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The aim of the paper is to describe a bootstrap, contrary to the sieve boot-
strap, valid under either long memory (LM ) or short memory (SM ) depen-
dence. One of the reasons of the failure of the sieve bootstrap in our context
is that under LM dependence, the sieve bootstrap may not be able to capture
the true covariance structure of the original data. We also describe and ex-
amine the validity of the bootstrap scheme for the least squares estimator of
the parameter in a regression model and for model specification. The moti-
vation for the latter example comes from the observation that the asymptotic
distribution of the test is intractable.

1. INTRODUCTION. Inference on statistics of interest is often carried out by employ-
ing the asymptotic distribution as an approximation to their finite sample one. However such
an approximation is not always satisfactory and researchers have then looked for alternative
approaches. One of them is resampling methods, introduced by Efron’s seminal paper (1979)
for independent and identically distributed, iid, data. Motivated by its finite sample refine-
ments and statistical properties in different contexts, see for instance Hall (1992), Efron’s
resampling ideas have been extended to a variety of different non-iid situations, including
dependent data. The validity of the different bootstrap algorithms depend crucially on the
dependence structure of the data and/or on the statistic under consideration. See for instance
Bühlmann (2002), Lahiri (2003) or Politis (2003) among others for comprehensive reviews
on resampling dependent data.

When resampling dependent data we can differentiate two main methodologies. A first
methodology is based on time domain methods, being the two most common ones the Mov-
ing Block Bootstrap (MBB), see Künsch (1989), and the AR−sieve bootstrap, introduced
by Kreiss (1988) and explored by Bühlmann (1997). Among these two approaches, due to its
computationally and conceptual simplicity, the AR-sieve bootstrap is very much employed
with real data and its validity has been shown for a variety of statistics for time series se-
quences not necessarily being linear. We refer to Kreiss, Paparoditis and Politis (2011) for
a thorough discussion when the AR−sieve bootstrap is expected to be valid, who also gave
situations for its nonvalidity, such as when the data is noncausal, whereas under long mem-
ory (LM) dependence they cast some doubts on its validity. Notice that the latter type of
dependence does not satisfy their conditions. In addition to Kreiss et al.’s (2011) comments,
we have some further doubts on the validity of the AR−sieve bootstrap. The reason being
as the bootstrap may not preserve the covariance structure of the data, which is one of the
key requirements for the validity of any resampling scheme. Indeed the AR−sieve bootstrap
appears to match, if anything, a Type II dependence structure whereas Condition 1, see Sec-
tion 2, implies that ut may have a Type I dependence. See Marinucci and Robinson’s (1999)
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Type I and II definitions for fractional Gaussian motions. See also Remark 4 for some extra
arguments and/or comments.

A second (general) approach to implement resampling schemes is based on frequency
domain methods. The idea or motivation behind this approach comes from the observation
that periodogram ordinates at a finite number of frequencies are approximately independent
and exponentially distributed, see Brockwell and Davis’s (1991) Theorem 10.3.1., so that
Efron’s ideas may be employed. Early examples are Franke and Härdle’s (1992) bootstrap of
the spectral density function or Dahlhaus and Janas (1996) for statistics based on functionals
of the periodogram. A similar approach might be based on resampling the discrete Fourier
transform, DFT, as similarly to the periodogram, the DFT at two different frequencies can
be considered approximately independent. See Hurvich and Zeger (1987) who proposed a
nonparametric bootstrap although without any theoretical justification, or Hidalgo (2003)
who showed the validity of the resampling for the least squares estimator in a time series
regression model. More recently Kirsch and Politis (2011), who also gave a comprehensive
review of the literature, proposed and examined a bootstrap scheme with the aim to obtain
time series resamples by using the inverse of the DFT, which they called Time Frequency
Toggle (TFT ).

However, the previous frequency domain resampling schemes have some limitations. To
see this, suppose that {ut}t∈Z is a sequence of random variables which has an MA (∞)
representation

ut =

∞∑
j=0

ϑjεt−j ; with ϑ0 = 1,

where {εt}t∈Z is a zero mean iid sequence of random variables with E
(
ε2
t

)
= σ2

ε . Basi-
cally what the aforementioned frequency domain bootstrap schemes do is to “approximate”∣∣∣∑∞j=0 ϑje

ijλ
∣∣∣, the modulus of the spectral transfer function, so that it suggests that the

scheme will be valid only for statistics that only require to mimic the second order depen-
dence structure of the data. So, they might not be a valid resampling scheme for the estimators
of the parameters in the transformed regression model

Ξ (yt; δ) = β′xt + ut,

such as the well employed Box-Cox transformation Ξ (yt; δ) =: y
δ
t−1
δ , as their statistical prop-

erties involve features beyond the second moments of the data.
The aim of the paper is thus to describe and examine a bootstrap algorithm which, unlike

the methods mentioned previously, approximates directly the transfer function
∑∞

j=0 ϑje
ijλ

as opposed to its modulus, and hence able to match moments greater than or equal to 2 of the
data as it is the case with the AR-sieve bootstrap scheme, see Bühlmann (1997). However
contrary to the AR−sieve bootstrap, we want to allow for sequences that might exhibit LM
dependence, as well as short memory (SM) dependence. Also, as our resampling scheme
obtains time series resamples, it has some similarities with the TFT scheme, and thus it
appears that the conditions in Kirsch and Politis (2011) might be sufficient but not necessary.
Observe that Kirsch and Politis’s (2011) Assumptions P.1 to P.3 are not satisfied for LM
dependent sequences.

The bootstrap described in Section 2 is based on the “discrete” Cramér representation
of Un = {ut}nt=1 and Bartlett’s approximation of the discrete Fourier transform of Un by
that of its innovation sequence, say {εt}nt=1. In addition, our resampling scheme, contrary
to the MBB, is not a subset of the original data and similar to the TFT scheme, we obtain
time series resamples. Finally, similar to the AR-sieve bootstrap scheme, the bootstrap data
sequence is covariance stationary.
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The remainder of the paper is as follows. Section 2 states the regularity conditions and it
describes the resampling scheme. Section 3 describes two main situations where the proposed
bootstrap scheme is valid. More specifically, for the least squares estimator in a time series
regression model and for model specification in regression models when both regressors and
error term may exhibit LM dependence. Section 4 reports the results of a Monte Carlo study
of the finite sample performance of the bootstrap, and in the case of SM sequences how
it compares with the AR-sieve bootstrap, whereas Section 5 concludes. The proofs of all
our main results in Section 2 are collected in Section 6, whereas Section 7 states a series
of Lemmas for easy reference. The supplementary material provides the proofs of the main
results as well as the lemmas.

2. REGULARITY CONDITIONS AND DESCRIPTION OF THE BOOTSTRAP.
We give some notation first. For any d ∈ (−1/2,1/2), we denote

(1−L)d =

∞∑
k=0

πk (d)Lk; πk (−d) =
Γ (k+ d)

Γ (d) Γ (k+ 1)
, k ∈N(1)

(
1− 2 cosωL+L2

)d
=

∞∑
k=0

τk (cosω;d)Lk,

where Γ (·) denotes the gamma function such that Γ (c) =∞ for c= 0 with Γ (0)/Γ (0) = 1
and the coefficients τk (cosω;d) follow the second order homogeneous difference equation

τk (z;d) = 2z

(
k− d− 1

k

)
τk−1 (z;d)−

(
k− 2d− 2

k

)
τk−2 (z;d) ,

see Section 8.93 in Gradshteyn and Ryzhik (2000).
We now introduce the following regularity condition.

CONDITION 1. {ut}t∈Z is a sequence of random variables such that

ut =

∞∑
j=0

ϑjεt−j;
∞∑
j=0

ϑ2
j <∞, ϑ0 = 1,

where {εt}t∈Z is a zero mean iid sequence of random variables with E
(
ε2
t

)
= σ2

ε and a
spectral density function, fu (λ), bounded away from zero. Also

(2) ϑj =

j∑
k=0

ξk (−d1;−d2) bk−j =

j∑
k=0

ξk−j (−d1;−d2) bk; d1, d2 ∈ [0,1/2) ,

where ξk (d1;d2) =
∑k

`=0 τ ` (cosω;d2)πk−` (d1) =:
∑k

`=0 τk−` (cosω;d2)π` (d1) and
∑∞

k=0 k
2 |bk|<

∞.

Condition 1 implies that the process {ut}t∈Z belongs to the class of linear processes and
it implies that for instance

ut =

{∑∞
j=0 ξj (−d1;−d2)ε′t−j ; ε′t =

∑∞
j=0 bjεt−j if d1, d2 > 0∑∞

j=0 bjεt−j if d1 = d2 = 0

and denoting

g1 (λ,d) = :
(

1− e−iλ
)d

=

∞∑
j=0

πj (d)e−ijλ(3)
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g2 (λ,d) = :
(

1− 2 cosωe−iλ + e−i2λ
)d

=

∞∑
j=0

τ j (cosω;d)e−ijλ

B (λ) =

∞∑
j=0

bje
−ijλ; λ ∈ (−π,π] ,

the decomposition given in (2), together with (3), implies that fu (λ) can be factorized as

fu (λ) =
σ2
ε

2π
|g (λ,−d1,−d2)|2 |B (λ)|2 ; λ ∈ (−π,π] ,(4)

g (λ,d1, d2) = g1 (λ,d1)g2 (λ,d2) =:

∞∑
j=0

ξj (d1, d2)e−ijλ.

Recall that our condition
∑∞

k=0 k
2 |bk|<∞ implies that |B (λ)|2 is twice continuously dif-

ferentiable for all λ ∈ [0, π]. Observe that the condition d1, d2 ≥ 0 implies that fu (λ)> 0 for
any λ ∈ [0, π]. Also the sequence {ut}t∈Z admits the AR representation

(5) ut =

∞∑
j=1

φjut−j + εt; φj =:

j∑
k=0

ξk (d1;d2)ak−j =:

j∑
k=0

ξk−j (d1;d2)ak,

where
∑∞

k=0 k
2 |ak|<∞ and B−1 (λ) =:A (λ) =

∑∞
j=0 aje

−ijλ. So, we can then write also
the spectral density function as

fu (λ) =:
σ2
ε

2π
|g (λ;d1, d2)|−2 |A (λ)|−2 .

