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1. SUPPLEMENTARY MATERIAL. For the sake of easy reference we write the reg-
ularity conditions and some expressions used in the proof of the results. Appendix A gives the
proof of the main results of the paper which employs a series of lemmas given in Appendix
B. Finally Appendix C presents tables from the Monte Carlo experiment.

We denote

=Y me(d) L*; m(—d):m, keN

(1 —2coswl + L2)d = Zm (cosw;d) L*

where I' () denotes the gamma function such that I (¢) = oo for ¢ =0 with T (0) /T (0) =
and the coefficients 7, (cosw;d) follow the second order homogeneous difference equation

—d-1 —2d—2
Tk (2;d) =2z <k:> Tr—1(z;d) — (l{:]j> Tr—2(z;d),
see Section 8.93 in Gradshteyn and Ryzhik (2000).

CONDITION 1. {w},., and {u;},., are two mutually independent sequences of ran-
dom variables such that

oo (o9}
. 2
xt:ZQOth—j’ Z‘Pj <oo, ¢y =1,
Jj=0 J=0
o [e.e]
U = Zﬁjgt*j’. 219]2 < 00, 190 =1,
Jj=0 J=0

where {€t},c5 and {0,},c, are zero mean sequences with finite variance. Denote E (£7) =
o2. Also

j J
ﬁj = ng (—dl, —dz) bk_j = ng_j (_dla _d2) b
k=0

k=0

where &, (dy; dy) = ) oTe(COSW do) T (d1) =2 Y y_o Th—t (cOsw;dp) g (dy) and 3752
oo. Finally, |<pj’ =0 (jd” ) with d, € [ ,%)

Next we denote

g(A;dy,da) =: (1 — e*“‘) o (1 — (2cosw) e + *2”\) Zﬁj dy,dy)e

) = ibje—m,
j=0

so that f,, (A ):g—

(A\;d1,do)| "2 | B (\)|?. Finally {ut};¢; admits the AR representation
0 J J
Ut = Z Pjut—j + €t; ¢;=: kaz (d1,d2) ap—j =: ng—j (dy,d2) ag,

j=1

k=0 k=0

/{:2|bk’<
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where > 72 k% |ag| <ocoand B~! (\) =1 A(\) = >0 aje"¥*. So,

2
o _
Fu ) = 2 lg Qsdy o) 1A ()] 2,
Finally denote g (X, dy,dp; L) = 37 &; (di, dp) e~
CONDITION 2. {9,},c, and {€},., are independent identically distributed sequences

of random variables with finite 8th moments. In addition, denoting ¢ (x) as the probability
density function of x;, we have that

/z

CONDITION 3. Asn — oo,

oP ¢

83:1’ )| dz < .

m4 2

n

CONDITION 4. As Condition 1 but with ds = 0.

We denote the least squares residuals
M i = (ur = n) = (B = 8) (21— 7).
where T, =n" 1 >0 | @y, Uy =n 1> 01 uy and
n

n —1
) B—B= (Z (0 — xn>2> > (@ — Tn) u.
t=1 t=1

Also we have that

n

(3) Z Uy = Z 241 = 0.
t=1 t=1

(4) T () = %Zl(xt < z)y,
t=1
5) To@) =2 S {Z(r <)~ F () + 6 (@) ai}
t=1

We shall write
(6) 1 () :I(l't <z)—F(x); 1(2)=1;(2) + & (x) 2y,
where F(z) = [* ¢ (z

™ ¢ (dy) = 2T (1 — 2dy) cos <7r (;—ch)).



G (x) denotes a Gaussian process in the real line with covariance structure given by
Cov (G (2),G (y) =74 (0) E (1o () 10 () + Y 7. (O E (1o (2) Lo (1))
(=1

°

(8) +> 7 OE (L) is(e) zyeR
(=1

~

Denoting ¥ N =g ()\, —di, —32;71) B(\),

3n—1
1 o~ -
9) iir = 7 Z Mg ()\j) Wer ()\j) , t=1,...,3n.
(3n) j=1
Next for any integer k£ > 0,
(10) T =7 (d1); T =: g (c/l\l) :

T =iy (—d1); =i ()

= 7x(d2); Fo=i i ()

o=k (~dz); Fr=i i (—da)

& =26 (ddo); &= (d )

§p =16 (~di,—d2); & =& (~di. ).

Also@ozfé():@o:;?ozland

(11) a _ Zﬁfg@_k&k, 1<i<n—-M
O R (e Skl n—M</{<n,
S G, 1<(<n—M
(42 2= o M<i<
D k=t (n—) Se—k k> n—M</{<n,
IAMF
3 b : 1<e<
(13) G, = { 20 bobey <i<n
> p=t—n Ope—p» n<t{<n+M,
INM S, E
? b : 1<e<
(14) 9= 4 20 bolep <l<n
> p—t—n bpSe—p» n<{<n+ M.
Next i} in (9) is
=1 n+M
ﬁrzzﬁz@‘_g—k Z Vpep g if t<n+M
=0 /=t
n—l—MA
(15) = i, if n+M<t

£=0
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. _
and uy = i3, ,, s = 1,...,n. Because for any sequence {g‘]}

ez,
1 no , n
16) e (Z Qe‘l“f) ws (Aj) =: Z Cozimt+ > Cozn(o—t)s
j=1 =0 =0 =t

we obtain that

t—1 R no
(17) B=) buo+ Y Setniir

=0 o=t

Finally it is worth recalling that for any sequence {C j }j>1 and a martingale difference se-

quence {7, }jEZ with finite p moments, we have that

b b b [P
as) B> Gm| KB .Gl ) G|
j=a j=a j=a
by Burkholder and then Holder’s inequalities.

1.1. APPENDIX A.
For simplicity and without loss of generality we shall assume that o2 = 1. Also herewith
K denotes a generic positive and finite constant.

PROPOSITION 1. Under Conditions 1 and 3, for any p > 1 such that E || < oo, we
have that

1~ .
(19) EZ ‘Et — 6t|p =0p (1)
t=1
PRrROOF. First observe that because
1 — 1 —
- - p < 210—1 _ = _ p

it suffices to show that the first term on the right is o, (1) .
We shall first examine the case when B (L) = 1. Denoting

T B N
€t = 2 Zem\” (Z &€ w/\’) wy (Aj),
j=1 £=0

and observing that when B (L) = A (L) =1, €, in STEP I becomes
n—1

L1 a (s
g = n1/2 et ( &re ) Wy, ()\j), t=1,...,n,
j=1 /=0

we then have that (16) and Lemma 3 imply that

4%

)

3

E—¢&p = i (gg - fz) Ut—g + Zn: (Ze - fe) Up—(¢—t)
/=0 =t

l

Ug—yg
TP SRR T ) [T
h=1

H-1

n—({—t)

+2Hd dH Zgﬁ ) € gtin—(¢-t) +10g an dH Z‘gw(dl/\dz
h=1




By standard inequalities, it suffices to show that

e~ .

0 QBB =0 ()
1 n

1) n;|at—§typ:op(1).

That (21) holds true follows because ; — &; =: 2, Eptts—g — Y yy Eglpy—(o—y) O that
the expectation of the left side of (21) is bounded by

n oo p n
K K T (dy Ady > 0)
> (Z m) <2 gy~ o)

t=1 \/=t

because |£;,| = O (k_l_(dl/\dQ)I(dl Ady > 0)), that E ||’ < K and Holder’s inequality
yields that

(22) E

p b p—1 4
< (Z\Ck’) Z|Ck|E\77k’p-

k:a k;:a

b
Z Crlk
k=a

Next (20) also holds true after we observe that (22) implies that

p
+E

p n

gK%g?(d)sZISK,

n

> gl (d) Epun_i—p)

=t

E

t—1
ZQ? (d) Epur—e
£=0

H&\— dH =0, (m_l/Q) and choosing H large enough in Lemma 3.

Now, we examine the general case when B (L) # 1. To that end, denote

t—1 n
E= op_t+ Y bty (e—p)-
=0 /=t
where

(23) b, = Zii]‘.f S0 1Oks 1<l<n-—-M
K_ Zé/lzéf(nfM) §o— Ok n—M</{<n.

As we proceed when we assumed that B (L) = 1, by standard inequalities, it suffices to
show that

lew .
(24) = B —al =o0,(1)
nt:l
1 & 1 &
25 — g, — 5P+ = — &P = 1),
(25) n;\&f Etl +n;\€t er|” =o0p (1)

where &, = Zﬁ;é Getis—g 4 D y_y Pptiy—(o—y) and € given in (17).

