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1. SUPPLEMENTARY MATERIAL. For the sake of easy reference we write the reg-
ularity conditions and some expressions used in the proof of the results. Appendix A gives the
proof of the main results of the paper which employs a series of lemmas given in Appendix
B. Finally Appendix C presents tables from the Monte Carlo experiment.

We denote

(1−L)d =

∞∑
k=0

πk (d)Lk; πk (−d) =
Γ (k+ d)

Γ (d) Γ (k+ 1)
, k ∈N

(
1− 2 cosωL+L2

)d
=

∞∑
k=0

τk (cosω;d)Lk,

where Γ (·) denotes the gamma function such that Γ (c) =∞ for c= 0 with Γ (0)/Γ (0) = 1
and the coefficients τk (cosω;d) follow the second order homogeneous difference equation

τk (z;d) = 2z

(
k− d− 1

k

)
τk−1 (z;d)−

(
k− 2d− 2

k

)
τk−2 (z;d) ,

see Section 8.93 in Gradshteyn and Ryzhik (2000).

CONDITION 1. {xt}t∈Z and {ut}t∈Z are two mutually independent sequences of ran-
dom variables such that

xt =

∞∑
j=0

ϕj%t−j;
∞∑
j=0

ϕ2
j <∞, ϕ0 = 1,

ut =

∞∑
j=0

ϑjεt−j;
∞∑
j=0

ϑ2j <∞, ϑ0 = 1,

where {εt}t∈Z and {%t}t∈Z are zero mean sequences with finite variance. Denote E
(
ε2t
)

=
σ2ε . Also

ϑj =

j∑
k=0

ξk (−d1,−d2) bk−j =

j∑
k=0

ξk−j (−d1,−d2) bk

where ξk (d1;d2) =
∑k

`=0 τ ` (cosω;d2)πk−` (d1) =:
∑k

`=0 τk−` (cosω;d2)π` (d1) and
∑∞

k=0 k
2 |bk|<

∞. Finally,
∣∣ϕj∣∣=O

(
jdx−1

)
with dx ∈

[
0, 12
)
.

Next we denote

g (λ;d1, d2) = :
(

1− e−iλ
)d1 (

1− (2 cosω)e−iλ + e−2iλ
)d2

=

∞∑
j=0

ξj (d1, d2)e
−ijλ

B (λ) =

∞∑
j=0

bje
−ijλ,

so that fu (λ) = σ2
ε

2π |g (λ;d1, d2)|−2 |B (λ)|2. Finally {ut}t∈Z admits the AR representation

ut =

∞∑
j=1

φjut−j + εt; φj =:

j∑
k=0

ξk (d1, d2)ak−j =:

j∑
k=0

ξk−j (d1, d2)ak,
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where
∑∞

k=0 k
2 |ak|<∞ and B−1 (λ) =:A (λ) =

∑∞
j=0 aje

−ijλ. So,

fu (λ) =
σ2ε
2π
|g (λ;d1, d2)|−2 |A (λ)|−2 .

Finally denote g (λ,d1, d2;L) =
∑L

j=0 ξj (d1, d2)e
−ijλ.

CONDITION 2. {%t}t∈Z and {εt}t∈Z are independent identically distributed sequences
of random variables with finite 8th moments. In addition, denoting φ (x) as the probability
density function of xt, we have that∫

R

4∑
p=1

∣∣∣∣∂pφ∂xp
(x)

∣∣∣∣dx <∞.

CONDITION 3. As n→∞,

m4

n3
+
n2

m3
logn→ 0.

CONDITION 4. As Condition 1 but with d2 = 0.

We denote the least squares residuals

(1) ût = (ut − un)−
(
β̂ − β

)
(xt − xn) ,

where xn = n−1
∑n

t=1 xt, un = n−1
∑n

t=1 ut and

(2) β̂ − β =

(
n∑
t=1

(xt − xn)2

)−1 n∑
t=1

(xt − xn)ut.

Also we have that

(3)
n∑
t=1

ût =

n∑
t=1

xtût = 0.

(4) Tn (x) =
1

n

n∑
t=1

I (xt < x) ût,

(5) Tn (x) =
1

n

n∑
t=1

{I (xt < x)− F (x) + φ (x)xt} ût,

We shall write

(6) 1t (x) = I (xt < x)− F (x) ; 1̊t (x) = 1t (x) + φ (x)xt,

where F (x) =
∫ x
−∞ φ (z)dz.

(7) ζ (d1) = 2Γ(1− 2d1) cos

(
π

(
1

2
− d1

))
.
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G (x) denotes a Gaussian process in the real line with covariance structure given by

Cov (G (x) ,G (y)) = γu (0)E
(̊
10 (x) 1̊0 (y)

)
+

∞∑
`=1

γu (`)E
(̊
10 (x) 1̊` (y)

)
+

∞∑
`=1

γu (`)E
(̊
10 (y) 1̊` (x)

)
x, y ∈R.(8)

Denoting Ψ̂ (λ) = g
(
λ,−d̂1,−d̂2;n

)
B̂ (λ),

(9) ü∗t =
1

(3n)1/2

3n−1∑
j=1

eitλ̃j Ψ̂
(
λ̃j

)
wε∗

(
λ̃j

)
, t= 1, ...,3n.

Next for any integer k ≥ 0,

πk = : πk (d1) ; π̂k =: πk

(
d̂1

)
;(10)

πk = : πk (−d1) ; π̌k =: πk

(
−d̂1

)
;

τk = : τk (d2) ; τ̂k =: τk

(
d̂2

)
;

τk = : τk (−d2) ; τ̌k =: τk

(
−d̂2

)
;

ξk = : ξk (d1, d2) ; ξ̂k =: ξk

(
d̂1, d̂2

)
;

ξk = : ξk (−d1,−d2) ; ξ̌k =: ξk

(
−d̂1,−d̂2

)
.

Also φ̂0 = φ̊0 = ϑ̂0 = ϑ̊0 = 1 and

(11) φ̂` =

{ ∑`∧M
k=0 ξ̂`−kâk, 1≤ `≤ n−M∑M
k=`−(n−M) ξ̂`−kâk, n−M < `≤ n,

(12) φ̊` =

{ ∑`∧M
k=0 ξ`−kak, 1≤ `≤ n−M∑M
k=`−(n−M) ξ`−kak, n−M < `≤ n,

(13) ϑ̂` =

{ ∑`∧M
p=0 b̂pξ̌`−p, 1≤ `≤ n∑M
p=`−n b̂pξ̌`−p, n < `≤ n+M ,

(14) ϑ̊` =

{ ∑`∧M
p=0 bpξ`−p, 1≤ `≤ n∑M
p=`−n bpξ`−p, n < `≤ n+M .

Next ü∗t in (9) is

ü∗t =

t−1∑
`=0

ϑ̂`ε
∗
t−` +

n+M∑
`=t

ϑ̂`ε
∗
n+t−` if t < n+M

=

n+M∑
`=0

ϑ̂`ε
∗
t−` if n+M ≤ t(15)
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and u∗s = ü∗2n+s, s= 1, ..., n. Because for any sequence
{
ζj
}
j∈Z

(16)
1

n1/2

n∑
j=1

eitλj

(
n∑
`=0

ζ`e
−i`λj

)
wz (λj) =:

t−1∑
`=0

ζ`zt−` +

n∑
`=t

ζ`zn−(`−t),

we obtain that

(17) ε̂t =

t−1∑
`=0

φ̂`ut−` +

n∑
`=t

φ̂`un+t−`.

Finally it is worth recalling that for any sequence
{
ζj
}
j≥1 and a martingale difference se-

quence
{
ηj
}
j∈Z with finite p moments, we have that

(18) E

∣∣∣∣∣∣
b∑

j=a

ζjηj

∣∣∣∣∣∣
p

≤KE

∣∣∣∣∣∣
b∑

j=a

ζ2j

∣∣∣∣∣∣
p/2−1

b∑
j=a

ζ2jE
∣∣ηj∣∣p

by Burkholder and then Hölder’s inequalities.

1.1. APPENDIX A.
For simplicity and without loss of generality we shall assume that σ2x = 1. Also herewith

K denotes a generic positive and finite constant.

PROPOSITION 1. Under Conditions 1 and 3, for any p ≥ 1 such that E |εt|p <∞, we
have that

(19)
1

n

n∑
t=1

|ε̌t − εt|p = op (1) .

PROOF. First observe that because

1

n

n∑
t=1

|ε̌t − εt|p ≤ 2p−1

(
1

n

n∑
t=1

|̂εt − εt|p +

∣∣∣∣∣ 1n
n∑
t=1

ε̂t

∣∣∣∣∣
p)

,

it suffices to show that the first term on the right is op (1) .
We shall first examine the case when B (L) = 1. Denoting

ε̃t =
1

n1/2

n∑
j=1

eitλj

(
n∑
`=0

ξ`e
−i`λj

)
wu (λj) ,

and observing that when B (L) =A (L) = 1, ε̂t in STEP 1 becomes

ε̂t =
1

n1/2

n−1∑
j=1

eitλj

(
n∑
`=0

ξ̂`e
−i`λj

)
wu (λj) , t= 1, ..., n,

we then have that (16) and Lemma 3 imply that

ε̂t − ε̃t =

t−1∑
`=0

(
ξ̂` − ξ`

)
ut−` +

n∑
`=t

(
ξ̂` − ξ`

)
un−(`−t)

=

H−1∑
h=1

∥∥∥d̂− d∥∥∥h t−1∑
`=0

gh` (d) ξ`ut−` + logH n
∥∥∥d̂− d∥∥∥H t−1∑

`=0

∣∣∣ ut−`
`1+(d1∧d2)

∣∣∣
+

H−1∑
h=1

∥∥∥d̂− d∥∥∥h n∑
`=t

gh` (d) ξ`un−(`−t) + logH n
∥∥∥d̂− d∥∥∥H n∑

`=t

∣∣∣ un−(`−t)
`1+(d1∧d2)

∣∣∣ .
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By standard inequalities, it suffices to show that

1

n

n∑
t=1

|̂εt − ε̃t|p = op (1)(20)

1

n

n∑
t=1

|εt − ε̃t|p = op (1) .(21)

That (21) holds true follows because εt − ε̃t =:
∑∞

`=t ξ`ut−` −
∑n

`=t ξ`un−(`−t) so that
the expectation of the left side of (21) is bounded by

K

n

n∑
t=1

( ∞∑
`=t

|ξk|

)p
≤ K

n

n∑
t=1

I (d1 ∧ d2 > 0)

tp(d1∧d2)
= o (1) ,

because |ξk| = O
(
k−1−(d1∧d2)I (d1 ∧ d2 > 0)

)
, that E |ut|p < K and Hölder’s inequality

yields that

(22) E

∣∣∣∣∣
b∑

k=a

ζkηk

∣∣∣∣∣
p

≤

(
b∑

k=a

|ζk|

)p−1 b∑
k=a

|ζk|E |ηk|
p .

Next (20) also holds true after we observe that (22) implies that

E

∣∣∣∣∣
t−1∑
`=0

gh` (d) ξ`ut−`

∣∣∣∣∣
p

+E

∣∣∣∣∣
n∑
`=t

gh` (d) ξ`un−(t−`)

∣∣∣∣∣
p

≤K
n∑
`=0

∣∣∣gh` (d) ξ`

∣∣∣≤K,

∥∥∥d̂− d∥∥∥=Op
(
m−1/2

)
and choosing H large enough in Lemma 3.

Now, we examine the general case when B (L) 6= 1. To that end, denote

ε̊t =

t−1∑
`=0

φ̊`ut−` +

n∑
`=t

φ̊`un−(`−t),

where

(23) φ̊` =

{ ∑`∧M
k=0 ξ`−kak, 1≤ `≤ n−M∑M
k=`−(n−M) ξ`−kak, n−M < `≤ n.

As we proceed when we assumed that B (L) = 1, by standard inequalities, it suffices to
show that

1

n

n∑
t=1

|̂εt − ε̊t|p = op (1)(24)

1

n

n∑
t=1

|̊εt − ε̃t|p +
1

n

n∑
t=1

|εt − ε̃t|p = op (1) ,(25)

where ε̃t =
∑t−1

`=0 φ`ut−` +
∑n

`=t φ`un−(`−t) and ε̂t given in (17).
Now, that the second term on the left of (25) is op (1) follows proceeding as with the proof

of (21). Next, the first term on the left of (25). Because φ̊` − φ` = 0 if `≤M , we have that
that its expectation is bounded by

1

n

n∑
t=M+1

{
E

∣∣∣∣∣
t−1∑

`=M+1

(
φ̊` − φ`

)
ut−`

∣∣∣∣∣
p

+E

∣∣∣∣∣
n∑
`=t

(
φ̊` − φ`

)
un−(`−t)

∣∣∣∣∣
p}
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+
1

n

M∑
t=1

E

∣∣∣∣∣
n∑

`=M+1

(
φ̊` − φ`

)
un−(`−t)

∣∣∣∣∣
p

≤ 1

n

n∑
t=M+1

{(
t−1∑

`=M+1

∣∣∣̊φ` − φ`∣∣∣
)p

+

(
n∑
`=t

∣∣∣̊φ` − φ`∣∣∣
)p}

+
1

n

M∑
t=1

(
n∑

`=M+1

∣∣∣̊φ` − φ`∣∣∣
)p

= o (1)

by (22) and that E |ut|p <K and then because
∣∣∣̊φ` − φ`∣∣∣ is a summable sequence by Lemma

7.
Finally (24), whose left term is bounded by

K

n

M∑
t=1

{∣∣∣∣∣
t−1∑
`=0

φ̈`ut−`

∣∣∣∣∣
p

+

∣∣∣∣∣
M∑
`=t

φ̈`un−(`−t)

∣∣∣∣∣
p

+

∣∣∣∣∣
n∑

`=M+1

φ̈`un−(`−t)

∣∣∣∣∣
p}

+
K

n

n∑
t=M+1

{∣∣∣∣∣
M∑
`=0

φ̈`ut−`

∣∣∣∣∣
p

+

∣∣∣∣∣
t−1∑

`=M+1

φ̈`ut−`

∣∣∣∣∣
p

+

∣∣∣∣∣
n∑
`=t

φ̈`un−(`−t)

∣∣∣∣∣
p}

,

where we have abbreviated φ̂`− φ̊` =: φ̈`. Now, that the fourth term is op (1) follows because
(65) yields that this term is

Op

(
m−p/2

)K
n

n∑
t=M+1

∣∣∣∣∣
M∑
`=0

|ut−`|

∣∣∣∣∣
p

=Op

((
M2

m

)p/2)
= op (1)

by Condition 3. Next by Lemma 6 part (ii), the sixth term is

Op

(
m−p/2

)K
n

n∑
t=M+1

∣∣∣∣∣
n∑
`=t

∣∣ξ`−M ∣∣ |ut−`|
∣∣∣∣∣
p

=Op

(
m−p/2

)
because (22) and E |ut|p <K imply that

E

n∑
t=M+1

∣∣∣∣∣
n∑
`=t

∣∣ξ`−M ∣∣ |ut−`|
∣∣∣∣∣
p

≤K
n∑

t=M+1

{(
n∑
`=t

(`−M)−1−(d1∧d2)

)p}
=O (n)

because (d1 ∧ d2)> 0. The fifth term follows by the same argument, whereas the first three
terms are op (1) proceeding as with the last three terms and that M/n= o (1).

COROLLARY 1. Assume Conditions 1 and 3. Then, for any p≥ 1 such that E |εt|p <∞,
we have that

E∗ε∗pt =:
1

n

n∑
t=1

ε̌pt
P→Eεpt .

PROOF. By standard equalities, we have that

1

n

n∑
t=1

ε̌pt =
1

n

n∑
t=1

(ε̌t − εt)p +

p−1∑
k=1

1

n

n∑
t=1

(
p
k

)
(ε̌t − εt)k εp−kt +

1

n

n∑
t=1

εpt .
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The first term is op (1) by Proposition 1. The third term converges in probability to Eεpt by
Condition 1. From here the conclusion follows by Hölder’s inequality.

PROPOSITION 2. Under Conditions 1 and 3, for any p ≥ 1 such that E |εt|p <∞, we
have that

(26) E∗ |u∗t − ũ∗t |
p = op (1) ,

where ũ∗t =
∑n+M

`=0 ϑ`ε
∗
t−`.

PROOF. Defining ů∗t =
∑n+M

`=0 ϑ̊`ε
∗
t−`, where

(27) ϑ̊` =

{ ∑`∧M
k=0 bpξ`−p, 1≤ `≤ n∑M
k=`−n bpξ`−p, n < `≤ n+M ,

it suffices to show that

E∗ |u∗t − ů∗t |
p = op (1)(28)

E∗ |̊u∗t − ũ∗t |
p = op (1) .(29)

We first examine (29). Because ϑ` − ϑ̊` = 0 if ` ≤ M , we have that ů∗t − ũ∗t =∑n+M
`=M+1

(
ϑ̊` − ϑ`

)
ε∗t−`, so that the left side of (29) becomes

E∗

∣∣∣∣∣
n+M∑
`=M+1

(
ϑ̊` − ϑ`

)
ε∗t−`

∣∣∣∣∣
p

≤K

(
n+M∑
`=M+1

∣∣∣̊ϑ` − ϑ`∣∣∣2
)p/2−1 n+M∑

`=M+1

∣∣∣̊ϑ` − ϑ`∣∣∣2E∗ ∣∣ε∗t−`∣∣p
by (18) because {ε∗t }

n+M
t=1 is a random sequence with zero mean. Now, by definition we have

that ϑ̊` − ϑ` =: ξ`O
(
M−2

)
by Lemma 9, so that we conclude that (29) holds true because{

ξ
2
`

}
`≥1

is a summable sequence and Corollary 1 implies that E∗
∣∣ε∗t−`∣∣p − E |εt−`|p =

op (1). So, to complete the proof it remains to show that (28) holds true. But this is the

case because u∗t − ů∗t =
∑n+M

`=0

(
ϑ̂` − ϑ̊`

)
ε∗t−` and hence

E∗ |u∗t − ů∗t |
p ≤K

(
n+M∑
`=0

∣∣∣ϑ̂` − ϑ̊`∣∣∣2
)p/2−1 n+M∑

`=0

∣∣∣ϑ̂` − ϑ̊`∣∣∣2E∗ ∣∣ε∗t−`∣∣p
by (18). From here the proof follows by Lemma 8 since ξ

2
k is a summable sequence and

Corollary 1.

PROPOSITION 3. Under Conditions 1 and 3 , as n→∞, in probability,

ε∗t
d→
∗
εt

PROOF. Denote by d2 (·, ·) the Mallows metric as defined for example by Bickel
and Freedman (1981). Let F̂n (x) = 1

n

∑n
t=1 I (ε̂t ≤ x), Fn (x) = 1

n

∑n
t=1 I (εt ≤ x) and

F (x) = P (εt ≤ x). Then

(30) d2

(
F̂n, F

)
≤ d2

(
F̂n, Fn

)
+ d2 (Fn, F ) .
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Let W be a random variable distributed uniformly on {1,2, . . . , n}. Then

d2

(
F̂n, Fn

)
≤EW (εW − ε̂W )2 =

1

n

n∑
t=1

(ε̂t − εt)2 .

By Proposition 1, the last expression converges to zero in probability. The second term of (30)
converges to zero almost surely by Lemma 8.4 of Bickel and Freedman (1981). Therefore
d2

(
F̂n, F

)
= op (1) and the proposition holds.

PROPOSITION 4. Assume Conditions 1 and 3 . Then, as n→∞, in probability,

u∗t
d→
∗
ut.

By the definition of u∗t in (9), we obtain that
(31)

u∗t =

n+M∑
`=0

ϑ`ε
∗
t−` +

M∑
`=0

(
ϑ̂` − ϑ̊`

)
ε∗t−` +

n+M∑
`=M+1

(
ϑ̂` − ϑ̊`

)
ε∗t−` +

n+M∑
`=M+1

(
ϑ̊` − ϑ`

)
ε∗t−`,

where ϑ̂` was given in (13) and because ϑ̊` − ϑ` = 0 if `≤M . The last term on the right of
(31) is op∗ (1), since its second moment is

n+M∑
`=M+1

(
ϑ̊` − ϑ`

)2
E∗ε∗2t−` = op (1)

by summability of
{∣∣∣̊ϑ` − ϑ`∣∣∣2}

`≥1
and Corollary 1 implies that E∗ε∗2t−` −Eε2t−` = op (1).