One model satisfying (2) is the multiplicative GARMA (p, d1, d2, q) process

(1−L)d1
(
1− 2 cosωL+L2

)d2
Φp (L)ut = Θq (L)εt,

where Φp (L) and Θq (L) are the autoregressive and moving average polynomials with
no common roots and outside the unit circle. The latter implies that Φ−1

p (L) Θq (L) =∑∞
j=0 bjL

j with bj =O (j−υ) for any υ > 0.
It is worth mentioning that the results hold true under the slightly weaker condition and

where for the sake of the argument, we shall consider the case d2 = 0.

CONDITION 2. {ut}t∈Z is a sequence of random variables such that

ut =

∞∑
j=0

ϑjεt−j;
∞∑
j=0

ϑ2
j <∞, ϑ0 = 1,

where {εt}t∈Z is a zero mean sequence of iid random variables and E
(
ε2
t

)
= σ2

ε . Also

ϑj =

j∑
k=0

ϑkbk−j ,

where ϑk = ` (k)kd1−1; |` (k)− ` (k+ 1)| < `′ (k)k−1 with `′ (k) > 0, d1 ∈
[
0, 1

2

)
and∑∞

k=0 k
2 |bk|<∞.

Condition 2 is similar to that in Marinucci and Robinson (2000). An example of ` (k)
is any slowly varying function. Moreover, because Condition 2 implies that the sequence{
ϑk
}∞
k=0

is of bounded variation, that is
∑∞

k=0

∣∣ϑk − ϑk−1

∣∣ <∞, and because
{
ϑk
}∞
k=0
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is a quasi-monotonic sequence, see Yong (1974, p.2) for a definition, we then have that∣∣∑∞
k=0 ϑke

−ikλ∣∣2 ∼Dλ−2d1 as λ→ 0+, 0<D <∞, and continuous differentiable outside
any open set around the zero frequency, see Yong’s (1974) Theorems III-11 and 12. However,
we have preferred to keep Condition 1 as it eases the notation and it does not unnecessarily
complicate and lengthen the arguments of our results.

Before we present our bootstrap scheme, it is also worth given the trivial observation,
which plays an important role in the bootstrap scheme below, that

g−1 (λ;d1, d2) = :
(

1− e−iλ
)−d1 (

1− 2 cosωe−iλ + e−i2λ
)−d2

(6)

=

∞∑
j=0

ξj (−d1,−d2)e−ijλ =: g (λ;−d1,−d2) .

In what follows the upperscript “∗” denotes the bootstrap analogue. That is, P ∗ and E∗ (z)
denote respectively the probability and the expectation conditional on {ut}nt=1. We shall now
describe and examine a valid bootstrap scheme when the data may exhibit either LM or
SM dependence. For that purpose, for a generic sequence {zt}nt=1, we write the DFT and
periodogram respectively as

(7) wz (λ) =
1

n1/2

n∑
t=1

zte
−itλ; Izz (λ) = |wz (λ)|2 .

Also, we denote the Fourier frequencies as λj = 2πj/n, for integer j ≥ 0.
The idea behind the resampling scheme is based on two well known results. First the

identity

(8) ut =
1

n1/2

n∑
j=1

eitλjwu (λj) , t= 1, ..., n,

and secondly the Bartlett’s approximation of the DFT of {ut}nt=1 by that of {εt}nt=1. That is,

(9) wu (λj)≈ g−1 (λj ;d1, d2)B (λj)wε (λj) ,

or using (6)

(10) wu (λj)≈ g (λj ;−d1,−d2)B (λj)wε (λj) ,

where “≈” should be read as “approximately”. Expressions (8) and (10) suggest that we
might approximate ut by

(11) ut ≈
1

n1/2

n∑
j=1

eitλjg (λj ;−d1,−d2)B (λj)wε (λj) .

However the existence of a singularity for g (λ;−d1,−d2) =: g−1 (λ;d1, d2) at λ = 0
when d1 > 0 and at λ= ω when d2 > 0, for instance, suggests that the approximation given
in (10), or (9), is not adequate for frequencies near zero or ω, see for instance Robinson
(1995a). In addition, see Remark 4 below for some details, the implicit circularity induced
on the right side of (11) casts some additional doubts on the validity of the approximation
given in (11). So, the idea of the bootstrap scheme is based on a modification of (11) given
by

(12) ut ≈
1

n1/2

n∑
j=1

eitλjg (λj ;−d1,−d2;L)B (λj)wε (λj) ,
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where, using (4), for any d1, d2 ∈ (−1/2,1/2),

(13) g (λ;d1, d2;L) =

L∑
j=0

ξj (d1, d2)e−ijλ.

Thus, for instance we can view the modification given in (12) as a trimming version of (11).
It is worth observing that (6) and (13) yield that

g (λ;d1, d2;∞) = g−1 (λ;−d1,−d2;∞) =:
(

1− e−iλ
)d1 (

1− 2 cosωe−iλ + e−i2λ
)d2

,

so that we can then approximate g (λ;−d1,−d2;∞) by either g−1 (λ;d1, d2;L) or g (λ;−d1,−d2;L).
Although there is no doubts that the results hold true using either approximation, we shall
employ g (λ;−d1,−d2;L) or g (λ;d1, d2;L) if our purpose is respectively to approximate
ut, i.e. (11), or εt, i.e.

εt ≈
1

n1/2

n∑
j=1

eitλjg (λj ;d1, d2;L)A (λj)wu (λj) .

The motivation is because it simplifies significantly the computation of the bootstrap, see
STEPS 1&3 below, as well as some of the technical aspects of the proofs.

Now (12) suggests that if d1, d2 and B (λj) were replaced respectively by consistent esti-
mators d̂1, d̂2 and B̂ (λj), the problem to obtain a valid bootstrap sample {u∗t }

n
t=1 becomes a

problem of designing a valid bootstrap algorithm for wε (λj), j = 1, ..., ñ= [n/2]. Regarding
the estimator of d1, we shall employ Robinson’s (1995b) Local Pseudo-Gaussian estimator.
That is,

(14) d̂1 = arg min
d∈[0,∆]

log

 1

m

m∑
j=1

λ2d
j Iuu (λj)

− 2d

m

m∑
j=1

logλj

 ,

where 0 < ∆ < 1/2, m = m (n) increasing with the sample size n. On the other hand to
estimate d2, we employ an obvious extension of (14), see Arteche (2000) or Hidalgo (2005)
for an alternative method, given by
(15)

d̂2 = arg min
d∈[0,∆]

log

 1

2m

m∑
j=−m;6=0

|λj − ω|2d Iuu (λj)

− 2d

2m

m∑
j=−m; 6=0

log |λj − ω|

 .

Also we estimate h (λ) =: g (λ;d1, d2)fu (λ) by

(16) ĥ (λ) =
1

2m+ 1

m∑
k=−m

∣∣∣g(λ+ λk; d̂1, d̂2

)∣∣∣2 Iuu (λ+ λk)

2π
,

which can be regarded as an estimator of σ2
ε |B (λ)|2 /2π = σ2

ε |A (λ)|−2 /2π. As a by-
product

f̂u (λ) =
∣∣∣g(λ; d̂1, d̂2

)∣∣∣−2
ĥ (λ)

becomes an estimator of fu (λ), which can be viewed as a prewhitening and then recolouring
type of estimator for the spectral density function, see Press and Tukey (1956).
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Before we present the bootstrap scheme, denoting M = [n/4m] we introduce

Ĉ (λ) = exp

{
M∑
`=1

ĉ`e
−i`λ

}
,(17)

ĉ` =
1

M

M∑
j=1

log ĥ (λ2mj) cos `λ2mj , `= 0, ...,M ,

with ĥ (λj) given in (16). Recall that σ̂2
ε =: 2π exp (ĉ0) is an estimator of σ2

ε . Finally in what
follows, for any integer k ≥ 0,

πk = : πk (d1) ; π̂k =: πk

(
d̂1

)
;

πk = : πk (−d1) ; π̌k =: πk

(
−d̂1

)
τk = : τk (cosω;d2) ; τ̂k =: τk

(
cosω; d̂2

)
;

τk = : τk (cosω;−d2) ; τ̌k =: τk

(
cosω;−d̂2

)
(18)

ξk = : ξk (d1, d2) ; ξ̂k =: ξk

(
d̂1, d̂2

)
ξk = : ξk (−d1,−d2) ; ξ̌k =: ξk

(
−d̂1,−d̂2

)
.

Our bootstrap scheme is given in the following 3 STEPS.

STEP 1 We compute the innovations as

ε̂t =
1

n1/2

n∑
j=1

eitλj Φ̂ (λj)wu (λj) , t= 1, ..., n,(19)

Φ̂ (λ) = g
(
λ; d̂1, d̂2;n−M

)
Â (λ)

with g (λ;d1, d2;L) given in (13) and Â (λ) =
∑M

k=0 âke
−ikλ, where â0 = 1 and

âk =
1

2M + 1

M∑
j=−M

Ĉ−1 (λ2mj)e
−ikλ2mj , k = 1, ...,M .

REMARK 1. (i) Standard algebra yields that Φ̂ (λ) =
∑n

`=0 φ̂`e
−i`λj , where φ̂0 = 1 and

(20) φ̂` =

{ ∑`∧M
k=0 ξ̂`−kâk, 1≤ `≤ n−M∑M
k=`−(n−M) ξ̂`−kâk, n−M < `≤ n.

