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Abstract
I introduce an index of market return autocorrelation based on the prices of index
options and of forward-start index options and implement it at a six-month horizon.
The results suggest that the autocorrelation of the S&P 500 index was close to zero
before the subprime crisis but was negative in its aftermath, attaining values around
–20% to –30%. I speculate that this may reflect market perceptions about the likely
reaction, via quantitative easing, of policymakers to future market moves.

Do past returns on the market forecast future returns? Is the return on the market autocor-

related? It is well known that any asset return has zero risk-neutral autocorrelation

(Samuelson, 1965).1 But true autocorrelation may diverge significantly from zero—a point

first made by LeRoy (1973)—and fluctuate over time. It is not clear whether one should ex-

pect positive or negative autocorrelation; indeed, both might be present simultaneously at

different horizons. The former might be attributed to the influence of return-chasing invest-

ors in the investor population, as in the models of Hong and Stein (1999) and Vayanos and

Woolley (2013), or to sluggish response to information; and the latter to bid-ask bounce, to

overreaction as in the model of Barberis et al. (2015), or to the response of monetary

authorities to fluctuations in asset prices.2

* I thank Anthony Neuberger, Anna Cieslak, Leifu Zhang, Fabio Trojani (the editor) and two referees

for their comments; Can Gao for research assistance; and Dimitri Vayanos for posing the question

that prompted this article. This work was carried out with the support of the Paul Woolley Centre

and the ERC (Starting Grant 639744).

1 This statement is precisely true only if interest rates are deterministic; see below.

2 This is a highly incomplete, and somewhat arbitrary, list. Many other authors have studied the

properties of autocorrelation; see, for example, Roll (1984), Grossman and Miller (1988), and

Campbell, Grossman, and Wang (1993).
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Several authors, including Fama and French (1988), Lo and MacKinlay (1988), Poterba

and Summers (1988), and Moskowitz, Ooi, and Pedersen (2012), have studied the proper-

ties of realized autocorrelation of the market return, with results that vary depending

on the horizon studied and on the sample period (on the latter, see Campbell, 2018, pp.

125–127). But how can we infer the forward-looking autocorrelation perceived by sophisti-

cated investors? One straightforward approach is simply to ask investors what they think,

following Shiller (1987) and others. But the expectations reported in such surveys appear to

be far from rational: for example, Greenwood and Shleifer (2014) argue that times when

surveyed investors are optimistic about future returns are in fact associated with low, not

high, subsequent returns.

I therefore take a different approach and ask what autocorrelation must be perceived by

a rational, risk-averse investor—specifically, by an unconstrained rational investor with log

utility who chooses to invest his or her wealth fully in the market. It turns out to be possible

to give a precise answer to this question in terms of the prices of various types of options.

The fact that the autocorrelation index is computed directly from forward-looking asset

prices, rather than from historical measures, is the major innovation of the article. The price

to pay is that one has to accept the log investor’s perspective as being a reasonable one to

adopt. Nonetheless, related approaches have proved fruitful in forecasting returns on the

stock market (Martin, 2017), on individual stocks (Martin and Wagner, 2019), and on cur-

rencies (Kremens and Martin, 2019); and the approach has the obvious advantage of bring-

ing a novel type of evidence to bear on a classic question. Moreover, as in these earlier

papers, we have the benefit of not requiring statistical assumptions on the underlying

process (e.g., that it is stationary or ergodic). Such assumptions are widely made in the em-

pirical literature, but they are not uncontroversial.

The theoretical results are derived in Section 1. They show that the autocorrelation

index can be calculated from the prices of European index options and of forward-start

index options. The latter options are relatively exotic, but I have been able to obtain indica-

tive price quotes from a major investment bank for a small number of days between June

2007 and December 2013. Section 2 uses these prices to calculate the autocorrelation index

and compares the implied forward-looking autocorrelations that emerge to the correspond-

ing realized autocorrelations. Section 3 concludes.