Next, the second and third terms on the right of (31) are also op∗ (1) as we now show. Indeed,
the second moment is

M∑
`=0

(
ϑ̂` − ϑ̊`

)2
E∗ε∗2t−` +

n+M∑
`=M+1

(
ϑ̂` − ϑ̊`

)2
E∗ε∗2t−`.

From here we conclude by Lemma 8 parts (i) and (ii) respectively and again by Corollary 1.
Thus, Markov inequality implies that the last three terms on the right of (31) are op∗ (1), so
that

u∗t =

n+M∑
`=0

ϑ`ε
∗
t−` + op∗ (1) .

Now, Proposition 3 and Cramér-Wold’s device imply that for any u ∈R,

P ∗

(
n+M∑
`=0

ϑ`ε
∗
t−` ≤ u

)
= P

(
n+M∑
`=0

ϑ`εt−` ≤ u

)
+ op (1) .

Since
{
ϑ2`
}
`≥1 is summable, E

(∑∞
`=n+M+1 ϑ`εt−`

)2
= o (1) and Markov’s inequality

yields that

ut =

∞∑
`=0

ϑ`εt−` =

n+M∑
`=0

ϑ`εt−` + op (1) .

Gathering the last three displayed expressions we conclude the proof of the proposition.
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THEOREM 1. Assume Conditions 2 and 4. Then, if d1 + 2dx < 1,

Gn (x) :=
1

n1/2

n∑
t=1

1̊t (x)ut
weakly⇒ G (x) x ∈R.

PROOF. By Lemma 12, we have that Gn (x) is tight. So, it suffices to show that the finite
dimensional distributions converge to a normal random variable with covariance structure
given in (8). First we observe that

E (Gn (x)Gn (y)) = γu (0)E
(̊
10 (x) 1̊0 (y)

)
+

n∑
`=1

γu (`)E
(̊
10 (x) 1̊` (y)

)
+

n∑
`=1

γu (`)E
(̊
10 (y) 1̊` (x)

)
→

n↗∞
E (G (x)G (y)) .

To complete the proof, we need to show that for any x ∈R,

Gn (x)
d⇒N

(
0,E

(
G2 (x)

))
.

The proof uses a Central Limit Theorem of Scott (1973) very much in the way employed
in Robinson and Hidalgo (1997) , see also Giraitis et al.’s (2012) Proposition 11.5.4 for a
different approach. Indeed, we first write

(32)
1

n1/2

n∑
t=1

1̊t (x)ut =
1

n1/2

n∑
s=−N

υs (x)εs +
1

n1/2

−N+1∑
s=−∞

υs (x)εs,

where υs (x) =
∑n

t=1 ϑt−s̊1t (x) with ϑt−s = 0 if t < s. Because {εt}t∈Z is an iid sequence,
we have that the second moment of the second term on the right of (32), by Condition 4, is

σ2ε
n

−N+1∑
s=−∞

Eυ2
s (x) =

σ2ε
n

−N+1∑
s=−∞

n∑
t,r=1

E
(̊
1t (x) 1̊r (x)

)
ϑt−sϑr−s

=
K

n

−N+1∑
s=−∞

n∑
t,r=1

1

|t− r|2−4dx+

1

|t− s|1−d1
1

|r− s|1−d1

=
K

n

n∑
t=1≤r

1

(r− t)2−4dx+

∞∑
s=N−1

1

(t+ s)1−d1
1

(r+ s)1−d1

=
K

n

n∑
t=1≤r

1

(r− t)2−4dx+

1

(t+N)1−2d1

= o (1)

because d1 + 2dx < 1 and choosing N large enough. Recall that 1̊t (x) = 1t (x) + φ (x)xt
has a covariance structure Kγ2x (`), as −φ (x)xt is the first term of the “Hermite/Appell”
expansion of 1t (x). So, the asymptotic behaviour of Gn (x) is governed by that of the first
term on the right of (32) which converges in distribution to N

(
0,E

(
G2 (x)

))
proceeding as

in the proof of Robinson and Hidalgo’s Theorem 1 (1997). Notice that Robinson and Hidalgo
(1997) did not assume the regressors to be a linear process, only that they are mean zero with
covariance structure γx (j) such that {γx (j)γu (j)}j≥1 is summable. This concludes the
proof of the theorem.
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PROPOSITION 5. Assume Conditions 2 and 4 with {xt}t∈Z being a sequence of Gaus-
sian random variables. Then, under the null hypothesis H0, if d1 + 2dx < 1, we have that
uniformly in x ∈R

n1/2Tn (x) = Gn (x) + op (1) .

PROOF. First of all, using (3) and (1), standard algebra yields that

Tn (x) =
1

n

n∑
t=1

1̊t (x)ut − un
1

n

n∑
t=1

1̊t (x)

−
(
β̃ − β

){ 1

n

n∑
t=1

1̊t (x)xt − xn
1

n

n∑
t=1

1̊t (x)

}

+
n−1

∑n
t=1

(
x2t − 1

)
n−1

∑n
t=1 x

2
t

(
β̃ − β

){ 1

n

n∑
t=1

1̊t (x)xt − xn
1

n

n∑
t=1

1̊t (x)

}
,

where by orthogonality of the Hermite polynomials E
(̊
1t (x)xt

)
= 0 and

(33) β̃ − β =
1

n

n∑
t=1

xtut − xnun.

Condition 4 and Markov’s inequality imply that

un =Op

(
nd1−1/2

)
; xn =Op

(
ndx−1/2

)
(34)

1

n

n∑
t=1

(
x2t − 1

)
=Op

(
n−1/2 + n−1+2dxI (dx > 1/4)

)
.

On the other hand, using results in Robinson and Hidalgo (1997),

β̃ − β =Op

(
n−1/2 + ndx+d1−1I (dx + d1 > 1/2)

)
,

whereas Dehling and Taqqu (1989) and Taqqu (1975) yield respectively that

sup
x∈R

∣∣∣∣∣
n∑
t=1

1̊t (x)

∣∣∣∣∣ = Op

(
n1/2

)
if dx < 1/4(35)

1

n2dx

n∑
t=1

1̊t (x)→R2 (x) , if dx > 1/4, (weakly)

a Rosenblatt process of order 2. Notice that, as shown in Wu’s (2003) Theorem 3, (35)
holds true if we drop the assumption of Gaussianity from the sequence {xt}t∈Z. So because
d1 + 2dx < 1, (34) and (35) imply that

(36) sup
x∈R

∣∣∣∣∣ 1n
n∑
t=1

1̊t (x)

∣∣∣∣∣ |un|= op

(
n−1/2

)
.

Finally, Lemmas 17 and 18 imply that

(37) sup
x∈R

∣∣∣∣∣ 1n
n∑
t=1

1̊t (x)xt

∣∣∣∣∣=Op

(
n−1/2 + n3dx−3/2I (dx > 1/3)

)
.

So, gathering (34) to (37) we conclude.
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COROLLARY 2. Under Conditions of Proposition 5, we have that for any continuous
functional ϕ (·) : R→R+,

ϕ
(
n1/2Tn (x)

)
d→ ϕ (Gn (x)).

PROOF. It follows by the continuous mapping theorem, Theorem 1 and Proposition 5, so
it is omitted.

PROPOSITION 6. Under Conditions 2 to 4, if d1 + dx < 1/2, d̂1 − d1 =Op
(
m−1/2

)
.

PROOF. Similar to Robinson (1997), the properties of the estimator are not affected by
using the residuals ût instead of the errors ut. Indeed

Iûû (λj)− Iuu (λj) =
(
β̂ − β

)
Iux (λj) +

(
β̂ − β

)2
Ixx (λj) .

Since β̂ − β =Op
(
n−1/2

)
and proceeding as in Robinson (1995),

E |Iux (λj) Iux (λk)|=E (wu (λj)wu (λk))E (wx (λj)wx (λk))

' λ−d1−dxj λ−d1−dxk max
(
k−1, j−1

)
.

So, we conclude that

1

m

m∑
j=1

λ2d1j (Iûû (λj)− Iuu (λj)) = op

(
m−1/2

)
.

From here the proof proceeds as in Robinson (1997).

PROPOSITION 7. Assuming Conditions 2 to 4, for any 0≤ `≤ n,

E∗
(
u∗tu

∗
t+`

)
− γu (`) = op (1) `2d1−1 +Op

(
n2d1

m3/2+d1

)
+O

(
n2d1−1

)
.

PROOF. It is immediate. Indeed, Lemma 5 implies that the left side of the last displayed
expression is

σ̂2ε

n+M−`∑
k=0

(
ϑ̂kϑ̂k+` − ϑ̊kϑ̊k+`

)
−
(
σ̂2ε − σ2ε

)n+M−`∑
k=0

ϑ̊kϑ̊k+`

σ2ε

n+M−`∑
k=0

(
ϑ̊kϑ̊k+` − ϑkϑk+`

)
− σ2ε

∞∑
k=n+M−`

ϑkϑk+`.

From here we conclude because
∑∞

k=n+M−` |ϑkϑk+`|=O
(
n2d1−1

)
, Hidalgo and Yajima’s

(2002) Corollary 1 and Theorem 1, and that respectively Lemmas 10 and 11 yield that
the first and third terms of the last displayed expression are o (1) `2d1−1. Observe that∑n+M−`

k=0 ϑkϑk+` =K`2d1−1 (1 + o (1)).

We introduce some notation. By Kn we denote a sequence of nonnegative random vari-
ables.

PROPOSITION 8. Assuming Conditions 2 to 4, if d1 + dx < 1/2, (in probability)

n1/2
(
β̂
∗
− β̂
)
d∗→N (0,V) ,

where V =
(
σ2x
)−2 ∫ π

−π fu (λ)fx (λ)dλ is the asymptotic variance of the LSE.
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PROOF. By definition,

β̂
∗
− β̂ =

1

n

n∑
t=1

(xt − xn)u∗t −
1
n

∑n
t=1

(
x2t − 1

)
1
n

∑n
t=1 x

2
t

(
1

n

n∑
t=1

(xt − xn)u∗t

)
.

Because
∑n

t=1

(
x2t − 1

)
= o (n)Kn, it suffices to consider the first term on the right of last

displayed equation. Now σ̂2ε − σ2ε = Op
(
n−1/2 +m/n

)
by Hidalgo and Yajima’s (2002)

Corollary and Theorem 1, so

E∗

 1

n1+2d̂1

n∑
t,r=1

u∗tu
∗
r

 P→ σ2ε

(
lim
n→∞

1

n2d1

n∑
`=−n

γu (`) +O (1)

)
,

by Propositions 6 and 7. So we conclude that
∑n

t=1 u
∗
t = Op∗

(
n1/2+d̂1

)
, which together

with xn =Op
(
ndx−1/2

)
implies that n1/2

(
β̂
∗
− β̂
)

is governed by n−1/2
∑n

t=1 xtu
∗
t . Now,

standard algebra implies that

E∗

(
1

n1/2

n∑
t=1

xtu
∗
t

)2

=
1

n

n∑
t,r=1

xtxrE
∗ (u∗tu

∗
r)(38)

= σ̂2ε
1

n

n∑
t,r=1

xtxr

n+M−|t−r|∑
k=0

ϑ̂kϑ̂k+|t−r|,

using (63) in Lemma 3. As we mentioned above, the expression on the right of (38) is
σ̂2ε = σ2ε (1 + op (1)) times

(39)

1

n

n∑
t,r=1

xtxr

n+M−|t−r|∑
k=0

(
ϑ̂kϑ̂k+|t−r| − ϑ̊kϑ̊k+|t−r|

)
+

1

n

n∑
t,r=1

xtxr

n+M−|t−r|∑
k=0

ϑkϑk+|t−r|

(40) +
1

n

n∑
t,r=1

xtxr

n+M−|t−r|∑
k=0

(
ϑ̊kϑ̊k+|t−r| − ϑkϑk+|t−r|

)
.

That (40) is op (1) follows by Lemmas 13 and 11. The second term of (39) is

n−1∑
`=1−n

(
1− |`|

n

)
γx (|`|)

n+M−|`|∑
k=0

ϑkϑk+|`|

+
1

n

n∑
t,r=1

(xtxr − γx (|t− r|))
n+M−|t−r|∑

k=0

ϑkϑk+|t−r|

P→
∞∑

`=−∞
γx (|`|)γu (|`|)/σ2ε

because proceeding as with the proof of Lemma 13, we have that the second term of last dis-
played expression is op (1) after observing that Condition 4 implies

∑n+M−|t−r|
k=0 ϑkϑk+|t−r| =

O
(
|t− r|2d1−1

)
. It is worth mentioning that alternatively we could have used arguments

similar to those in (46).
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So, to complete the proof that the second moments of 1
n1/2

∑n
t=1 xtu

∗
t converge in prob-

ability to
∑∞

`=−∞ γx (|`|)γu (|`|), we need to show that the first term of (39) is op (1). But
this follows easily by Lemma 10. Indeed, this term is

ςn
1

n

n∑
t,r=1

xtxr |t− r|2d1−1 +
1

n

n∑
t,r=1

|xtxr| |t− r|2d1−1Op
(
n−1

)
= ςnWn +Op

(
n2d1−1

)
= op (1)

because EW 2
n is, except multiplicative constants, equal to

1

n2

n∑
t1<r1=2;t2<r2=2

γx (|t1 − r1|)γx (|t2 − r2|) |t1 − r1|2d1−1 |t2 − r2|2d1−1

+
2

n2

n∑
t1<r1=2;t2<r2=2

γx (|t1 − r2|)γx (|t2 − r1|) |t1 − r1|2d1−1 |t2 − r2|2d1−1

+
1

n2

n∑
t1<r1=2;t2<r2=2

cum (xt1 ;xt2 ;xr1 ;xr2) |t1 − r1|
2d1−1 |t2 − r2|2d1−1

which is O (1) since 2d1 + 2dx − 1< 0, γx (|t|) =O
(
|t|2dx−1

)
and

(41) cum (xt1 ; ..., xt4) = κ4,%

∞∑
j=0

4∏
`=1

ϕj+|t`−t1|; ϕj =O
(
jdx−1

)
,

where κ4,% is the fourth cumulant of {%t}t∈Z. Note that we could have invoked Lemma 13 to
reach the same conclusion.

We are left to show the Lindeberg’s condition. To that end, we notice that in view of (15),
we have that

1

n1/2

n∑
t=1

xtu
∗
t =

1

n1/2

n+M∑
s=1

υ̂s,1ε
∗
n+M−s +

1

n1/2

n∑
s=1

υ̂s,2ε
∗
n+M+s,

where

υ̂s,1 =

n∑
t=1

ϑ̂t+sxtI (s≤M) +

n+M−s+1∑
t=1

ϑ̂t+sxtI (M < s)

υ̂s,2 =

n∑
t=s+1

ϑ̂t−sxt.(42)

So, a sufficient condition is that

(43)
1

n2

n+M∑
s=1

E∗
(
υ̂s,1ε

∗
n+M−s

)4
+

1

n2

n∑
s=1

E∗
(
υ̂s,2ε

∗
n+M+s

)4
= op (1)Kn.

Now, the first term on the left of (43) is bounded by

1

n2


M∑
s=1

(
n∑
t=1

ϑ̂t+sxt

)4

+

n+M∑
s=M+1

(
n+M−s+1∑

t=1

ϑ̂t+sxt

)4
Kn
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because E∗
(
ε∗4s
)

=Kn. We examine the first term being the second similarly handled. Now,
that term is bounded by

(44)
8

n2

M∑
s=1

(
n∑
t=1

(
ϑ̂t+s − ϑ̊t+s

)
xt

)4

+
8

n2

M∑
s=1

(
n∑
t=1

ϑ̊t+sxt

)4

.

The second term of (44) has first moment

24

n2

M∑
s=1

 n∑
t1,t2=1

ϑ̊t1+sϑ̊t2+sγx (|t1 − t2|)

2

+
24

n2

M∑
s=1

n∑
t1,...,t4=1

(
4∏
`=1

ϑ̊t`+s

)
cum (xt1 ; ..., xt4)

= o (1)

because ϑ̊s =O
(
sd1−1

)
by Lemma 9 and Condition 4, γx (s) =O

(
s2dx−1

)
and (41). Recall

that 1− 2dx − 2d1 > 0.
Now, assuming for notational simplicity that ϑt = πt, Lemma 1 implies that the first term

of (44) is bounded by

8

(
H∑
h=1

(
d̂1 − d1

)h
ghk (d1)

)4
1

n2

M∑
s=1

(
n∑
t=1

ϑt+sxt

)4

+

Op

(∣∣∣d̂1 − d1∣∣∣4H+4
log4H+4 k

)
1

n2

M∑
s=1

(
n∑
t=1

|ϑt+sxt|

)4

which is op (1) takenH = 3 and Condition 3. Notice that (
∑n

t=1 |ϑt+sxt|)
4 ≤ n3

∑n
t=1

∣∣ϑ4t+sx4t ∣∣=
Op
(
n3
)
. This concludes the proof that the first term on the left of (43) is op (1)Kn. Sim-

ilarly the second term on the left of (43) is op (1)Kn. So using (34), we conclude that (in
probability)

n1/2
(
β̂
∗
− β̂

)
d∗⇒N

(
0,

∞∑
`=−∞

γx (`)γu (`)/E2
(
x2t
))

since
∑∞

`=−∞ γx (`)γu (`) = (2π)−1
∫ π
−π fu (x)dFx (λ). This concludes the proof of the

proposition.

THEOREM 2. Assuming Conditions 2 to 4, if d1 + 2dx < 1, (in probability)

G∗n (x) :=
1

n1/2

n∑
t=1

1̊t (x)u∗t
d∗⇒G (x) x ∈R .

PROOF. Since by Lemma 19, G∗n (x) is tight, it suffices to show that the finite dimensional
distributions converge to a normal random variable with covariance structure given in (8).
The proof proceeds similarly to that in Proposition 8, after we notice that E

(̊
1t (x) 1̊s (x)

)
=

O
(
|t− s|4dx−2

)
, given in Theorem 1. Indeed, we first notice that

(45)
1

n1/2

n∑
t=1

1̊t (x)u∗t =
1

n1/2

n+M∑
s=1

υ̂s,1 (x) ε∗n+M−s +
1

n1/2

n∑
s=1

υ̂s,2 (x) ε∗n+M+s,
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where υ̂s,1 (x) and υ̂s,2 (x) are defined as in (42) but with xt being replaced by 1̊t (x).
Because independence of the sequence {ε∗t }

n
t=1, the second moment of the second term on

the right of (45) is

σ̂2ε
n

n∑
s=1

υ̂2
s,2 (x) =

σ̂2ε
n

n∑
s=1

n∑
t,r=s+1

1̊t (x) 1̊r (x) ϑ̂t−sϑ̂r−s

=
σ̂2ε
n

n∑
s=1

n∑
t,r=s+1

1̊t (x) 1̊r (x)
(
ϑ̂t−s − ϑ̊t−s

)(
ϑ̂r−s − ϑ̊r−s

)

+
2σ̂2ε
n

n∑
s=1

n∑
t,r=s+1

1̊t (x) 1̊r (x) ϑ̊t−s

(
ϑ̂r−s − ϑ̊r−s

)
(46)

+
σ̂2ε
n

n∑
s=1

n∑
t,r=s+1

1̊t (x) 1̊r (x) ϑ̊t−sϑ̊r−s.