(ii) Because for any sequence {ν`}n`=0,

(21)
1

n1/2

n∑
j=1

eitλj

(
n∑
`=0

ν`e
−i`λj

)
wz (λj) =:

t−1∑
`=0

ν`zt−` +

n∑
`=t

ν`zn−(`−t),

we have that ε̂t in (19) can be written as

(22) ε̂t =

t−1∑
`=0

φ̂`ut−` +

n∑
`=t

φ̂`un+t−`.
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STEP 2 Draw a random sample ε∗ = {ε∗t }
3n
t=1 from the empirical distribution of {ε̌t}nt=1 =:{

ε̂t − n−1
∑n

t=1 ε̂t
}n
t=1

, and compute the DFT of ε∗, that is

wε∗
(
λ̃j

)
=

1

(3n)1/2

3n∑
t=1

ε∗t e
−itλ̃j ; λ̃j = 2πj/3n, j = 1, . . . ,3n.

REMARK 2. (i) We shall mention that we could have computed wε∗
(
λ̃j

)
as

wε∗
(
λ̃j

)
=

1

(3n)1/2

3n∑
t=1

u∗t e
−itλ̃j ,

where {u∗t }
3n
t=1 is a random sample from the empirical distribution of

{ũt}=
{
ut − n−1

∑n
t=1 ut

}n
t=1

. However, we prefer our STEP 2 since as Corollary 2 below
shows, we would be able to match the moments of {ut}t∈Z, whereas the approach given in
the last displayed expression would only match the first two moments of ut.

(ii) Our results hold true if instead of a sample of size 3n we would have chosen 2n.
However, we have decided to choose 3n instead of say n or 2n for notational simplicity as it
becomes clear from expressions (24) and (25) below.

(iii) In STEP 1 we could have computed Φ̂ (λ) = g
(
λ; d̂1, d̂2;n

)
Â (λ) instead of Φ̂ (λ) as

given in (19). However, the former introduces some additional notational complication due
to end effects, so we have decided for clarity to keep STEP 1 as it stands.

STEP 3 Denoting Ψ̂ (λ) = g
(
λ;−d̂1,−d̂2;n

)
B̂ (λ) with B̂ (λ) =

∑M
k=0 b̂ke

−ikλ, where

b̂k =
1

2M + 1

M∑
j=−M

Ĉ (λ2mj)e
−ikλ2mj , k = 1, ...M ,

and b̂0 = 1, we compute

(23) ü∗t =
1

(3n)1/2

3n∑
j=1

eitλ̃j Ψ̂
(
λ̃j

)
wε∗

(
λ̃j

)
, t= 1, ...,3n

and denote our bootstrap sequence as {u∗t }
n
t=1 =:

{
ü∗t+2n

}n
t=1

.

REMARK 3. (i) Ψ̂ (λ) is an estimator of Ψ (λ) = g (λ;−d1,−d2)B (λ) as is Φ̂ (λ) an
estimator of Φ (λ) = g (λ;d1, d2)A (λ) for λ ∈ (0, ω)∪ (ω,π].

(ii) Because
∑3n

j=1 e
i`λ̃j = 0 if ` 6= 0,3n,..., we can write ü∗t in (23) as

(24) ü∗t =

{ ∑n+M
`=0 ϑ̂`ε

∗
t−` if n+M ≤ t∑t−1

`=0 ϑ̂`ε
∗
t−` +

∑n+M
`=t ϑ̂`ε

∗
3n+t−` if t < n+M ,

with ϑ̂0 = 1 and

(25) ϑ̂` =

{ ∑`∧M
p=0 b̂pξ̌`−p, 1≤ `≤ n∑M
p=`−n b̂pξ̌`−p, n < `≤ n+M .

So, the sequence {u∗t }
n
t=1 behaves as a MA (n+M) process with weights

{
ϑ̂`

}n+M

`=0
.
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REMARK 4. (i) Regarding our definition in (13), we might be tempted to use (13) with
L=∞, there. However due to the circularity of e−ijλ, it is not feasible. Take B (λ) = 1 and
d2 = 0 for simplicity. Then, because for any integer q ≥ 0, e−i`λ̃j = e−i(`+q3n)λ̃j , it implies
that if we employed g1 (λ,d1;∞), we would then have that

u∗t =

3n∑
`=0

 ∞∑
q=1

π̌`+q3n

 3n∑
s=1

ε∗sI (s= t− ` mod 3n) , t= 1, ...,3n.

But when d1 > 0 the sequence {π`}`∈Z is not summable which implies that
∑∞

q=1 π̌`+q3n will
not be bounded in probability and hence the procedure invalid.

(ii) One reason why the AR-sieve bootstrap might not be valid under LM dependence is
due to the fact that it will not catch the singularity of fu (λ) at zero and/or ω frequencies.

Recall that
∣∣∣1−∑pn

p=1 α̂pe
−ipλ

∣∣∣−2
is an estimator of the spectral density function, see Berk

(1974) or Bühlmann (1997), where {α̂p}pn

p=1 are the estimators of the parameters in the
AR (pn) sieve approximation.

We need to impose some restrictions on the bandwidth m employed to estimate d1 and d2

in (14) and (15) respectively.

CONDITION 3. As n→∞,

m4

n3
+
n2

m3
logn→ 0.

Condition 3 gives upper and lower bounds on the rate of increase to infinity of the smooth-
ing parameter m. For example, m= nψ would satisfy Condition 3 for any ψ ∈

(
2
3 ,

3
4

)
.

Our first two corollaries shows that our bootstrap scheme is able to match the moments of
the innovation sequence {εt}t∈Z and those of {ut}t∈Z.

PROPOSITION 1. Under Conditions 1 and 3, for any p ≥ 1 such that E |εt|p <∞, we
have that

(26)
1

n

n∑
t=1

|ε̌t − εt|p = op (1) .

As a consequence of Proposition 1, we have the following corollary.

COROLLARY 1. Assume Conditions 1 and 3. Then, for any p≥ 1 such that E |εt|p <∞,
we have that

E∗ε∗pt =:
1

n

n∑
t=1

ε̌pt
P→Eεpt .

PROOF. By standard equalities, we have that

1

n

n∑
t=1

ε̌pt =
1

n

n∑
t=1

(ε̌t − εt)p +

p−1∑
k=1

1

n

n∑
t=1

(
p
k

)
(ε̌t − εt)k εp−kt +

1

n

n∑
t=1

εpt .

The first term is op (1) by Proposition 1. The third term converges in probability to Eεpt by
Condition 1. From here the conclusion follows by Hölder’s inequality.
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PROPOSITION 2. Under Conditions 1 and 3, for any p ≥ 1 such that E |εt|p <∞, we
have that

(27) E∗ |u∗t − ũ∗t |
p = op (1) ,

where ũ∗t =
∑n+M

`=0 ϑ`ε
∗
t−`.

Before we state our next corollary, it is worth recalling that for any sequence
{
ζj
}
j≥1

and

a martingale difference sequence
{
ηj
}
j∈Z with finite p moments, we have that

(28) E

∣∣∣∣∣∣
b∑

j=a

ζjηj

∣∣∣∣∣∣
p

≤K

∣∣∣∣∣∣
b∑

j=a

ζ2
jE
∣∣ηj∣∣2

∣∣∣∣∣∣
p/2

≤KE

∣∣∣∣∣∣
b∑

j=a

ζ2
j

∣∣∣∣∣∣
p/2−1

b∑
j=a

ζ2
jE
∣∣ηj∣∣p

by Burkholder and then Hölder’s inequalities.
A consequence of Proposition 2 is the following corollary.

COROLLARY 2. Under Conditions 1 and 3 for any p ≥ 1 such that E |εt|p <∞, we
have that

(29) E∗u∗pt −Eu
p
t = op (1) .

PROOF. Because ut = ũt +
∑∞

`=n+M+1 ϑ`εt−`, where ũt =
∑n+M

`=0 ϑ`εt−`, and using
(28) and that

{
ϑ2
`

}
`≥1

is summable, E
∣∣∑∞

`=n+M+1 ϑ`εt−`
∣∣p = o (1), it suffices to show

(29) but with ut replaced by ũt. Now, by standard equalities, we have that

u∗pt − ũ
∗p
t = (u∗t − ũ∗t )

p +

p−1∑
k=1

(
p
k

)
(u∗t − ũ∗t )

k up−kt .

Thus proceeding as with the proof of Corollary 1, by Proposition 2 and then Hölder’s in-
equality, we conclude that (29) holds true if

(30) E∗ũ∗pt −Eũ
p
t = op (1) .

Now, because both {ε∗t }t∈Z and {εt}t∈Z are iid sequences of random variables, we have that
the left side of (30) is

E∗

(
n+M∑
`=0

ϑ`ε
∗
t−`

)p
−E

(
n+M∑
`=0

ϑ`εt−`

)p

=

n+M∑
`1,...,`r=0

 r∏
j=1

ϑ
qj
`j


r∏
j=1

E∗
(
ε
∗qj
t−`j

)
−

r∏
j=1

E
(
εqt−`j

) ,

where
∑r

j=1 qj = p and qj ≥ 2 for all j = 1, ..., r. Now we conclude by Corollary 1 and that
{|ϑ`|q}`≥1 is a summable sequence when q ≥ 2.

Our next result shows that the bootstrap scheme is able to estimate correctly the covariance
structure of the sequence {ut}t∈Z.

PROPOSITION 3. Under Conditions 1 and 3, we have that for 0≤ `≤ n,

E∗
(
u∗tu

∗
t+`

)
− γu (`) = op (1) `2(d1∧d2)−1 +O

(
n2(d1∧d2)−1

)
.
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PROOF. It is immediate by standard algebra using Lemmas 4, 9 and 10.

We now verify in Propositions 4 and 5 that Bühlmann’s (1997) Lemmas 5.4 and 5.5 hold
true in our scenario.

PROPOSITION 4. Assume Conditions 1 and 3 hold. Then, as n→∞, in probability,

ε∗t
d→
∗
εt.

PROOF. Denote by d2 (·, ·) the Mallows metric as defined for example by Bickel
and Freedman (1981). Let F̂n (x) = 1

n

∑n
t=1 I (ε̂t ≤ x), Fn (x) = 1

n

∑n
t=1 I (εt ≤ x) and

F (x) = P (εt ≤ x). Then

(31) d2

(
F̂n, F

)
≤ d2

(
F̂n, Fn

)
+ d2 (Fn, F ) .