1 Measuring Autocorrelation

Today is time t; the price of the underlying asset at time t is St. The goal is to measure the

correlation between the return on the asset over the next period, Rt!tþ1 and the return over

the following period, Rtþ1!tþ2. I assume that the underlying asset does not pay dividends,

so Rt!tþ1 ¼ Stþ1=St. I write the rate at which money can be risklessly invested from time u

to time v as Rf ;u!v, so Rf ;t!tþ1 and Rf ;t!tþ2 are one- and two-period spot rates.

I write E
�
t for the risk-neutral expectation operator whose defining property is that the

time-t price of a time-ðt þ 2Þ payoff Xtþ2 is 1
Rf ;t!tþ2

E
�
t Xtþ2; and cov�t and corr�t for the corre-

sponding risk-neutral covariance and risk-neutral correlation operators.

When seeking a measure of autocorrelation that can be computed directly from asset

prices, the natural first thought is to consider risk-neutral autocorrelation. Unfortunately,

we have the following well-known result.
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Result 1. Suppose that interest rates are deterministic. Then the return on any asset has

zero risk-neutral autocorrelation: corr�t ðRt!tþ1;Rtþ1!tþ2Þ ¼ 0.

Proof. By the defining property of the risk-neutral expectation operator, we have

E
�
t Rt!tþ1 ¼ Rf ;t!tþ1 and E

�
tþ1Rtþ1!tþ2 ¼ Rf ;tþ1!tþ2. As interest rates are deterministic, the

second equality implies that E
�
t Rtþ1!tþ2 ¼ Rf ;tþ1!tþ2 by the law of iterated expectations.

So we can write

cov�t ðRt!tþ1;Rtþ1!tþ2Þ ¼ E
�
t ½ðRt!tþ1 � Rf ;t!tþ1ÞðRtþ1!tþ2 � Rf ;tþ1!tþ2Þ�

¼ E
�
t ½ðRt!tþ1 � Rf ;t!tþ1ÞE�tþ1ðRtþ1!tþ2 � Rf ;tþ1!tþ2Þ�

¼ 0;

using the law of iterated expectations again for the second equality. h

Although interest rates are not deterministic, they are typically extremely stable by com-

parison with returns on stock indices, so Result 1 rules out the autocorrelation perceived by

a risk-neutral investor as a useful measure. Moreover, it is easy to adapt the proof above to

show that the risk-neutral autocorrelation of excess returns is zero even if interest rates are

stochastic.

How, then, can we define a non-trivial measure of autocorrelation? This article introdu-

ces an index that can be interpreted as the autocorrelation perceived by a rational, uncon-

strained investor with log utility whose wealth is fully invested in the market. The next

result, which is also exploited by Martin (2017), provides the key to calculating this

quantity.

Result 2. Let XT be some random variable of interest whose value becomes known at time

T, and suppose that we can price a claim to XTRt!T delivered at time T. Then we can com-

pute the expected value of XT from the perspective of an investor with log utility whose

wealth is invested in the market:

EtXT ¼ time t price of a claim to the time T payoff XTRt!T : (1)

Proof. An investor with log utility who chooses to hold the market must perceive that

the return on the market is growth-optimal. As the reciprocal of the growth-optimal return

is a stochastic discount factor (SDF), the right-hand side of Equation (1) equals

Et
1

Rt!T
XTRt!T

h i
, and the result follows. h

This result provides a general strategy for inferring the true expectation of the log investor

from traded asset prices. If we can price the claim XTRt!T , then we can infer the investor’s

expectation of XT, even if XT is not itself a tradable payoff. In particular, Result 2 will

allow us to calculate corrtðRt!tþ1;Rtþ1!tþ2Þ.