Now, that the second term on the left of (25) is o), (1) follows proceeding as with the proof
of (21). Next, the first term on the left of (25). Because ¢, — ¢, = 0 if £ < M, we have that
that its expectation is bounded by

p }

1 n
— E

p
+FE

t—1

> (¢e - ¢e) Uy

{=M+1

n

Z (cbe - ¢e) Up—(0—1)

=t




Z <¢e - ¢e> Up—(0—1)

by (22) and that E |u;|” < K and then because ’é)g - gbg‘ is a summable sequence by Lemma

)

Finally (24), whose left term is bounded by

i i oM, P oo
nZ{ Z¢£ut—€ + Z¢Zun—(€—t) Z Petin—(e—1)

(=M-+1
t—1 p p
K5 { S b e }
t M+1 {=M+1

where we have abbreviated qbe — 554 =: @. Now, that the fourth term is o, (1) follows because

(65) yields that this term is
p/2
=0p ( ) =op(1)

0, (m ( fp/2) Z
by Condition 3. Next by Lemma 6 part (ii), the sixth term is
n

t=M+1
()5 S

S b

=0

p

=0, (m_p/2>

|0 Ju—e
=t

because (22) and F |us|’ < K imply that

E Z E‘&fMHUt—d <K Z {( (E—M)_l_(dlAd2)> }zo(n)
(=t

t=M+1| =t t=M+1

because (d; A dz) > 0. The fifth term follows by the same argument, whereas the first three
terms are o, (1) proceeding as with the last three terms and that M /n=o0(1). i

COROLLARY 1. Assume Conditions 1 and 3. Then, for any p > 1 such that E |e|’ < oo,
we have that

E*eP = Z L Eet.

PROOF. By standard equalities, we have that

n n

; z et—gtuziz( J-efe 4 LS
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The first term is oy, (1) by Proposition 1. The third term converges in probability to E=} by
Condition 1. From here the conclusion follows by Holder’s inequality. I

PROPOSITION 2. Under Conditions 1 and 3, for any p > 1 such that E |e;|’ < oo, we
have that

(26) E* |uf — ]’ =0, (1),

where U = S M 94er .

PROOF. Defining } = > 7, ﬁget ¢,» Where
IANM
o </ <

27) 9= 4 k=0 ke 1<t<n

Zkznp§£ —p» n<t{<n-+M,
it suffices to show that
(28) E* Juj — i = 0, (1)
(29) E*|uy —uf|P =0, (1).

We first examine (29). Because ¥y — 9y = 0 if £ < M, we have that @} — uf =
Zgﬂ\j\f 11 ( W) €;_» so that the left side of (29) becomes

n+M p n+M p/2-1 n+M
B S (De—)er gK( 3 ‘ﬁg—ﬁg‘) ’194 194 E* e, [?
{=M+1 {=M+1 {=M+

by (18) because {er}7+M is a random sequence with zero mean. Now, by definition we have
that 9y — ¥y =: £,0 ( ~2) by Lemma 9, so that we conclude that (29) holds true because

{45 é}bl is a summable sequence and Corollary 1 implies that E* ‘5;*_Z‘p — Elgg P =

op (1). So, to complete the proof it remains to show that (28) holds true. But this is the

case because u; — 1y = "+M (19@ ﬁg) e;_, and hence
nt+M NP2
E*U?—@!IJSK(Z ‘19@—?94‘ ) Z ’?94 ﬁz’ E*|ei_,["

by (18). From here the proof follows by Lemma 8 since Ek is a summable sequence and
Corollary 1. 1

PROPOSITION 3. Under Conditions 1 and 3 , as n — oo, in probability,

*

. d
Et_> Et

PROOF. Denote by da(-,-) the Mallows metric as defined for example by Bickel
and Freedman (1981). Let F, (z) = 13 T (5, <z), F,(x) = 13°7 | T(e; <) and
F(xz)=P (et <x). Then

(30) dy (ﬁﬂ?) <dy (ﬁn Fn> +dy (Fp, F).
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Let W be a random variable distributed uniformly on {1,2,...,n}. Then

~ A 1 o
da (Fan) <Ew(ew —Ew)’ = " E (Er —er)?.
=1

By Proposition 1, the last expression converges to zero in probability. The second term of (30)
converges to zero almost surely by Lemma 8.4 of Bickel and Freedman (1981). Therefore

do (ﬁn,F> =0, (1) and the proposition holds. I
PROPOSITION 4. Assume Conditions 1 and 3. Then, as n — oo, in probability,
« d*

By the definition of u} in (9), we obtain that

(3D
S NS J(SIEIS DECEIEIS SO
—0 (=M+1 {=M+1

where 55 was given in (13) and because 795 — 9y =0if £ < M. The last term on the right of
(31) is 0p- (1), since its second moment is

n+M

S (b= ) Bei =0, 1)

{=M+1

. 2

by summability of { ’195 — 19@’ } and Corollary 1 implies that E*e}?, — Fe? , =0, (1).
>1

Next, the second and third terms on the right of (31) are also o, (1) as we now show. Indeed,

the second moment is

Mo \2 M \2
Z (19( — 194) E*E;Eg + Z (193 — 19() E*E,ﬁg
/=0 {=M+1

From here we conclude by Lemma 8 parts (i) and (ii) respectively and again by Corollary 1.
Thus, Markov inequality implies that the last three terms on the right of (31) are 0, (1), so
that

n+M

uf = Y Degt g+ ope (1).
£=0

Now, Proposition 3 and Cramér-Wold’s device imply that for any u € R,

n+M n+M
p* (Z Veey_y < u> =P <Z Yoer_p < u) + op (1).
/=0

=0

Since {97 },., is summable, E (332, 1/ 1 Yeer—¢)” = 0(1) and Markov’s inequality
yields that

n+M

Up = Zﬁg&t 0= Zﬁe&t e—i—op 1).

Gathering the last three displayed expressions we conclude the proof of the proposition.



THEOREM 1. Assume Conditions 2 and 4. Then, if d1 + 2d, < 1,

Gn (x) := 1/221t weaklyg(x) reR

PROOF. By Lemma 12, we have that G,, () is tight. So, it suffices to show that the finite
dimensional distributions converge to a normal random variable with covariance structure
given in (8). First we observe that

E (G (2)Gn () =74 (0) E (10 () 10 (1))

+> 7 (O E (fo (@) 1) +D 7. (0 E (Lo (y) 1r(2))
(=1 (=1
L EG@G ).
To complete the proof, we need to show that for any = € R,

Gn (2) 2 N (0, E(G%(2))).

The proof uses a Central Limit Theorem of Scott (1973) very much in the way employed
in Robinson and Hidalgo (1997), see also Giraitis et al.’s (2012) Proposition 11.5.4 for a
different approach. Indeed, we first write

n n —N+1
1 o 1
(32) 7711/2 E ]-t (l’) Ut = 7n1/2 E Vg (.I 1/2 E ’Us 55,
t=1 s=—N §=—00

where v, () =" . (x) with ;s = 0 if ¢ < 5. Because {et},, is an 4id sequence,
we have that the second moment of the second term on the right of (32), by Condition 4, is

9 —N+1 9 —N+1 n

g
Y B@=" Y 3 B ),
S=—00 s=—oot,r=1
S |t— 2 4d, t—S‘l_dl ‘T—S|1_d1
K¢ 1 i 1 1
- 2—4d, 1—d; 1—d;
n a2 =t S () (r+s)
K¢ 1 1
- 2—4d, 1-2d,;
n g2 (r—1t)5 (t+N)
=o(1)

because d; + 2d, < 1 and choosing NN large enough. Recall that i; (z) = 1; (x) + ¢ () 2
has a covariance structure K~2 (¢), as —¢ () x; is the first term of the “Hermite/Appell”
expansion of 1; (x). So, the asymptotic behaviour of G,, (x) is governed by that of the first
term on the right of (32) which converges in distribution to A" (0, E (G* (z)) ) proceeding as
in the proof of Robinson and Hidalgo’s Theorem 1 (1997). Notice that Robinson and Hidalgo
(1997) did not assume the regressors to be a linear process, only that they are mean zero with
covariance structure 7y, (j) such that {~, (j) 7, (j)};>; is summable. This concludes the
proof of the theorem.
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PROPOSITION 5. Assume Conditions 2 and 4 with {x;},., being a sequence of Gaus-

sian random variables. Then, under the null hypothesis Hy, if di + 2d, < 1, we have that
uniformly in x € R

n'2Ty (2) = Gu () + 0p (1).

PROOF. First of all, using (3) and (1), standard algebra yields that
155 .
- Ezlt (x)ut *unEZ].t (l‘)
t=1 t=1
e 1
_<ﬁ_ﬂ>{nzlt T) Tt — Tn— th }
t=1

n’lz?zl(x?—l) ~ L 1.