Let W be a random variable distributed uniformly on {1,2, . . . , n}. Then,

d2

(
F̂n, Fn

)
≤EW (εW − ε̂W )2 =

1

n

n∑
t=1

(ε̂t − εt)2 .

By Proposition 1, the last expression converges to zero in probability. The second term of (31)
converges to zero almost surely by Lemma 8.4 of Bickel and Freedman (1981). Therefore
d2

(
F̂n, F

)
= op (1) and the proposition holds.

In the next step we extend Proposition 4 for the innovations ε∗t to the observations u∗t .

PROPOSITION 5. Assume Conditions 1 and 3 hold. Then, as n→∞, in probability,

u∗t
d→
∗
ut.

COROLLARY 3. Assume Conditions 1 and 3 hold. Then, for any finite collection
(t1, ..., tq), in probability,

(32)
(
u∗t1 , .., u

∗
tq

)
d∗⇒
(
ut1 , .., utq

)
.

PROOF. This follows by Cramér-Wold device. It suffices to show that for any c =
(c1, ..., cq)

′, in probability,
q∑
p=1

cju
∗
tp

d∗⇒
q∑
p=1

cjutp .

But proceeding as in Proposition 5, we conclude that (32) holds true.

We finish this section giving some guidelines on how to choose m with real data sets. A
first approach may be via cross-validation methods as in Beltrão and Bloomfield (1987), see
also Robinson (1991). That is,

m= arg min
m

ñ∑
j=1

{
log f̂−u (m,λj) +

Iuu (λj)

f̂−u (m,λj)

}
,

where f̂−u (m,λ) = 1
2m

∑m
k=−m; 6=0 Iuu (λk − λ) is the leave-one-out average periodogram

estimator.
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A second approach is that employed in Lobato and Robinson (1997), see also Hidalgo
(2008), where m is chosen according to

m (0) =
1

2

(
3n

4π

)3/4 ∣∣∣∣γ′′ (0)

2γ (0)

∣∣∣∣−3/8

and γ (λ) is the spectral density function of an AR (1) sequence with parameter ρ, that
is γ (λ) = (2π)−1 (1 + ρ2 − 2ρ cos (λ)

)−1, although more general γ (λ) functions can be
adopted, see Lobato and Robinson (1997) for a discussion. Alternatively, we might employ

(33) m=
1

2

(
3n

4π

)3/4 1

ñ

ñ∑
j=0

∣∣∣∣γ′′ (λj)2γ (λj)

∣∣∣∣−3/8

which is, in a sense, the average pointwise bandwidths

m (λj) = 2−1 (3n/4π)3/4
∣∣γ′′ (λj)/ (2γ (λj))

∣∣3/8 .

In practice as ρ is not known, we would replace, say, m (0) by

m∗∗ (0) =
1

2

(
3n

4π

)3/4 ∣∣∣∣ γ̂′′ (0)

2γ̂ (0)

∣∣∣∣−3/8

=
1

2

(
3n

4π

)3/4 ∣∣∣∣ −ρ̂
(1− ρ̂)2

∣∣∣∣−3/8

,

where ρ̂ is the least squares estimator of ρ. Becausem∗∗ (0) could be smaller than 1 or greater
than ñ, we truncate m∗∗ (0) as

m∗ =


[m] if m∗∗ (0)< [m](

3n
4π

)3/4 ∣∣∣ −ρ̂
(1−ρ̂)2

∣∣∣−3/8
[m]<m∗∗ (0)< [m]

[m] if [m]<m∗∗ (0) ,

where m= 0.06n3/4 and m= 1.2n3/4. Of course, similar comments can be used if one opts
for the option of choosing m as in (33).

3. EXAMPLES OF THE VALIDITY OF THE BOOTSTRAP . In this section we
illustrate the validity of the bootstrap scheme for some examples or situations of interest
in statistics. More specifically, we shall look at the least squares estimator in a time series
regression model and model specification in the context of regression models.

3.1. Validity of the bootstrap in time series regression models.
Consider the regression model

(34) yt = α+ βxt + ut, t= 1, ..., n

and introduce the following condition on xt.

CONDITION 4. {xt}t∈Z is a sequence of random variables, mutually independent of
{ut}t∈Z, such that

xt =

∞∑
j=0

ϕj%t−j;
∞∑
j=0

ϕ2
j <∞, a0 = 1,
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where {%t}t∈Z is a zero mean iid sequence of random variables with finite variance σ2
x and

ϕj =

j∑
k=0

ϕkck−j ,

where ϕk = ` (k)kdx−1; |` (k)− ` (k+ 1)| < `′ (k)k−1 with `′ (k) > 0, dx ∈
[
0, 1

2

)
and∑∞

k=0 k
2 |ck|<∞.

Condition 4 allows for the sequence {xt}t∈Z to exhibit LM dependence. Following the
results in Robinson and Hidalgo (1997), we can weaken this condition as their results do
not require xt to be a linear sequence at all, i.e. (34) can be modified to yt = α+ βζ (xt) +
ut. However, since our purpose is to illustrate the validity of the bootstrap scheme in this
scenario, we keep it for notational convenience. For the same reason, we shall modify our
Condition 1 in that we shall assume that d2 = 0. It is obvious that the results would not be
affected if d2 were greater than zero, but it would not add anything substantial or relevant.
That is,

CONDITION 5. Condition 1 holds except that d2 = 0.

Denote the least squares estimator, LSE, of β as

β̂ =

(
n∑
t=1

(xt − x)2

)−1 n∑
t=1

(xt − x)yt,

where z = n−1
∑n

t=1 zt for a generic sequence {zt}nt=1. We first examine our estimator of
d1.

Compute the residuals as

(35) ût = yt − y− β̂ (xt − x) ; t= 1, ..., n.

We then estimate d1 as in (14) but with ut replaced there by ût, that is

(36) d̂1 = arg min
d∈[0,∆]

log

 1

m

m∑
j=1

λ2d
j Iûû (λj)

− 2d

m

m∑
j=1

logλj

 ,

where Iûû (λ) is the periodogram of {ût}nt=1. Similarly the estimator of h (λ) becomes

(37) ĥ (λ) =
1

2m+ 1

m∑
k=−m

∣∣∣1− e−i(λ+λk)
∣∣∣2d̂1 Iûû (λ+ λk)

2π
.

We have now the following proposition.

PROPOSITION 6. Under Conditions 3,4 and 5, if d1 + dx < 1/2, as n→∞,

d̂1 − d1 =Op

(
m−1/2

)
.

PROOF. Similar to Robinson (1997), the properties of the estimator are not affected by
using the residuals ût instead of the true errors ut. Indeed, by definition,

Iûû (λj)− Iuu (λj) =
(
β̂ − β

)
Iux (λj) +

(
β̂ − β

)2
Ixx (λj) ,
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β̂ − β =Op
(
n−1/2

)
and proceeding as in Robinson (1995a), we have that

E |Iux (λj) Iux (λk)|=E (wu (λj)wu (λk))E (wx (λj)wx (λk))

' λ−d1−dxj λ−d1−dxk max
(
k−1, j−1

)
.

So, we easily conclude that

1

m

m∑
j=1

λ2d1
j (Iûû (λj)− Iuu (λj)) = op

(
m−1/2

)
.

From here the proof proceeds as in Robinson (1997).

We now describe the bootstrap in the following 4 STEPS, where the first 3 STEPS are an
obvious reformulation of STEPS 1 to 3 given in Section 2.

STEP 1 We compute the innovations as

ε̂t =
1

n1/2

n−1∑
j=1

eitλj Φ̂ (λj)wû (λj) , t= 1, ..., n,

where Φ̂ (λ) = g1

(
λ, d̂1;n−M

)
Â (λ), g1 (λ,d1;L) given in (13) and Â (λ) is computed

similarly as in STEP 1 but with ĥ (λj) given in (37) instead of (16) in the definition of
Ĉ (λ) given in (17).

STEPS 2 and 3 As those in Section 2.
STEP 4 Construct the bootstrap sample y∗t as

(38) y∗t = y+ β̂ (xt − x) + u∗t , t= 1, ..., n.

Compute the bootstrap LSE β̂
∗

as

(39) β̂
∗

=

(
n∑
t=1

(xt − x)2

)−1 n∑
t=1

(xt − x)y∗t ,

being û∗t = y∗t − y∗ + β̂
∗

(xt − x) the least squares residuals.

REMARK 5. One of the motivations to keep xt fixed in the bootstrap algorithm comes
from results/observation in Horowitz (1997), who shows that there is no advantage by “boot-
strapping” also the regressor xt.

Denote the spectral density function of xt by fx (λ).

PROPOSITION 7. Assuming Conditions 3,4 and 5, if d1 + dx < 1/2, we have that, in
probability,

n1/2
(
β̂
∗
− β̂
)
L→N (0,V) ,

where V =
(
σ2
x

)−2 ∫ π
−π fu (λ)fx (λ)dλ is the asymptotic variance of the LSE.

Looking at the proofs of Proposition 7 and Robinson and Hidalgo’s (1997) Theorems 1
and 2, we envisage that Proposition 7 holds true for the bootstrap analogue of the estimator
of β proposed in the latter manuscript. That is, let the estimator of β be

(40) β̂ψ =

∑n
t,s=1ψt−s (xt − x) (ys − y)∑n
t,s=1ψt−1 (xt − x) (xs − x)

,
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where

ψ` =
1

(2π)2

∫ π

−π
Γ (λ) cos `λdλ

and the function Γ (λ) satisfies ∆ =
∫ π
−π Γ2 (λ)fu (λ)fx (λ)dλ <∞. Then, the bootstrap

analogue of β̂ψ , defined as

β̂
∗
ψ =

∑n
t,s=1ψt−s (xt − x) (y∗s − y∗)∑n
t,s=1ψt−s (xt − x) (xs − x)

,

will be valid for β̂ψ . Notice that when Γ (λ) = 1, β̂ψ becomes the LSE in (34), whereas the
generalized least squares, GLS, estimator is obtained when Γ (λ) = f−1

u (λ). In addition, we
would not require the assumption that d1 + dx < 1/2, neither for the results of Proposition 6
nor for the validity of β̂

∗
ψ as

n1/2
(
β̂ψ − β

)
d→N

(
0,

(∫ π

−π
Γ (λ)fx (λ)dλ

)−2

∆

)
for any 0≤ dx, d1 < 1/2.