The first two terms on the right of (46) are op (1). Indeed, Lemma 8 implies that the second
term is

σ̂2ε
n

n∑
s=1

n∑
t,r=s+1

1̊t (x) 1̊r (x) ϑ̊t−sϑ̊r−s (ςn)

+Op
(
n−1

) σ̂2ε
n

n∑
s=1

n∑
t,r=s+1

∣∣̊1t (x) 1̊r (x)
∣∣ ϑ̊t−sϑ̊r−s

=O
(
n2d1−1 + ςn

)
Kn,

since E
(̊
1t (x) 1̊r (x)

)
=O

(
|t− r|4dx−2

)
and Lemma 9 implies that ϑ̊t =O

(
td1−1

)
. Like-

wise, the first term on the right of (46) is O
(
n2d1−1 + ςn

)
Kn. So, the second moment of

second term on the right of (45) is

σ̂2ε
n

n∑
s=1

n∑
t,r=s+1

1̊t (x) 1̊r (x) ϑ̊r−sϑ̊t−s +O
(
n2d1m−2 +m−1/2

)
Kn.

Similarly the contribution of the second moment due to the first term on the right of (45) is,
then given by that of

σ̂2ε
n

n∑
s=1

s∑
t,r=0

1̊t (x) 1̊r (x) ϑ̊r−sϑ̊t−s +O
(
n2d1−1 + ςn

)
Kn.

So, the last two displayed expressions imply that the second moment of the left side of (45)
is

σ2ε
n

n∑
s=1

n∑
t,r=0

1̊t (x) 1̊r (y) ϑ̊r−sϑ̊t−s (1 + op (1))Kn,

as σ̂2ε − σ2ε = op (1) by Hidalgo and Yajima’s (2002) Corollary 1. But the last displayed
expression is asymptotically

σ2ε
n

n∑
t,r=0

{̊
1t (x) 1̊r (y)−E

(̊
1t (x) 1̊r (y)

)}( n∑
s=1

ϑ̊r−sϑ̊t−s

)
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+
σ2ε
n

n∑
t,r=0

E
(̊
1t (x) 1̊r (y)

){ ∞∑
s=1

ϑ̊r−sϑ̊t−s −
∞∑

s=n+1

ϑ̊r−sϑ̊t−s

}
.

The second term converges to E (G (x)G (y)), whereas the first term is op (1) by Lemma 13

because
∑n

s=1 ϑr−sϑt−s = O
(
|t− r|2d1−1

)
and as indicated above ϑ̊t = ϑt (1 + o (1)) by

Lemma 9. So, we have shown that the (bootstrap) second moment structure of the left hand
of (45) converges in probability to E (G (x)G (y)).

We are left to show the Lindeberg’s condition. Proceeding as with Proposition 8, it suffices
to show that

(47)
1

n2

M∑
s=1

(
n∑
t=1

ϑ̂t+s̊1t (x)

)4

= op (1) .

Now the left side of the last displayed expression is

(48)
8

n2

M∑
s=1

(
n∑
t=1

(
ϑ̂t+s − ϑ̊t+s

)
1̊t (x)

)4

+
8

n2

M∑
s=1

(
n∑
t=1

ϑ̊t+s̊1t (x)

)4

.

The second term of (48) is, except constants,

1

n2

M∑
s=1


(

n∑
t=1

ϑ̊
2

t+s̊1
2
t (x) +

n∑
t1<t2

ϑ̊t1+sϑ̊t2+sE
(̊
1t1 (x) 1̊t2 (x)

))2


+
1

n2

M∑
s=1


(

n∑
t1<t2

ϑ̊t1+sϑ̊t2+s
(̊
1t1 (x) 1̊t2 (x)−E

(̊
1t1 (x) 1̊t2 (x)

)))2
 .

The first term of the last displayed expression is op (1) asE
(̊
1t1 (x) 1̊t2 (x)

)
=O

(
|t1 − t2|4dx−2

)
and E1̊

4
t (x)<C . The second term is also o (1) by Lemma 13 because Lemma 9 and Condi-

tion 4 imply that ∣∣∣̊ϑt1+sϑ̊t2+s∣∣∣≤ C |t2 − t1|2d1−1 |t2 − t1|1−2d1

|t1 + s|1−d1 |t2 + s|1−d1

≤ C |t2 − t1|
2d1−1

s1−d1td12

and
∑M

s=1 s
2d1−2 <C . The first term of (48) is also op (1) arguing as in the proof of Propo-

sition 8, i.e. (44), so (47) holds true and hence (in probability)

G∗n (x)
d∗⇒N

(
0,E

(
G2 (x)

))
This concludes the proof of the theorem.

PROPOSITION 9. Assuming Conditions 2 to 4 with {xt}t∈Z being Gaussian, we have
that uniformly in x ∈R, if d1 + 2dx < 1, (in probability)

(a) n1/2T ∗n (x) = G∗n (x) + op∗ (1) ,

(b) ϕ
(
n1/2T ∗n (x)

)
d∗→ ϕ (G (x)) ,

for any continuous functional ϕ (·) : R→R+.
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PROOF. Part (a). Proceeding as in Proposition 5,

T ∗n (x) =
1

n

n∑
t=1

1̊t (x)u∗t −
1

n

n∑
t=1

1̊t (x)
1

n

n∑
t=1

u∗t

−
(
β̃
∗
− β̂

){ 1

n

n∑
t=1

1̊t (x)xt −
1

n

n∑
t=1

1̊t (x)
1

n

n∑
t=1

xt

}

+

(
β̃
∗
− β̂

)
1
n

∑n
t=1

(
x2t − 1

)
1
n

∑n
t=1 x

2
t

{
1

n

n∑
t=1

1̊t (x)xt −
1

n

n∑
t=1

1̊t (x)
1

n

n∑
t=1

xt

}
.

By Propositions 7 and/or 8, β̃
∗
− β̂ =Op∗

(
n−1/2 + ndx+d1−1I (dx + d1 > 1/2)

)
. Also, be-

cause d1 + 2dx < 1, we have

sup
x∈R

∣∣∣∣∣ 1n
n∑
t=1

1̊t (x)

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
t=1

u∗t

∣∣∣∣∣= op∗
(
n−1/2

)
since (35) implies that

∑n
t=1 1̊t (x) =

(
n1/2I (dx < 1/4) + n2dxI (dx > 1/4)

)
Kn and∑n

t=1 u
∗
t = Op∗

(
n1/2+d1

)
as a consequence of Proposition 7. So using (37), we conclude

that, uniformly in x ∈R,

T ∗n (x) =
1

n

n∑
t=1

1̊t (x)u∗t + op∗
(
n−1/2

)
since d1 + 2dx < 1, and the conclusion follows by Theorem 2.

Part (b) follows by part (a) and the continuous mapping theorem.

1.2. APPENDIX B.

LEMMA 1. For any H ≥ 3 and under Condition 1, we have that if d1 > 0

(a)
π̂k − πk
πk

=

(
H−1∑
h=1

(
d̂1 − d1

)h
ghk (d1)

)
+Op

(∣∣∣d̂1 − d1∣∣∣H) logH k

(b)
π̌k − πk
πk

=

(
H−1∑
h=1

(
d̂1 − d1

)h
ghk (d1)

)
+Op

(∣∣∣d̂1 − d1∣∣∣H) logH k,

where gk (d1) = d−11 +
∑k

`=2 `
−1, whereas if d1 = 0

(c) π̂k =
logk

k
d̂1 +

1

k
Op

(∣∣∣d̂1∣∣∣2)+Op

(∣∣∣d̂1∣∣∣H) logH k

and the Op (◦) is uniformly in k.

PROOF. We first notice that by definition, for any 0≤ |d|< 1/2

(49) πk (d) = ck (d)πk−1 (d) , π1 (d) = d,

where

ck (d) =
k− 1− d

k
; c0 (d) = 1.
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We shall explicitly examine part (a), being part (b) identically handled. After standard alge-
bra, (49) implies that

π̂k − πk = ck (d1) (π̂k−1 − πk−1) +
(
d̂1 − d1

) π̂k−1
k

.

Now recalling the solution of an equation in difference ξk = κkξk−1 + hk is

(50) ξk =

 k∏
p=2

κp

 ξ1 +

k−1∑
`=1

 `−1∏
p=0

′

κk−p

hk−`,

where
`−1∏
p=0

′

= 1 if `= 0, we obtain that

π̂k − πk =
(
d̂1 − d1

)
 k∏
p=2

cp (d1)

+

k−1∑
`=1

 `−1∏
p=0

′

ck−p (d1)

 π̂k−`
k− `


=
(
d̂1 − d1

)
πk

(
1

d1
+

k−1∑
`=1

π̂k−`
πk−`

1

k− `

)
(51)

because π̂1 − π1 = d̂1 − d1 and by definition

k∏
p=2

cp (d1) =
πk
d1

;
`−1∏
p=0

′

ck−p (d1) = πk/πk−`.

Now, because
∣∣∣ π̂k−`

πk−`

∣∣∣≤K and
∑k−1

`=1

∣∣∣ 1
k−`

∣∣∣≤K logk, we conclude that

|π̂k − πk|=O
(∣∣∣d̂1 − d1∣∣∣πk log (k+ 1)

)
.

But the last displayed expression suggests that we can give better rates of convergence of
π̂k − πk. Indeed, using (51) and an obvious change of subindex, we have that

π̂k − πk =
(
d̂1 − d1

)
πk

(
1

d1
+

k−2∑
`=0

π̂k−`
πk−`

1

k− `

)

=
(
d̂1 − d1

)
πk

(
gk (d1) +

k∑
`=2

1

`

(
π̂`
π`
− 1

))
.

Now, using recursively the right side of the last displayed expression for π̂`

π`
− 1, we have

that

π̂k − πk
πk

=

H−1∑
h=1

(
d̂1 − d1

)h
ghk (d1) +O

(∣∣∣d̂1 − d1∣∣∣H logH k

)
,

which concludes the proof of part (a).
Now we examine part (c). After standard algebra, (49) implies that

π̂k = π̂k−1
k− 1

k
+ d̂1

π̂k−1
k
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So proceeding as with did in part (a), we have that

π̂k = d̂1

 k∏
p=2

p− 1

p

+ d̂1

k−2∑
`=0

 `−1∏
p=0

′
k− p− 1

k− p

 π̂k−`
k− `

=
1

k
d̂1 +

1

k
d̂1

k∑
`=2

π̂`

=
d̂1
k

logk+O


∣∣∣d̂1∣∣∣2
k

+
∣∣∣d̂1∣∣∣H logH k

 ,

for any H ≥ 3. This completes the proof of the lemma.

REMARK 1. The proof of part (c) can also be done after observing that

kπ̂k = (k− 1) π̂k−1 + d̂1

is a first order nonhomogeneous difference equation with constant coefficients by replacing
kπ̂k by, say, κk.

For the next lemma “a∝ b” denotes K−1a≤ b≤Ka and τ̃k = τk

(
d̂2

)
and τk = τk (d2).

LEMMA 2. For any H ≥ 2 and Condition 1, we have that if 0< |d2|< 1/2

(a) τ̃k − τk =

(
H−1∑
h=1

(
d̂2 − d2

)h
ghk (d2)

)
τk +Op

(∣∣∣d̂2 − d2∣∣∣H logH k

k1−d2

)
where gk (d2)∝

(
d−12 + logk

)
for k large enough. When d2 = 0, we have that

(b) τ̃k =

H−1∑
h=1

logh k

k

∣∣∣d̂2∣∣∣h +Op

(∣∣∣d̂2 − d2∣∣∣H logH k

k

)
.

PROOF. We begin with part (a). First using expression 8.93 in Gradshteyn and Ryzhik’s
(2000), for any 0< |d|< 1/2,(

1− 2 cos (ω) t+ t2
)−d

=

∞∑
k=0

Ck (cos (ω) ;d) tk,

where the coefficients Ck (x;d) satisfies the second order difference equation

(52) Ck (x;d) = 2x

(
k+ d− 1

k

)
Ck−1 (x;d)−

(
k+ 2d− 2

k

)
Ck−2 (x;d) .

Now, using Elaydi’s (2005) expression (2.2.18), (52) has 2 linearly independent solutions
hk,1 and hk,2, so that the homogeneous solution of (52) becomes

(53) Ck (x;d) = g1hk,1 + g2hk,2,

where the coefficients g1 and g2 depend on the initial conditionsC0 (x;d) = 1 andC1 (x;d) =
2dx.
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On the other hand, it is known that

Ck (x;d) =
Γ (k+ 2d) Γ (d+ 1/2)

Γ (2d) Γ (k+ d+ 1/2)
P(d−1/2,d−1/2)
k (x) ,

where P(d−1/2,d−1/2)
k (x) denotes the Jacobi’s polynomials, see Gradshteyn and Ryzhik’s

(2000) 8.962(4). In addition, formulae 8.966 in Gradshteyn and Ryzhik’s (2000) yields that,
with x = cosω, for k large Ck (cosω;d) ∝ kd−1 cos (kω), which implies that hk,1, hk,2 ∝
kd−1 cos (kω).

Now by definition of τ̃k and τk and using (52), standard algebra yields that

τ̃k − τk =

{
2 cos (ω)

(
k+ d2 − 1

k

)
(τ̃k−1 − τk−1)−

(
k+ 2d2 − 2

k

)
(τ̃k−2 − τk−2)

}

(54) +
(
d̂2 − d2

) 2

k
{cos (ω) τ̃k−1 − τ̃k−2}

which is a nonhomogeneous second order difference equation with nonconstant coefficients.
Consider (54) but with the second term on the right replaced by

(
d̂2 − d2

)
2
k {cos (ω) τk−1 − τk−2},

that is

ak =

{
2 cos (ω)

(
k+ d2 − 1

k

)
ak−1 −

(
k+ 2d2 − 2

k

)
ak−2

}
+
(
d̂2 − d2

) 2

k
{cos (ω) τk−1 − τk−2} ,(55)

where we have abbreviated τ̃k − τk by ak. It is known that the solution to (60) is

ak =: ak,h + ak,p,

where ak,h and ak,p are respectively its homogeneous and particular solutions. From (52)
and because hk,1, hk,2 ∝ kd2−1 cos (kω), we obtain that

(56) ak,h ∝

(
d̂2 − d2
d2

)
kd2−1 cos (kω)∝:

(
d̂2 − d2
d2

)
τk

since the initial conditions for the difference equation (60) are given by

τ̃1 − τ1 = : a1 = 2
(
d̂2 − d2

)
cos (ω) =:

(
d̂2 − d2
d2

)
τ1

τ̃2 − τ2 = : a2 =

(
d̂2 − d2
d2

)
(τ2 + τ1) .

We now examine the behaviour of ak,p. Using Elaydi’s (2005) Section 2.4.1, we have that

(57) ak,p = ζk,1hk,1 + ζk,2hk,2,

where

ζk,1 =−2
(
d̂2 − d2

) k−1∑
j=1

hj,2 (cos (ω) τ j−1 − τ j−2)
jWj+1

(58)

ζk,2 = 2
(
d̂2 − d2

) k−1∑
j=1

hj,1 (cos (ω) τ j−1 − τ j−2)
jWj+1
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and where Wj , j = 0,1,2, ..., denotes the Casoratian of hk,1 and hk,2, which satisfies the
recursive expression

Wj+1 =
j + 2d2 − 2

j
Wj ; W1 = 1

∝ j2d2−2.

So, because hk,1, hk,2 ∝ cos (kω)kd2−1, we obtain that

(59)
k−1∑
j=1

hj,` (cos (ω) τ j−1 − τ j−2)
jWj+1

∝
k−1∑
j=1

j−1 ∝ logk, `= 1,2,

which yields that ak,p given in (57) satisfies

ak,p ∝
(
d̂2 − d2

)
τk logk.

Hence, the latter displayed expression and (56) imply that the solution to (60) satisfies

ak ∝:
(
d̂2 − d2

)
{1 + logk} τk.

The lemma now proceeds by iteration as we did in the proof of Lemma 1 after we observe
that

ak =: τ̃k − τk = ak,h + ak,p +
(
ζ̂k,1 − ζk,1

)
hk,1 +

(
ζ̂k,2 − ζk,2

)
hk,2,

where

ζ̂k,1 − ζk,1 =−2
(
d̂2 − d2

) k−1∑
j=1

hj,2 (cos (ω)aj−1 − aj−2)
jWj+1

ζ̂k,2 − ζk,2 =−2
(
d̂2 − d2

) k−1∑
j=1

hj,1 (cos (ω)aj−1 − aj−2)
jWj+1

.

We now examine part (b). The proof is similar to part (a). First when d2 = 0, we have
that (54) becomes

τ̃k =

{
2 cos (ω)

(
k− 1

k

)
τ̃k−1 −

(
k− 2

k

)
τ̃k−2

}
+ d̂2

2

k
{cos (ω) τ̃k−1 − τ̃k−2}

or equivalently,

(60) gk = 2 cos (ω)gk−1 − gk−2 + d̂2
2

k
{cos (ω) τ̃k−1 − τ̃k−2} .

The proof now proceeds as that of part (a), if not easier, after observing that gk =
2 cos (ω)gk−1− gk−2 is a second order difference equation with constant coefficients, whose
characteristic roots are complex but with unit moduli.

LEMMA 3. Under Condition 1, we have that for any integer H ≥ 3

(a) ξ̂k − ξk = ξk

H−1∑
h=1

∥∥∥d̂− d∥∥∥h ghk (d) +Op

(∥∥∥d̂− d∥∥∥H logH k

k1+(d1∧d2)

)
; d1, d2 > 0

(b) ξ̌k − ξ̄k = ξ̄k

H−1∑
h=1

∥∥∥d̂− d∥∥∥h ghk (d) +Op

(∥∥∥d̂− d∥∥∥H logH k

k1+(d1+d2)

)
; d1, d2 < 0,
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where d= (d1, d2), gk (‖d‖)∝
(
‖d‖−1 + logk

)
, ‖a‖ denotes the norm of the vector a and

Op (◦) is uniformly in k.

PROOF. We begin with part (a). By definition, we have that

ξ̂k − ξk =

k∑
`=0

(π̂`τ̂k−` − π`τk−`)

=

k∑
`=0

τk−` (π̂` − π`) +

k∑
`=0

π` (τ̂k−` − τk−`)

+

k∑
`=0

(π̂` − π`) (τ̂k−` − τk−`) .

Now, using Lemmas 1 and 2, standard algebra yields that the right side of the last displayed
expression behaves as

(61)
H−1∑
h=1

∥∥∥d̂− d∥∥∥h k∑
`=0

τk−`π`g
h
` (d) +Op

(∥∥∥d̂− d∥∥∥H logH k

) k∑
`=0

|τk−`π`| .

But because
∑k

`=0 τk−`π`g
h
` (d)∝ logh k

∑k
`=0 τk−`π` = ξk logh k and

k∑
`=0

|τk−`π`| ∝
k∑
`=0

`−d1−1 (k− `)−d2−1

∝ `−(d1∧d2)−1,

we easily conclude part (a) by standard arguments.
Next, part (b) proceeds as with the proof of part (a), except that now

k∑
`=0

|τk−`π`| ∝
k∑
`=0

`−d1−1 (k− `)−d2−1 ∝ `−(d1+d2)−1.

This concludes the proof of the lemma.

For the next lemma we shall denote by {δ`}M`=1 and
{
δ̂`

}M
`=1

either {b`}M`=1 and
{
b̂`

}M
`=1

or {a`}M`=1 and {â`}M`=1. The next lemma is an immediate consequence of Hidalgo and Ya-
jima’s (2002) Theorem 3 which we give for easy reference.

LEMMA 4. Under Conditions 1 to 3, we have that, uniformly in `= 1, ...,M ,

δ̂` − δ` =

M∑
p=1

κn,pυn,`,p +
1

M

M∑
p=1

|κn,p|+Op

(
m−3/2

)
,

where |υn,`,p|<K , {κn,p}Mp=1 is a triangular array sequence of random variables such that

E
∣∣∣∑M

p=1 κn,pυn,`,p

∣∣∣r = O
(
n−r/2

)
for any r ≥ 2 such that E |εt|2r <∞, E

∑M
p=1 |κn,p| =

O
(
m−1/2

)
and E

(∑M
p=1 κn,pυn,`1,p

∑M
p=1 κn,pυn,`2,p

)
=O

(
n−1δ|`2−`1|

)
.
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REMARK 1. One consequence of Lemma 4 is that

(62)
M∑
`=1

(
b̂` − b`

)
=Op

(
m−1/2

)
.