To that end, we wish to compute

covtðRt!tþ1;Rtþ1!tþ2Þ ¼ EtRt!tþ2 � EtRt!tþ1EtRtþ1!tþ2: (2)
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By Result 2, EtRt!T is equal to the price of a claim to the square of the return on the mar-

ket, R2
t!T . This price can be calculated by a replication argument, as in Martin (2017),

using the fact that

R2
t!T ¼

ST

St

� �2

¼ 2

S2
t

ð1
0

maxf0; ST � KgdK:

This equation expresses the desired payoff—the squared return—as the payoff on a port-

folio that holds equal quantities of calls of all strikes. Thus

EtRt!T ¼
2

S2
t

ð1
0

callt;TðKÞdK; (3)

and setting T ¼ t þ 1 and T ¼ t þ 2 in this expression delivers the first two expectations on

the right-hand side of Equation (2).

It is more difficult to compute EtRtþ1!tþ2, and doing so is the main innovation of the

article. In view of Result 2, to calculate this quantity we need the time-t price of a claim to

Rtþ1!tþ2Rt!tþ2 delivered at time tþ 2. That is, we must price a claim to S2
tþ2=ðStStþ1Þ.

It will turn out that we can replicate this claim using forward-start options. A forward-

start call option that is initiated at time t, for settlement at time tþ2, has the payoff

maxf0; Stþ2 � KStþ1=Stg

for some fixed K. The unusual feature of a forward-start option is that its strike price,

KStþ1=St, is not determined until the intervening time tþ 1. (The introduction of St, a

known constant from the perspective of time t, is simply a convenient normalization.) In

contrast, the strike price of a conventional option is determined at the initiation of the

trade. I write FScalltðKÞ for the time-t price of the above payoff, and FSputtðKÞ for the price

of the corresponding put payoff, maxf0;KStþ1=St � Stþ2g.
If we hold a portfolio consisting of 2=S2

t dK forward-start calls for each K, the portfolio payoff

is

2

S2
t

ð1
0

maxf0; Stþ2 � KStþ1=StgdK ¼
S2

tþ2

StStþ1
: (4)

Since the payoff on the portfolio of forward-start calls replicates the desired payoff, the price of

the payoff S2
tþ2=ðStStþ1Þ is the price of the portfolio of forward-start calls, and hence

EtRtþ1!tþ2 ¼
2

S2
t

ð1
0

FScalltðKÞdK: (5)

Before using Equations (3) and (5) to compute the covariance covtðRt!tþ1;Rtþ1!tþ2Þ, it

will be convenient to rearrange them by replacing in-the-money calls and forward-start

calls with out-of-the-money puts and forward-start puts. For vanilla options, we can do so

by exploiting put-call parity, which in our context states that

callt;TðKÞ � putt;TðKÞ ¼ St �
K

Rf ;t!T
:
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The next result provides the corresponding relation for forward-start options.

Result 3 (Put-call parity for forward-start options). Let Gt be defined by the equation

FScalltðGtStÞ ¼ FSputtðGtStÞ (so Gt is observable at time t, assuming the prices of forward-

start options of all strikes are available). Then

FScalltðKÞ � FSputtðKÞ ¼ St �
K

Gt
: (6)

If interest rates are deterministic, then Gt equals the forward (gross) interest rate for invest-

ment from time tþ 1 to tþ 2.

Proof. The time-ðt þ 2Þ payoff on a portfolio that is long a forward-start call and short a

forward-start put, each with strike K, is Stþ2 � KStþ1=St. It follows that

FScalltðKÞ � FSputtðKÞ ¼ St �
1

Rf ;t!tþ2
E
�
t

KStþ1

St

� �
¼ St � kK;

where k is the time-t price of a claim to Stþ1=St delivered at time tþ 2. We can pin down k

by applying the equation immediately above in the case K ¼ GtSt to conclude that

k ¼ 1=Gt. This gives the result of Equation (6).