3.2. Validity of the bootstrap for model specification.
Because the purpose of this section is to illustrate the validity of our bootstrap scheme,

we shall only consider the case where the sequence xt is Gaussian and consider the question
of the correct specification of (34). For a more comprehensive set of results which include
when xt is nonGaussian and/or nonlinear regression models and linear regression models
with no intercept α, we refer to Hidalgo (2019). The main reason is because the asymptotic
distribution of Tn (x) in (42) below depends, among other issues, on whether {xt}t∈Z is or
is not a Gaussian sequence as Koul, Baillie and Surgailis (2004) and Hidalgo (2019) have
showed. Thus, we consider the hypothesis testing

(41) H0 : E [yt | xt] = α+ βxt

being our alternative hypothesis H1 the negation of the null. Following Stute (1997), the
testing procedure will be based on the partial sums empirical process

(42) Tn (x) =
1

n

n∑
t=1

I (xt < x) ût,

where ût was given in (35) and I (◦) denotes the indicator function. The bootstrap scheme
is given in the next 5 STEPS.

STEP 1-4 As given in the previous section.
STEP 5 Compute the bootstrap analogue of Tn (x) as

T ∗n (x) =
1

n

n∑
t=1

I (xt < x) û∗t .

We need to introduce an extra condition for the validity of our results.

CONDITION 6. {%t}t∈Z and {εt}t∈Z are iid sequences of random variables with finite
8th moments. In addition, denoting φ (x) as the probability density function of xt, we have
that ∫

R

4∑
p=1

∣∣∣∣∂pφ∂xp
(x)

∣∣∣∣dx <∞.
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Condition 6 is very mild and similar to that in Wu (2003). Although when xt is Gaussian,
the condition is redundant, we keep it because the results of Theorem 1 holds true regardless
whether xt is or it is not Gaussian provided that Condition 6 holds. We now introduce some
notation.

We shall write

(43) 1̊t (x) = I (xt < x)− F (x)−G (x)xt,

where F (x) =
∫ x
−∞ φ (z)dz and G (x) =E (I (xt < x)xt).

Some comments regarding 1̊t (x) are relevant and helpful to understand why the results
that follow are different when {xt}t∈Z is nonGaussian. When {xt}t∈Z is Gaussian, G (x) =
−φ (x), so that F (x) − φ (x)xt becomes the first two terms in the Hermite expansion of
I (xt < x), see Dehling and Taqqu (1989), whereas for non-Gaussian linear sequences, it
becomes the first two terms of the expansion of I (xt < x) in terms of its Appell expansion,
see Giraitis and Surgailis (1994). It is well known that under Gaussianity E

(̊
1t (x)xt

)
= 0,

whereas the latter is not guaranteed if xt is nonGaussian, due to the lack of orthogonality
of the Appell polynomials. This rather innocuous result plays a key and pivotal role when
examining the statistical properties of Tn (x), see Koul et al. (2004) or Hidalgo (2019) for
some details. For the sake of convenience we shall state a few results regarding the statistical
behaviour of Tn (x). For a proof we refer to the aforementioned manuscripts of Koul et al.
(2004) or Hidalgo (2019).

We denote G (x) a Gaussian process in x ∈R with covariance structure given by

Cov (G (x) ,G (y)) = γu (0)E
(̊
10 (x) 1̊0 (y)

)
+

∞∑
`=1

γu (`)E
(̊
10 (x) 1̊` (y)

)
+

∞∑
`=1

γu (`)E
(̊
10 (y) 1̊` (x)

)
.

Observe that because E
(̊
1` (x) 1̊0 (x)

)
=O

(
`4dx−2

)
, see Wu (2003) or Dehling and Taqqu

(1989) under Gaussianity, and Condition 5 implies that γu (`) = O
(
`2d1−1

)
, we conclude

that |Cov (G (x) ,G (y))|<C for all x, y ∈R if d1 + 2dx < 1. It is worth mentioning that, in
view of our comments at the end of last section, under the latter condition, the LSE might
not be asymptotically Gaussian neither n1/2−consistent.

THEOREM 1. Assume Conditions 4,5 and 6. Then, if d1 + 2dx < 1, we have that

Gn (x) :=
1

n1/2

n∑
t=1

1̊t (x)ut
weakly⇒ G (x) x ∈R.

The results of Theorem 1 are valid under either LM or SM dependence. However it is
more relevant to notice that the results hold true either {xt}t∈Z is a sequence of Gaussian
random variables or not. We now look at the behaviour of Tn (x), which is a consequence of
Theorem 1.

PROPOSITION 8. Assume Conditions 3,4,5 and 6 with {xt}t∈Z being a sequence of
Gaussian random variables. Then under H0, we have that, if d1 + 2dx < 1, we have that
uniformly in x ∈R,

n1/2Tn (x) = Gn (x) + op (1)
weakly
=⇒ G (x) .
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COROLLARY 4. Under the conditions of Proposition 8, we have that for any continuous
functional ϕ (·) : R→R+, if d1 + 2dx < 1,

ϕ
(
n1/2Tn (x)

)
d→ ϕ (G (x)) .

PROOF. The proof is standard by the continuous mapping theorem and Proposition 8, so
it is omitted.

Standard functionals ϕ (·) are the Kolmogorov-Smirnov and the Cramér von Mises. The
former is the L∞-norm whereas the latter is the L2-norm, and they are given respectively by

KSn = max
`=1,...,N

∣∣∣n1/2Tn (x`)
∣∣∣ ; CvMn =

1

N

N∑
`=1

∣∣∣n1/2Tn (x`)
∣∣∣2 ,

where {x`}N`=1 forms a set dense in any compact set X ⊂R.

THEOREM 2. Assuming Conditions 3,4, 5 and 6, if d1 + 2dx < 1, we have that, in prob-
ability,

G∗n (x) :=
1

n1/2

n∑
t=1

1̊t (x)u∗t
d∗⇒G (x) x ∈R.

It is important to notice that the results of Theorem 2 hold true either for {xt}t∈Z being a
Gaussian sequence or not. The only condition that we used there was that the xt is a linear
sequence and the order of magnitude of the covariance of the sequence

{̊
1t (x)

}
t∈Z. We now

examine the behaviour of T ∗n (x).

PROPOSITION 9. Assuming Conditions 3,4,5 and 6 with {xt}t∈Z being a sequence of
Gaussian random variables, we have that, in probability,

(a) n1/2T ∗n (x)
d∗⇒G (x) x ∈R

(b) ϕ
(
n1/2T ∗n (x)

)
L→ ϕ (G (x))

for any continuous functional ϕ (·) : R→R+.

4. MONTE CARLO EXPERIMENT. We present a Monte Carlo experiment to shed
some light on the behaviour of the bootstrap scheme for the least squares and also our test.
A more complete set of scenarios can be obtained in the Appendix of the supplementary
material, where we consider even when 2dx + d1 > 1 or dx + d1 > 1/2 and xt is a non-
Gaussian sequence.

To address the performance of the bootstrap least squares and the test under the null hy-
pothesis, we have generated the linear regression model

(44) yt = α+ βxt + ut, t= 1, ..., n,

where α = β = 1 for two different sample sizes n = 128 and 512. When we examine
the performance of the bootstrap for the least squares estimator of β, we have considered
dx = 0.1,0.2,0.3 and d1 = 0.2,0.3. Also to shed some light as how the proposed bootstrap
compares to the sieve bootstrap, we have considered the case when the errors follow an
AR (1) or MA (1) sequence with parameters 0.7 and 0.9. On the other hand, when address-
ing the performance of the test, we considered the scenarios dx = 0.1, ..,0.4 and d1 = 0.2.
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In the latter scenario we also present the results when the innovations of the regressor were
a χ2

1 centered around its mean. All throughout the errors {ut}nt=1 were generated as a se-
quence of Gaussian random variables with mean 0. The statistic Tn (x) were computed in the
range x ∈ [−1.0,1.0] with a mesh width of 0.1 and we have chosen the Kolmogorov′s type
of functional for ϕ (·). That is,

KSn = max
`=1,...,21

∣∣∣n1/2Tn (x`)
∣∣∣ ,

where {x`}21
`=1, x` =−1.0 + (`− 1) 0.1.

In order to save computational time, for each sample we compute only one bootstrap coun-
terpart according to Section 3 and equations (3.1) and (3.2). The stacked bootstrapped statis-
tics are then used to construct critical values and confidence regions at appropriate levels.
For each combination of models and/or samples sizes n, 1000 iterations were performed.
This is the idea behind the WARP algorithm of Giacomini et al. (2013). Finally, to imple-
ment the bootstrap algorithm we need to choose the smoothing parameter m. Although an
algorithm as that described at then end of the previous section can be implemented, in this
Monte-Carlo experiment we have considered two different choices of m, namely m = n/4

and m= n/8. Likewise in the expression Ĉ (λ) = exp
{∑[n/4m]

r=1 ĉre
−irλ

}
, we have chosen

ĉr = 0 for r ≥ 1 and the case ĉr = 0 for r > 1 with ĉ1 6= 0. The first scenario uses the fact that
we know that there is no SM component whereas in the second we have taken [n/4m] = 1,
after we notice that in almost all cases [n/4m]≤ 1. Finally, in all the tables, the first row in
each cell presents the results of the test for the 10% size whereas the second row are those
for the 5% size.