Ty a2 (5 - 5) =~ L@ a =T i) 0,
=1 t=1

o

where by orthogonality of the Hermite polynomials E (1; (z)z;) = 0 and

~ 1 <&
(33) B—pB= - Z::xtut — Tl
Condition 4 and Markov’s inequality imply that
(34) = O (1 712) 17, = 0, (n®71/2)
1

- (:17? -1)=0, (n_l/2 +n 2T (4, > 1/4)) .
t=1

On the other hand, using results in Robinson and Hidalgo (1997),
B=B=0, (n 72 40t ITL(d, + dy > 1/2)),

whereas Dehling and Taqqu (1989) and Taqqu (1975) yield respectively that

n

35 sup
zeR

it (CL’)

> =0, (n'?) ifd, <1/4

n2 h th ) = Ro(x), if dy > 1/4, (weakly)
a Rosenblatt process of order 2. Notice that, as shown in Wu’s (2003) Theorem 3, (35)

holds true if we drop the assumption of Gaussianity from the sequence {x;},.,. So because
dy +2d; <1, (34) and (35) imply that
[, | = Op (n_1/2> :

RIE

Finally, Lemmas 17 and 18 imply that

(36) sup
z€R

n

o

1
— g 1 (z) xy
n

t=1

37 sup

~0, <n_1/2 434327 (g, > 1/3)) .
z€R

So, gathering (34) to (37) we conclude. 1
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COROLLARY 2. Under Conditions of Proposition 5, we have that for any continuous
functional ¢ () : R — R™T,

@ (02T @) % 2 (G ().

PROOF. It follows by the continuous mapping theorem, Theorem 1 and Proposition 5, so
it is omitted. I

PROPOSITION 6.  Under Conditions 2 to 4, if dy + d, < 1/2, 6?1 —d1 =0, (m_1/2).

PROOF. Similar to Robinson (1997), the properties of the estimator are not affected by
using the residuals u; instead of the errors u;. Indeed

I ) = L ) = (B 8) Fus ) + (B 8) L ().
Since  — = O, (n~/?) and proceeding as in Robinson (1995),
EllLyz (Aj) Lue (k)| = E (wy (Aj) Wy (Ak)) E (we (A;) Wz (A))
~ /\j_dl_dm )\;dl_dl' max (k_l,j_l) .

So, we conclude that
1 m
3 (T () — L () = 0 (m7Y2).
j=1
From here the proof proceeds as in Robinson (1997). 1

PROPOSITION 7.  Assuming Conditions 2 to 4, for any 0 < ¢ < n,
n2d1

E* (ufuiye) =7, (0) = 0p () PP+ 0, (maxz+d> +0 (7).

PROOF. It is immediate. Indeed, Lemma 5 implies that the left side of the last displayed
expression is

n+M—/¢ n+M l

.y S ..

o Z (§k§k+8_19k79k+€) 0 — 0?2 Z D10k re
k=0
n+M—/¢ 00

2 K 2

o2 3 (Debse—Oidse) =02 D pdha
k=0 k=ntM—¢

From here we conclude because Y5> . 1/ [9x051¢| = O (n?*"~1), Hidalgo and Yajima’s
(2002) Corollary 1 and Theorem 1, and that respectively Lemmas 10 and 11 yield that
the first and third terms of the last displayed expression are o(1)/¢2%~!. Observe that

ZnJrM gﬁkﬂk—s—f :K€2d1_1 (1 +0(1)) i

We introduce some notation. By K, we denote a sequence of nonnegative random vari-
ables.

PROPOSITION 8.  Assuming Conditions 2 to 4, if d1 + d, < 1/2, (in probability)
nt/2(B"=B) SN (V).

where )V = ( ) f fu(N) fo (N) dX is the asymptotic variance of the LSE.



12
PROOF. By definition,

5 1y (a2-1) (1
B Tt — xn ;‘f L =1 L - xt - xn .
z:: % Dot T n Z

t=1

Because Zt 1 (a:t ) K, it suffices to consider the first term on the right of last
displayed equation. Now ag — ag =0, (n_1/2 +m/n) by Hidalgo and Yajima’s (2002)
Corollary and Theorem 1, so

n1+2d1 Z u (nh—{%o n2dh Z Tt ) '
Py
by Propositions 6 and 7. So we conclude that Y 3 | uj = Op- <n1/ 2“?1), which together

with 7,, = O), (ndm_l/Q) implies that n'/2 (B* — B) is governed by n—1/2 > oiq weug. Now,
standard algebra implies that

* 1 g *
(38) E (1@1/2 thut> Z B (uju))
t=1

t r=1
n+M—|t—r|
1 o
=0.— 5 Tty 5 ﬂkﬁk—Ht—r\’
t r=1 k=0

using (63) in Lemma 3. As we mentioned above, the expression on the right of (38) is

62=02(140,(1)) times
(39)
1 & n+M—|t—r| 1 & n+M—|t—r|
- T, Z (ﬁkﬁ‘kﬂt_ﬂ — 19Mk+|t_r\) +- Z TTy Z VOt jt—r|
t,r=1 k=0 t,r=1 k=0
1 n+M—|t—r|
(40) =+ ” Z TiTyp Z (ﬂkﬁk+|t—r| - ’l9k:79k:+|t—r|) .
t,r=1 k=0
That (40) is 0, (1) follows by Lemmas 13 and 11. The second term of (39) is
n—1 |€‘ n+M—|[{|
( ) (lef) Z Uik 10
{=1-n
1 & n+M—|t—r|
T I CT N ()) B S N
t,r=1 k=0

B3 ()7 (14) /o2

{=—o00
because proceeding as with the proof of Lemma 13, we have that the second term of last dis-
played expression is o, (1) after observing that Condition 4 implies Zn+M ft=r] Vppft—r| =
0] (\t — r|2d1_1). It is worth mentioning that alternatively we could have used arguments
similar to those in (46).
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So, to complete the proof that the second moments of # > g xruj converge in prob-
ability to >-,° v, (1€]) v, (|¢]), we need to show that the first term of (39) is o, (1). But
this follows easily by Lemma 10. Indeed, this term is

1 a1 1o 2di—1 —1
gnﬁzxt«rr‘t—r‘ ' +ﬁzfxtl’r||t—7’! 0y (n7)

t,r=1 t,r=1
= §an + Op <n2d1_1>

=op(1)
because EW,? is, except multiplicative constants, equal to

n

1

2d;—1 2d;—1
2 > Yo ([t = 1)) va ([t2 = 72f) [t — 1] |ta — 12|
t1<7'1:2;t2<7”2:2
2 n
+ﬁ Z ’Yﬂc(’tl_T2’>7m(‘t2—Tlmtl—7”1\2d1_1\t2—7“2\2d1_1
t1 <r1=2ta<ry=2
1 n
+ﬁ Z cum (xtl;xt2;xr1;x7'2) ’tl - T1’2d1_1 ’tg — T2’2d1_1
t1<r1=2;to<rs=2
whichis O (1) since 21 + 2, — 1 < 0,7, (1) = O ([~ and
co 4
@D cum (1,3 20,) = kg ) [ @i ;=0 <J'd”_l) :

§=0¢=1

where £y , is the fourth cumulant of {g;},.,. Note that we could have invoked Lemma 13 to
reach the same conclusion.

We are left to show the Lindeberg’s condition. To that end, we notice that in view of (15),
we have that

1 n 1 n+M 1 n
* =~ * -~ *
12 > vy = 12 D Bsaghinr—s+ 12 PIEEL ARV
n t=1 n s=1 n =
where
n n+M—s+1
’1/3511 = Zﬁt+sxtI (S < M) + Z 19t+ssctI (M < 8)
t=1 t=1
n
(42) Vso= Y Vpsar.
t=s+1
So, a sufficient condition is that
n—+M 1 n
~ 4 4
@ 2 F @) 0 D E Beasianrs) =0p (1)
s=1 s=1

Now, the first term on the left of (43) is bounded by

1 n+M n+Mfs+1A 4
nf Z(Zﬂwrsl‘t) =+ Z ( Z ﬁtJrS:Et) Ky

s=1 s=M+1 t=1
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because E™* ( *4) K,,. We examine the first term being the second similarly handled. Now,
that term is bounded by

(44) > fj (i (Devs =91 xt> LSS (Z 19t+s:ct> )

s=1 \t=1 s=1

The second term of (44) has first moment

24 M n 2
3 Z Dty sVt 4572 ([t — 12])
s=1 \t1,t2=1
24 M n 4
—22 Z (Hﬁtﬁs) cum (3 ..., T, )
S =1 \i21
=o(1)

because s = O (s%~1) by Lemma 9 and Condition 4, , (s) = O (5?%~1) and (41). Recall
that 1 — 2d, — 2d; > 0.