If interest rates are deterministic, k ¼ 1=Rf ;tþ1!tþ2. For we can replicate the payoff Stþ1=St,

paid at time tþ 2, by investing 1=Rf ;tþ1!tþ2 in the market from time t to tþ1, and then at

the riskless rate from time tþ1 to tþ 2. h

Martin (2017) defined the volatility index SVIX2
t;T ¼ 1

T�t var�t ðRt!T=Rf ;t!TÞ:

SVIX2
t;T ¼

2

ðT � tÞRf ;t!TS2
t

½
ðStRf ;t!T

0

putt;TðKÞdKþ
ð1

StRf ;t!T

callt;TðKÞdK�:

We can define a forward volatility index FSVIXt that is new to this article:

FSVIX2
t ¼

2

GtS2
t

½
ðStGt

0

FSputtðKÞdKþ
ð1

StGt

FScalltðKÞdK�:

Using the put-call parity relations to substitute out calls and forward-start calls that have

low strikes (i.e., are in-the-money), and then introducing these definitions, Equations (3)

and (5) can be rewritten as

EtRt!T ¼ Rf ;t!T

�
1þ ðT � tÞSVIX2

t;T

�
(7)

EtRtþ1!tþ2 ¼ Gtð1þ FSVIX2
t Þ: (8)

These definitions lead to the following characterization.

Result 4. The forward-looking autocovariance of returns, as perceived by the log investor,

can be expressed in terms of spot and forward volatility indices as

Martin j On the Autocorrelation of the Stock Market 43

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/19/1/39/6124729 by London School of Econom

ics user on 13 February 2023



covtðRt!tþ1;Rtþ1!tþ2Þ ¼ Rf ;t!tþ2ð1þ 2SVIX2
t;tþ2Þ

� Rf ;t!tþ1Gtð1þ SVIX2
t;tþ1Þð1þ FSVIX2

t Þ: (9)

This expression simplifies if interest rates are deterministic:

covtðRt!tþ1;Rtþ1!tþ2Þ ¼ Rf ;t!tþ2ð2SVIX2
t;tþ2 � SVIX2

t;tþ1 � FSVIX2
t � SVIX2

t;tþ1FSVIX2
t Þ:
(10)

Proof. Equation (9) follows on substituting Equations (7) and (8) into the definition (2) of

autocovariance. If interest rates are deterministic, then Rf ;t!tþ1Gt ¼ Rf ;t!tþ2 (because, as

shown in Result 3, Gt is then equal to the forward rate from tþ1 to tþ 2); Equation (10)

follows. h

Result 4 has the intuitive implication that forward-looking autocorrelation is positive if

long-dated options (whose prices are embedded in SVIXt;tþ2) are sufficiently expensive rela-

tive to short-dated and forward-start options (whose prices are embedded in SVIXt;tþ1 and

FSVIXt).

The remaining task is to compute vartRt!tþ1 and vartRtþ1!tþ2. As one might by now

expect, the former can be computed from vanilla options and the latter from forward-start

options. We have already calculated EtRt!tþ1 and EtRtþ1!tþ2, so it only remains to find

EtR
2
t!tþ1 and EtR

2
tþ1!tþ2. By Result 2, the first of these is equal to the time-t price of a

claim to R3
t!tþ1 paid at time tþ1, and since

Stþ1

St

� �3

¼ 6

S3
t

ð1
0

K maxf0; Stþ1 � Kg dK;

the desired quantity is

EtR
2
t!tþ1 ¼

6

S3
t

ð1
0

K callt;tþ1ðKÞdK: (11)

The remaining term, EtR
2
tþ1!tþ2, is equal to the price of a claim to R2

tþ1!tþ2Rt!tþ2 at time

tþ2. Since

R2
tþ1!tþ2Rt!tþ2 ¼

S3
tþ2

StS2
tþ1

¼ 6

S3
t

ð1
0

K maxf0; Stþ2 � KStþ1=Stg dK;

we have

EtR
2
tþ1!tþ2 ¼

6

S3
t

ð1
0

K FScalltðKÞ dK: (12)