Table 1 presents the results of the size when testing β = 0 against the alternative that it is
different than zero using the critical values from the asymptotic Gaussian random variable or
those obtained under the bootstrap scheme, whereas Table 2 presents the results when ut is
weak dependent.
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TABLE 1

Size using the asymptotic critical values

d1 .2 .2
n=128 n=512

dx m= n
4

n
8

n
4

n
8

.1
20.6 19.9
10.5 10.4

21.4 21.4
9.6 9.6

.2
23.1 21.9
11.7 12.3

22.1 22.1
10.7 10.7

.3
22.7 21.3
12.4 12.0

21.8 21.8
12.0 12.0

.3 .3
n=128 n=512

n
4

n
8

n
4

n
8

20.4 20.4
10.8 9.7

21.1 21.1
10.5 10.5

21.9 22.9
11.8 11.8

21.6 21.6
10.0 10.0

26.8 25.0
14.1 13.5

23.1 23.1
12.4 12.4

Size using the bootstrap critical values
d1 .2 .2

n=128 n=512
dx m= n

4
n
8

n
4

n
8

.1
10.1 9.5

4.3 5.6
9.1 9.1
5.1 5.2

.2
12.3 10.8

7.1 4.8
9.9 10.1
5.2 5.2

.3
9.4 12.0
4.9 5.8

11.4 11.3
6.0 6.6

.3 .3
n=128 n=512

n
4

n
8

n
4

n
8

8.6 9.7
4.7 4.8

10.2 10.0
4.7 4.5

9.6 10.0
4.8 5.3

11.7 11.6
6.6 6.7

12.4 12.2
6.9 5.8

10.9 10.8
4.8 5.9
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TABLE 2

Size using the bootstrap critical values

AR (1) n=128 n=512
ρ= .7 m= n

4 m= n
8 AR (1) AR (3) m= n

4 m= n
8 AR (1) AR (3)

dx= .1
5.0 4.9 4.2 4.7
9.5 9.5 7.6 8.8

4.3 3.7 4.6 4.6
8.5 8.7 8.3 9.5

dx= .2
4.8 4.8 5.0 6.5

11.1 11.3 12.6 13.7
7.5 7.6 3.8 4.2

12.0 12.0 11.1 9.1

dx= .3
5.0 4.7 6.8 5.8

11.7 11.2 13.1 10.0
4.7 4.6 6.1 6.2
9.3 9.0 11.3 10.8

AR (1) n=128 n=512
ρ= .9 m= n

4 m= n
8 AR (1) AR (3) m= n

4 m= n
8 AR (1) AR (3)

dx= .1
3.7 4.0 6.2 6.0
8.5 8.3 10.9 11.6

6.6 6.6 4.4 3.0
13.1 12.5 9.9 9.3

dx= .2
4.1 4.6 6.1 5.4
9.5 9.4 11.3 10.2

5.7 5.4 5.4 4.6
9.6 9.7 11.0 10.4

dx= .3
4.0 4.2 3.9 4.8
9.4 9.6 9.1 12.2

5.1 5.0 5.2 5.0
9.6 9.6 9.2 10.8

MA (1) n=128 n=512
θ= .7 m= n

4 m= n
8 AR (1) AR (3) m= n

4 m= n
8 AR (1) AR (3)

dx= .1
5.2 5.2 6.5 4.0

10.6 10.1 10.6 9.8
4.4 4.9 4.8 5.8
8.5 9.0 9.8 11.8

dx= .2
5.7 5.8 5.2 4.8
8.7 9.2 9.9 10.5

4.7 4.7 4.9 4.7
10.1 10.2 9.0 9.1

dx= .3
4.6 4.7 4.6 5.5
9.7 9.2 10.1 10.2

4.0 3.9 3.5 4.8
9.7 10.1 8.5 9.5

MA (1) n=128 n=512
θ= .9 m= n

4 m= n
8 AR (1) AR (3) m= n

4 m= n
8 AR (1) AR (3)

dx= .1
7.6 8.4 5.1 5.2

13.5 14.0 11.3 12.0
3.9 4.0 3.9 4.5
8.4 9.5 9.1 10.0

dx= .2
5.0 5.2 3.7 4.4

10.3 10.1 10.2 9.6
4.6 4.4 6.3 6.2

10.0 10.4 10.1 7.8

dx= .3
4.0 4.3 4.5 5.4
8.9 9.5 10.6 11.4

4.5 4.5 6.5 6 .2
9.7 9.5 11.1 10.4

A general conclusion from Table 1 is the good performance of the bootstrap scheme even
for samples sizes as small as n = 128, and that it gives a big improvement when compared
the size obtained using the asymptotic critical values from the standard Gaussian random
variable. Also, even when the LSE is known not to be Gaussian, i.e. when du = dx = 0.3,
the bootstrap scheme appears to approximate the finite sample distribution quite well. On the
other hand, Table 2 suggests that our proposed bootstrap compares favourably to the sieve
bootstrap.
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TABLE 3

Size with Ĉ (λ) = 1

xt Normal Normal
n=128 n=512

dx m= n
4

n
8

n
4

n
8

.1
7.8 6.2
4.0 3.5

10.5 7.8
5.2 4.0

.2
10.1 9.8

4.8 4.9
11.9 10.6

5.8 5.9

.4
9.3 7.0
4.5 3.1

9.7 8.0
4.7 5.1

χ2
2 χ2

2

n=128 n=512
n
4

n
8

n
4

n
8

9.3 7.4
5.0 3.1

11.4 8.0
3.7 2.9

9.0 9.9
3.7 4.7

9.9 8.9
6.2 3.7

11.2 9.1
4.7 4.2

10.0 10.5
5.8 5.0

Size with Ĉ (λ) = exp
{
ĉ1e
−irλ}

xt Normal Normal
n=128 n=512

dx m= n
4

n
8

n
4

n
8

.1
12.5 9.8

6.1 6.1
11.1 9.1

6.9 3.5

.2
11.1 8.0

4.7 4.2
10.2 8.5

4.9 4.5

.4
12.4 11.7

6.8 5.5
10.7 12.8

4.5 7.3

χ2
2 χ2

2

n=128 n=512
n
4

n
8

n
4

n
8

10.6 11.4
6.2 5.7

9.7 8.8
4.2 6.5

9.9 8.6
5.1 4.3

9.3 11.7
5.2 5.2

10.9 8.5
5.1 3.4

12.7 11.7
7.5 5.8

A general conclusion from Table 3 is the good performance of the test even for samples
sizes as small as n= 128. This performance is regardless the distribution of the regressor xt
and the choice of m= n/4 appears to perform slightly better for moderate sample sizes, i.e.
when n= 128. Also the tables suggests that even when we choose ĉ1 6= 0, there is no visible
deterioration of the finite sample performance when compared to the case of ĉ1 = 0.

To address the power of the test we simulated the regression model

(45) yt = α+ βxt + γ sin (xt) + ut, t= 1, ..., n

with γ = 0.5 and 1.5. We present the results of the Monte Carlo experiment in Table 4 below
with Ĉ (λ) = exp

{
ĉ1e
−irλ} .
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TABLE 4

Power for model with γ = 0.5

xt Normal Normal
n=128 n=512

dx m= n
4

n
8

n
4

n
8

.1
19.9 17.4
8.5 8.7

53.8 52.9
43.4 40.0

.2
23.5 17.3
13.5 8.2

59.3 61.2
42.1 45.3

.4
37.3 34.0
26.9 21.6

85.9 85.5
73.7 77.7

χ2
2 χ2

2

n=128 n=512
n
4

n
8

n
4

n
8

77.6 67.2
64.4 52.4

99.9 100
99.8 99.8

73.1 65.6
58.7 53.4

100 99.9
99.4 99.6

72.0 71.6
58.8 56.0

100 100
100 100

Power for model with γ = 1.5

xt Normal Normal
n=128 n=512

dx m= n
4

n
8

n
4

n
8

.1
74.8 69.9
61.8 57.2

99.7 100
99.6 99.8

.2
79.0 75.9
69.4 60.1

100 100
100 99.9

.4
89.9 88.1
82.6 80.7

100 100
100 100

χ2
2 χ2

2

n=128 n=512
n
4

n
8

n
4

n
8

100 100
100 100

100 100
100 100

100 100
100 100

100 100
100 100

100 100
100 100

100 100
100 100

The results for (45) illustrate a very good power performance of the test, and as expected
it improves as the value of γ or the sample size increases.

5. CONCLUSIONS. This paper has introduced a bootstrap scheme in the frequency
domain which is valid when the data exhibits either SM or LM dependence. The bootstrap
has some similarities with the TFT given in Kirsch and Politis (2011) in that we obtain time
series resamples. On the other hand, the scheme is similar to theAR−sieve bootstrap in that it
is able to match the moments of the data correctly. We have also illustrated the validity of the
scheme in some situations/statistics of interest. Namely for the LSE and model specification
in a time series regression model context.

Acknowledgments. I thank the Associate Editor and three referees for helpful comments
which led to a much improved and clearer version of the article. Also I thank Hao Dong and
Chen Qiu for their excellent Monte Carlo computations. Of course, all remaining errors are
my sole responsibility.

SUPPLEMENTARY MATERIAL

Supplement: Bootstrap Long Memory Processes in the Frequency Domain
(http://www.e-publications.org/ims/support/dowload/imsart-ims.zip). All the technical de-
tails and Tables are provided in the Supplementary Section.

