing data on the values of time-varying variables between the mea-
surements of y, which must be included in the estimation model for the observed data yrtmi (m > 1), 
as described in Section 3.1. Information on children was missing for at least one of the required lags 
xtm−1, …, xtm−1+1 for 467 person-wave observations. This reduced to 189 observations after using a 
deductive imputation rule where for missing data at year k, and non-missing data at years k − 1 and 
k + 1, we set xk = xk−1 when xk−1 = xk+1. Observations for which the child lags could not be imputed 
were excluded, but missing data on lags of partnership and employment status for 412 person-waves 
were treated as additional unknown quantities in the Bayesian model for yrtmi (see Section 3.5). A 
small amount of missingness on travel time to the nearest parent (57 respondents) was handled in a 
similar way.

The final analysis sample contains 4839 individuals who contribute 15,904 repeated measure-
ments of the bivariate response for exchanges of support, a mean of 3.3 observations per respondent. 
Descriptive statistics for all variables are given in Table 2.

5.3 | Results

In preliminary analysis, we allowed for gender-specific effects of employment transitions on ex-
changes of support in both directions, distinguishing between full-time and part-time employment 
for women, and for gender-specific reciprocity (the random effect and residual correlations). As there 
was little evidence of any gender differences in these parameters, or that the effects of employment 
transitions differed for part-time and full-time work, the model was simplified by including only a 
main effect of gender and using a binary indicator for employment status. We also considered whether 
the effects of partnership transitions depend on the presence and age of children; for example, any 
increase in parental support following dissolution might be stronger when there are young children 
involved. However, we found no evidence of any such interaction effects. To allow for the possibility 
that the indicators for employment and partnership transitions and the presence and age of the young-
est children are correlated with the individual random effects, a correlated random effects model was 
fitted in which the individual means of these time-varying covariates were included as additional 
predictors (see Section 2). There is little difference in the substantive conclusions between the two 
models, but the coefficients of the time-varying covariates were estimated less precisely with wider 
credible intervals when the individual means were included. We therefore conclude that these covari-
ates may be considered independent of the random effects and focus on the model without individual 
means. (The results for the correlated random effects model are given in Table S8.) Finally, cross-
lagged effects were excluded, following the finding from the simulation study in Section 4.2 that their 
inclusion leads to instability for data structures such as ours where all observed intervals Δtm are larger 
than the unit period in the DGP.

The results for the final specification are given in Table 3 and Table S7. These are based on five 
parallel chains of 20,000 MCMC iterations, each using a different set of starting values and with a 
burn-in sample of 10,000. Convergence was assessed using a range of graphical diagnostics and the 
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potential scale reduction factor (PSRF) (Gelman et al., 2004). Visual inspection of trace plots of each 
parameter for the multiple chains suggested adequate mixing. Final PSRF estimates were close to 1 
for all parameters. Furthermore, increasing the chain length led to little change in the running means 
of the posterior estimates. The results presented are based on a Wishart prior for the random effects 
precision matrix with S equal to the identity matrix (see Section 3.5). An alternative prior with the 
diagonal elements of S equal to variance estimates obtained from univariate models with Gamma 
priors led to slightly larger variance estimates and smaller autocorrelation effects, but little change in 
the other parameters.

The results from the model for the initial condition (Table S7) show the effects of covariates on 
a respondent’s propensity to give and receive help at t1, the first year at which they were observed to 
have a non-coresident parent. Of primary interest, however, are the dynamics of exchanges and the 
effects of time-varying covariates on exchanges at t conditional on exchanges in the previous year. The 
autoregressive parameters (�r) are the polychoric correlations between y∗

rti
 and y∗

rt−1,i
, conditional on 

T A B L E  2  Descriptive statistics for response variables and covariates

Variable Number Per cent

Measured at tm (n = 15, 904)

Any help given to parent(s) (y1tm
) 7575 47.6

Any help received from parent(s) (y2tm
) 6774 42.6

Partnership status at tm
 Partnered 12,175 76.6

 Single 3729 23.4

Employment status at tm
 Employed 12,356 77.7

 Non-employed 3548 22.3

Children at tm
 No children 6217 39.1

 Child(ren), youngest < 2 years 1056 6.6

 Child(ren), youngest 2–4 years 1527 9.6

 Child(ren), youngest 5–10 years 2591 16.3

 Child(ren), youngest 11–16 years 2221 14.0

 Child(ren), youngest > 16 years 2292 14.1

Respondent age at tm Mean = 42.3 SD = 11.0

Individual-level (n = 4839)