Using the put-call parity relations to replace in-the-money calls with out-of-the-money

puts, Equations (11) and (12) become

EtR
2
t!tþ1 � R2

f ;t!tþ1 ¼
6

S3
t

½
ðStRf ;t!tþ1

0

K putt;tþ1ðKÞ dKþ
ð1

StRf ;t!tþ1

K callt;tþ1ðKÞ dK �

(13)

and
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EtR
2
tþ1!tþ2 �G2

t ¼
6

S3
t

½
ðStGt

0

K FSputtðKÞdKþ
ð1

StGt

K FScalltðKÞdK �: (14)

Equations (7), (8), (13), and (14) provide the ingredients needed to calculate the autocorrel-

ation index

corrtðRt!tþ1;Rtþ1!tþ2Þ ¼
EtRt!tþ2 � EtRt!tþ1EtRtþ1!tþ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vartRt!tþ1vartRtþ1!tþ2

p : (15)

1.1 The Autocorrelation Index in Homogeneous Models

In many familiar theoretical models, the autocorrelation index is exactly zero. (As we will

see in the next section, this is counterfactual.) As an illustration, consider the model of

Black and Scholes (1973). At time tþ1, a forward-start call becomes identical to a vanilla

call with strike KStþ1=St, so by the Black–Scholes formula (with volatility r and a continu-

ously compounded riskless rate of r), the forward-start call is worth

Stþ1U
log St

K þ rþ 1
2 r2

r

� �
� K

Stþ1

St
e�rU

log St

K þ r� 1
2 r2

r

� �

at time tþ1. As a claim to Stþ1 at time tþ 1 is worth St at time t, the above expression

implies that at time t, the forward-start call is worth the same as a one-period vanilla call:

FScalltðKÞ ¼ callt;tþ1ðKÞ. It follows by put-call parity that FSputtðKÞ ¼ putt;tþ1ðKÞ, and

hence also that FSVIX2
t ¼ SVIX2

t;tþ1. The autocorrelation index therefore takes a particular-

ly simple form: as we have SVIX2
t;T ¼ 1

T�t er2ðT�tÞ � 1Þ
�

,

covtðRt!tþ1;Rtþ1!tþ2Þ ¼ e2r
�

e2r2 � 1� 2ðer2 � 1Þ � ðer2 � 1Þ2
�
¼ 0:

That is, the autocorrelation index is zero in the Black–Scholes model. Another way to

make the same point is that with constant risk aversion (through log utility) and constant

volatility, the risk premium is constant, so there is no room for autocorrelation to arise

through the drift term. As volatility is also constant, there is no autocorrelation at all.

More generally, let us say that a model is homogeneous if interest rates are constant and

call prices have the property that callt;TðKÞ ¼ KgðSt=K;T � tÞ for some function g. (Many

option-pricing models have this property, including the model of Black and Scholes (1973),

the jump-diffusion model of Merton (1976), the variance-gamma model of Madan, Carr,

and Chang (1998), and the model of Heston (1993) among others; the local volatility

framework of Dupire (1994) is an example of a setting in which the homogeneity property

does not hold.) We have the following result.

Result 5. In a homogeneous model, the relationship between a forward-start option and a

vanilla European option is trivial. That is, we have FScalltðKÞ ¼ callt;tþ1ðKÞ and

FSputtðKÞ ¼ putt;tþ1ðKÞ. It follows that FSVIX2
t ¼ SVIX2

t;tþ1 in homogeneous models.