Now, assuming for notational simplicity that ¥}y = 7, Lemma 1 implies that the first term
of (44) is bounded by

(E-oran) s o)

h=1 =1

(‘dl d1‘4 o lo g4H+4k> Z (Z’ﬁt—&—sxt’)

s=1

which s o, (1) taken H = 3 and Condition 3. Notice that (> " ; 9y psze|)* < B S |9t =
O, (n?). This concludes the proof that the first term on the left of (43) is oy, (1) K. Sim-
ilarly the second term on the left of (43) is o, (1) K,,. So using (34), we conclude that (in
probability)

R 6) Y (o, POEMGENOY 2 (ﬁ))
{=—00
since Y oo Ve (0) v, (0) = f fu(x)dFy; (X). This concludes the proof of the
proposition. I

THEOREM 2. Assuming Conditions 2 to 4, if di + 2d, < 1, (in probability)
1 .. d*
* () ::WZLﬁ(x)uf:g(x) reR.
t=1

PROOF. Since by Lemma 19, G (z) is tight, it suffices to show that the finite dimensional
distributions converge to a normal random variable with covariance structure given in (8).
The proof proceeds similarly to that in Proposition 8, after we notice that E (1, (z) 1, (z)) =

O <\t — s]4dm_2), given in Theorem 1. Indeed, we first notice that

n+M

J A 1 - .
(45) 7/ Z 1 t 1/2 Z n+M s W Z Us,2 (:E) Ent+M+s»
t=1 s=1
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where U1 () and U o () are defined as in (42) but with 2, being replaced by i; ().
Because independence of the sequence {¢; };'_;, the second moment of the second term on
the right of (45) is
AQ n AQ n R
72%2 Z Z 1 (2) 1, () 04— s0r_s
s=1t,r=s+1

~2 n n

6) FEST Y L@ @)y (Fe )

—|—% Z Z it (I’) ir (x) 7091&—3'1097"—8-

The first two terms on the right of (46) are oy, (1). Indeed, Lemma 8 implies that the second
term is

~2 n n
2NN @) L (@) DO (cn)
s=1t,r=s+1
~2 n n
+0, (n—l)%z > i @) 1 (@)D sV

o

since E (1; ()1, (x)) =0 <|t — r|4d‘”_2) and Lemma 9 implies that J; = O (t4+=1). Like-
wise, the first term on the right of (46) is O (n2d1*1 + Cn) K,,. So, the second moment of
second term on the right of (45) is

Agn

— t r—s s 2 m- +m
=y Z 1 (@) i (@) Uty + O (02 ) K

s=1t,r=s+1

Similarly the contribution of the second moment due to the first term on the right of (45) is,
then given by that of

~2 n s

(o ° ° o °
NS @) i @) ety + O (02 ) K
n s=1t,r=0
So, the last two displayed expressions imply that the second moment of the left side of (45)
is
29 MmN

EXN i@ ) dredhies (140, (1) Ko

s=1t,r=0

as 0° — 02 = op (1) by Hidalgo and Yajima’s (2002) Corollary 1. But the last displayed
expression is asymptotically

0_2 n . . . . n . 3
f Z {1t (@) 1r(y) — E (1t () 1r (y))} (Z ﬁr—sﬁt—5>
s=1

t,r=0
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2 n [e.e] oo
o . . . e oo
+ﬁ Z E (]-t (f) 1, (y)) {zﬂrsﬂts - Z ﬁrsﬂts} .
t,r=0 s=1 s=n+1

The second term converges to E (G () G (y)), whereas the first term is o, (1) by Lemma 13
because > o | p_sh_s = O (|t - r|2d1_1> and as indicated above ¥ = 9, (1 + 0(1)) by
Lemma 9. So, we have shown that the (bootstrap) second moment structure of the left hand
of (45) converges in probability to E (G (x) G (y)).

We are left to show the Lindeberg’s condition. Proceeding as with Proposition 8, it suffices
to show that

1 M n 4
(47) EZ (Z%sit (x)) =0, (1).

s=1 \t=1
Now the left side of the last displayed expression is

M n 4
(48) % z (Z (5t+s - 'lo9t+s> 1, (ZU)> Z (Z Vipsle (x )
s=1 \t=1 s§=

The second term of (48) is, except constants,

M
% Z <Z 19tJrslt Z Dt +sVt,+sE (11, (@)1, (@
s=1

t1<ta

M n
+$§j (Z)%ﬂ@ﬁALxmLAw—Eﬁh@ﬁhum)
s=1

t1<t2

The first term of the last displayed expression is 0, (1) as E (1, (z) 14, (z)) =0 (\tl - t2\4d”_2>
and Ei;l (z) < C. The second term is also o (1) by Lemma 13 because Lemma 9 and Condi-
tion 4 imply that
‘tg - tl‘l_le
It + )% |to + 5
2d,—1

< ¢ ‘tz 1 tj‘ d,

s,

< C ’tQ o tl’le_l

‘791514-8791524-8 1—d;

and Zé\i 1 82872 < C. The first term of (48) is also 0, (1) arguing as in the proof of Propo-
sition 8, i.e. (44), so (47) holds true and hence (in probability)

G (2) SN (0,E (G (x)))

This concludes the proof of the theorem.

PROPOSITION 9.  Assuming Conditions 2 to 4 with {x},., being Gaussian, we have
that uniformly in x € R, if dy + 2d, < 1, (in probability)

() 22T (@) =G (2) +opr (1),

() @ (2T (@) S ¢ (G (@),

for any continuous functional ¢ (-) : R — R,
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PROOF. Part (a). Proceeding as in Proposition 5,

. 1A |G A
E(iﬁ)zntzllt(ﬂ?)ut—ntzllt(év)tzlut
IO 1 1 «
—(B =8 { t(x)xt—nzlt(fﬂ)zfﬂt}
=1 t—1 t—1

sup

By Propositions 7 and/or 8, B —B= Op (n_1/2 + nd=Fth=1T (d, + dy >1/2)). Also, be-
1~
52 1@
T€R

cause dq + 2d, < 1, we have
1 g * -1/2
- E Uz | = 0p (n )
t=1 t=1

since (35) implies that >0 14 (2) = (n1/2I(dI <1/4) +n*=T(d, >1/4)) K,, and
Sor_uf = Ope (n'/2+%) as a consequence of Proposition 7. So using (37), we conclude
that, uniformly in x € R,

T @)= > i) +op (n17)
t=1

since dj + 2d, < 1, and the conclusion follows by Theorem 2.
Part (b) follows by part (a) and the continuous mapping theorem. §

1.2. APPENDIX B.

LEMMA 1. Forany H > 3 and under Condition 1, we have that if dy > 0

%kfﬂk = n h h N i H
() T = > (4 —di) gt () +Op<’d1—d1’ >1og k

Tk — Tk ~ (s b ) = H
(b) o Z(dl_d1> gy, (d1) +Op(‘d1—d1‘ >10g k,

h=1

where gy, (dy) = d; ' + 2522 0=, whereas if dy = 0

© 7=+ 0, (|a[) <0, (|a]") ek

and the Oy, (o) is uniformly in k.

PROOF. We first notice that by definition, for any 0 < |d| < 1/2
(49) 7k (d) =i (d) mp—1(d), 71 (d)=d,

where
k—1-—d

e (d) = ’

; co(d)=1.
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We shall explicitly examine part (a), being part (b) identically handled. After standard alge-
bra, (49) implies that

. - ~ Te_
Tk — Tk =ck (di) (Th—1 — Tp—1) + <d1 *d1> %

Now recalling the solution of an equation in difference &), = k&)1 + hy is

k k—1 [ e—1'
(50) Eo={TIre | &+ D | 1] wop | s
p=2 (=1 \ p=0
—1'
where [[ =1if ¢ =0, we obtain that
p=0
R k k-1 [ e—1' ~
/ﬁk—ﬂk: (dl—d1> Hcp(dl) +Z H Ck,p(dl) ﬁ
p=2 {=1 \ p=0

k—1 ~
-~ 1 Tk—v¢ 1
1 = — — i
(@ -a)m (2 L)

because 7] — 7T = c?l — dj and by definition

k -1’
™
[T (@) Zf; [T crp(dr) =mr/mie.
p=2 b p=0

Now, because i’“—:i < K and 212:2—11 ‘k%e‘ < K log k, we conclude that

7 — 7 :o(‘cﬁ fdl‘wklog(kqtl)).