Respondent is female 2793 57.7

Travel time to nearest parent more than 1 h 1112 23.2

Transition probabilities (annual) Probability

Partnership

 Pr(partner at t | single at t − 1) 0.111

 Pr(single at t | partner at t − 1) 0.023

Employment

 Pr(employed at t | non-employed at t − 1) 0.190

 Pr(non-employed at t | employed at t − 1) 0.053
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covariates and the individual random effect. In answer to research question (i) in Section 5.1, there are 
moderate to strong lag effects for exchanges in both directions, suggesting a high degree of persistence 
in behaviour over the observation period (consistent with Grundy and Henretta (2006)) after account-
ing for changes in the child’s circumstances. In contrast, there is a relatively small amount of unob-
served heterogeneity; the proportion of the total unexplained variance in y∗

rt
 that can be attributed to 

unobserved time-invariant characteristics is estimated as 17% and 19% for ‘to’ and ‘from’ exchanges, 
respectively (using �2

ru
∕ (1 + �2

ru
)).

The coefficients of the covariates are their effects on the continuous latent variable y∗
rti

 under-
lying the observed binary response yrti (r = 1, 2), conditional on the lag y∗

rt−1,i
. After scaling by 

the factor 1 ∕
√

1 + �2
ru

, the coefficients represent effects in standard deviation units on the latent 

T A B L E  3  Results from bivariate latent dynamic model for any help given to and received from parents at time 
t > 1. Parameters for which the 95% credible interval does not contain zero are in bold

To parents (r = 1) From parents (r = 2)

Mean 95% CI Mean 95% CI

Constant 0.031 (−0.033, 0.096) −0.029 (−0.096, 0.043)

Lagged response y∗
r,t−1

0.676 (0.612, 0.735) 0.548 (0.476, 0.618)

Age at t (years) 0.016 (0.012, 0.019) −0.024 (−0.029, −0.019)

Age squared −0.0001 (−0.0003, 0.00003) −0.0003 (−0.0006, −0.0001)

Female 0.113 (0.068, 0.159) 0.139 (0.086, 0.192)

Closest parent >1 h away −0.475 (−0.573, −0.381) −0.434 (−0.525, −0.351)

Partnership transitions in (t−1,t)

 Partnered at t − 1a −0.054 (−0.108, −0.0003) −0.310 (−0.381, −0.241)

 Partnership formation −0.055 (−0.286, 0.180) −0.108 (−0.339, 0.129)

 Partnership dissolution −0.106 (−0.371, 0.154) 0.463 (0.204, 0.728)

Employment transitions in (t − 1,t)

 Not employed at tb −0.024 (−0.085, 0.035) −0.059 (−0.126, 0.010)

 Move out of employment 0.099 (−0.081, 0.277) 0.122 (−0.064, 0.305)

 Move into employment 0.002 (−0.189, 0.187) −0.153 (−0.347, 0.040)

Presence of children and age of youngest (years) at t

 Any childc −0.106 (−0.222, 0.013) 0.628 (0.494, 0.755)

 Children, youngest age 2–4d 0.131 (−0.023, 0.286) −0.120 (−0.278, 0.031)

 Children, youngest age 5–10d 0.057 (−0.060, 0.172) −0.165 (−0.289, −0.044)

 Children, youngest age 11–16d 0.079 (−0.045, 0.204) −0.581 (−0.710, −0.448)

 Children, youngest age > 16d 0.060 (−0.066, 0.187) −0.658 (−0.799, −0.514)

Random effect variance (�2
ur

) 0.203 (0.121, 0.296) 0.236 (0.150, 0.336)

Random effect correlation (�u12) 0.345 (0.286, 0.403)

Residual correlation (�e12) 0.467 (0.425, 0.509)
aContrast of partnered at t − 1 and t versus single at both years. 
bContrast of not employed at t − 1 and t versus employed at both years. 
cContrast of any children and youngest <2 years versus no children. 
dEffects of age of youngest child among respondents with children (reference is youngest child <2 years). 
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propensities to give or receive help. For instance, the female–male difference in the propensity 
to help parents is estimated as 0.113 ∕

√
(1.203) = 0.103 sd units. Starting with the time-invariant 

covariates, we find that women are more likely than men to both give and receive parental sup-
port, while a travel time of more than 1 h between an adult child and their parents is associated 
with a reduction in the propensity of exchanges in either direction. However, the effect of distance 
should be interpreted with caution due to the possibility that children or parents move closer to 
each other when either becomes in greater need of help. As expected, older respondents (who tend 
to have older parents) are more likely to give and less likely to receive support than their younger 
counterparts, with the quadratic effect implying an acceleration in the negative effect of age on 
giving help at older ages.