LEMMA 5. For any 0≤ r ≤ n,

(63) E∗
(
u∗tu

∗
t+r

)
= σ̂2ε

n+M−r∑
k=0

ϑ̂kϑ̂k+r.

PROOF. The proof follows immediately from (9). Indeed, by construction

E∗
(
u∗tu

∗
t+r

)
=
σ̂2ε
3n

3n∑
j=1

eirλ̃j

∣∣∣∣∣
n∑
`=0

ξ̂`e
−i`λ̃j

M∑
`=0

b̂`e
−i`λ̃j

∣∣∣∣∣
2

=
σ̂2ε
3n

3n∑
j=1

eirλ̃j

∣∣∣∣∣
n+M∑
k=0

ϑ̂ke
−ikλ̃j

∣∣∣∣∣
2

.

From here the proof of (63) is standard.

Before we present the next lemma, we first observe that by definitions of φ̂k and φ̊k in
(11) and (23) respectively, we have that

(64) φ̂k − φ̊k =

k∧M∑
`=1∨k−(n−M)

ξ̂k−` (â` − a`) +

k∧M∑
`=1∨k−(n−M)

(
ξ̂k−` − ξk−`

)
a`, k ≤ n.

LEMMA 6. Under Conditions 1 and 3, we have that

(i) φ̂k − φ̊k = ς̃n,M + ςn,Mξk, k ≤M

(ii) φ̂k − φ̊k = ςn,Mξk−M , M <k < n,

where ςn,M =Op
(
m−1/2

)
and ςn,M =Op

(
n−1/2

)
independent of k.

PROOF. First we have that Lemma 3 and (64) yields that φ̂k − φ̊k =: φ̈k is

φ̈k =

k∧M∑
`=1∨k−(n−M)

(â` − a`)

{
ξk−`

{
3∑

h=0

∥∥∥d̂− d∥∥∥h ghk−` (d) +Op

(
log4 n

m2

)}}

+

k∧M∑
`=1∨k−(n−M)

a`ξk−`

{
3∑

h=1

∥∥∥d̂− d∥∥∥h ghk−` (d) +Op

(
log4 n

m2

)}
.

We begin with part (i), so that
∑k∧M

`=1∨k−(n−M) =:
∑k

`=1. When k ≤ M , the contri-
bution of the second term on the right of the last displayed expression is Op

(
m−1/2

)
ξk

because
∥∥∥d̂− d∥∥∥h = Op

(
m−h/2

)
, by Robinson (1995b) and Arteche (2000), and that
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`=1 a`ξk−` = O (ξk) since a` = O

(
`−3
)
. Next the first term on the right of the last dis-

played expression, whose contribution is dominated by that of
∑k

`=1 (â` − a`) ξk−` because∥∥∥d̂− d∥∥∥=Op
(
m−1/2

)
independent of k. Now

k∑
`=1

(â` − a`) ξk−` =

k∑
`=1

ξk−`


M∑
p=1

κn,pυn,`,p +
1

M

M∑
p=1

|κn,p|

+Op

(
m−3/2

) k∑
`=1

ξk−`

=Op

(
n−1/2

)
+Op

(
m−3/2

)
because

E

 k∑
`=1

M∑
p=1

ξk−`κn,pυn,`,p

2

=Kn−1
k∑

`1,`2=1

a|`1−`2|ξk−`1ξk−`2 =Kn−1,

since
∑k

`=1 ξk−` <K and M−1
∑k

`=1 ξk−`
∑M

p=1 |κn,pυn,`,p|=Op
(
M−1m−1/2

)
. Now we

conclude by Condition 3.
Next part (ii). When M < k ≤ n−M , it proceeds as with the proof of part (i), although

now we use that

K

n

M∑
`1,`2=1

a|`1−`2|ξk−`1ξk−`2 =O

(
M

n
ξ2k−M

)

1

M

M∑
`=1

ξk−`

M∑
p=1

|κn,p|=Op

(
m−1/2

) 1

M

M∑
`=1

ξk−` =Op

(
m−1/2

)
ξk−M .

Finally, when n−M ≤ k ≤ n the proof follows similarly as before with standard modifi-
cations after we notice that we have that

∑k∧M
`=1∨k−(n−M) =:

∑M
`=1∨k−(n−M).

REMARK 2. A consequence of Lemma 6 together with (62) is that

(65) sup
k=1,...,n

∣∣∣φ̂k − φ̊k∣∣∣=Op

(
m−1/2

)
.

The next lemma examines the behaviour of

φ̊k − φk =

k∑
`=M+1

ξk−`a`, M <k ≤ n−M

=−
k−(n−M)∑

`=0

ξk−`a` −
k∑

`=M+1

ξk−`a`, n−M <k ≤ n.(66)

LEMMA 7. Under Condition 1, we have that

(i) φ̊k − φk =O
(
M−3/2

)
ξk, M <k ≤ n−M

(ii) φ̊k − φk =O (1) ξk, n−M <k < n.
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PROOF. We begin with part (i). When M <k ≤ 2M , we have that

k∑
`=M+1

ξk−`a` =O
(
M−3

)
=O

(
M−3/2

)
ξk

by Condition 1 and that M−3/2 ≤M−1−d1 =O (ξk), whereas when 2M < k ≤ n−M , we
have that

k∑
`=M+1

ξk−`a` =


k/2∑

`=M+1

+

k∑
`=k/2+1

 ξk−`a`

= ξk/2O
(
M−2

)
+O

(
k−3
)

= o
(
M−3/2

)
ξk.

This concludes the proof of part (i). Next, part (ii). The right side of the equality is

−
k−(n−M)∑

`=0

πk−`a` −
k/2∑

`=M+1

ξ`−ka` −
k∑

`=k/2+1

ξk−`a`

= ξn−MO

k−(n−M)∑
`=0

|a`|

+ ξk/2O

 k/2∑
`=M+1

|ak|

+O
(
k−3
)

.

From here the conclusion is standard because
∣∣ξn−M/ξk∣∣+ ∣∣∣ξk/2/ξk∣∣∣<K .

Before we present the next lemma, we first observe that by definition of ϑ̂k and ϑ̊k in (13)
and (14) respectively, we have that

(67) ϑ̂k − ϑ̊k =

k∧M∑
`=1

ξ̌k−`

(
b̂` − b`

)
+

k∧M∑
`=1

(
ξ̌k−` − ξk−`

)
b`, 1≤ k ≤ n+M

LEMMA 8. Under Conditions 1 and 3, we have that

(i) ϑ̂k − ϑ̊k =

k∧M∑
`=0

ξk−`

(
b̂` − b`

)
+
(
ςn + op

(
n−1

))
ξk 0≤ k ≤M

(ii) ϑ̂k − ϑ̊k =

k∧M∑
`=0

ξk−`

(
b̂` − b`

)
+
(
ςn + op

(
n−1

))
ξk−M M <k ≤ n+M ,

where ςn =Op
(
m−1/2

)
independent of k.

PROOF. First we have that Lemma 1 yields that

ϑ̂k − ϑ̊k =

k∧M∑
`=1

(
b̂` − b`

){
ξk−`

{
3∑

h=0

∥∥∥d̂− d∥∥∥h ghk−` (d) + op
(
n−1

)}}

+

k∧M∑
`=1

b`ξk−`

{
3∑

h=1

∥∥∥d̂− d∥∥∥h ghk−` (d) + op
(
n−1

)}
.(68)
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We begin with part (i). The contribution due to the second term on the right of (68) is(
ςn + op

(
n−1

)) ∣∣∣∣∣
k∑
`=1

b`ξk−`

∣∣∣∣∣= (ςn + op
(
n−1

))
ξk

because b` = O
(
`−3
)

and ξk = O
(
k(d1∧d2)−1

)
. From here we conclude because the first

term is dominated by
∑k∧M

`=0 ξk−`

(
b̂` − b`

)
.

We next examined part (ii). But it follows by the same arguments as those for part (i),
except that now

∣∣∣∑k
`=1 b`ξk−`

∣∣∣=Kξk−M . This concludes the proof of the lemma.

REMARK 3. It is obvious to see that one consequence of the previous lemma together
with (62) is that

(69) sup
k=1,...,n

∣∣∣ϑ̂k − ϑ̊k∣∣∣=Op

(
m−1/2

)
.

Before we present the next lemma, we first observe that by definition of ϑk in Condition 1
and ϑ̊k in (14) respectively, we have that

ϑ̊k − ϑk =

k∑
`=M+1

ξk−`b`, M <k ≤ n

=−
k−n∑
`=0

ξk−`b` −
k∑

`=M+1

ξk−`b`, n < k ≤ n+M .(70)

LEMMA 9. Under Condition 1, we have that

(i) ϑ̊k − ϑk =O
(
M−2

)
ξk, M <k ≤ n

(ii) ϑ̊k − ϑk =O (1) ξk, n < k < n+M .

PROOF. We begin with part (i). When M <k ≤ 2M , we have that
k∑

`=M+1

ξk−`b` =O
(
M (d1∧d2)−3

)
=O

(
M−2

)
M (d1∧d2)−1 =O

(
M−2

)
ξk

by Condition 1, whereas when 2M <k ≤ n−M , we have that

k∑
`=M+1

ξk−`b` =


k/2∑

`=M+1

+

k∑
`=k/2+1

πk−`b`

= ξk/2O
(
M−2

)
+O

(
k(d1∧d2)−3

)
= o

(
M−2

)
ξk.

This concludes the proof of part (i). Next, part (ii). The right side of the equality is

−
k−(n−M)∑

`=0

ξk−`b` −
k/2∑

`=M+1

ξk−`b` −
k∑

`=k/2+1

ξk−`b`

= ξn−MO

k−(n−M)∑
`=0

|b`|

+ ξk/2O

 k/2∑
`=M+1

|bk|

+O
(
k−3
)

.

From here the conclusion proceeds as that of Lemma 7.
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LEMMA 10. Under Conditions 1 to 3, we have that for 0≤ p≤ n,

(i)
M−1∑
k=0

(
ϑ̂kϑ̂k+p − ϑkϑk+p

)
= (ς̃n + ςn)ϑp + op

(
n−1

)
hp

(ii)
n+M−p∑
k=M

(
ϑ̂kϑ̂k+p − ϑkϑk+p

)
=

{
M∑
`=1

(
b̂` − b`

)
+ ςn

}
hp + op

(
n−1

)
hp,

where {hp}p≥1 is a sequence such that hp = O
(
p2(d1∧d2)−1

)
and where ςn = Op

(
m−1/2

)
and ς̃n =Op

(
m−1/2 logn

)
independent of p.

PROOF. We begin with part (ii), which standard algebra yields that the left side is
(71)
n+M−p∑
k=M

(
ϑ̂k − ϑ̊k

)(
ϑ̂k+p − ϑ̊k+p

)
+

n+M−p∑
k=M

ϑ̊k+p

(
ϑ̂k − ϑ̊k

)
+

n+M−p∑
k=M

ϑ̊k

(
ϑ̂k+p − ϑ̊k+p

)
.

We shall examine the third term of (71), the first two terms are similarly handled. By
Lemma 8, this term is

M∑
`=1

(
b̂` − b`

)n+M−p∑
k=M

ϑ̊kξk+p−` + ςn

n+M−p∑
k=M

ϑ̊kξk−M+p + op
(
n−1

) ∣∣∣∣∣
n+M−p∑
k=M

ϑ̊kξk−M+p

∣∣∣∣∣
=

{
M∑
`=1

(
b̂` − b`

)
+ ςn

}
hp + op

(
n−1

)
hp.

Next we examine part (i). The left side is

M−1∑
k=0

(
ϑ̂k − ϑ̊k

)(
ϑ̂k+p − ϑ̊k+p

)
+

M−1∑
k=0

ϑ̊k

(
ϑ̂k+p − ϑ̊k+p

)
+

M−1∑
k=0

ϑ̊k+p

(
ϑ̂k − ϑ̊k

)
.

We only examine the third term, the first two terms are similarly handled. Again, using
Lemma 8, this term is

(72)
M−1∑
k=0

ϑ̊k+p

k∑
`=1

ξk−`

(
b̂` − b`

)
+ ςn

M−1∑
k=0

ϑ̊k+pξk + op
(
n−1

) ∣∣∣∣∣
M−1∑
k=0

ϑ̊k+pξk

∣∣∣∣∣ .
Now, by an obvious change of subindexes, the first term of the last displayed expression is

M∑
`=1

(
b̂` − b`

)
ξ`

M−1∑
k=`

ϑ̊`+p =KhpM

M∑
`=1

(
b̂` − b`

)
`−1

= ς̃nhp,

which by Lemma 4, ς̃n =Op
(
m−1/2 logM

)
. This concludes the proof of the lemma.

LEMMA 11. Under Conditions 2 to 4, we have that for any 0≤ p≤ n,

n+M−p∑
k=0

(
ϑkϑk+p − ϑ̊kϑ̊k+p

)
=O

(
M−2

)
p2(d1∧d2)−1.
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PROOF. The left side of the last displayed expression is

M∑
k=0

(
ϑkϑk+p − ϑ̊kϑ̊k+p

)
+

n+M−p∑
k=M+1

(
ϑkϑk+p − ϑ̊kϑ̊k+p

)
.

The first term of the last displayed expression is
∑M

k=M−p

(
ϑk+p − ϑ̊k+p

)
ϑk =O

(
M−2

)
p2(d1∧d2)−1

because ϑk = ϑ̊k if k ≤M and Lemma 9.
So, it remains to examine the behaviour of the second term of the last displayed expression,

which standard algebra yields

n+M−p∑
k=M+1

(
ϑk+p − ϑ̊k+p

)
ϑk +

n+M−p∑
k=M+1

(
ϑk − ϑ̊k

)
ϑk+p

+

n+M−p∑
k=M+1

(
ϑk − ϑ̊k

)(
ϑk+p − ϑ̊k+p

)
.

Again Lemma 9 will imply that, by standard algebra, the last displayed expression is also
O
(
M−2

)
p2(d1∧d2)−1.

Let’s introduce some notation.
℘t−k

[̊
1t
]

= E
[̊
1t | Ft−k

]
− E

[̊
1t | Ft−k−1

]
, where we abbreviate 1̊t (x) by 1̊t. E (◦)

denotes the expectation of the random variable that precedes, for instance, in ηϕ − E (◦),
E (◦) stands for E (ηϕ). In addition for a generic function g (x), we shall denote g (y;x) =
g (y)− g (x). And finally Ft and Jt denote respectively the σ-algebras of events generated
by {%s, s≤ t} and {εs, s≤ t}.

LEMMA 12. Under Conditions 2 and 4 and d1 + 2dx < 1, Gn (x) is tight.

PROOF. First, denoting ςt (x) =
(̊
1t (x)−E

(̊
1t (x) | Ft−1

))
ut,

Gn (x) =
1

n1/2

n∑
t=1

ςt (x) +
1

n1/2

n∑
t=1

E
(̊
1t (x) | Ft−1

)
ut

= :An (x) +Bn (x) .

Because ςt (x) is a martingale difference with respect to Ft−1 ∪ Jt−1, we have that Lemma
14 of Wu (2003) implies that for each ε, η > 0, there exists a δ > 0, such that

(73) Pr

{
sup
|x−y|<δ

|An (x;y)|> ε

}
< η,

which implies that An (x) is tight by Billingsley’s (1968) Theorem 8.3.
We next examine the tightness of Bn (x). To that end, write

Bn (x) =
1

n1/2

n∑
s=−N

υs (x)εs +
1

n1/2

−N+1∑
s=−∞

υs (x)εs

=Bn1 (x) +Bn2 (x) ,

where υs (x) =
∑n

t=1E
(̊
1t (x) | Ft−1

)
ϑt−s with the convention that ϑt−s = 0 if t < s and

N is to be chosen later. We now proceed similarly as in the proof of Wu’s (2003) Theorem
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3. That is, using Wu’s (2003) Lemma 4,

E sup
x

∣∣∣∣∂Bn2 (x)

∂x

∣∣∣∣2 ≤ 2

∫
R
E

∣∣∣∣∂Bn2 (x)

∂x

∣∣∣∣2 dx+ 2

∫
R
E

∣∣∣∣∂2Bn2 (x)

∂2x

∣∣∣∣2 dx.

Because {εt}t∈Z are iid
(
0, σ2ε

)
, we have that∫

R
E

∣∣∣∣∂Bn2 (x)

∂x

∣∣∣∣2 dx=
σ2ε
n

−N+1∑
s=−∞

∫
R

∣∣∣∣∣
n∑
t=1

∂E
(̊
1t (x) | Ft−1

)
∂x

ϑt−s

∣∣∣∣∣
2

dx.

Now using Lemma 11 and expression (42) in Lemma 12 of Wu (2003) but with L (·;s), or
J (·;s), there being replaced byE

(̊
1t (y) | Ft−1

)
ϑt−s and noticing that his quantity λn =: θn

is O
(
ϕ
3/2
n

)
in our case, it implies that the right side of the last displayed expression is

bounded by

(74)
K

n

−N+1∑
s=−∞

n∑
j=−∞

 n∑
t=max(1,j)

ϕ
3/2
t−j+1ϑt−j−s+1

2

= o (1) ,

when N ↗∞ as we now show. Indeed when 2dx ≥ d1, Condition 1 implies that the left side
of (74) is

K

∞∑
s=N

1

n

n∑
j=−∞

 n∑
t=max(1,j)

1

(t− j + s)1−d1
1

(t− j + 1)3/2(1−dx)

2

≤K
∞∑
s=N

1

s1+ζ
1

n

n∑
j=−∞

 n∑
t=max(1,j)

1

(t− j)1+ζ/2

2

,

where ζ = 1 − 2dx − d1 > 0 by assumption. When 2dx < d1, it implies that dx < 1/4 in
which case the left side of the last displayed expression is

K

∞∑
s=N

1

s2−2d1
1

n

n∑
j=−∞

 n∑
t=max(1,j)

1

(t− j)1+ς/2

2

with ς = 1− 4dx. Thus (74) holds true. Similarly∫
R
E

∣∣∣∣∂2Bn2 (x)

∂2x

∣∣∣∣2 dx= o (1) .

Hence, because |Bn2 (x)−Bn2 (y)| ≤ |x− y| supz∈R

∣∣∣∂Bn2(z)
∂z

∣∣∣, we conclude that Bn2 (x)

is tight. Finally, we need to show the tightness of Bn1 (x) which follows similarly as that of
Bn2 (x), with the only difference that for instance we have now that∫

R
E

∣∣∣∣∂Bn1 (x)

∂x

∣∣∣∣2 dx=
K

n

n∑
s=−N

n∑
j=−∞

 n∑
t=max(1,j)

ϕ
3/2
t−j+1ϑt−j+1−s

2

≤K.

So Bn (x) is tight and then so it is Gn (x).
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We now examine a series of lemmas which are needed to show the validity of G∗n (x).
Lemmas 13 and 16 will show that

(75)
1

n

∑
t≤s

E∗ (u∗tu
∗
s)
{̊
1t̊1s −E (◦)

}
= op (1) .

A consequence of (75) is that

E∗

(
1

n1/2

n∑
t=1

1̊tu
∗
t

)2
P→Cov (G (x) ,G (x))

given in (8). Finally Lemma 19 shows the tightness of G∗n (x). It is worth noticing that
γu (r)'Cr2d1−1 as r↗∞ by Condition 4.

LEMMA 13. Under Conditions 2 to 4, we have that for any sequence h (t) such that
h (t) =O

(
t2d1−1

)
, t≥ 1, h (0) = 1,

(76) E

 1

n

∑
t1≤t2

h (t2 − t1)
{̊
1t1̊1t2 −E (◦)

}2

= o (1) .