6. PROPOSITIONS. In what follows, K denotes a generic finite and positive constant.
We shall give the proofs of our main results

http://www.e-publications.org/ims/support/dowload/imsart-ims.zip
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6.0.1. Proof of Proposition 1.
First observe that because

1

n

n∑
t=1

|ε̌t − εt|p ≤ 2p−1

(
1

n

n∑
t=1

|̂εt − εt|p +

∣∣∣∣∣ 1n
n∑
t=1

ε̂t

∣∣∣∣∣
p)

,

it suffices to show that the first term on the right is op (1) .
We shall first examine the case when B (L) = 1. Denoting

ε̃t =
1

n1/2

n∑
j=1

eitλj

(
n∑
`=0

ξ`e
−i`λj

)
wu (λj) ,

and observing that when B (L) =A (L) = 1, ε̂t in STEP 1 becomes

ε̂t =
1

n1/2

n−1∑
j=1

eitλj

(
n∑
`=0

ξ̂`e
−i`λj

)
wu (λj) , t= 1, ..., n,

we then have that (21) and Lemma 3 imply that

ε̂t − ε̃t =

t−1∑
`=0

(
ξ̂` − ξ`

)
ut−` +

n∑
`=t

(
ξ̂` − ξ`

)
un−(`−t)

=

H−1∑
h=1

∥∥∥d̂− d∥∥∥h t−1∑
`=0

gh` (d) ξ`ut−` + logH n
∥∥∥d̂− d∥∥∥H t−1∑

`=0

∣∣∣ ut−`
`1+(d1∧d2)

∣∣∣
+

H−1∑
h=1

∥∥∥d̂− d∥∥∥h n∑
`=t

gh` (d) ξ`un−(`−t) + logH n
∥∥∥d̂− d∥∥∥H n∑

`=t

∣∣∣ un−(`−t)

`1+(d1∧d2)

∣∣∣ .
By standard inequalities, it suffices to show that

1

n

n∑
t=1

|̂εt − ε̃t|p = op (1)(46)

1

n

n∑
t=1

|εt − ε̃t|p = op (1) .(47)

That (47) holds true follows because εt − ε̃t =:
∑∞

`=t ξ`ut−` −
∑n

`=t ξ`un−(`−t) so that
the expectation of the left side of (47) is bounded by

K

n

n∑
t=1

( ∞∑
`=t

|ξk|

)p
≤ K

n

n∑
t=1

I (d1 ∧ d2 > 0)

tp(d1∧d2)
= o (1) ,

because |ξk| = O
(
k−1−(d1∧d2)I (d1 ∧ d2 > 0)

)
, that E |ut|p < K and Hölder’s inequality

yields that

(48) E

∣∣∣∣∣
b∑

k=a

ζkηk

∣∣∣∣∣
p

≤

(
b∑

k=a

|ζk|

)p−1 b∑
k=a

|ζk|E |ηk|
p .

Next (46) also holds true after we observe that (48) implies that

E

∣∣∣∣∣
t−1∑
`=0

gh` (d) ξ`ut−`

∣∣∣∣∣
p

+E

∣∣∣∣∣
n∑
`=t

gh` (d) ξ`un−(t−`)

∣∣∣∣∣
p

≤K
n∑
`=0

∣∣∣gh` (d) ξ`

∣∣∣≤K,
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(
m−1/2

)
and choosing H large enough in Lemma 3.

Now, we examine the general case when B (L) 6= 1. To that end, denote

ε̊t =

t−1∑
`=0

φ̊`ut−` +

n∑
`=t

φ̊`un−(`−t),

where

(49) φ̊` =

{ ∑`∧M
k=0 ξ`−kak, 1≤ `≤ n−M∑M
k=`−(n−M) ξ`−kak, n−M < `≤ n.

As we proceed when we assumed that B (L) = 1, by standard inequalities, it suffices to
show that

1

n

n∑
t=1

|̂εt − ε̊t|p = op (1)(50)

1

n

n∑
t=1

|̊εt − ε̃t|p +
1

n

n∑
t=1

|εt − ε̃t|p = op (1) ,(51)

where ε̃t =
∑t−1

`=0 φ`ut−` +
∑n

`=t φ`un−(`−t) and ε̂t given in (22).
Now, that the second term on the left of (51) is op (1) follows proceeding as with the proof

of (47). Next, the first term on the left of (51). Because φ̊` − φ` = 0 if `≤M , we have that
that its expectation is bounded by

1

n

n∑
t=M+1

E

∣∣∣∣∣
t−1∑

`=M+1

(
φ̊` − φ`

)
ut−`

∣∣∣∣∣
p

+E

∣∣∣∣∣
n∑
`=t

(
φ̊` − φ`

)
un−(`−t)

∣∣∣∣∣
p

+
1

n

M∑
t=1

E

∣∣∣∣∣
n∑

`=M+1

(
φ̊` − φ`

)
un−(`−t)

∣∣∣∣∣
p

≤ 1

n

n∑
t=M+1

{(
t−1∑

`=M+1

∣∣∣̊φ` − φ`∣∣∣
)p

+

(
n∑
`=t

∣∣∣̊φ` − φ`∣∣∣
)p}

+
1

n

M∑
t=1

(
n∑

`=M+1

∣∣∣̊φ` − φ`∣∣∣
)p

= o (1)

by (48) and that E |ut|p <K and then because
∣∣∣̊φ` − φ`∣∣∣ is a summable sequence by Lemma

7.
Finally (50), whose left term is bounded by

K

n

M∑
t=1

{∣∣∣∣∣
t−1∑
`=0

φ̈`ut−`

∣∣∣∣∣
p

+

∣∣∣∣∣
M∑
`=t

φ̈`un−(`−t)

∣∣∣∣∣
p

+

∣∣∣∣∣
n∑

`=M+1

φ̈`un−(`−t)

∣∣∣∣∣
p}

+
K

n

n∑
t=M+1

{∣∣∣∣∣
M∑
`=0

φ̈`ut−`

∣∣∣∣∣
p

+

∣∣∣∣∣
t−1∑

`=M+1

φ̈`ut−`

∣∣∣∣∣
p

+

∣∣∣∣∣
n∑
`=t

φ̈`un−(`−t)

∣∣∣∣∣
p}

,
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where we have abbreviated φ̂`− φ̊` =: φ̈`. Now, that the fourth term is op (1) follows because
(59) yields that this term is

Op

(
m−p/2

)K
n

n∑
t=M+1

∣∣∣∣∣
M∑
`=0

|ut−`|

∣∣∣∣∣
p

=Op

((
M2

m

)p/2)
= op (1)

by Condition 3. Next by Lemma 6 part (ii), the sixth term is

Op

(
m−p/2

)K
n

n∑
t=M+1

∣∣∣∣∣
n∑
`=t

∣∣ξ`−M ∣∣ |ut−`|
∣∣∣∣∣
p

=Op

(
m−p/2

)
because (48) and E |ut|p <K imply that

E

n∑
t=M+1

∣∣∣∣∣
n∑
`=t

∣∣ξ`−M ∣∣ |ut−`|
∣∣∣∣∣
p

≤K
n∑

t=M+1

{(
n∑
`=t

(`−M)−1−(d1∧d2)

)p}
=O (n)

because (d1 ∧ d2)> 0. The fifth term follows by the same argument, whereas the first three
terms are op (1) proceeding as with the last three terms and that M/n= o (1).

6.0.2. Proof of Proposition 2.
Defining ů∗t =

∑n+M
`=0 ϑ̊`ε

∗
t−`, where

(52) ϑ̊` =

{ ∑`∧M
k=0 bpξ`−p, 1≤ `≤ n∑M
k=`−n bpξ`−p, n < `≤ n+M ,

it suffices to show that

E∗ |u∗t − ů∗t |
p = op (1)(53)

E∗ |̊u∗t − ũ∗t |
p = op (1) .(54)

We first examine (54). Because ϑ` − ϑ̊` = 0 if ` ≤ M , we have that ů∗t − ũ∗t =∑n+M
`=M+1

(
ϑ̊` − ϑ`

)
ε∗t−`, so that the left side of (54) becomes

E∗

∣∣∣∣∣
n+M∑
`=M+1

(
ϑ̊` − ϑ`

)
ε∗t−`

∣∣∣∣∣
p

≤K

(
n+M∑
`=M+1

∣∣∣̊ϑ` − ϑ`∣∣∣2
)p/2−1 n+M∑

`=M+1

∣∣∣̊ϑ` − ϑ`∣∣∣2E∗ ∣∣ε∗t−`∣∣p
by (28) because {ε∗t }

n+M
t=1 is a random sequence with zero mean. Now, by definition we have

that ϑ̊` − ϑ` =: ξ`O
(
M−2

)
by Lemma 9, so that we conclude that (54) holds true because{

ξ
2
`

}
`≥1

is a summable sequence and Corollary 1 implies that E∗
∣∣ε∗t−`∣∣p − E |εt−`|p =

op (1). So, to complete the proof it remains to show that (53) holds true. But this is the

case because u∗t − ů∗t =
∑n+M

`=0

(
ϑ̂` − ϑ̊`

)
ε∗t−` and hence

E∗ |u∗t − ů∗t |
p ≤K

(
n+M∑
`=0

∣∣∣ϑ̂` − ϑ̊`∣∣∣2
)p/2−1 n+M∑

`=0

∣∣∣ϑ̂` − ϑ̊`∣∣∣2E∗ ∣∣ε∗t−`∣∣p
by (28). From here the proof follows by Lemma 8 since ξ

2
k is a summable sequence and

Corollary 1.
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6.0.3. Proof of Proposition 5.
By the definition of u∗t in (23), we obtain that

(55)

u∗t =

n+M∑
`=0

ϑ`ε
∗
t−` +

M∑
`=0

(
ϑ̂` − ϑ̊`

)
ε∗t−` +

n+M∑
`=M+1

(
ϑ̂` − ϑ̊`

)
ε∗t−` +

n+M∑
`=M+1

(
ϑ̊` − ϑ`

)
ε∗t−`,

where ϑ̂` was given in (25) and because ϑ̊` − ϑ` = 0 if `≤M . The last term on the right of
(55) is op∗ (1), since its second moment is

n+M∑
`=M+1

(
ϑ̊` − ϑ`

)2
E∗ε∗2t−` = op (1)

by summability of
{∣∣∣̊ϑ` − ϑ`∣∣∣2}

`≥1

by Lemma 9 and Corollary 1 implies that E∗ε∗2t−` −

Eε2
t−` = op (1). Next, the second and third terms on the right of (55) are also op∗ (1) as we

now show. Indeed, the second moment is
M∑
`=0

(
ϑ̂` − ϑ̊`

)2
E∗ε∗2t−` +

n+M∑
`=M+1

(
ϑ̂` − ϑ̊`

)2
E∗ε∗2t−`.