But the last displayed expression suggests that we can give better rates of convergence of
Tk — k. Indeed, using (51) and an obvious change of subindex, we have that

_ (74 1 SR 1
7Tk—7sz—<1— 1>7Tk: a+2mm

=0

—~ - L(7
- <d1—d1>7rk (9k(d1)+ez_;€ (wi_l))

Now, using recursively the right side of the last displayed expression for % — 1, we have
that

Tk — Tk iy h ~ H
= (dl - dl) gl (d1) +0 <’d1 - d1’ long> :
Tk h=1
which concludes the proof of part (a).
Now we examine part (c). After standard algebra, (49) implies that

.~ o~ k-1

T =Th-1— +d;

Th—1
k



19

So proceeding as with did in part (a), we have that

L kp_l k=2 efllk:—p—l .

Te=d; 5 +di ) (] el ey
p=2 (=0 \ p=0

1 Lk

kdl—i-kdlez_;%e

N B —~ |2

:%mgmo dl‘ ‘dl‘ log! k|,

for any H > 3. This completes the proof of the lemma. I

REMARK 1. The proof of part (c) can also be done after observing that
k= (k= 1)Rp-1+d
is a first order nonhomogeneous difference equation with constant coefficients by replacing
k7 by, say, K.

For the next lemma “a o< b” denotes K ~1a < b < Ka and 7, = 7, (c/l\2> and 7, = 71 (d2).

LEMMA 2. Forany H > 2 and Condition 1, we have that if 0 < |da| < 1/2

. h - HlogH
(a) ?k—Tk—<Z (dg—dg) gz(dg) Tk+0p<‘d2—d2‘ kig—dz>
h=1
where g, (da) (dz_ L4 log k:) for k large enough. When dy = 0, we have that
~ Ulog” k H log" k;
(b) rk_z g ’dQ‘ +0, (‘dQ—dg‘ gk )

PROOF. We begin with part (a). First using expression 8.93 in Gradshteyn and Ryzhik’s
(2000), forany 0 < |d| < 1/2,

(1 —2cos (w)t+1?) ZCk cos (

where the coefficients Cy, (z; d) satisfies the second order difference equation

52)  Cp(w;d) =20 (“Z‘l> Chr (:d) — (’”if”) Chs (x:d).

Now, using Elaydi’s (2005) expression (2.2.18), (52) has 2 linearly independent solutions
hi,1 and hy, 2, so that the homogeneous solution of (52) becomes

(53) Cy (x;d) = grhi,1 + g2hi.2,

where the coefficients g; and g2 depend on the initial conditions Cy (z;d) = 1 and C} (z;d) =
2dx.



20

On the other hand, it is known that

C(k+2d)T(d+1/2) (a-1/2,d-1/2) (2)
L2d)C(k+d+1/2)" * ’

Ck (z;d) =

where P,gdil/ 2d4-1/2) () denotes the Jacobi’s polynomials, see Gradshteyn and Ryzhik’s
(2000) 8.962(4). In addition, formulae 8.966 in Gradshteyn and Ryzhik’s (2000) yields that,
with & = cosw, for k large Oy (cosw;d) oc k%! cos (kw), which implies that hi,1, hi2 o<
k71 cos (kw).

Now by definition of 7, and 7 and using (52), standard algebra yields that

Tr— Tk = {QCOS (w) <k+c]l:—1> (Th-1—Tk-1) — <k+222_2> (Th—2 — Tk:—Q)}

~ 9 _ _
(54) + (dg — d2> Z {cos (W) Tgp—1 — Tr—2}

which is a nonhomogeneous second order difference equation with nonconstant coefficients.
Consider (54) but with the second term on the right replaced by (c?z - d2> 2 {cos (w) Tp-1 — Tr—2},

that is
k+do—1 k+2dy — 2
ap =4 2cos (w) ) KT Bl W el KU

~ 2
(55) + <d2 — d2> % {COS (w) Tk—1 — Tk_Q} ,
where we have abbreviated 7 — 7, by ag. It is known that the solution to (60) is
Qf =: Qg h + Ak p,

where ay, , and ay,, are respectively its homogeneous and particular solutions. From (52)
and because hy, 1, hy 2 o k%! cos (kw), we obtain that

dy —d dy — d
(56) ap.p X 2772 ) g1 o (kw) o 2 2 Th
’ do da

since the initial conditions for the difference equation (60) are given by

- dy —d
?1—71::a1:2(d2—d2)00s(w)::< 2d2 2)7'1

_ dy —d
72—72=ia2=< 2d2 2)(72+Tl)-

We now examine the behaviour of ay, ,. Using Elaydi’s (2005) Section 2.4.1, we have that

(57) akp = Cp1hr1 + Cp ol 2,
where
k—1
~ h'Q(COS(w) Tj_l —Tj_g)
(58) =—-2(dy—d S :
C1 ( 2 2> ]21 IWit

S

-1 hj’l (COS (w) ijl - ijg)

JWijs1

Ck,Q =2 (C/l\2 - d2)

=1

<
Il
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and where W;, 7 =0,1,2,..., denotes the Casoratian of hj 1 and hj 2, which satisfies the
recursive expression

So, because Ay, 1, hi 2 o< cos (kw) k%—1 we obtain that

Al hje(cos(w)Tj—1—Tj—2) g 1
(59) y 2 Ty oclogh, £=1,2,
= IVWi+1 =

which yields that ay, ,, given in (57) satisfies
g p X ((/i\g — dg) T log k.
Hence, the latter displayed expression and (56) imply that the solution to (60) satisfies
ay o (cfg — dg) {1+ logk} 7.

The lemma now proceeds by iteration as we did in the proof of Lemma 1 after we observe
that

G =2 T — Th = Qg p + @y + (Ck,l — <k71> hiq + (Ck,z - <k,2> g2,

where
E —Cpp=—2 (c/i\ —d ) sz hj2(cos(w)aj_1—a;2)
o S =1 Wit
Chz = o = =2 (Ao — o) § i (cos )51 —a52)
k,2 k,2 2 2 2 jo+1 ‘

We now examine part (b). The proof is similar to part (a). First when dz = 0, we have
that (54) becomes

Fo={ocos ) (F7 ) 7 - (Fo2) 500 1 2 feos (@) Far — 7as)

or equivalently,

9 N ~
(60) gr =2cos (W) gr—1 — Gr—2 + d2% {cos (W) Tp—1 —Tr—2}.

The proof now proceeds as that of part (a), if not easier, after observing that g, =
2cos (w) gr—1 — grk—o is a second order difference equation with constant coefficients, whose
characteristic roots are complex but with unit moduli. §

LEMMA 3. Under Condition 1, we have that for any integer H > 3
long

logH k
()@—fk—ékZHd "ol @)+ 0, (Hd |’ W);dl,dxa
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where d = (dy,ds), gi (||d]]) (HdH_l + logk),
O, (o) is uniformly in k.

a|| denotes the norm of the vector a and

PROOF. We begin with part (a). By definition, we have that

K
Ee—&=_ Rkt —TuTkr)

£=0

K K
=Y Tkt Fe—m) + Y 7 (Fhot—Thot)
=0

=0

K
+> Fe—m0) Frot = Thot) -

£=0

Now, using Lemmas 1 and 2, standard algebra yields that the right side of the last displayed
expression behaves as

H-1 R h k R H k
G Hd—dH S rheemegl (d) + Oy (Hd—d” 10%H’“>Z’T“W"
h=1 =0 =0

But because E?:o Tk_gﬂ'gg? (d) o log" k lezo Tr_eme = &, log" k and

! !
> kom0 T (k0=
=0 =0

e g—(dl/\(b)—l

>

we easily conclude part (a) by standard arguments.
Next, part (b) proceeds as with the proof of part (a), except that now

k k
Z | Th—eme| o Zﬂ_dl_l (k — 0)7%71 o p(ditda) =1
(=0 =0

This concludes the proof of the lemma. &
M M M M
For the next lemma we shall denote by {6,},_, and {5 g}e either {b¢},_, and {bg}z
=1 =
or {as}L, and {d,}1~,. The next lemma is an immediate consequence of Hidalgo and Ya-
jima’s (2002) Theorem 3 which we give for easy reference.