PROOF. First, because E
(
n−1

∑n
t=1 1̊

2
t −E

(̊
1
2
t

))2
→ 0 by ergodicity, it suffices to ex-

amine (76) for t1 < t2 only, that is

1

n

∑
t1<t2

h (t2 − t1)
∞∑

k1,k2=0

(
℘t1−k1

[̊
1t1
]
℘t2−k2

[̊
1t2
]
−E (◦)

)
=

1

n

∑
t1<t2

h (t2 − t1)℘t1
[̊
1t1
]
℘t2
[̊
1t2
]

+
1

n

∑
t1<t2

h (t2 − t1)
∞∑
k1=1

(
℘t2
[̊
1t2
]
℘t1−k1

[̊
1t1
]
−E (◦)

)
+

1

n

∑
t1<t2

h (t2 − t1)
∞∑
k2=1

(
℘t1
[̊
1t1
]
℘t2−k2

[̊
1t2
]
−E (◦)

)
+

1

n

∑
t1<t2

h (t2 − t1)
∞∑

k1,k2=1

(
℘t1−k1

[̊
1t1
]
℘t2−k2

[̊
1t2
]
−E (◦)

)
= :An1 +An2 +An3 +An4,

after observing that by martingale difference, E
{
℘t1
[̊
1t1
]
℘t2
[̊
1t2
]}

= 0 if t1 < t2. The
conclusion follows by Lemmas 14 and 15. Notice that the contributions due to An2 and An3
into the left side of (76) follow similarly to that of An4 if not easier.

LEMMA 14. EA2
n1 = o (1).

PROOF. Because ℘t
[̊
1t
]

is a martingale difference, EA2
n1 is

(77)
1

n2

∑
t1,t3<t2

E
(
℘t1
[̊
1t1
]
℘t3
[̊
1t3
]
℘2
t2

[̊
1t2
]) 2∏

i=1
h (t2 − t2i−1) ,
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where we shall take x= 0 without loss of generality to simplify the notation. Now from the
definition of 1̊t in (6), we have that

(78) ℘t
[̊
1t
]

=: (1t −E (1t | Ft−1)) + f (0)%t,

so that (77) becomes

1

n2

∑
t1,t3<t2

E
(
℘t1
[̊
1t1
]
℘t3
[̊
1t3
]
E (1t2 | Ft2−1)

) 2∏
i=1

h (t2 − t2i−1)

− 1

n2

∑
t1,t3<t2

E
(
℘t1
[̊
1t1
]
℘t3
[̊
1t3
]
E2 (1t2 | Ft2−1)

) 2∏
i=1

h (t2 − t2i−1)

+
2f (0)

n2

∑
t1,t3<t2

E
(
℘t1
[̊
1t1
]
℘t3
[̊
1t3
]
1t2%t2

) 2∏
i=1

h (t2 − t2i−1)(79)

+
f2 (0)

n2

∑
t1,t3<t2

E
(
℘t1
[̊
1t1
]
℘t3
[̊
1t3
])
E%2t2

2∏
i=1

h (t2 − t2i−1) .

It suffices to consider only the sums for t1 ≤ t3. The fourth term of (79) is easily seen to be
o (1) because E

(
℘t1
[̊
1t1
]
℘t3
[̊
1t3
])

=O
(
|t3 − t1|4dx−2

)
and 1> 2dx+d1. Next, denoting

(80) E
(
1t2ξt2 | Ft2−1

)
= F̃

−∑
`≥1

ϕ`%t2−`

 ,

the third term of (79) is, after standard algebra, proportional to

(81)
1

n2

∑
t1≤t3<t2

E

℘t1 [̊1t1]℘t3 [̊1t3] F̃
−∑

`≥1
ϕ`%t2−`

( 2∏
i=1

h (t2 − t2i−1)
)

.

Now because ℘t3
[̊
1t3
]

is a martingale difference,

E

℘t1 [̊1t1]℘t3 [̊1t3] F̃
− ∑

`≥1; 6=t2−t3

ϕ`%t2−`

= 0,

and hence Taylor’s expansion of F̃ (·) implies that (81) is

1

n2

∑
t1≤t3<t2

{
ϕt2−t3v (t1, t2, t3)

(
2∏
i=1

h (t2 − t2i−1)
)}

+
K

n2

∑
t1≤t3<t2

(t2 − t3)2dx−2
2∏
i=1

h (t2 − t2i−1)(82)

=
1

n2

∑
t1≤t3<t2

{
ϕt2−t3v (t1, t2, t3)

(
2∏
i=1

h (t2 − t2i−1)
)}

+O
(
n2d1−1

)
using that ϕt =O

(
tdx−1

)
and where

v (t1, t2, t3) =:E

℘t1 [̊1t1]℘t3 [̊1t3]%t3F̃ (1)

− ∑
`≥1; 6=t2−t3

ϕ`%t2−`


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with F̃ (`) (s) = ∂(`)F̃ (s)/∂s(`) for ` = 1,2, .... Because 2dx + d1 − 1 < 0, it suffices to
examine the first term on the right of (82) for t1 < t3 which, except multiplicative constants,
is

1

n2

∑
t1<t3<t2

ϕt2−t3

2∏
i=1

h (t2 − t2i−1)

E
℘t1 [̊1t1] F̃ (1)

− ∑
`≥1; 6=t2−t3

ϕ`%t2−`



(83) +E

℘t1 [̊1t1] F̃
−∑

`≥1
ϕ`%t3−`

 F̃ (1)

− ∑
`≥1; 6=t2−t3

ϕ`ξt2−`

 ,

using (78) and (80). Again as ℘t1
[̊
1t1
]

is a martingale difference,

E

℘t1 [̊1t1] F̃ (1)

− t2−t1−1∑
`≥1;6=t2−t3

ϕ`%t2−`

= 0,

so that Taylor’s expansion implies that

E

℘t1 [̊1t1] F̃ (1)

− ∑
`≥1; 6=t2−t3

ϕ`%t2−`


=E

℘t1 [̊1t1] F̃ (2)

− t2−t1−1∑
`≥1;6=t2−t3

ϕ`%t2−`

 ∑
`≥t2−t1

ϕ`%t2−`

+E

 ∑
`≥t2−t1

ϕ`%t2−`

2

= ϕt2−t1E

℘t1 [̊1t1] F̃ (2)

− t2−t1−1∑
`≥1;6=t2−t3

ϕ`%t2−`

%t1

+E

 ∑
`≥t2−t1

ϕ`%t2−`

2

=O
(

(t2 − t1)2dx−1
)

.

So, because 1− 2dx − d1 > 0, we conclude that the first term of (83) is

1

n2

∑
t1<t3<t2

1

(t2 − t3)2−dx−2d1 (t2 − t1)2−2dx−2d1
= o (1) .

Next the behaviour of the second term of (83). By Taylor’s expansion of F̃ (1)
(
−
∑

`≥1; 6=t2−t3 ϕ`%t2−`

)
−

F̃ (1)
(
−
∑t2−t3−1

`≥1 ϕ`%t2−`

)
, the expectation factor is, except multiplicative constants,

E

℘t1 [̊1t1] F̃
−∑

`≥1
ϕ`%t3−`


+E

℘t1 [̊1t1] F̃
−∑

`≥1
ϕ`%t3−`

 ∑
`≥t2−t3+1

ϕ`%t2−`

(84)

+E

℘t1 [̊1t1] F̃
−∑

`≥1
ϕ`%t3−`

 ∑
`≥t2−t3+1

ϕ`%t2−`

2 .
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Now the third term of (84) is O
(

(t2 − t3 + 1)2dx−1
)

so that its contribution into the the
second term of (83) is

1

n2

∑
t1<t3<t2

1

(t2 − t3)3−3dx−2d1 (t2 − t1)1−2d1
= o (1)

because 1− 2dx − d1 > 0. Now because∣∣∣∣∣∣E
℘t1 [̊1t1]

F̃
−∑

`≥1
ϕ`%t3−`

− F̃
− ∑

`≥1; 6=t3−t1

ϕ`%t3−`

∣∣∣∣∣∣≤Kϕt3−t1
the contribution of the first term of (84) into the second term of (83) is also o (1). Notice that
E
(
℘t1
[̊
1t1
]
F̃
(
−
∑

`≥1; 6=t3−t1 ϕ`%t3−`

))
= 0. Finally the contribution of the second term

of (84) into the second term of (83) is also o (1) proceeding similarly.
So, to complete the proof of the lemma, it suffices to show that the second term of (79) is

o (1), since the first term of (79) is similarly handled. Now, by Taylor’s expansion, we obtain
that the second term of (79) is

1

n2

∑
t1<t3<t2

(
2∏
i=1

h (t2 − t2i−1)
)
E
{
℘t1
[̊
1t1
]
℘t3
[̊
1t3
]

×

F̃
 ∑
`≥1;6=t2−t3

ϕ`%t2−`

+ϕt2−t3%t3F̃
(1)

 ∑
`≥1;6=t2−t3

ϕ`%t2−`

+Kϕ2
t2−t3%

2
t3

2
=

2

n2

∑
t1<t3<t2

ϕt2−t3

2∏
i=1

hu (t2 − t2i−1)E
{
℘t1
[̊
1t1
]
℘t3
[̊
1t3
]
%t3

× F̃

 ∑
`≥1;6=t2−t3

ϕ`%t2−`

 F̃ (1)

 ∑
`≥1;6=t2−t3

ϕ`%t2−`


+o (1)

because
∑

t1<t3<t2
ϕ2
t2−t3

2∏
i=1

h (t2 − t2i−1) = o
(
n1+2d1

)
. Now proceed similarly again as

we did with the first term of (82) but with F̃ (1) (s) replaced by F̃ (s) F̃ (1) (s) there, to con-
clude that the right side of the last displayed expression is o (1). This finishes the proof of the
lemma.

LEMMA 15. EA2
n4 = o (1).

PROOF. Now by standard inequalities EA2
n4 is bounded by

(85) E

(
1

n

∑
t1<t2

h (t2 − t1)
∞∑
k=1

(
℘t1−k

[̊
1t1
]
℘t1−k

[̊
1t2
]
−E (◦)

))2

+E

 1

n

∑
t1<t2

h (t2 − t1)


∞∑

k1,k2=1;
t1−k1<t2−k2

+

∞∑
k1,k2=1;

t2−k2<t1−k1

℘t1−k1
[̊
1t1
]
℘t2−k2

[̊
1t2
]

2

.
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Before we examine (85), we introduce the following notation in the spirit of that given in
Wu’s (2003) Lemma 9. Define

(86) Rt−k [1t] = ℘t−k [1t] +ϕk%t−kF
(1)
k

−∑
`≥1

ϕ`+k%t−k−`



M(1)
t−k
[̊
1t
]

= F
(1)
k

(
−
∑
`>k

ϕ`%t−`

)
−E

(
F

(1)
k

(
−
∑
`>k

ϕ`%t−`

))

= : F̆
(1)
k

(
−
∑
`>k

ϕ`%t−`

)
.(87)

where Fk (z) =E (I (xt < z) | Ft−k) and F (i) (z) = ∂iF (z)/∂zi. Observe thatE
(
F

(1)
k

(
−
∑

`>k ϕ`%t−`
))

=

F (1) (0).
By definition, we have that

(88) ℘t−k
[̊
1t
]

=Rt−k [1t]−ϕk%t−kM
(1)
t−k
[̊
1t
]

,

where according to Wu ’s (2003) Lemma 9 and expression (37) there, we have that

E |Rt−k [1t]|q ≤Kk2q(dx−1)(89)

E

∣∣∣∣∣F̆ (`)
k

(
−
∑
`>k

ϕ`%t−`

)∣∣∣∣∣
q

≤Kkq(dx−1/2), `= 1,2,3.(90)

We first show the first term of (85) is o (1), for which it suffices to show that this is the
case, using (88), for the next two displayed expressions

(91) E

(
1

n

∑
t1<t2

h (t2 − t1)
∞∑
k=1

(Rt1−k [1t1 ]Rt1−k [1t2 ]−E (◦))

)2

E

(
1

n

∑
t1<t2

h (t2 − t1)
∞∑
k=1

ϕkϕt2−t1+k

(
%2t1−kM

(1)
t1−k

[̊
1t1
]
M(1)

t1−k
[̊
1t2
]
−E (◦)

))2

.

The second term in (91), using notation in (87), is bounded by

2E

{
1

n

∑
t1<t2

h (t2 − t1)
∞∑
k=1

ϕkϕt2−t1+k

×

((
%2t1−k − σ

2
%

)
F̆

(1)
k

(∑
`>k

ϕ`%t1−`

)
F̆

(1)
k

(∑
`>k

ϕ`+t2−t1%t1−`

))]}2

+2E

{
σ2%
n

∑
t1<t2

h (t2 − t1)
∞∑
k=1

ϕkϕt2−t1+k

×

(
F̆

(1)
k

(∑
`>k

ϕ`%t1−`

)
F̆

(1)
k

(∑
`>k

ϕ`+t2−t1%t1−`

)
−E (◦)

)]2 .
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Because %2t1−k − σ
2
% is iid, it is easy to show that the first term of the last displayed ex-

pression is o (1), after one notices that
∑∞

k=1

∣∣ϕkϕt2−t1+k∣∣ = O
(
|t2 − t1|2dx−1

)
, whereas

the second term, except constants, equals

1

n2

∑
t1<t2;
t3<t4

2∏
i=1

h (t2i − t2i−1)
∞∑

k1,k3=1

ϕk1ϕt2−t1+k1ϕk3ϕt4−t3+k3

{
E

{
F̆

(1)
k1

(∑
`>k1

ϕ`%t1−`

)
F̆

(1)
k3

(∑
`>k3

ϕ`%t3−`

)}

×E

{
F̆

(1)
k1

(∑
`>k1

ϕ`+t2−t1%t1−`

)
F̆

(1)
k3

(∑
`>k3

ϕ`+t4−t3%t3−`

)}
(92)

+E

{
F̆

(1)
k1

(∑
`>k1

ϕ`%t1−`

)
F̆

(1)
k3

(∑
`>k3

ϕ`+t4−t3%t3−`

)}

×E

{
F̆

(1)
k1

(∑
`>k1

ϕ`+t2−t1%t1−`

)
F̆

(1)
k3

(∑
`>k3

ϕ`%t3−`

)}

+Cum

(
F̆

(1)
k1

(∑
`>k1

ϕ`%t1−`
)

; F̆
(1)
k1

(∑
`>k1

ϕ`+t2−t1%t1−`
)

;

F̆
(1)
k3

(∑
`>k3

ϕ`%t3−`
)

; F̆
(1)
k3

(∑
`>k3

ϕ`+t4−t3%t3−`
) )} .

We examine the scenario t1−k1 < t3−k3, being similarly handled when t3−k3 < t1−k1.
Using that

(93) E

(
F̆

(1)
k3

(∑
`>k3

ϕ`%t3−`

)
|Ft1−k1 |

)
= F̆

(1)
t3−t1+k1

 ∑
`≥t3−t1+k1

ϕ`%t3−`


we obtain that

E

∣∣∣∣∣∣F (1)
k3

(∑
`>k3

ϕ`%t3−`

)
− F (1)

t3−t1+k1

 ∑
`≥t3−t1+k1

ϕ`%t3−`

∣∣∣∣∣∣
2

(94)

=O
(

(t3 − t1 + k1)
3(dx−1)

)
see Wu (2003) and then Cauchy-Schwarz inequality together with (90), we have that∣∣∣∣∣E

{
F̆

(1)
k1

(∑
`>k1

ϕ`%t1−`

)
F̆

(1)
k3

(∑
`>k3

ϕ`%t3−`

)}∣∣∣∣∣
=

∣∣∣∣∣∣E
F̆ (1)

k1

(∑
`>k1

ϕ`%t1−`

)
F̆

(1)
t3−t1+k1

 ∑
`≥t3−t1+k1

ϕ`%t3−`


∣∣∣∣∣∣(95)

=O
(
k
dx−1/2
1 (t3 − t1 + k1)

dx−1/2
)

.

So, the contribution of the first and second terms of (92) is bounded by

1

n2

∑
t1<t2;
t3<t4

2∏
i=1

h (t2i − t2i−1)
∞∑

k1,k3=1;
t1−k1<t3−k3

{
ϕk1ϕt2−t1+k1ϕk3ϕt4−t3+k3
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×kdx−1/21 (t3 − t1 + k1)
dx−1/2 (t4 − t1 + k1)

dx−1/2 (t2 − t1 + k1)
dx−1/2

}
=

1

n2

∑
t1<t2;
t3<t4

1

(t2 − t1)1−2d1 (t4 − t3)1−2d1

∞∑
k1,k3=1;

t1−k1<t3−k3

1

k1−dx3 (t4 − t3 + k3)
1−dx

× 1

k
3/2−2dx
1 (t3 − t1 + k1)

1/2−dx (t4 − t1 + k1)
1/2−dx (t2 − t1 + k1)

3/2−2dx

which is o (1) by standard algebra using the fact that 1 = 2dx + d1 + υ for some υ > 0.
Next we examine the contribution due to the cumulant. For that purpose, by standard

algebra and the definition of the fourth cumulant, we have that it is

Cum

(
F̆

(1)
k1

(∑
`>k1

ϕ`+t2−t1%t1−`
)

; F̆
(1)
k3

(∑
`>t3−t1+k1 ϕ`+t4−t3%t3−`

)
;

F̆
(1)
k1

(∑
`>k1

ϕ`%t1−`
)

; F̆
(1)
k3

(∑
`>t3−t1+k1 ϕ`%t3−`

) )

(96) +Cum

 F̆
(1)
k1

(∑
`>k1

ϕ`+t2−t1%t1−`
)

; F̆
(1)
k1

(∑
`>k1

ϕ`%t1−`
)

;

F̆
(1)
k3

(∑
`>t3−t1+k1 ϕ`+t4−t3%t3−`

)
;

F̆
(1)
k3

(∑
`>k3

ϕ`%t3−`
)
− F̆ (1)

k3

(∑
`>t3−t1+k1 ϕ`%t3−`

)


+Cum

 F̆
(1)
k1

(∑
`>k1

ϕ`+t2−t1%t1−`
)

; F̆
(1)
k1

(∑
`>k1

ϕ`%t1−`
)

;

F̆
(1)
k3

(∑
`>t3−t1+k1 ϕ`%t3−`

)
;

F̆
(1)
k3

(∑
`>k3

ϕ`+t4−t3%t3−`
)
− F̆ (1)

k3

(∑
`>t3−t1+k1 ϕ`+t4−t3%t3−`

)


+Cum

 F̆
(1)
k1

(∑
`>k1

ϕ`+t2−t1%t1−`
)

; F̆
(1)
k1

(∑
`>k1

ϕ`%t1−`
)

;

F̆
(1)
k3

(∑
`>k3

ϕ`%t3−`
)
− F̆ (1)

k3

(∑
`>t3−t1+k1 ϕ`%t3−`

)
;

F̆
(1)
k3

(∑
`>k3

ϕ`+t4−t3%t3−`
)
− F̆ (1)

k3

(∑
`>t3−t1+k1 ϕ`+t4−t3%t3−`

)
 .

Because

(97) cum (zt1 , zt2 , zt3 , zt4) =E

4∏
`=1

zt` − 3E (zt1zt2)E (zt3zt3) ,

and (93)− (94), the contribution of the first term of (96) into the third term of (92) is o (1)
using (90), whereas the contribution due to the second term of (96) is also o (1) after we
notice that mean value theorem that cum (zt1 , zt2 , zt3 , zt4v) = 0 if v is independent of zt` ,
implies that the second term of (96) is

Cum


F̆

(1)
k1

(∑
`>k1

ϕ`+t2−t1%t1−`
)

; F̆
(1)
k3

(∑
`=t3−t1+k1 ϕ`+t4−t3%t3−`

)
;

F̆
(1)
k1

(∑
`>k1

ϕ`%t1−`
)

;(∑t3−t1+k1
`=k3

ϕ`+t4−t3%t3−`

)2
F̆

(3)
k3

(∑
`>k3

ϕ`%t3−`
)


and then that for instance

E

∣∣∣∣∣F̆ (1)
k3

(∑
`>k3

ϕ`+t4−t3%t3−`

)
− F̆ (1)

k3

( ∑
`>t3−t1+k1

ϕ`+t4−t3%t3−`

)∣∣∣∣∣
q

≤ CE

∣∣∣∣∣
t3−t1+k1∑
`>k3

ϕ`+t4−t3%t3−`

∣∣∣∣∣
q

=O
(

(t4 − t3 + k3)
q(dx−1/2)

)
.
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Likewise the contribution due to the third and fourth are also o (1). So, this finishes the
proof that the second term in (91) is o (1).