We next consider the effects of changes in a child’s circumstances on receiving help from their 
parents (research question (ii)). There is evidence that the experience of partnership breakdown in 
the last year is associated with an increase in the propensity to receive parental support. There is no 
change in the propensity to receive support following the start of a new (coresidential) partnership, 
but we find that respondents who were partnered at both the current and previous year are less likely 
to receive help than those who were single in both years. There is little evidence of parents responding 
to changes in their child’s employment status, although the effects of employment transitions are in 
the expected directions with a move out of employment associated with an increase in the propensity 
to receive help and a move into employment associated with a decrease. Respondents are more likely 
to receive help from their parents when they have young children, but the effect of the presence of 
children decreases with the age of the youngest child to the extent that respondents whose youngest 
is 11 or older are no more likely to receive parental support than respondents without children. While 
there is evidence that parents respond to the changing needs of their children when giving support, we 
find that changes in the child’s circumstances do not influence the provision of support to their parents 
(research question (iii)).

Finally, we turn to question (iv) on reciprocity of exchanges, represented in the model by the 
random effect and residual correlations between giving and receiving parental support. Both cor-
relations are positive which suggests that children with a higher propensity to help their parents 
tend to have a higher propensity to receive help in return. The random effect correlation captures 
unmeasured time-invariant characteristics of the respondent, their parent(s) and the dyad (for 
example, the quality of the child–parent relationship and family norms of behaviour). Reciprocity 
due to unmeasured time-varying factors is captured by the residual correlation which measures 
the association between giving and receiving help in a given year. The relatively large resid-
ual correlation may be due to the omission of time-varying covariates relating to the parents’ 
circumstances.

6 |  DISCUSSION

Unequal spacing between measurements is commonplace in longitudinal studies, but discrete-time 
models which include lagged responses as predictors traditionally assume that responses and co-
variates are available at the same equidistant time points. The general random effects estimator pro-
posed here can handle unequally spaced continuous and categorical multivariate responses and is 
straightforward to estimate using MCMC methods. A bivariate model is applied in an analysis of 
the exchanges of support between adult children and their non-coresident parents, with a focus on 
the effects of changes in children’s circumstances and the extent of reciprocity of exchanges. The 
proposed method makes efficient use of all available data on the responses and covariates of interest: 



   | 19STEELE and GRUNDY

binary indicators of giving and receiving parental support collected at intervals of 5 and 2 years, and 
annual panel data on time-varying socio-demographic characteristics. We find that parents are more 
likely to support their children following a recent partnership dissolution and when there are young 
grandchildren, but changes in children’s circumstances do not appear to influence the provision of 
support to their parents. We might expect that children are more likely to react to changes in their 
parent’s needs, especially as they grow older, but we are unable to pursue this question in our analysis 
of exchanges from a child’s perspective because limited information was collected on non-coresident 
relatives. Future research could use the same approach to study the provision and receipt of support 
from a parental perspective using data collected on exchanges between respondents (parents) and 
non-coresident adult children.

In our application, time-varying covariates xt are available at more regular intervals than yt, but 
designs where (yt, xt) are observed at the same times can be accommodated using data augmentation 
in MCMC (as we have done to handle partial missingness on xt). Viewing unequally spaced measures 
of yt as a missing data problem, alternative approaches include data augmentation or multiple imputa-
tion. However, their implementation would be considerably more computationally intensive than the 
proposed method, especially for long observation periods with large gaps between the observed ym.  
In our application, for example we would have to impute 10 values of yt for individuals observed at 
5 years over the 15-year period. Moreover, it would not be straightforward to specify an imputation 
model that is consistent with the assumed autoregressive DGP.

Based on the findings of the simulation study, caution should be exercised when including cross-
lagged effects in bivariate models for unequally spaced responses. Our results suggest that their inclu-
sion leads to instability and, in the binary case, bias when the observed intervals between responses 
are all larger than the unit period in the assumed DGP, as in our application. For this reason, we were 
unable to pursue investigation of reciprocal effects between giving and receiving help over time in our 
analysis, and we can conclude only that there is a positive association between giving and receiving 
based on the random effect and residual correlations. Even if cross-lagged effects could be estimated, 
simple first-order effects are unlikely to adequately capture the complexity of reciprocity in exchanges 
over time. For example, reciprocity may occur over a longer period than 1 year and the length of the 
lag between giving and receiving may depend on the age of the respondent and their parent and the 
individual circumstances of each. Another issue with cross-lagged effects is that their magnitude 
and direction will depend on the assumed time interval in discrete-time models, which is usually 
determined by the gap between measurements rather than substantive considerations. An alternative 
to the discrete-time approach, which has been proposed for longitudinal models with cross-lag ef-
fects among multivariate responses, is a continuous-time model estimated via stochastic differential 
equations (Voelke et al., 2012). An attractive feature of continuous-time models is that they place no 
requirements on the spacing of measurements, but they are more difficult to implement and interpret 
than discrete-time models which have a strong tradition in the health and social sciences.
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