LEMMA 4. Under Conditions 1 to 3, we have that, uniformly in{ =1, ..., M,
M M
£ -3/2
5o 5= 3 st S 0, ().
p:l p=1
where Uy, ¢ | < K, {/imp}ﬁi | is a triangular array sequence of random variables such that
T
E ’Eﬁil /{n,pvn,&p‘ =0 (n™"/?) for any r > 2 such that E led)*" < oo, Ezzjyzl |Kon,p| =

0 (mil/Q) and E <Z£/i1 Kn,pUn,ty,p Z]]ovil “n,pvn,éz,p> =0 (n715|£2_é1‘)'
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REMARK 1. One consequence of Lemma 4 is that
M o~
(62) > (be—br) =0, (m12).
(=1

LEMMA S. Forany0<r <n,

n+M—rA R
(63) E* (ujuyy,) =62 Y OxOkr.
k=0

PROOF. The proof follows immediately from (9). Indeed, by construction
2

a2 3n |l n M ~
* * ok € irX; T T =il
E* (ujuiy,) = %Ze DTN D e
j=1 =0 £=0
3 M 2
a_g n - n—+ N s
_Ye Zew’)\j E ﬁke—zk/\j
3n 4
j=1 k=0

From here the proof of (63) is standard. i

Before we present the next lemma, we first observe that by definitions of ak and gﬁk in
(11) and (23) respectively, we have that

kAM kAM

) dp—dp= Y. Go@—a)+ > (Ekfé - €k4> a,  k<n.

{=1Vk—(n—M) L=1Vk—(n—M)
LEMMA 6. Under Conditions 1 and 3, we have that
(i) o — b =Sn,M + Sn Mg E<M
(ii) $k - ¢k = Sn,MEk— > M<k<n,
where ¢, pr = O, (m*1/2) and s, vr = O, (nfl/Q) independent of k.

PROOF. First we have that Lemma 3 and (64) yields that ak — ¢y =: by, is

) kAM s o
o= ) (ae—az){ﬁke{zud—du g (d)+0, <m2>}}
Z:l\/kf(nfM) h=0

kAM 3 R h 1o 4n
C S we S| oo (25)}
h=1

(=1Vk—(n—M)
We begin with part (i), so that leﬁ%kf(nfM) —: 3% .. When k < M, the contri-
bution of the second term on the right of the last displayed expression is O, (m_l/ 2) &

~ h
because Hd—dH =0, (m_h/Z), by Robinson (1995b) and Arteche (2000), and that
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S aky_y = O (&) since ag = O (£=3). Next the first term on the right of the last dis-
played expression, whose contribution is dominated by that of lezl (ag — ay) &;,_, because

HE— dH = 0, (m~1/2) independent of k. Now

k
(=1

k M M k
~ 1 -
Z (@e—ap) §—p = kafz Z Kn,pUn,tp + M Z [Finpl ¢+ Op (m 3/2) ka%
(=1 p=1 p=1 (=1

=0, (n_1/2> + 0, <m_3/2)

because
2

k M k
-1 -1
E ZZ‘Sk—Z“n,pvn,&p =Kn Z e,y Ek—,Sk—t, = K077,

=1 p:l 61752:1

since Yoy & ¢ < K and M2 & oS0 [ pnep] = Op (M~1m™1/2). Now we
conclude by Condition 3.

Next part (if). When M < k < n — M, it proceeds as with the proof of part (i), although
now we use that

M
K M
o E e, |8 k—0,§k—t, = O (n 5%M>

61,62:1

M M | M
M ka—é Z |Knp| = Op (m_1/2> M ka—e =0p (m_1/2> Ek—n-
=1 p=1 =1

Finally, when n — M < k < n the proof follows similarly as before with standard modifi-
cations after we notice that we have that Z?ﬁ%k_(n_M) =: Zﬁlvk_(n_M). 1

REMARK 2. A consequence of Lemma 6 together with (62) is that

(65) sup gAtk — d)k’ =0, (m*1/2> .

k=1,....,mn

The next lemma examines the behaviour of

k
O — O = Z §p_rQps M<k<n—M
=M+1
k—(n—M) k
(66) =- El—rar — Z Ek—0 n—M<k<n.
=0 (=M+1

LEMMA 7. Under Condition 1, we have that
(i) %k—%:O(M*g/z)&k, M<k<n—-M

(i) ¢p— b =0(1)&, n—M<k<n.
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PROOF. We begin with part (i). When M < k < 2M, we have that

k
> Ga=0 (M) =0 (Mg

{=M+1

by Condition 1 and that M —3/2 < M~1=% = O (¢,.), whereas when 2M < k <n — M, we
have that

k k/2 k
Yo Gar=4 >+ > p &
=M+1 (=M+1  ¢=k/2+1

= &0 (M) +0 (k%) =0 (M_3/2) &

This concludes the proof of part (i). Next, part (ii). The right side of the equality is

k—(n—M) k/2 k
— > mhar— Y Eppar— Y Epea
/=0 {=M+1 l=k/2+1
k—(n—M) k/2
=&enO | X ol | +€p0 | D2 larl | +O(K79).
(=0 {=M+1

From here the conclusion is standard because |£n,M/£k‘ + ‘é’k/g/é’k‘ <K.1

Before we present the next lemma, we first observe that by definition of @k and 19k; in (13)
and (14) respectively, we have that

. kAM % KAM -
67)  Op—Uh= ) &y (be—be) + > (Eme = Ee) brs 1<k<n+M
=1 =1

LEMMA 8. Under Conditions 1 and 3, we have that

kAM
(i) @k—{ékzng_g@—bo+(<n+op(n*1))ék 0<k<M
=0

kAM
(i) Dr—Vh= &y (Ee—be) +(ontop (NG M<k<n+M,
/=0

where ¢, = O), (m_l/ 2) independent of k.

PROOF. First we have that Lemma 1 yields that

-in=3 (i) {a |-l b s+ on o
h=0

RAM 3.
(68) + Z befk—é{ZHd—dH gr_y(d) +op (nl)}
=1 h=1
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We begin with part (/). The contribution due to the second term on the right of (68) is

befk ¢

because by = O (£73) and &), = (k(dlAdQ)‘l). From here we conclude because the first

(sn+0p (n (nt0p(n71)) &

term is dominated by Zfﬁéw Sy (gg — bg).
We next examined part (i7). But it follows by the same arguments as those for part (i),
except that now )Z§=1 bgfk_gl = K&, ;. This concludes the proof of the lemma. §

REMARK 3. It is obvious to see that one consequence of the previous lemma together
with (62) is that

(69) sup
k=1,....,m

ﬂk‘ =0, (m_1/2> .

Before we present the next lemma, we first observe that by definition of ¥, in Condition 1
and U, in (14) respectively, we have that

Kk
109k—19k: Z Zk,gbg, M<k<n
{=M+1
k—ni k _
(70) :—ng_gbg— Z fk_gbf, TL<1€§TL+M
/= (=M+1
LEMMA 9. Under Condition 1, we have that
(i) Op — =0 (M72)E, M<k<n
(ii) Dy — 9% =0(1)& n<k<n+ M.

PROOF. We begin with part (7). When M < k < 2M, we have that

k
Z Ek,gbg =0 (M(d1/\d2)—3> -0 (M—2) M(dl/\dz)—l -0 (M_Q) fk
(=M+1

by Condition 1, whereas when 2M < k <n — M, we have that

K k/2
D Gbi=3 >+ Z Th—ebe
(=M+1 (=M+1  =k/2+1

— Ek/go (M_2) +0 <k(d1/\d2)—3> -0 (M_2) Ek

This concludes the proof of part (7). Next, part (ii). The right side of the equality is

k—(n—M) k/2
Z Ehoebe— D Ehgbe— Z Ep—rbe
(=M+1 =k/2+1
k—(n—M) k/2
=¢, 0 Z be| | + €20 Z bkl | + O (K72).
=0 (=M+1

From here the conclusion proceeds as that of Lemma 7. I
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LEMMA 10. Under Conditions 1 to 3, we have that for 0 < p <n,

M-1
(i) Z (’E‘kﬁkﬂg - 19k19k+p> =(Sn+sn)Vp+o0p (nil) hyp
k=0
ntM-p Mo
(ii) (ﬁwk+p - ﬁm+p) — {Z (bZ - bg) + gn} hy + 0p (n™Y) by,
k=M (=1

where {hy} -, is a sequence such that hy, = O (p2(d1/\d2)_1) and where ¢, = O, (m_1/2)

and S, = O) (m_l/ 2log n) independent of p.