Next we examine the first term in (91), which is

1

n2

∑
t1<t2;
t3<t4

{(
2∏
i=1

h (t2i − t2i−1)
)

×
∞∑

k1,k3=1

{E (Rt1−k1 [1t1 ]Rt3−k3 [1t3 ])E (Rt1−k1 [1t2 ]Rt3−k3 [1t4 ])

+E (Rt1−k1 [1t1 ]Rt3−k3 [1t4 ])E (Rt1−k1 [1t2 ]Rt3−k3 [1t3 ])(98)

+Cum (Rt1−k1 [1t1 ] ;Rt1−k1 [1t2 ] ;Rt3−k3 [1t3 ] ;Rt3−k3 [1t4 ])}} .

Because Rs [1t] is a martingale difference, the first and second terms are different than
zero only if t1 − k1 = t3 − k3, in which case is

1

n2

∑
t1<t2;
t3<t4

2∏
i=1

h (t2i − t2i−1)
∞∑
k=1

E (Rt1−k [1t1 ]Rt1−k [1t3 ])E (Rt1−k [1t2 ]Rt1−k [1t4 ])

which is o (1). Indeed, (89) and Cauchy-Schwarz inequality imply that the last displayed
expression is bounded by

1

n2

∑
t1<t2;t3<t4

{
1

(t2 − t1)1−2d1 (t4 − t3)1−2d1

×
∞∑
k=1

1

k1−dx (k+ t3 − t1)1−dx (k+ t4 − t1)1−dx (k+ t2 − t1)1−dx

≤ K

n2

∑
t1<t2;t3<t4

1

(t2 − t1)2−2dx−2d1 (t4 − t3)1−2d1 (t3 − t1)1−dx (t4 − t1)1−dx

≤ K

n

(
n∑
t=1

1

t2−2dx−2d1

)2

= o (1)

because d1 + 2dx < 1. Assuming that t1 − k1 < t3 − k3 without loss of generality, the third
term of (98) is also o (1). Indeed, observing that if we replace Rt3−k3 [1t4 ] by

gt3−k3 [1t4 ] =: Fk3

(
t3−t1+k1−1∑

`=k3

ϕ`+t4−t3%t3−`

)
− Fk3+1

(
t3−t1+k1−1∑
`=k3+1

ϕ`+t4−t3%t3−`

)

−ϕk3+t4−t3%t3−k3F
(1)
k3

(
t3−t1+k1−1∑
`=k3+1

ϕ`+t4−t3%t3−`

)
,

there, the cumulant is zero as the last displayed expression is independent of Rt1−k1 [1t1 ],
Rt1−k1 [1t2 ] and Rt3−k3 [1t3 ]. So we have then that the cumulant is

Cum (Rt1−k1 [1t1 ] ;Rt1−k1 [1t2 ] ;Rt3−k3 [1t3 ] ;Rt3−k3 [1t4 ]− gt3−k3 [1t4 ]) .
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But Rt3−k3 [1t4 ]− gt3−k3 [1t4 ] is
∑∞

`=t3−t1+k1 ϕ`+t4−t3%t3−` times

F
(1)
k3

(
t3−t1+k1−1∑

`=k3

ϕ`+t4−t3%t3−`

)
− F (1)

k3+1

(
t3−t1+k1−1∑
`=k3+1

ϕ`+t4−t3%t3−`

)

−ϕk3+t4−t3%t3−k3F
(2)
k3

(
t3−t1+k1−1∑
`=k3+1

ϕ`+t4−t3%t3−`

)

by Taylor’s expansion, and whose qth moment is O
(

(t4 − t3 + k3)
2q(dx−1)

)
by routine ex-

tension of (33) to (35) of Wu (2003). So, proceeding as we did with the contribution due
to the cumulant in expression (92) yields that the third term of (98) is also o (1). So, this
finishes that the first term of (91), and hence the first term of (85), is op (1).

To complete the proof of the lemma, we have to show that the second term of (85) is o (1).
We shall only examine explicitly the contribution due to the first sum, being the second term
identically handled. Now because ℘t

[̊
1t
]

is a martingale difference, the term is

1

n2

∑
t1<t2;
t3<t4

{(
2∏
i=1

h (t2i − t2i−1)
)

∞∑
k1,k3,k4=1;
t1−k1<t4−k4
t3−k3<t4−k4

{
E
(
℘t1−k1

[̊
1t1
]
℘t3−k3

[̊
1t3
])
E
(
℘t4−k4

[̊
1t2
]
℘t4−k4

[̊
1t4
])

(99)

+Cum
(
℘t1−k1

[̊
1t1
]

;℘t3−k3
[̊
1t3
]

;℘t4−k4
[̊
1t2
]

;℘t4−k4
[̊
1t4
])}}

.

The first term is clearly o (1), proceeding as with the first term in (85) after we notice that
E
(
℘t1−k1

[̊
1t1
]
℘t3−k3

[̊
1t3
])

= 0 unless t1 − k1 = t3 − k3, say. It goes without saying that
we have taken without loss of generality that t4 − k4 < t2. If otherwise, we would have
considered the same expression but reversing the roles of the subindeces 4 and 2.

So, to complete the proof of the lemma we are left to examine the contribution due to the
cumulant is o (1), which in view of (90) it suffices to do so for

Cum (Rt1−k1 [1t1 ] ;Rt3−k3 [1t3 ] ;Rt4−k4 [1t2 ] ;Rt4−k4 [1t4 ])(100)

ϕk1ϕk3ϕk4ϕt2−t4+k4Cum
(
%t1−k1M

(1)
t1−k1

[̊
1t1
]

;%t3−k3M
(1)
t3−k3

[̊
1t3
]

;

%t4−k4M
(1)
t4−k4

[̊
1t2
]

;%t4−k4M
(1)
t4−k4

[̊
1t4
])

.(101)

Because (89), (97), Holder’s inequality and t4 − t2 < k4, the contribution due to (100) is

K

n2

∑
t1<t2<t3<t4

(
2∏
i=1

h (t2i − t2i−1)
)

×
∑
k1,k3

1

k
2(1−dx)
1 k

2(1−dx)
3

∑
t4−t2<k4

1

k
2(1−dx)
4 (t2 − t4 + k4)

2(1−dx)

≤ K

n2

∑
t1<t2<t3<t4

1

(t2 − t1)1−2d1 (t4 − t3)1−2d1 (t4 − t2)3−4dx

which is o (1) because d1 + 2dx − 1< 0 and h (t) =O
(
t2d1−1

)
.
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Finally the contribution due to (101). We shall examine the case when t1 − k1 6= t3 − k3
and assume that t1 − k1 < t3 − k3, being the case t3 − k3 < t1 − k1 symmetrically handled
and when t1 − k1 = t3 − k3 it follows by identical if not easier arguments. For that purpose
we shall use very often that for any twice continuous differentiable function g (·) we have
that

E

∣∣∣∣∣∣g
∑
`≥0

ϕ`%t−`

− g
 ∑
`≥0;`6=`0

ϕ`%t−`

−ϕ`0%t−`0g(1)
 ∑
`≥0;`6=`0

ϕ`%t−`

∣∣∣∣∣∣
q

(102) =O
(
ϕ2q
`0

)
E

∣∣∣∣∣∣g(2)
 ∑
`≥0;`6=`0

ϕ`%t−`

∣∣∣∣∣∣
q

and the observation that the cumulant factor in (101) is σ2% times

(103) E
(
%t1−k1M

(1)
t1−k1

[̊
1t1
]
%t3−k3M

(1)
t3−k3

[̊
1t3
]
M(1)

t4−k4
[̊
1t2
]
M(1)

t4−k4
[̊
1t4
])

.

When t1 − k1 = t3 − k3 the only difference is that we have the extra term

E
(
M(1)

t1−k1
[̊
1t1
]
M(1)

t1−k1
[̊
1t3
])
E
(
M(1)

t4−k4
[̊
1t2
]
M(1)

t4−k4
[̊
1t4
])

.

However the contribution of this term becomes negligible proceeding similarly. Now, for the
remaining of the lemma we employ the convention that say

M(1)
t3−k3

[̊
1t3 ; 6= t1 − k1

]
=: F̆

(1)
k3

− ∑
`>k3; 6=t3−t1+k1

ϕ`%t3−`

 .

That is it is just (87) where we have removed the dependence on %t1−k1 . Next

(104) E

(
%t1−k1M

(1)
t1−k1

[̊
1t1
]
%t3−k3

4∏
`=2

M(1)
t`−k`

[̊
1t` ; 6= t1 − k1

])
= 0,

because %t is independent sequence by Condition 4 and also recall the equality

4∏
`=2

υ` −
4∏
`=2

ζ` =
4∏
`=2

(υ` − ζ`) +

4∑
j=2

ζj
4∏

`=1;6=j
(υ` − ζ`) +

4∑
j=2

(
υj − ζj

) 4∏
`=2;6=j

ζ`.

Thus, once we identify say υ` and ζ` respectively asM(1)
t`−k`

[̊
1t`
]

andM(1)
t`−k`

[̊
1t` ; 6= t1 − k1

]
,

we have that a typical term in (103) minus the left side of (104) is

E
(
%t1−k1M

(1)
t1−k1

[̊
1t1
]
%t3−k3

(
M(1)

t3−k3
[̊
1t3
]
−M(1)

t3−k3
[̊
1t3 ; 6= t1 − k1

])
M(1)

t4−k4
[̊
1t2 ; 6= t1 − k1

]
M(1)

t4−k4
[̊
1t4 ; 6= t1 − k1

])
.

The other terms in the latter difference proceeds similarly if not easily handled.
Because (102) and (90), Hölder’s inequality implies that the last displayed expression is

ϕt3−t1+k1E%
2
t1−k1E

(
M(1)

t1−k1
[̊
1t1
]
%t3−k3

(
M(2)

t3−k3
[̊
1t3 ; 6= t1 − k1

])
M(1)

t4−k4
[̊
1t2 ; 6= t1 − k1

]
M(1)

t4−k4
[̊
1t4 ; 6= t1 − k1

])
(105)

+O
(
ϕ2
t3−t1+k1 (k1k3k4 (t2 − t4 + k4))

dx−1/2
)

.
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The contribution into (99) of the second term of (105) is

1

n2

∑
t1<t2;
t3<t4

{
2∏
i=1

h (t2i − t2i−1)

∞∑
k1,k3,k4=1

t1−k1≤t3−k3<t4−k4<t2

{
[k1k3k4 (t2 − t4 + k4)]

2dx−3/2 (t3 − t1 + k1)
2dx−2


= o (1)

because 1− 2dx − d1 > 0. So we are left examining the contribution due to the first term of
(105). But that contribution is also o (1) repeating the same steps again but now when we
look at its difference with

ϕt3−t1+k1E%
2
t1−k1E

(
M(1)

t1−k1
[̊
1t1
]
%t3−k3

(
M(2)

t3−k3
[̊
1t3 ; 6= t1 − k1

])
M(1)

t4−k4
[̊
1t2 ; 6= t1 − k1, t3 − k3

]
M(1)

t4−k4
[̊
1t4 ; 6= t1 − k1, t3 − k3

])
which is 0 by Condition 4. This concludes the proof of the lemma.

LEMMA 16. Under Conditions 2 to 4 and d1 + 2dx < 1,
1

n

∑
t≤s

E∗ (u∗tu
∗
s)
(̊
1t̊1s −E

(̊
1t̊1s

))
= op∗ (1) .

PROOF. By Lemma 13, it suffices to show

(106)
1

n

∑
t≤s

(E∗ (u∗tu
∗
s)− γu (|t− s|))

(̊
1t̊1s −E

(̊
1t̊1s

))
= op∗ (1) .

We will examine explicitly the scenario where in Condition 4 we assume bj = 0 for all j in
which case πj = ϑj . First, by definition γu (|t− s|) =

∑∞
j=0 πjπj+|t−s| and since {ε∗t }

n
t=1 is

independent and identically distributed with variance σ̂2ε , we have that, for any L (n)≥Cn,

E∗ (u∗tu
∗
s) =E∗

L(n)∑
j=0

π̌jε
∗
t−j

L(n)∑
k=0

π̌kε
∗
s−k

= σ̂2ε

L(n)∑
j=0

π̌j π̌j+|t−s| =: γ̂u (|t− s|) .

Now the contribution due to
∑∞

j=L(n)+1−|t−s| πjπj+|t−s| into the left of (106) is op (1) by
Lemma 13 because

∞∑
j=L(n)+1−|t−s|

πjπj+|t−s| 'K
∞∑

j=L(n)+1−|t−s|

1

j1−d1
1

(j + |t− s|)1−d11

' K

(L (n)− |t− s|)1−2d1

and then because L (n)≥Kn and that σ̂2ε = σ2ε (1 + op (1)).
Next, the contribution due to

1

n

∑
t≤s

L(n)−|t−s|∑
j=0

π̂j π̂j+|t−s| − πjπj+|t−s|

(̊1t̊1s −E (̊1t̊1s))
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into the left of (106). By standard algebra, it is

1

n

∑
t≤s


L(n)−|t−s|∑

j=0

(π̌j − πj)πj+|t−s|

+

L(n)−|t−s|∑
j=0

(
π̌j+|t−s| − πj+|t−s|

)
πj



(107) +

L(n)−|t−s|∑
j=0

(π̌j − πj)
(
π̌j+|t−s| − πj+|t−s|

)(̊1t̊1s −E (̊1t̊1s)) .

By Lemma 1, the third term of (107) is bounded by∣∣∣d̂1 − d1∣∣∣2 1

n

∑
t≤s


L(n)−|t−s|∑

j=0

πjπj+|t−s|

(̊1t̊1s −E (̊1t̊1s))


+
∣∣∣d̂1 − d1∣∣∣4 1

n

∑
t≤s

L(n)−|t−s|∑
j=0

1

j (j + |t− s|)

E
∣∣̊1t̊1s∣∣

which is op (1) because d̂1 − d1 = Op
(
m−1/2

)
by Proposition 6 and then Condition 4 and

Lemma 13. Now, as the first and second terms of (107) are similar, we shall only handle the
first one explicitly, which is bounded by(

d̂1 − d1
) 1

n

∑
t≤s


L(n)−|t−s|∑

j=0

πjπj+|t−s|

(̊1t̊1s −E (̊1t̊1s))


+
∣∣∣d̂1 − d1∣∣∣2 1

n

∑
t≤s

L(n)−|t−s|∑
j=0

πj+|t−s|

j

E
∣∣̊1t̊1s∣∣ .

Clearly the first term of the last displayed expression is op (1), whereas the second is bounded
by

n∑
t=1

L(n)−|t−s|∑
j=0

πj+t
j

Op
(
m−1

)
=Op

(
m−1 logn

) n∑
t=1

πt

=Op

(
nd1m−1 logn

)
= op (1)

by Condition 4. This completes the proof of the lemma.

LEMMA 17. Under Condition 4 and that {xt}t∈Z is a Gaussian sequence, if dx ≤ 1/3,
then

Jn (x) =
1

dn

n∑
t=1

xt̊1t (x)

is tight, where dn = n1/2I (dx < 1/3) + n1/2/ log1/2 nI (dx = 1/3).

PROOF. To that end, we shall show the stronger statement that for all ε, η > 0, there is a
δ > 0 such that

(108)
∑
`∈Z

Pr

{
sup

`δ≤x≤(`+1)δ
|Jn (x)−Jn (`δ)|> ε

}
< η
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for large n. We shall consider explicitly only dx < 1/3. To that end, we first notice that due
to the properties of Hermite polynomials, we have that

E |Jn (y)−Jn (x)|2 ≤KΞ (y;x)
1

n

n∑
t,s=1

|γx (|t− s|)|3(109)

=KΞ (y;x)

because E
(̊
1t (x)xs

)
= 0 for all t, s = 1, ..., n and

∣∣E (̊1t (x) 1̊2 (x)
)∣∣ = O

(
γx (|t− s|)2

)
by Condition 1, where Ξ (x) = K {Φ (x) + φ (x)}. Now using Wu’s (2003) Lemma 4, we
have that

sup
`δ≤z≤(`+1)δ

Ξ2 (z)≤ 2

δ

∫ (`+1)δ

`δ
Ξ2 (z)dz + 2δ

∫ (`+1)δ

`δ

(
∂Ξ (z)

∂z

)2

dz

= : υ` (δ)

which implies that Ξ2 ((`+ 1) δ; `δ)≤ δ2υ` (δ), where

δ
∑
`∈Z

υ` (δ)≤ 2

∫
R

Ξ2 (z)dz + 2δ2
∫
R

(
∂Ξ (z)

∂z

)2

dz.

On the other hand, proceeding as in Ho and Sun (1987), we obtain that

E (Jn (y)−Jn (x))4 =
K

n
E
(̊
1
4
t (y;x)x4t

)
+C

 1

n

n∑
t,s=1

E
(̊
1t (y;x) 1̊s (y;x)xtxs

)2

=
K

n
Ξ (y;x) +KΞ2 (y;x) .

So after we identify x with (k− 1)p + `δ and y with kp + `δ, and denoting Kk =
Jn (kp+ `δ)−Jn ((k− 1)p+ `δ), we conclude that

E

(
j∑
k=ι

Kk

)4

≤K

(
j∑
k=ι

νk

)2

,

where νk = pυ
1/2
` (δ) + (F ((k− 1)p+ `δ;kp+ `δ)/n)1/2, and then Billingsley’s (1969)

Theorem 12.2 implies that

Pr

(
max

k=1,...,m
|Kk| ≥ ε/8

)
≤ K

ε4

(
m∑
k=1

νk

)2

≤Kη
(m
n

Ξ (`δ; (`+ 1) δ) +m2p2υ` (δ)
)

.

So proceeding as usual, see Lemma 14 of Wu (2003) for instance, we conclude that the
left side of (108) is bounded by

K

ε4

(
m

n
+ δ

∑
`∈Z

υ` (δ)

)

by choosing p andm such that p= δ/m< ε/
(
8c0n

1/2
)
, wherem=

[
8 (supx f1 (x) =: c0)ηn

1/2
]
+

1. Now choose δ = ε4η to finish the proof.
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The next lemma is an extension of Dehling and Taqqu’s (1989) uniform reduction princi-
ple, which we state for simplicity.

LEMMA 18. Under Condition 4 and that {xt}t∈Z is a standard Gaussian sequence, if
1/3< dx, then

Pr

{
sup
x

∣∣∣∣∣ 1

dn

n∑
t=1

1̆t (x)xt

∣∣∣∣∣> ε

}
≤Cn−ζ ,

for some ζ > 0, where dn = n3dx−1/2 and 1̆t (x) = 1̊t (x)− 1
2f
′ (x)

(
x2t − 1

)
.

PROOF. We first notice that f ′ (x)
(
x2t − 1

)
is nothing but the second term in the Hermite

expansion of the indicator function I (xt < x). Now denoting Ξ (x) = K {Φ (x) + φ (x)},
orthogonality of the Hermite polynomials imply that

E

∣∣∣∣∣ 1

dn

n∑
t=1

1̆t (y;x)xt

∣∣∣∣∣
2

≤ Ξ (y;x)
1

d2n

n∑
t,s=1

|γx (|t− s|)|4

=Kn−ζ

as in of Dehling and Taqqu’s (1989) Lemma 3.1. Now the proof proceeds step by step to that
of Dehling and Taqqu’s (1989) Lemma 3.2 after one partitions R as

−∞= x0 (k)≤ x1 (k)≤ ...≤ x2k (k) =∞, k = 0,1, ...,K,

xi (k) = inf
{
x : Λ (x)≥Λ (∞) i2−k

}
, i= 0,1, ...,2k − 1 and where their Λ (x) is replaced

by

Λ (x) = Fx (x) +

∫ x

−∞

(
w+

w2 − 1

2

)
f (w)dw.