From here we conclude by Lemma 8 parts (i) and (ii) respectively and again by Corollary 1.
Thus, Markov inequality implies that the last three terms on the right of (55) are op∗ (1), so
that

u∗t =

n+M∑
`=0

ϑ`ε
∗
t−` + op∗ (1) .

Now, Proposition 4 and Cramér-Wold’s device imply that for any u ∈R,

P ∗

(
n+M∑
`=0

ϑ`ε
∗
t−` ≤ u

)
= P

(
n+M∑
`=0

ϑ`εt−` ≤ u

)
+ op (1) .

Since
{
ϑ2
`

}
`≥1

is summable, E
(∑∞

`=n+M+1 ϑ`εt−`
)2

= o (1) and Markov’s inequality
yields that

ut =

∞∑
`=0

ϑ`εt−` =

n+M∑
`=0

ϑ`εt−` + op (1) .

Gathering the last three displayed expressions we conclude the proof of the proposition.

7. LEMMAS.

LEMMA 1. For any H ≥ 2 and under Condition 1, we have that if d1 > 0

(a)
π̂k − πk
πk

=

(
H−1∑
h=1

(
d̂1 − d1

)h
ghk (d1)

)
+Op

(∣∣∣d̂1 − d1

∣∣∣H) logH k

(b)
π̌k − πk
πk

=

(
H−1∑
h=1

(
d̂1 − d1

)h
ghk (d1)

)
+Op

(∣∣∣d̂1 − d1

∣∣∣H) logH k,



BOOTSTRAP IN THE FREQUENCY DOMAIN 27

where gk (d1) = d−1
1 +

∑k
`=2 `

−1, whereas if d1 = 0

(c) π̂k =
logk

k
d̂1 +

1

k
Op

(∣∣∣d̂1

∣∣∣2)+Op

(∣∣∣d̂1

∣∣∣H) logH k

k

and the Op (◦) is uniformly in k.

We shall denote proportional by “∝” that is “cn ∝ `n” means that K−1`n ≤ cn ≤K`n for
some finite and positive constant K .

LEMMA 2. For any H ≥ 2 and under Condition 1, we have that if |d2|> 0

(a) τ̂k − τk = τk

(
H−1∑
h=1

(
d̂2 − d2

)h
ghk (d2)

)
+Op

(∣∣∣d̂2 − d2

∣∣∣H logH k

k1−d2

)
,

where gk (d2) = d−1
2 +

∑k
`=2 `

−1, whereas when d2 = 0,

(b) τ̂k =

(
1

k

H−1∑
h=1

d̂h2g
h
k (0)

)
+Op

(∣∣∣d̂2

∣∣∣H) logH k

k
,

where gk (0)∝ (1 + logk).

LEMMA 3. Under Condition 1, we have that for any integer H ≥ 2

(a) ξ̂k − ξk = ξk

H−1∑
h=1

∥∥∥d̂− d∥∥∥h ghk (d) +Op

(∥∥∥d̂− d∥∥∥H logH k

k1+(d1∧d2)

)
; d1, d2 > 0

(b) ξ̌k − ξ̄k = ξ̄k

H−1∑
h=1

∥∥∥d̂− d∥∥∥h ghk (d) +Op

(∥∥∥d̂− d∥∥∥H logH k

k1+(d1+d2)

)
; d1, d2 < 0,

where d= (d1, d2), gk (‖d‖)∝
(
‖d‖−1 + logk

)
, ‖a‖ denotes the norm of the vector a and

Op (◦) is uniformly in k.

For the next lemma we shall denote by {δ`}M`=1 and
{
δ̂`

}M
`=1

either {b`}M`=1 and
{
b̂`

}M
`=1

or {a`}M`=1 and {â`}M`=1.

LEMMA 4. Under Conditions 1,2 and 4, we have that, uniformly in `= 1, ...,M ,

δ̂` − δ` =

M∑
p=1

κn,pυn,`,p +
1

M

M∑
p=1

|κn,pυn,`,p|+Op

(
m−3/2

)
,

where |υn,`,p|<K , {κn,p}Mp=1 is a triangular array sequence of random variables such that

E
∣∣∣∑M

p=1 κn,pυn,`,p

∣∣∣r =O
(
n−r/2

)
for any r ≥ 2 such thatE |εt|2r <∞,E

(∑M
p=1 κn,pυn,`1,p

∑M
p=1 κn,pυn,`2,p

)
=

O
(
n−1δ|`2−`1|

)
and E

∑M
p=1 |κn,pυn,`,p|=O

(
m−1/2

)
.

REMARK 6. Notice that one consequence of Lemma 4 is that

(56) sup
`=1,...,M

∣∣∣δ̂` − δ`∣∣∣=Op

(
m−1/2

)
.
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LEMMA 5. For 0≤ r ≤ n,

(57) E∗
(
u∗tu

∗
t+r

)
= σ̂2

ε

n+M−r∑
k=0

ϑ̂kϑ̂k+r.

First by definitions of φ̂k and φ̊k in (20) and (49) respectively, we have that

(58) φ̂k − φ̊k =

k∧M∑
`=1∨k−(n−M)

ξ̂k−` (â` − a`) +

k∧M∑
`=1∨k−(n−M)

(
ξ̂k−` − ξk−`

)
a`, k ≤ n.

LEMMA 6. Under Conditions 1 and 3, we have that

(i) φ̂k − φ̊k = ς̃n,M + ςn,Mξk, k ≤M

(ii) φ̂k − φ̊k = ςn,Mξk−M , M <k < n,

where ςn,M =Op
(
m−1/2

)
and ςn,M =Op

(
n−1/2

)
independent of k.

REMARK 7. A consequence of Lemma 6 together with (56) is that

(59) sup
k=1,...,n

∣∣∣φ̂k − φ̊k∣∣∣=Op

(
m−1/2

)
.

The next lemma examines the behaviour of

φ̊k − φk =

k∑
`=M+1

ξk−`a` M <k ≤ n−M

=−
k−(n−M)∑

`=0

ξk−`a` −
k∑

`=M+1

ξk−`a` n−M <k ≤ n

LEMMA 7. Under Condition 1, we have that

(i) φ̊k − φk =O
(
M−3/2

)
ξk, M <k ≤ n−M

(ii) φ̊k − φk =O (1) ξk, n−M <k < n.

Next by definition of ϑ̂k and ϑ̊k in (25) and (52) respectively, we have that

(60) ϑ̂k − ϑ̊k =

k∧M∑
`=1

ξ̌k−`

(
b̂` − b`

)
+

k∧M∑
`=1

(
ξ̌k−` − ξk−`

)
b`, 1≤ k ≤ n+M

LEMMA 8. Under Conditions 1 and 3, we have that

(i) ϑ̂k − ϑ̊k =

k∧M∑
`=0

ξk−`

(
b̂` − b`

)
+
(
ςn + op

(
n−1

))
ξk 0≤ k ≤M

(ii) ϑ̂k − ϑ̊k =

k∧M∑
`=0

ξk−`

(
b̂` − b`

)
+
(
ςn + op

(
n−1

))
ξk−M M <k ≤ n+M ,

where ςn =Op
(
m−1/2

)
independent of k.
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REMARK 8. A consequence of the previous lemma together with (56) is that

(61) sup
k=1,...,n

∣∣∣ϑ̂k − ϑ̊k∣∣∣=Op

(
m−1/2

)
.

By definition of ϑk and ϑ̊k in (2) and (52) respectively, we have that

ϑ̊k − ϑk =

k∑
`=M+1

ξk−`b` M <k ≤ n

=−
k−n∑
`=0

ξk−`b` −
k∑

`=M+1

ξk−`b` n < k ≤ n+M

LEMMA 9. Under Condition 1, we have that

(i) ϑ̊k − ϑk =O
(
M−2

)
ξk, M <k ≤ n

(ii) ϑ̊k − ϑk =O (1) ξk, n < k < n+M .
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[15] HALL, P. (1992): “The bootstrap and Edgeworth expansion,” Springer, New York.
[16] HIDALGO, J. (2005): “Semiparametric estimation for stationary processes whose spectra have an unknown

pole,” Annals of Statistics, 33, 1843-1889.
[17] HIDALGO, J. (2003): “An alternative bootstrap to moving blocks for time series regression models,” Journal

of Econometrics, 117, 369–399.
[18] HIDALGO, J. (2008): “Specification testing for regression models with dependent data,” Journal of Econo-

metrics, 143, 143-165.
[19] HIDALGO, J. (2019): “Model diagnostics in time series regression models,” Mimeo.
[20] HIDALGO, J. AND ROBINSON, P.M. (2002): “Adapting for unknown autocorrelation in the disturbance ”,

Econometrica, 70, 1545-1581.
[21] HIDALGO, J. AND YAJIMA, Y. (2002): “Prediction in the frequency domain under long-range processes

with application to the signal extraction problem,” Econometric Theory, 18, 584-624.
[22] HOROWITZ, J.L. (1997): “Bootstrap methods in econometrics,” in Advances in Economics and Econo-

metrics: Theory and Applications, Seventh World Congress, (ed. by D.M. Kreps and K.R. Wallis),
Cambridge: Cambridge University Press, 188-222.



30 J. HIDALGO

[23] HURVICH, C.M. AND ZEGER, S.J. (1987): “Frequency domain bootstrap methods for time series,” New
York University Working paper.

[24] KIRSCH, C. AND POLITIS, D.N. (2011): “TFT-Bootstrap: Resampling time series in the frequency domain
to obtain replicates in the time domain,” Annals of Statistics, 39, 1427–1470.

[25] KOUL, H. L., BAILLIE, R. AND SURGAILIS, D. (2004): “Regression model fitting with a long memory
covariate process,” Econometric Theory, 20, 485–512.

[26] KREISS, J.P. (1988): “Asymptotical inference for a class of stochastic processes,” Habilitationsschrift, Univ.
Hamburg.

[27] KREISS, J.P. AND PAPARODITIS, E. AND POLITIS, D.N. (2011): “On the range of validity of the autore-
gressive sieve bootstrap,” Annals of Statistics, 39, 2103-2130.
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