PROOF. We begin with part (i), which standard algebra yields that the left side is

(1)
n+M—p N i = i n+M—p ) = i n+M—p i . )
ST (=) (Fesp =)+ 30 Oy (D= 00) + 30 0 (Derp—Vny)
k=M k=M k=M

We shall examine the third term of (71), the first two terms are similarly handled. By
Lemma 8, this term is

Mo n+M-p n+M-p n+M-p
S (be=b) > Wit Y Wicarptor ()| D s,
=1 k=M k=M k=M
M ~
= {Z (bg — bz) + cn} hyp + 0p (nil) hp.
(=1

Next we examine part (). The left side is

M—1 M-1 M-1
Z (Ek - 1091@) <5k+p - ;9k+p> + Z Oy, (5k+p - 1091<:+p) + Z 1O9k+p (;91@ — ’31@> .
k=0 k=0 k=0

We only examine the third term, the first two terms are similarly handled. Again, using
Lemma 8, this term is

M-1 k % M-1 M-1

72 D Ok > e <b£ - bz) +on > Ukapli +0p (071) [ D Drapli
k=0 =1 k=0 k=0

Now, by an obvious change of subindexes, the first term of the last displayed expression is

M M-1 M
Z (Eg B be) & Z et = thMZ @e - be) !
k=t =1

(=1

:’gvnhp,

which by Lemma 4, ¢,, = O, (m_l/ 2log M ) This concludes the proof of the lemma. §

LEMMA 11. Under Conditions 2 to 4, we have that for any 0 < p <n,

n+M-—p

Z <19k19k+p - {ék&kﬂ)) =0 (M_Q) pAdind2)—1
k=0
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PROOF. The left side of the last displayed expression is

M o n+M—p L.
S (I0hp = Dty + D (O60hrp — Dy
k=0 k=M+1

The first term of the last displayed expression is Ziw:M_p <z9k+p — 109;C+p) =0 (M_Q) pAdindz)—1

because U, = 79k if K < M and Lemma 9.
So, it remains to examine the behaviour of the second term of the last displayed expression,
which standard algebra yields

n+M—p n+M—p

Z (ﬁk—&-p - 109k+p) Vg + Z (ﬂk - ék) ﬁkﬁ-p
k=M+1 k=M+1

n+M—p
S5 (0 0) (9he ).

k=M+1

Again Lemma 9 will imply that, by standard algebra, the last displayed expression is also
1) (M—Q) p2dindz)=1 g

Let’s introduce some notation.

Otk [it} =F [it | ]-}_k] - F [it | ]-}_k_l], where we abbreviate 1; () by i,. E (o)
denotes the expectation of the random variable that precedes, for instance, in n¢ — E (o),
E (o) stands for F (n¢). In addition for a generic function g (z), we shall denote g (y; ) =
g (y) — g (z). And finally F; and J; denote respectively the o-algebras of events generated
by {0s,s <t} and {e5,s <t}.

LEMMA 12. Under Conditions 2 and 4 and dy + 2d; < 1, G, (x) is tight.

PROOF. First, denoting ¢ () = (1t () — E (1¢ (2) | Fim1)) we,

1< 1 s
gn(:l}) = Wzgt(x) + WZE(].t(IB) ‘ .7:,5_1)ut
t=1 t=1

=:A4,(z)+ B, (z).

Because ¢; () is a martingale difference with respect to F;_1 U J;—1, we have that Lemma
14 of Wu (2003) implies that for each €, > 0, there exists a ¢ > 0, such that

(73) Pr{ sup |A, (z;y)] > e} <,
lz—y|<é

which implies that A,, (z) is tight by Billingsley’s (1968) Theorem 8.3.
We next examine the tightness of B,, (z). To that end, write

1 n 1 —N+1
Bn(ac):m Z US(.%)ES—FW Z vs ()€
s=—N §=—00

= Bp1 (z) + Bpa (2),

where vg () =Y | F (it () | ]-"t,l) 1;_s with the convention that ¥;_, = 0if t < s and
N is to be chosen later. We now proceed similarly as in the proof of Wu’s (2003) Theorem
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3. That is, using Wu’s (2003) Lemma 4,

Bn 2 Bn 2 2Bn 2
Esupm §2/E82(x) dx+2/E82(x) dz.
x Ox R ox R 0%z
Because {&},;, are iid(0,02), we have that
2 N+1 7 2
/E'aBn2 (z)]? / (x) | Fi-1) o, | dn.
R (9:13 oo R ZE

Now using Lemma 11 and expression (42) in Lemma 12 of Wu (2003) but with L (-; s), or
J (+; 8), there being replaced by F (1,5 (y) | ]-'t,l) %:_s and noticing that his quantity A, =: 8,,
3/2

is O (gon ) in our case, it implies that the right side of the last displayed expression is
bounded by

—N+l n

(74) - Z S Y @l =0,

5=—00j=—00 \{¢=max(1,5)

when N 7 oo as we now show. Indeed when 2d, > dy, Condition 1 implies that the left side
of (74) is

2
n

1 1
KZ Z Z iy 1—d; (t—j+ 1)3/2(1—(130)

" 0% \t=max(1.j) (t—=j+s) ¢
o 2
11 < - 1
<K Z s+ p Z Z (t — .)1+</2 ’
s=N j=—00 \t=max(1,j) J

where ¢ =1 — 2d, — d; > 0 by assumption. When 2d, < dj, it implies that d, < 1/4 in
which case the left side of the last displayed expression is

2
n n

" 1 1 1
doamn 2| X oo
s=N j=—00 \t=max(1,j (t_j)
- - X ’.7)

with ¢ =1 — 4d,,. Thus (74) holds true. Similarly

028 2
/RE ng(x) dr=o0(1).
Hence, because | By (z) — Bpa2 (y)| < |z — y|sup,cg ‘8]352( 2) 2 ()

is tight. Finally, we need to show the tightness of B,,; (z) which follows similarly as that of
By (z), with the only difference that for instance we have now that

2
/ E ‘8Bn1 (2) dr =
R 8.%'

So B, (x) is tight and then so it is G, (x).

2

Ky - 3/2
n Z Z Z i1 Vt—jr1—s | < K.
S

=—N j=—00 \t=max(1,j)
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We now examine a series of lemmas which are needed to show the validity of G (x).
Lemmas 13 and 16 will show that

1 . .
(75) EZE* (uju?) {115 — E(0)} =0, (1).
t<s

A consequence of (75) is that

n 2
1 .
E* (Tﬂ/?;ltu:> SCOU (G(x),G(x))

given in (8). Finally Lemma 19 shows the tightness of G (x). It is worth noticing that
Yy (1) = Cr?h =1 as 7 0o by Condition 4.

LEMMA 13. Under Conditions 2 to 4, we have that for any sequence h(t) such that
h(t)=0 (t*»~1),t>1, h(0) =1,
2
1 e o
(76) E ﬁZh(@—tl){hth—E(o)} =o0(1).

t1<to

. 2o\ 2
PROOF. First, because £/ (nfl oy 1? - F (1;52 )> — 0 by ergodicity, it suffices to ex-
amine (76) for ¢1 < t2 only, that is

o0

% Z h(ty —t1) Z (Pt =k, [itl] Oty—ks [itg] — E(0))

t1<to k1,k2=0

] . .
== Z h(t2 —t1) o, [14,] 0t [14,]

t1<to

£ S bt =) D (o [i] o [1n] - B (0))

t1<ts k=1
1 oo
+— Z h(tQ _tl) Z (ptl [ltl] §to—ks [1t2} - E(O))
" t1<t2 kgzl
1 = . .
+— Z h(tQ - tl) Z (ptlfkl |:1t1] Pto—ko [1t2] - E(O))
" t1<to ki,ke=1

=:Ap + Apo + Apz + Apa,
after observing that by martingale difference, E { @, [11,] ¢, [11.]} = 0 if t1 < to. The

conclusion follows by Lemmas 14 and 15. Notice that the contributions due to A,,2 and A3
into the left side of (76) follow similarly to that of A, if not easier. i
LEMMA 14. EAZ =o0(1).