Proof. A forward-start call with strike K, initiated at time t for final settlement at time

tþ2, has the payoff maxf0; Stþ2 � KStþ1=Stg at time tþ2. From the perspective of time

tþ1, this is equivalent to the payoff on a vanilla call with strike KStþ1=St. By the
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homogeneity assumption, at time tþ1, the vanilla call (and hence also the forward-start

call) is worth

KStþ1

St
g

Stþ1

KStþ1=St
; 1

� �
¼ KStþ1

St
gðSt=K; 1Þ:

The forward-start call is therefore worth KgðSt=K; 1Þ at time t. In other words, by the

homogeneity property, FScalltðKÞ ¼ callt;tþ1ðKÞ. Hence FSputtðKÞ ¼ putt;tþ1ðKÞ, by the

put-call parity relations for vanilla and forward-start options. It follows that FSVIX2
t ¼

SVIX2
t;tþ1 as an immediate corollary. h

1.2 Beyond Log Utility

Our measure of implied autocorrelation exploits asset price data alone, without reference

to, say, survey forecasts, or accounting or macroeconomic data. Several recent papers,

including Martin (2017), Kadan and Tang (2019), Kremens and Martin (2019), Martin

and Wagner (2019), and Schneider and Trojani (2019), have adopted similar

approaches. But we have made a stronger structural assumption on the form of the sto-

chastic discount factor than these papers do, so it is natural to wonder whether the ap-

proach of this article can be generalized to allow for, say, power utility rather than log

utility.

Unfortunately, it cannot. To be concrete, suppose we wish to compute the autocorrel-

ation perceived by a hypothetical investor who has power utility over wealth at time tþ2

and who chooses to invest fully in the market. As shown by Martin (2017, online appen-

dix), the “easy” terms that appear in Equation (2)—namely, EtRt!tþ1 and EtRt!tþ2—can

be calculated in this more general setting.

The difficulty lies in the term EtRtþ1!tþ2. To compute this quantity3 with power util-

ity (i.e., with an SDF proportional to R�c
t!tþ2), we would have to replicate (and hence

price) the payoff S1þc
tþ2=ðS

c
t Stþ1Þ. To do so by holding a portfolio of f ðKÞdK forward-start

calls for each K—where f(K) is some function that we can choose freely—we would

need to have

ð1
0

f ðKÞmaxf0; Stþ2 � KStþ1=StgdK ¼
S1þc

tþ2

Sc
t Stþ1

:

In the log utility case c¼ 1, Equation (4) shows that f(K) can be taken to be a constant

known at time t. More generally, dividing through by Stþ1, we require that

ð1
0

f ðKÞmaxf0; Stþ2=Stþ1 � K=StgdK ¼
S1þc

tþ2

Sc
t S

2
tþ1

: (16)

The left-hand side of Equation (16) is a function of Stþ2=Stþ1 (as St is known at time t).

Therefore the right-hand side must also be a function of Stþ2=Stþ1; but this forces c¼1.

Thus, log utility is the only case in which this article’s approach works.

3 Given a random variable X and SDF M, one can compute EX if the payoff X/M can be priced, as

EX ¼ E M X
M

� �
, and the latter is the price of the payoff X/M.
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2 Empirical Results

To show how the theoretical results of Section 1 might be applied in practice, I obtained in-

dicative price quotes for 6-month and 12-month vanilla call and put options on the S&P

500 index, together with 6-month-into-6-month forward-start options, from a major in-

vestment bank. All prices were supplied for a range of dates—June 15, 2007; June 20,

2008; November 21, 2008; February 20, 2009; December 17, 2010; July 15, 2011;

December 20, 2012; and December 20, 2013—and for at-the-money, 5% and 10% out-of-

the-money strikes for puts and for calls, together with the level of S&P 500 spot and the

bank’s internally marked 6-month and 12-month interest rate. I also obtained daily

updated prices of vanilla European call and put options on the S&P 500 index from

OptionMetrics in order to plot the daily time-series shown in Figure 1.

It should be emphasized at the outset that this exercise is a first step, given the limited

data I have been able to obtain. A serious empirical exploration of the theoretical results of

the previous section would require better data in the form both of a longer time series and

of a more extensive range of strikes at each point in time.