REMARK 4. Lemma 18 indicates that when 1/3< dx,

sup
x∈R

∣∣∣∣∣ 1n
n∑
t=1

1̊t (x)xt −
1

2
f ′ (x)

1

n

n∑
t=1

(
x2t − 1

)
xt

∣∣∣∣∣= op

(
n3(dx−1/2)

)
.

LEMMA 19. Under Conditions 2 to 4 and d1 + 2dx < 1, (in probability) G∗n (x) is tight.

PROOF. First, denoting ς∗t (x) =
(̊
1t (x)−E

(̊
1t (x) | Ft−1

))
u∗t , we have that

G∗n (x) =
1

n1/2

n∑
t=1

ς∗t (x) +
1

n1/2

n∑
t=1

E
(̊
1t | Ft−1

)
u∗t

= :A∗n (x) +B∗n (x) .

Thus, we need to show that A∗n (x) and B∗n (x) are tight. We examine the tightness of B∗n (x)
first. To that end, we notice that

B∗n (x) =
1

n1/2

n+M∑
s=1

ῠs,1 (x)ε∗n+M−s +
1

n1/2

n∑
s=1

ῠs,2 (x)ε∗n+M+s

=B∗n1 (x) +B∗n2 (x) ,
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where ῠs,1 (x) and ῠs,2 (x) are as defined in (42) but with xt there being replaced by
E
(̊
1t (x) | Ft−1

)
. We now adapt the proof of Wu’s (2003) Theorem 3. First using Lemma 4

of Wu (2003), we have that

E∗ sup
x∈R

∣∣∣∣∂B∗n2 (x)

∂x

∣∣∣∣2 ≤ 2

∫
R
E∗
∣∣∣∣∂B∗n2 (x)

∂x

∣∣∣∣2 dx+ 2

∫
R
E∗
∣∣∣∣∂2B∗n2 (x)

∂2x

∣∣∣∣2 dx.

Next because ε∗t are iid
(
0, σ̂2ε

)
, we have that∫

R
E∗
∣∣∣∣∂B∗n2 (x)

∂x

∣∣∣∣2 dx=
1

n

n∑
s=1

∫
R

∣∣∣∣∣
n∑

t=1+s

∂E
(̊
1t (x) | Ft−1

)
∂x

ϑ̂t−s

∣∣∣∣∣
2

dx.

Now, arguing as we did with
∫
RE

∣∣∣∂Bn2(x)
∂x

∣∣∣2 dx in Lemma 12, we obtain that the right side
of the last displayed expression is bounded by

K

n

n∑
s=1

n∑
j=−∞

 n∑
t=s+max(1,j)

ϕ
3/2
t−j+1ϑ̂t−s−j+1

2

,

where, taking for simplicity b` = 0, Lemma 1 implies that it is

K

n

n∑
s=1

n∑
j=−∞

 n∑
t=s+max(1,j)

ϕ
3/2
t−j+1ϑt−s−j+1

2

(1 + op (1)) = op (1)

as we argued in Lemma 1 because 1−2dx−d1 > 0. Similarly
∫
RE
∗
∣∣∣∂2B∗

n2(x)
∂2x

∣∣∣2 dx= op (1).
So, because

|B∗n2 (x)−B∗n2 (y)| ≤ |x− y| sup
z∈R

∣∣∣∣∂B∗n2 (z)

∂z

∣∣∣∣= |x− y|Kn,

we conclude that B∗n2 (x) is tight.
Finally, the tightness of

B∗n1 (x) =:B∗n1,1 (x) +B∗n1,2 (x) ,

where

B∗n1,1 (x) =
1

n1/2

M∑
s=1

(
n∑
t=1

ϑ̂t+sxt

)
ε∗n+M−s

B∗n1,2 (x) =
1

n1/2

n+M∑
s=M+1

(
n+M−s+1∑

t=1

ϑ̂t+sxt

)
ε∗n+M−s

proceeds similarly to that of B∗n2 (x), with the only difference that we now have, say, that∫
R
E∗
∣∣∣∣∂B∗n1,2 (x)

∂x

∣∣∣∣2 dx=
K

n

n+M∑
s=M+1

n∑
j=−∞

 n∑
t=max(1,j)

ϕ
3/3
t−j+1ϑ̂t+s

2

=Op (1) ,

using Lemma 1.
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Next the tightness of A∗n (x). To that end, we first use the same decomposition as with
B∗n (x), that is

A∗n (x) =
1

n1/2

n+M∑
s=1

ῠs,1 (x)ε∗n+M−s +
1

n1/2

n∑
s=1

ῠs,2 (x)ε∗n+M+s

=A∗n1 (x) +A∗n2 (x) ,

where ῠs,1 (x) and ῠs,2 (x) are as defined in (42) but with xt there being replaced by
1̋t (x) =: 1̊t (x)− E

(̊
1t (x) | Ft−1

)
. Because ῠs,1 (x)ε∗n+M−s and ῠs,2 (x)ε∗n+M+s are in-

dependent zero mean sequences, we have that

E∗A∗n1 (y;x)4 =Hn

 1

n
ῠ4
s,1 (y;x) +

(
1

n

n+M∑
s=1

ῠ2
s,1 (y;x)

)2


E∗A∗n2 (y;x)4 =Hn

 1

n
ῠ4
s,2 (y;x) +

(
1

n

n∑
s=1

ῠ2
s,2 (y;x)

)2


since E∗ε∗4t =Hn =Op (1). Now the proof proceeds after we notice that Lemma 1 yields

1

n

n∑
s=1

ῠ2
s,2 (y;x) =

1

n

n∑
s=1

(
n∑

t=s+1

ϑt−s1̋t (y;x)

)2

(1 + op (1))

and that 1̋t (x) is a martingale difference with respect the σ−algebra generated by Ft, it
implies that E

(∑n
t=s+1 ϑt−s1̋t (y;x)

)2
=O (|y− x|) and hence

E∗A∗n2 (y;x)4 =

(
1

n
1̋t (x, y) + (y− x)2

)
Kn.

Then since E1̋t (x, y)2 <K (Fx (y)− Fx (x)), proceeding as in Lemma 17, i.e. Theorems
12.2 and 15.5 of Billingsley (1968), we conclude that

(110) Pr∗
{

sup
|x−y|<δ

|A∗n2 (x;y)|> ε

}
< ηKn.

Similarly, we can conclude that Pr∗
{

sup|x−y|<δ |A∗n1 (x;y)|> ε
}
< ηKn. Hence A∗n (x) is

also tight so it is G∗n (x).

1.3. APPENDIX C.
We now present a Monte Carlo experiment to shed some light on the behaviour of our test,

and in particular how well the bootstrap algorithm performs in finite samples even in cases
where we do not have formal theoretical results, i.e. when 2dx + d1 > 1 or dx + d1 > 1/2
and xt is a non-Gaussian sequence.

To address the performance under the null hypothesis, we have generated the linear re-
gression model

(111) yt = α+ βxt + ut, t= 1, ..., n,

where α = β = 1 for three different sample sizes n = 128,256,512 and for different com-
binations of dx and d1. All throughout the errors {ut}nt=1 were generated as a sequence of
Gaussian random variables with mean 0, and we have chosen the 16 different combinations
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d1, dx = 0.1, ..,0.4. For each sample size and each combination of d1 and dx, we have sim-
ulated (111) when the regressor {xt}nt=1 were generated as a linear sequence for two sets of
innovations, i.e. when {%t}

n
t=1 is standard Gaussian or a χ2

1 centered around its mean. The
reason to consider these two scenarios is due to the different theoretical results that we have
obtained in Propositions 1 and 2, so we can address the question of how sensitive the dis-
tributional conditions of the regressor is on the performance of the test. The statistic Tn (x)
were computed in the range x ∈ [−1.0,1.0] with a mesh width of 0.1 and we have chosen the
Kolmogorov′s type of functional for ϕ (·). That is,

KSn = max
`=1,...,21

∣∣∣n1/2Tn (x`)
∣∣∣ ,

where {x`}21`=1, x` =−1.0 + (`− 1) 0.1.
In order to save computational time, for each sample we compute only one bootstrap coun-

terpart according to Section 3 and equations (3.1) and (3.2). The stacked bootstrapped statis-
tics are then used to construct critical values and confidence regions at appropriate levels.
For each combination of models and/or samples sizes n, 1000 iterations were performed.
This is the idea behind the WARP algorithm of Giacomini et al. (2013). Finally, to imple-
ment the bootstrap algorithm we need to choose the smoothing parameter m. Although an
algorithm as that described at then end of the previous section can be implemented, in this
Monte-Carlo experiment we have considered two different choices of m, namely m = n/4

and m= n/8. Likewise in the expression Ĉ (λ) = exp
{∑[n/4m]

r=1 ĉre
−irλ

}
, we have chosen

ĉr = 0 for r ≥ 1 and the case ĉr = 0 for r > 1 with ĉ1 6= 0. The first scenario uses the fact that
we know that there is no SM component whereas in the second we have taken [n/4m] = 1,
after we notice that in almost all cases [n/4m]≤ 1. Finally, in all the tables, the first row in
each cell presents the results of the test for the 10% size whereas the second row are those
for the 5% size.

TABLES 1 TO 4

A general conclusion that we can draw from Tables 1 to 4 is the good performance of the
test even for samples sizes as small as n = 128. This performance is regardless the distri-
bution of the regressor xt and the choice of m = n/4 appears to perform slightly better for
moderate sample sizes, i.e. when n= 128. Also the tables suggests that even when we choose
ĉ1 6= 0, there is no visible deterioration of the finite sample performance when compared to
the case of ĉ1 = 0. Another conclusion that we can draw from the above tables is that the
bootstrap appears to approximate the finite sample distribution of the test even in scenarios
for which we do not have formal theoretical results, say when dx = 0.4 and d1 = 0.3 or 0.4
with Gaussian regressor or when dx + d1 > 1/2 when we have a centered χ2

1 distribution.
To address the power of the test we have simulated the following two alternative regression

models

(112) yt = α+ βxt + γx2t + ut, t= 1, ..., n

(113) yt = α+ βxt + γ sin (xt) + ut, t= 1, ..., n

with γ = 0.5 and 1.5. The second model being more difficult to detect as the function sin (xt)
is periodic and bounded by 1 and so its variability is smaller than that compared to a regressor
of the type x2t . That is the signal/noise ratio for the second model is far smaller than for the
first. We present the results of the Monte Carlo experiment in Tables 5-16 below.

TABLES 5 TO 16
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We should caution that when we consider the alternative model in (112), we only present the
results for γ = 0.5, as the power of the test for all different combinations had always a 100%
rejection rate regardless whether xt is or it is not Gaussian and for all combinations of d1/dx.
The results for (113) illustrate a very good power performance although smaller than that
obtained for (112). However this is somehow expected as the power depends among other
issues on the “distance” between the null and alternative, being bigger for model (112) than
for model (113).
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TABLE 1
Size when xt is Gaussian and Ĉ (λ) = 1

d1=.1
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
8.5 5.0
4.5 1.4

10.4 6.2
5.7 3.0

9.2 9.9
3.8 6.0

.2
11.1 7.8

5.8 3.9
8.4 9.0
4.7 3.9

12.2 8.8
5.6 4.2

.3
9.9 8.8
5.0 4.6

8.8 11.3
3.7 4.5

9.0 10.8
5.4 4.6

.4
12.1 10.0

6.2 5.1
9.9 9.1
4.9 4.6

7.6 12.3
3.9 5.2

d1=.2
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

7.8 6.2
4.0 3.5

10.0 8.9
5.3 3.6

10.5 7.8
5.2 4.0

10.1 9.8
4.8 4.9

8.5 7.6
5.2 3.8

11.9 10.6
5.8 5.9

10.0 10.3
5.3 6.0

10.1 9.8
4.7 3.8

8.7 7.8
3.9 4.2

9.3 7.0
4.5 3.1

8.2 9.5
4.3 4.7

9.7 8.0
4.7 5.1

du=.3
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
7.8 7.2
3.6 4.2

8.8 8.8
4.5 3.9

8.6 7.9
4.0 4.8

.2
8.5 7.1
5.2 3.4

8.6 7.6
4.3 3.0

14.2 7.2
6.6 4.3

.3
9.1 8.5
5.1 3.4

9.8 6.9
5.3 1.8

9.3 8.9
5.6 3.0

.4
9.8 6.3
3.7 3.0

7.9 6.8
3.4 2.8

9.6 10.7
4.7 5.8

du=.4
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

10.1 6.7
5.5 3.1

7.7 6.9
3.5 3.4

11.8 7.9
4.6 3.3

8.1 7.9
4.4 3.6

9.5 8.0
5.6 3.7

10.2 8.6
5.3 4.4

9.4 8.3
5.0 3.6

10.5 7.8
5.9 4.0

9.8 8.0
5.5 3.2

10.9 9.3
5.5 3.3

9.0 8.0
4.0 4.1

10.4 9.2
5.1 4.5
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TABLE 2
Size when xt is χ2

2 and Ĉ (λ) = 1

d1=.1
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
13.1 11.0

6.2 4.0
11.3 10.7

5.6 4.8
8.0 12.6
3.7 6.5

.2
9.3 9.4
3.8 4.8

9.9 9.2
4.5 4.9

11.6 8.2
5.7 3.8

.3
12.9 9.3

5.8 4.1
9.0 10.5
5.8 5.4

10.1 10.0
4.1 7.4

.4
7.7 8.0
3.5 4.1

8.8 8.6
4.6 4.2

9.9 10.8
3.3 3.8

d1=.2
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

9.3 7.4
5.0 3.1

14.1 10.2
5.9 5.2

11.4 8.0
3.7 2.9

9.0 9.9
3.7 4.7

9.6 9.7
5.6 3.4

9.9 8.9
6.2 3.7

8.3 8.5
3.7 3.6

10.2 9.5
4.9 4.7

8.2 9.5
4.9 5.6

11.2 9.1
4.7 4.2

9.4 9.9
4.8 5.9

10.0 10.5
5.8 5.0

du=.3
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
8.9 8.3
5.0 3.7

10.3 9.3
5.2 4.1

10.6 10.8
6.5 4.6

.2
9.8 8.5
5.8 3.9

10.7 9.2
5.4 3.0

9.8 11.2
5.5 3.7

.3
8.8 7.0
4.1 3.8

7.9 8.9
4.6 4.4

11.0 8.4
6.6 3.3

.4
10.5 8.6

5.1 2.9
11.1 6.5

5.4 3.6
10.8 8.3
5.5 4.6

du=.4
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

11.1 8.9
5.2 3.1

7.2 8.7
4.6 4.6

9.7 10.4
5.4 4.6

6.9 8.4
3.4 3.0

9.8 8.5
4.6 4.2

8.9 8.1
4.5 3.4

8.9 7.2
4.4 2.7

9.1 10.0
3.7 4.9

10.1 6.9
4.8 2.4

10.1 11.0
4.2 2.9

10.1 10.0
5.9 5.1

9.8 8.3
5.0 3.7
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TABLE 3
Size when xt is Gaussian and Ĉ (λ) = exp

{
ĉ1e
−irλ}

d1=.1
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
10.4 5.9
6.2 2.2

7.4 7.7
3.8 3.9

9.9 9.5
5.0 3.7

.2
9.0 7.2
4.5 3.2

11.5 6.3
7.4 3.5

9.5 5.9
5.5 2.0

.3
10.8 7.6

4.9 3.7
9.0 9.0
4.8 4.1

9.4 5.6
4.0 2.4

.4
8.8 9.8
4.7 4.4

11.5 9.3
6.0 4.0

12.4 7.2
5.4 3.1

d1=.2
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

12.5 9.8
6.1 6.1

9.8 12.7
4.9 7.1

11.1 9.1
6.9 3.5

11.1 8.0
4.7 4.2

9.8 8.1
6.5 4.1

10.2 8.5
4.9 4.5

11.8 8.1
6.6 4.0

10.1 10.8
6.3 5.4

14.2 8.6
7.5 4.8

12.4 11.7
6.8 5.5

8.8 8.8
4.5 5.0

10.7 12.8
4.5 7.3

du=.3
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
10.3 8.3

5.4 4.3
11.5 12.0

5.7 4.6
13.4 13.9
6.9 7.5

.2
10.8 9.4

5.6 5.8
10.5 11.7

5.4 5.8
12.7 10.5
5.6 5.9

.3
10.1 10.1

3.3 4.2
12.5 10.5

5.9 5.6
14.7 12.7
6.1 9.0

.4
12.2 10.2

5.5 5.1
11.2 14.9

6.4 7.9
14.1 13.9
7.4 7.6

du=.4
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

14.3 12.0
6.7 6.7

11.1 16.1
5.9 8.0

13.4 11.8
5.0 4.7

9.9 14.1
5.1 6.1

12.1 12.5
6.0 6.8

12.5 13.3
6.8 6.4

12.7 11.9
7.0 5.1

11.7 13.8
6.4 7.7

14.2 13.7
6.9 6.0

12.9 14.3
6.5 6.7

13.2 14.1
7.0 8.4

12.5 15.6
6.1 8.4
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TABLE 4
Size when xt is χ2

2 and Ĉ (λ) = exp
{
ĉ1e
−irλ}

d1=.1
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
8.1 8.7
4.1 4.0

8.7 9.0
3.6 3.9

9.1 8.1
4.1 3.3

.2
9.8 8.5
6.3 2.9

9.4 7.8
3.9 4.4

8.9 9.0
5.0 4.8

.3
8.4 9.4
4.8 4.7

10.1 10.5
4.7 7.0

11.0 9.5
5.8 3.7

.4
10.7 8.0

5.7 3.6
11.4 8.8

5.8 4.4
11.0 9.2
7.0 3.5

d1=.2
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

10.6 11.4
6.2 5.7

11.8 10.0
6.5 5.5

9.7 8.8
4.2 6.5

9.9 8.6
5.1 4.3

10.1 9.1
6.3 3.6

9.3 11.7
5.2 5.2

9.8 10.4
4.7 6.4

12.0 8.2
7.0 4.6

10.3 11.8
5.0 6.7

10.9 8.5
5.1 3.4

13.3 10.4
6.0 5.7

12.7 11.7
7.5 5.8

du=.3
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
10.9 8.2

6.5 4.1
11.4 12.6

5.4 7.0
12.6 10.0
7.0 4.3

.2
13.7 11.5

6.0 5.7
12.2 10.2

6.3 4.9
12.8 10.9
7.1 6.2

.3
8.4 10.8
3.6 6.2

12.3 10.6
7.0 6.0

12.2 12.7
6.5 6.6

.4
13.4 11.2

7.0 5.9
11.3 11.0

5.2 6.3
11.9 15.2
5.8 7.7

du=.4
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

13.8 10.9
6.1 5.2

11.3 16.0
6.1 9.9

11.0 11.6
6.6 5.9

12.3 11.9
5.4 5.9

12.4 14.5
6.5 7.3

15.2 13.3
8.6 7.9

13.4 12.3
5.3 6.2

12.1 12.1
7.1 6.5

15.7 12.0
8.3 6.4

10.1 13.1
5.2 6.1

15.2 16.5
8.5 8.0

15.0 15.6
7.0 7.8
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TABLE 5
Power when xt is Gaussian for model (112)

and Ĉ (λ) = 1

d1=.1
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
98.9 97.6
96.7 95.0

100 100
100 100

100 100
100 100

.2
98.9 97.6
97.0 96.1

100 100
100 99.9

100 100
100 100

.3
99.0 99.1
97.0 97.6

100 100
100 100

100 100
100 100

.4
99.6 98.4
97.2 96.9

100 100
100 100

100 100
100 100

d1=.2
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

99.1 97.7
95.6 93.3

100 100
100 100

100 100
100 100

98.8 98.8
96.6 95.5

100 100
100 100

100 100
100 100

99.1 97.4
97.4 95.9

100 100
100 100

100 100
100 100

98.7 99.1
97.7 95.3

100 100
100 100

100 100
100 100

d1=.3
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
98.4 97.1
95.2 92.7

100 100
99.9 99.8

100 100
100 100

.2
98.0 96.4
95.1 93.0

100 100
100 100

100 100
100 100

.3
98.0 98.5
95.1 94.7

100 100
100 100

100 100
100 100

.4
97.8 98.4
96.0 95.8

100 99.9
100 99.9

100 100
100 100

d1=.4
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

95.1 93.4
90.4 83.3

99.8 100
99.5 99.1

100 100
100 100

95.8 94.4
91.4 86.8

100 100
99.7 99.8

100 100
100 100

95.9 95.7
91.1 87.6

100 100
99.9 99.8

100 100
100 100

96.7 96.7
94.6 92.5

100 100
100 99.8

100 100
100 100
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TABLE 6
Power when xt is Gaussian for model (113) with γ = 0.5