I calculate the autocorrelation index (15) using expressions (7), (8), (13), and (14), inter-

polating linearly between option prices inside the range of observed strikes. I report results

using two alternative methods to extrapolate option prices outside the observed range of

strikes. In the first, I assume a flat volatility smile outside the range of observed strikes, fol-

lowing the approach of Carr and Wu (2009): in other words, for out-of-the-money puts

with moneyness below the lowest observed strike, I use the Black–Scholes implied volatility

at the lowest observed strike price, and for out-of-the-money calls, I use the Black–Scholes

implied volatility at the highest observed strike price. In the second, I extrapolate implied

volatilities linearly outside the range of observed strikes.4 Lastly, I set Gt equal to the for-

ward rate from tþ1 to tþ2.

Figure 1 shows the six-monthly autocorrelation of the S&P 500 index—that is,

corrtðRt!tþ6mo;Rtþ6mo!tþ12moÞ—on a sample of dates. The solid line uses a flat volatility

smile for options with strikes outside the observed range; the dashed line extrapolates

implied volatility linearly outside the observed range, as described in the previous para-

graph. Both methods deliver similar conclusions: autocorrelation was close to zero at the

beginning of the sample period, and declined sharply following the subprime crisis.

For comparison, Figure 2 plots the realized autocorrelation of six-monthly price

changes, Ptþ6mo=Pt, of the S&P 500 index over various time periods. I take the end-of-

month level of the S&P 500 index from CRSP, over the period January 1950 to September

2019. The sample autocorrelation depends on which start month is chosen, so in each

panel, I show every possible choice. For example, the autocorrelation of January–July and

July–January price changes was around 0.08 over the full sample period and around –0.2

over the most recent decade, whereas the autocorrelations of the corresponding March–

September and September–March price changes were around –0.1 and –0.6, respectively.

4 I introduce a floor at zero volatility in cases where a downward-sloping smile would lead to nega-

tive implied volatilities at very high strikes; the results are not sensitive to where the floor occurs

because the associated prices of deep-out-of-the-money calls are essentially zero for any reason-

able level of volatility.
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In the context of Figure 2, the magnitude of the autocorrelation index shown in Figure 1

appears reasonable.

Even so, it might seem, given Figure 1, that strategies designed to exploit reversals

should earn Sharpe ratios that are too good to be true. In order to assess this possibility, the

next result shows how to use vanilla option prices to calculate the maximum attainable

Sharpe ratio perceived by the log investor.

Result 6. The maximal Sharpe ratio over the period from t to tþ n, as perceived by the log

investor, satisfies

(a) (b)

(c) (d)

Figure 2 Realized autocorrelation in six-monthly price changes of the S&P 500 index over various time

periods. (a) 1950–2019. (b) 1970–2019. (c) 1990–2019. (d) 2010–2019.

Figure 1 The autocorrelation of the S&P 500, corrt ðRt!tþ6mo;Rtþ6mo!tþ12moÞ. The solid line imposes a

flat volatility smile for strikes outside the observed range of strikes. The dashed line extrapolates

implied volatility linearly outside the observed range of strikes.
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max Sharpe ratio � Rf ;t!tþn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1
0

2St

K3
Xt;tþnðKÞdK

s
; (17)

where Xt;tþnðKÞ is the time t price of an out-of-the-money European option with strike K

expiring at time tþn:

Xt;tþnðKÞ ¼ f
putt;tþnðKÞ if K � StRf ;t!tþn

callt;tþnðKÞ if K > StRf ;t!tþn

Proof. Using the result of Hansen and Jagannathan (1991) and the fact that

Mt!tþn ¼ 1=Rt!tþn, we have

max Sharpe ratio � Rf ;t!tþn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vart

1

Rt!tþn

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

f ;t!tþnEt
1

R2
t!tþn

� 1

s
:

(18)

By the result of Breeden and Litzenberger (1978), as rewritten by Carr and Madan (1998),

the time t price of a claim to f ðStþnÞ paid at time tþ n is

Et
f ðStþnÞ
Rt!tþn

¼
f ðStRf ;t!tþnÞ

Rf ;t!tþn
þ
ð1

0

f 00ðKÞXt;tþnðKÞdK:

Setting f ðKÞ ¼ St=K, this implies that

Et
1

R2
t!tþn

¼ 1

R2
f ;t!tþn

þ
ð1

0

2St

K3
Xt;tþnðKÞdK: (19)

The result follows on substituting Equation (19) into Equation (18). h

Figure 3 The maximal Sharpe ratio (one-year horizon). Crosses indicate the dates on which the auto-

correlation index is computed in Figure 1.
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Figure 3 plots the time series of the right-hand side of inequality (17) of Result 6, which

provides an upper bound on the maximal Sharpe ratio at a one-year horizon. The dates on

which the autocorrelation index is calculated in Figure 1 are marked with crosses. While

the maximum attainable Sharpe ratio (as perceived by the log investor) spiked in late 2008,

it was not implausibly high. Thus, although there are several potential ways reversal strat-

egies might be implemented in practice, none of them has an unreasonably high Sharpe

ratio from the perspective of the log investor.

3 Discussion

This article has introduced a new index of autocorrelation and constructed it at the six-

month horizon using indicative prices obtained from a major investment bank on various

days between mid-2007 and late 2013. Implied autocorrelation was close to zero at the be-

ginning of the sample period but turned negative, in the range of –0.2 to –0.3, following the

subprime crisis.

Negative autocorrelation during this period may have been driven by market partici-

pants’ expectations about the behavior of policymakers. The Federal Open Market

Committee (FOMC) statement of September 21, 2010 contains the following paragraph,5

which heralded a second round of quantitative easing (QE2):

The Committee will continue to monitor the economic outlook and financial developments and

is prepared to provide additional accommodation if needed to support the economic recovery

and to return inflation, over time, to levels consistent with its mandate.

Based on this statement, it would have been reasonable to conclude that policy would

be more expansive conditional on further declines in the market and relatively more con-

tractionary conditional on further rises and, hence, to anticipate a decline in market auto-

correlation. Indeed, Cieslak, Morse, and Vissing-Jorgensen (2018) argue that the behavior

of stock returns over the “FOMC cycle” is consistent with this view (though they focus on

shorter horizons and emphasize the importance of timing within the cycle). Consistent with

this interpretation, the low point of the autocorrelation measure occurs in December 2010.

As the autocorrelation index depends only on asset prices, it has the great advantage of

being computable, in principle, in real time. The central novel feature of the index is that it

is based on the prices of forward-start index options. As shown by Hobson and Neuberger

(2012), the prices of forward-start options are not tightly constrained by the prices of osten-

sibly closely related vanilla options. This fact is precisely what makes them interesting;

nonetheless, it should be emphasized that they are exotic derivatives, with all the caveats

that entails—most notably, that the forward-start option market is not nearly as liquid as

the vanilla option market. A full empirical investigation of the theoretical results of this art-

icle would require considerably more data than I have been able to obtain.

5 The precise phrasing of the paragraph was discussed extensively during the meeting: see pages

78, 98, 101, 113, and 124–126 of the Transcript of the Federal Open Market Committee Meeting on

September 21, 2010, which is available at https://www.federalreserve.gov/monetarypolicy/files/

FOMC20100921meeting.pdf (last accessed on September 4, 2020). One consequence of the discus-

sion was that the phrase “as needed” was replaced with “if needed,” which was felt to emphasize

the conditionality of any potential Fed action more clearly.
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A further contribution of the article, however, is to point out that such options—var-

iants of the more familiar “plain vanilla” European call and put options—have a natural

economic application. It is sometimes tempting, when confronted with a cliquet, a look-

back, a Napoleon, Himalayan, Bermudan, Asian, best-of, worst-of, or rainbow option, or

with any other member of the bewildering menagerie of exotic derivatives, to conclude that

such contracts play no more significant a role than to transfer resources between groups of

quants. Precisely because there is an element of truth in this caricature, financial economists

have a role to play in pointing out when some seemingly obscure derivative contract is in

fact of economic interest.
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