and Ĉ (λ) = 1

d1=.1
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
20.9 20.3
12.1 12.0

36.5 31.6
24.8 20.3

55.5 53.3
46.0 39.2

.2
26.2 18.8
12.5 11.2

40.5 38.7
29.4 28.1

61.3 60.4
48.5 43.7

.3
29.0 24.9
18.7 15.7

44.2 50.2
31.6 38.1

71.3 70.9
59.3 59.8

.4
35.6 31.5
22.5 18.9

60.0 64.1
49.7 50.4

87.9 89.9
78.8 85.3

d1=.2
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

19.9 17.4
8.5 8.7

35.9 29.3
24.5 18.9

53.8 52.9
43.4 40.0

23.5 17.3
13.5 8.2

40.3 32.8
26.9 18.8

59.3 61.2
42.1 45.3

25.9 21.3
16.0 12.0

44.8 44.7
29.6 32.9

70.0 70.4
57.3 60.0

37.3 34.0
26.9 21.6

60.2 52.9
43.4 40.2

85.9 85.5
73.7 77.7

d1=.3
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
20.0 11.1
11.8 6.6

29.0 25.5
18.8 15.7

46.1 41.8
29.8 30.5

.2
21.2 19.5
12.4 10.3

30.2 26.3
19.2 19.2

51.5 48.0
41.4 37.1

.3
26.9 20.8
15.5 11.4

40.2 34.1
28.8 21.4

65.7 62.5
53.4 47.9

.4
28.1 23.1
16.3 16.4

51.5 52.2
35.9 36.3

83.0 78.2
72.5 64.3

d1=.4
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

18.7 15.9
10.8 8.2

21.9 18.3
12.3 10.7

41.5 34.2
27.7 22.3

16.1 15.9
9.0 9.2

28.1 23.8
15.0 13.2

40.9 42.6
27.2 26.4

19.0 17.8
12.3 10.3

32.9 24.8
20.8 16.7

52.8 48.3
37.4 33.2

26.6 24.0
17.4 14.2

41.8 41.4
29.0 25.2

71.2 68.8
54.3 51.9
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TABLE 7
Power when xt is Gaussian for model (113) with γ = 1.5

and Ĉ (λ) = 1

d1=.1
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
77.1 73.2
67.0 57.0

96.2 95.0
93.7 90.5

100 100
100 99.9

.2
80.0 76.6
71.9 58.3

97.2 97.5
94.5 95.7

99.9 100
99.8 99.9

.3
86.0 86.8
78.3 77.2

99.5 99.2
99.0 98.2

100 100
100 99.9

.4
91.9 91.7
87.7 86.5

99.9 99.6
99.6 99.2

100 100
100 100

d1=.2
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

74.8 69.9
61.8 57.2

94.6 95.7
91.8 92.1

99.7 100
99.6 99.8

79.0 75.9
69.4 60.1

96.2 97.4
92.0 93.6

100 100
100 99.9

83.5 82.0
75.8 72.1

99.5 98.9
97.1 96.9

100 100
100 100

89.9 88.1
82.6 80.7

99.7 99.4
99.6 98.5

100 100
100 100

d1=.3
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
71.3 63.5
58.2 50.2

92.6 92.4
84.4 86.5

99.8 99.8
99.7 99.4

.2
72.1 68.2
57.2 56.2

97.4 93.0
92.4 85.3

99.9 100
99.7 99.8

.3
83.9 78.5
71.1 64.6

98.9 97.9
96.9 95.3

100 100
99.9 99.9

.4
89.4 86.2
82.5 74.9

99.7 99.3
98.9 98.4

100 100
100 100

d1=.4
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

58.5 59.6
43.0 43.6

87.7 85.4
81.0 75.3

99.7 99.2
98.6 98.4

69.9 59.9
55.2 42.5

91.4 89.2
82.5 78.2

100 99.7
99.0 98.9

76.0 71.3
60.9 54.4

97.4 93.7
93.2 89.9

100 99.9
100 99.8

86.3 83.9
81.2 72.8

97.8 98.5
96.1 96.2

100 99.9
100 99.8
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TABLE 8
Power when xt is Gaussian for model (112)

and Ĉ (λ) = exp
{
ĉ1e
−irλ}

d1=.1
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
98.7 98.9
97.0 96.1

100 100
100 100

100 100
100 100

.2
98.6 98.5
96.0 95.6

100 100
100 100

100 100
100 100

.3
99.2 98.8
97.3 97.3

100 100
100 100

100 100
100 100

.4
99.3 99.1
97.5 98.1

100 100
100 99.9

100 100
100 100

d1=.2
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

98.8 98.2
95.1 95.1

100 100
99.9 100

100 100
100 100

98.9 99.0
97.5 96.2

100 100
100 100

100 100
100 100

98.8 99.0
96.6 96.5

100 100
100 100

100 100
100 100

99.1 99.0
98.0 97.3

100 100
100 100

100 100
100 100

d1=.3
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
98.4 97.0
96.1 94.1

100 100
100 99.9

100 100
100 100

.2
98.8 98.3
96.9 95.4

100 100
100 100

100 100
100 100

.3
98.0 98.5
95.1 94.7

100 100
100 100

100 100
100 100

.4
97.9 97.9
95.4 95.2

100 100
100 99.8

100 100
100 100

d1=.4
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

97.7 96.7
94.5 92.4

100 100
99.7 100

100 100
100 100

97.3 96.2
94.7 91.5

100 100
99.9 100

100 100
100 100

98.6 96.9
96.3 93.4

100 100
100 100

100 100
100 100

97.3 97.8
95.3 95.0

100 100
100 100

100 100
100 100
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TABLE 9
Power when xt is Gaussian for model (113) with γ = 0.5

and Ĉ (λ) = exp
{
ĉ1e
−irλ}

d1=.1
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
20.9 20.3
12.1 12.0

36.5 31.6
24.8 20.3

55.5 53.3
46.0 39.2

.2
26.2 18.8
12.5 11.2

40.5 38.7
29.4 28.1

61.3 60.4
48.5 43.7

.3
29.0 24.9
18.7 15.7

44.2 50.2
31.6 38.1

71.3 70.9
59.3 59.8

.4
35.6 31.5
22.5 18.9

60.0 64.1
49.7 50.4

87.9 89.9
78.8 85.3

d1=.2
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

19.9 17.4
8.5 8.7

35.9 29.3
24.5 18.9

53.8 52.9
43.4 40.0

23.5 17.3
13.5 8.2

40.3 32.8
26.9 18.8

59.3 61.2
42.1 45.3

25.9 21.3
16.0 12.0

44.8 44.7
29.6 32.9

70.0 70.4
57.3 60.0

37.3 34.0
26.9 21.6

60.2 52.9
43.4 40.2

85.9 85.5
73.7 77.7

d1=.3
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
20.0 11.1
11.8 6.6

29.0 25.5
18.8 15.7

46.1 41.8
29.8 30.5

.2
21.2 19.5
12.4 10.3

30.2 26.3
19.2 19.2

51.5 48.0
41.4 37.1

.3
26.9 20.8
15.5 11.4

40.2 34.1
28.8 21.4

65.7 62.5
53.4 47.9

.4
28.1 23.1
16.3 16.4

51.5 52.2
35.9 36.3

83.0 78.2
72.5 64.3

d1=.4
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

18.7 15.9
10.8 8.2

21.9 18.3
12.3 10.7

41.5 34.2
27.7 22.3

16.1 15.9
9.0 9.2

28.1 23.8
15.0 13.2

40.9 42.6
27.2 26.4

19.0 17.8
12.3 10.3

32.9 24.8
20.8 16.7

52.8 48.3
37.4 33.2

26.6 24.0
17.4 14.2

41.8 41.4
29.0 25.2

71.2 68.8
54.3 51.9
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TABLE 10
Power when xt is Gaussian for model (113) with γ = 1.5

and Ĉ (λ) = exp
{
ĉ1e
−irλ}

d1=.1
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
77.1 73.2
67.0 57.0

96.2 95.0
93.7 90.5

100 100
100 99.9

.2
80.0 76.6
71.9 58.3

97.2 97.5
94.5 95.7

99.9 100
99.8 99.9

.3
86.0 86.8
78.3 77.2

99.5 99.2
99.0 98.2

100 100
100 99.9

.4
91.9 91.7
87.7 86.5

99.9 99.6
99.6 99.2

100 100
100 100

d1=.2
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

74.8 69.9
61.8 57.2

94.6 95.7
91.8 92.1

99.7 100
99.6 99.8

79.0 75.9
69.4 60.1

96.2 97.4
92.0 93.6

100 100
100 99.9

83.5 82.0
75.8 72.1

99.5 98.9
97.1 96.9

100 100
100 100

89.9 88.1
82.6 80.7

99.7 99.4
99.6 98.5

100 100
100 100

d1=.3
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
71.3 63.5
58.2 50.2

92.6 92.4
84.4 86.5

99.8 99.8
99.7 99.4

.2
72.1 68.2
57.2 56.2

97.4 93.0
92.4 85.3

99.9 100
99.7 99.8

.3
83.9 78.5
71.1 64.6

98.9 97.9
96.9 95.3

100 100
99.9 99.9

.4
89.4 86.2
82.5 74.9

99.7 99.3
98.9 98.4

100 100
100 100

d1=.4
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

58.5 59.6
43.0 43.6

87.7 85.4
81.0 75.3

99.7 99.2
98.6 98.4

69.9 59.9
55.2 42.5

91.4 89.2
82.5 78.2

100 99.7
99.0 98.9

76.0 71.3
60.9 54.4

97.4 93.7
93.2 89.9

100 99.9
100 99.8

86.3 83.9
81.2 72.8

97.8 98.5
96.1 96.2

100 99.9
100 99.8
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TABLE 11
Power when xt is χ2

2 for model (112)

and Ĉ (λ) = 1

d1=.1
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
99.9 99.9
98.0 98.6

100 100
100 100

100 100
100 100

.2
99.9 99.6
98.3 98.0

100 100
100 100

100 100
100 100

.3
99.7 99.7
98.6 98.5

100 100
100 100

100 100
100 100

.4
99.2 99.3
96.3 96.0

100 100
100 100

100 100
100 100

d1=.2
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

99.6 99.8
99.1 98.1

100 100
100 100

100 100
100 100

100 99.8
98.5 98.8

100 100
100 100

100 100
100 100

99.6 99.3
98.8 98.1

100 100
100 100

100 100
100 100

99.3 99.1
96.6 96.0

100 100
100 100

100 100
100 100

d1=.3
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
100 99.9
99.4 98.9

100 100
100 100

100 100
100 100

.2
99.7 99.7
98.1 98.6

100 100
100 100

100 100
100 100

.3
99.8 99.6
97.8 97.9

100 100
100 100

100 100
100 100

.4
99.4 98.8
98.1 95.0

100 100
100 100

100 100
100 100

d1=.4
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

100 99.7
98.0 98.3

100 100
100 100

100 100
100 100

99.8 99.6
98.5 98.4

100 100
100 100

100 100
100 100

99.6 99.6
98.5 97.1

100 100
100 100

100 100
100 100

98.9 98.9
95.8 94.4

100 100
100 100

100 100
100 100
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TABLE 12
Power when xt is χ2

2 for model (113) with γ = 0.5

and Ĉ (λ) = 1

d1=.1
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
70.6 70.4
58.3 57.3

95.4 95.3
88.5 91.4

100 100
99.9 99.9

.2
72.6 72.0
58.2 53.5

93.9 96.5
88.5 91.9

100 100
99.9 99.9

.3
77.6 72.0
64.2 60.6

96.5 95.5
91.6 92.8

100 100
99.9 99.8

.4
77.6 73.7
65.1 56.2

96.9 96.7
93.4 94.0

99.9 100
99.9 99.9

d1=.2
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

77.6 67.2
64.4 52.4

96.7 94.7
91.7 88.4

99.9 100
99.8 99.8

73.1 65.6
58.7 53.4

94.2 93.4
88.0 88.8

100 99.9
99.4 99.6

67.9 70.4
53.0 57.1

94.1 93.4
91.6 87.0

99.9 100
99.9 99.5

72.0 71.6
58.8 56.0

96.1 95.0
90.5 87.8

100 100
100 100

d1=.3
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
66.5 64.3
55.6 51.8

92.3 92.3
83.8 85.6

99.9 99.2
99.6 97.8

.2
69.8 63.1
56.3 46.3

92.3 89.6
87.0 79.9

99.7 99.6
99.4 99.1

.3
59.2 63.8
43.9 45.8

92.6 86.6
85.7 74.3

99.8 99.7
99.7 98.9

.4
70.8 63.1
56.5 42.8

90.2 91.4
81.9 84.5

99.7 99.8
99.3 99.1

d1=.4
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

60.9 59.2
45.9 43.8

89.8 85.1
77.0 72.7

98.9 98.5
96.8 94.9

63.7 54.4
43.8 37.8

81.8 84.0
72.0 70.9

98.8 98.1
96.7 93.6

58.5 53.7
40.4 38.8

83.8 81.9
69.4 66.1

98.7 96.7
97.1 89.5

60.9 60.7
42.4 42.1

83.6 78.9
72.6 68.2

97.2 96.9
93.1 93.5
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TABLE 13
Power when xt is χ2

2 for model (113) with γ = 1.5

and Ĉ (λ) = 1

d1=.1
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
100 100
100 100

100 100
100 100

100 100
100 100

.2
100 100
100 100

100 100
100 100

100 100
100 100

.3
100 100
100 100

100 100
100 100

100 100
100 100

.4
100 100
100 100

100 100
100 100

100 100
100 100

d1=.2
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

100 100
100 100

100 100
100 100

100 100
100 100

100 100
100 100

100 100
100 100

100 100
100 100

100 100
100 100

100 100
100 100

100 100
100 100

100 100
100 100

100 100
100 100

100 100
100 100

d1=.3
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
100 100
100 100

100 100
100 100

100 100
100 100

.2
99.9 99.9
99.9 99.8

100 100
100 100

100 100
100 100

.3
100 100
100 100

100 100
100 100

100 100
100 100

.4
100 100
100 100

100 100
100 100

100 100
100 100

d1=.4
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

100 99.9
100 99.7

100 100
100 100

100 100
100 100

100 99.9
99.8 99.9

100 100
100 100

100 100
100 100

99.9 99.9
99.9 99.6

100 100
100 100

100 100
100 100

100 99.9
99.8 99.8

100 100
100 100

100 100
100 100
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TABLE 14
Power when xt is χ2

2 for model (112)

and Ĉ (λ) = exp
{
ĉ1e
−irλ}

d1=.1
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
100 99.9
99.7 98.5

100 100
100 100

100 100
100 100

.2
99.5 99.9
98.3 98.5

100 100
100 100

100 100
100 100

.3
99.9 99.6
99.4 98.4

100 100
100 100

100 100
100 100

.4
99.3 99.1
97.7 97.6

100 100
100 100

100 100
100 100

d1=.2
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

100 99.6
99.3 98.0

100 100
100 100

100 100
100 100

99.6 99.8
98.8 98.2

100 100
100 100

100 100
100 100

99.9 99.6
99.0 97.5

100 100
100 100

100 100
100 100

99.4 99.0
96.8 96.6

100 100
100 100

100 100
100 100

d1=.3
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
99.6 99.8
98.0 98.5

100 100
100 100

100 100
100 100

.2
99.9 99.6
98.4 96.8

100 100
100 100

100 100
100 100

.3
99.8 99.5
98.8 98.0

100 100
100 100

100 100
100 100

.4
99.9 99.6
98.2 98.0

100 100
100 100

100 100
100 100

d1=.4
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

99.9 99.6
99.3 98.9

100 100
100 100

100 100
100 100

99.6 99.9
98.5 98.0

100 100
100 100

100 100
100 100

99.9 99.6
98.0 98.6

100 100
100 100

100 100
100 100

99.7 99.5
97.3 98.0

100 100
100 100

100 100
100 100
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TABLE 15
Power when xt is χ2

2 for model (113) with γ = 0.5

and Ĉ (λ) = exp
{
ĉ1e
−irλ}

d1=.1
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
70.6 70.4
58.3 57.3

95.4 95.3
88.5 91.4

100 100
99.9 99.9

.2
72.6 72.0
58.2 53.5

93.9 96.5
88.5 91.9

100 100
99.9 99.9

.3
77.6 72.0
64.2 60.6

96.5 95.5
91.6 92.8

100 100
99.9 99.8

.4
77.6 73.7
65.1 56.2

96.9 96.7
93.4 94.0

99.9 100
99.9 99.9

d1=.2
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

77.6 67.2
64.4 52.4

96.7 94.7
91.7 88.4

99.9 100
99.8 99.8

73.1 65.6
58.7 53.4

94.2 93.4
88.0 88.8

100 99.9
99.4 99.6

67.9 70.4
53.0 57.1

94.1 93.4
91.6 87.0

99.9 100
99.9 99.5

72.0 71.6
58.8 56.0

96.1 95.0
90.5 87.8

100 100
100 100

d1=.3
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
66.5 64.3
55.6 51.8

92.3 92.3
83.8 85.6

99.9 99.2
99.6 97.8

.2
69.8 63.1
56.3 46.3

92.3 89.6
87.0 79.9

99.7 99.6
99.4 99.1

.3
59.2 63.8
43.9 45.8

92.6 86.6
85.7 74.3

99.8 99.7
99.7 98.9

.4
70.8 63.1
56.5 42.8

90.2 91.4
81.9 84.5

99.7 99.8
99.3 99.1

d1=.4
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

60.9 59.2
45.9 43.8

89.8 85.1
77.0 72.7

98.9 98.5
96.8 94.9

63.7 54.4
43.8 37.8

81.8 84.0
72.0 70.9

98.8 98.1
96.7 93.6

58.5 53.7
40.4 38.8

83.8 81.9
69.4 66.1

98.7 96.7
97.1 89.5

60.9 60.7
42.4 42.1

83.6 78.9
72.6 68.2

97.2 96.9
93.1 93.5
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TABLE 16
Power when xt is χ2

2 for model (113) with γ = 1.5

and Ĉ (λ) = exp
{
ĉ1e
−irλ}

d1=.1
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
100 100
100 100

100 100
100 100

100 100
100 100

.2
100 100
100 100

100 100
100 100

100 100
100 100

.3
100 100
100 100

100 100
100 100

100 100
100 100

.4
100 100
100 100

100 100
100 100

100 100
100 100

d1=.2
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

100 100
100 100

100 100
100 100

100 100
100 100

100 100
100 100

100 100
100 100

100 100
100 100

100 100
100 100

100 100
100 100

100 100
100 100

100 100
100 100

100 100
100 100

100 100
100 100

d1=.3
n=128 n=256 n=512

dx m= n
4

n
8

n
4

n
8

n
4

n
8

.1
100 100
100 100

100 100
100 100

100 100
100 100

.2
99.9 99.9
99.9 99.8

100 100
100 100

100 100
100 100

.3
100 100
100 100

100 100
100 100

100 100
100 100

.4
100 100
100 100

100 100
100 100

100 100
100 100

d1=.4
n=128 n=256 n=512

n
4

n
8

n
4

n
8

n
4

n
8

100 99.9
100 99.7

100 100
100 100

100 100
100 100

100 99.9
99.8 99.9

100 100
100 100

100 100
100 100

99.9 99.9
99.9 99.6

100 100
100 100

100 100
100 100

100 99.9
99.8 99.8

100 100
100 100

100 100
100 100
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