PROOF. Because gy [1] is a martingale difference, EA2, is

1 ; 1 grs 1y 2
(77 o) Z E (o1, [14,] 01, [11,] 07, [11.]) th(tz —t2i-1).,

t1,t3<to
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where we shall take = = 0 without loss of generality to simplify the notation. Now from the
definition of 1, in (6), we have that

(78) pr [1e] = (L= E(1¢ | Fer)) + £ (0) 01,
so that (77) becomes

2
1 o R
ﬁ Z E (ptl [1t1] Pts [1753} E(ltz ‘ ‘Ft2_1)) Hh(tQ - t27j—1)
t1,t3<to =1
1 ) 2
7? Z E (ptl [1t1] O, [1t3] E2 (1t2 ‘ ]:t2*1)) Hh(t2 - t2i*1)
t1,t3<t2 i=1
2
21 (0 o o
(79) + J;(Q ) Z E (o1, [10,] 01, [11,] 11,04,) Hh(tz —t2i-1)
t17t3<t2 l:1
£2(0) -
0 Z E (1, [11,] 91, [14,]) Eof, Hh (t2 —t2i-1).
t1,t3<ta =1

It suffices to consider only the sums for ¢; < ¢3. The fourth term of (79) is easily seen to be
o(1) because F (o, 11, ] 0. [1.]1) =0 (It —t1 4da=2) and 1 > 2d,, + dy. Next, denotin
(1) ou (L] 015 [ g

(80) E (1,8, | Fioo1) = F —ngtz—e ,
>1

the third term of (79) is, after standard algebra, proportional to
1 R o 4~ 2
81 — E 1 1, | F | — h(to —toi—1) | -
(81) 2 Z on [1e] o1, [1t] ZW%% (};[1 (t2 — t2; 1))
t, <ts<ts >1

Now because g, [its] is a martingale difference,

E | on, [11,] o1, [10,] F|- Z 01, ¢ | | =0,
215t~

and hence Taylor’s expansion of F (-) implies that (81) is

% Z {(ptZ_tgv(tl,tQ,tg) <i12[1h(t2—t2i_1)>}

t1 <t3<t>
K 2
(82) t5 D, (—ta)* P [T h(te —tai1)
1 <tz<ts =1
1 2 2d;—1
=— Z Ot,—t,V (tl,tz,tg) H h (tQ — tQi_l) + 0 (n ! )
n t1<t3<t> =1
using that ¢, = O (t% ') and where
v(ti,ta,ts) = E | on, [10] o1, [14,] 0, FY | — Z PO, ¢

£2>157#ta—13
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with F( (s) = 9O F (s) /9s® for £ =1,2,.... Because 2d, + di — 1 < 0, it suffices to
examine the first term on the right of (82) for ¢; < ¢3 which, except multiplicative constants,
is

Z Pty—ts H h(ty —tai1) E | or, [1t,] FO | - Z P01, 4

t1<t3<t2 0>1;Ft—t3

(83) +E | o, [11,] F Z@e@td_e F | - Z P, 0 ;
>1 0>1 7t

using (78) and (80). Again as gy, [itl] is a martingale difference,

tz*tlfl
E tq [itl] F(l) - Z PeOt,—r =0,
L2142 13
so that Taylor’s expansion implies that
E | o1 [itl]F(l) - Z POty
L2157t~
2
B ta—t1—1
=E (o, 1] FP = Y wwono| D no| +E| D w0n
ng;#tQ—ta fztg—tl eztz—tl
2
. tg*tlfl
=0, 0B | o [1,] F? | - Z ©e0, 0 | 0y | HE Z e,
Ezl,#tzftg ZZtgftl

-0 ((t2 - tl)zdm*) .

So, because 1 — 2d,, — d; > 0, we conclude that the first term of (83) is

1 1
n2 Z 2-d,—2d; 5=ad,—q, = °(1)-
n t<tz<ts (t2 - ts) ) (t2 - tl) g

Next the behaviour of the second term of (83). By Taylor’s expansion of Fa ( > 013t —ts QDthz_g) -

FO) <_ 222?"71 00, — 5) , the expectation factor is, except multiplicative constants,
E £ty 1t1 Zgofgtg,
>1
(84) +E | o, [10] F Z@e@m ¢ Z Pe0t,—
>1 >ty —ta+1
2
+E [ o, 14, F ngtg_g Z P, —t

£>1 >t —t3+1
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Now the third term of (84) is O ((tg —t3+ 1)2d”_1) so that its contribution into the the
second term of (83) is

1 1
ﬁ Z (t2 - t3)3—3dz—2d1 (t2 - t1)1_2d1 =0 (1)

t1<tz3<ta

because 1 — 2d,, — d; > 0. Now because

E @tl 1 Z‘Pf@tre -F|- Z POty S Koy, oy,

the contribution of the first term of (84) into the second term of (83) is also o (1). Notice that

E (ptl [i,]F ( D i1ttty POty )) = 0. Finally the contribution of the second term

of (84) into the second term of (83) is also o (1) proceeding similarly.

So, to complete the proof of the lemma, it suffices to show that the second term of (79) is
o (1), since the first term of (79) is similarly handled. Now, by Taylor’s expansion, we obtain
that the second term of (79) is

% Z <12[ h(t2 — t2z’—1)> E{ o, [1t,] o, [14,]

t1<tz<ta2 =1

(1 2 2
< |LEL D" v | + 000 PV Y w0 | + Kot 00
L2215t~ (2>1;#t—1s

= ) s, H ha (t2 = t2i1) E {pr, [10,] o1, [10] o1,

t1<t3<t2

xFl Y e FO{ D won
>1;#t2—13 £2>157#ta—13

+o(1)

2
because >, _; 4 07 s, [T h(tz—tai1) =0 (n'*24). Now proceed similarly again as

i=1
we did with the first term of (82) but with F(!) (s) replaced by F (s) F(!) (s) there, to con-
clude that the right side of the last displayed expression is o (1). This finishes the proof of the
lemma. &

LEMMA 15. EA%, =0(1).

PROOF. Now by standard inequalities £ A2, is bounded by

0 2
(85) E (711 Do hlta—t0)d (o [1n] or - [{n] - E(O)))
k=1

t1<to
2
1 - —
S hte-t) D+ D> bk [Tn] e, [1e]
t) <to k1,k2=1; ki,ka=1;

ti—k1<to—ky to—ko<ti—ki
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Before we examine (85), we introduce the following notation in the spirit of that given in
Wu’s (2003) Lemma 9. Define

1
(86) Ricte (L] = prok [Li] + pporp BV [ — > rin0k—
=1

./\/l,gl_)k [it] = F,gl) <— Z Wg@pg) - K <F]£1) <— Z @ZQt—E))
>k >k

(87) Y < > v g>

>k
where F}, (2) = B (Z (x; < 2) | Fi_i) and F®) (2) = 0'F (2) /92". Observe that E (F (=Y iak o0 4))
FM(0).
By definition, we have that
(88) Pt—k [it} =Ry [14] — SOth—kMil—)k [it] ’

where according to Wu ’s (2003) Lemma 9 and expression (37) there, we have that

(89) E|Ry_i [1]]7 < Kk2a(d=m1)

q
= (4
) (— ZWQH>
>k

We first show the first term of (85) is o (1), for which it suffices to show that this is the
case, using (88), for the next two displayed expressions

- 2
On ( Z h(tas —t1) Z (Rt —x [16, ) Rey—r [12,] — E(°))>

t1<to =1

(90) < KkUd==12) y—1 2 3.

~ 2
1 o
E (n Z h(t2 —t1) Z@k@trtﬁk (@?l_k/\/lﬁf)_k 1] M,El) 1] - E(°)>) :

t1 <t k=1

The second term in (91), using notation in (87), is bounded by

{ Z h(tz —t1) Z@k@tz tit+k

t1<t2

2
X ((@tzl—k - ‘73) F/gl) (Z ¢€Qt1—£> Fif;l) (Z Pltts—ty Qu—f))] }
>k >k

+2E{ 2" h(ty —t) Z%%g titk

t1<ta

2
X <F/€(1) (Z g05@751—€> Fkgl) <Z Soﬁ-‘rtz—h Qt1—£> - E(O))]
>k >k
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Because Q?l_ P az, is 7¢d, it is easy to show that the first term of the last displayed ex-

pression is o (1), after one notices that Y5 ; [¢r@s, ¢, 11| = O <\t2 - tl\gd’_1>, whereas
the second term, except constants, equals

1 2 -
-3 Z Hh(t%_t?i—l) Z Py Pto—tq+ky Phs Pta—ts+ks

t1<ta; =1 ki,k3=1
t3<ty

{ { (Z w@tl_e> IS (Z w@tg_e) }
0>k 0>ks

=(1
Z Pltt—t, Qt1€> F,ﬁs) (Z W+t4t30t3£> }

>k £>ks

(1 = (1
+E{ 1) (Z @(Qtl_g> Flgd) (Z <p€+t4—t3Qt3—Z> }
0>k 0>ks

Z Pitts—t, Qt1€> V;S) (Z WQ@E) }

0>k

92)

xXFE
0>k3

+Cum (F}S;j (Zbk‘l Wgtlff) ;ﬁ:]gll) (Z€>k1 80€+t27t19tf€) ;) } '
Fkg) (Z€>k3 @thS_g) ;Fkg) (Zbka gp€+t4_tagt3_£)

We examine the scenario t; — k1 < t3 — k3, being similarly handled when t3 — k3 < t1 — k.
Using that

(1 1
(93) E(F,ﬁj(Zwets_e) \ftl-h!) TR B SN,

0>ks >t —t1+k1

we obtain that

1 1
(94) E|FY (Z sowts_e> F ol Y won

0>ks 2>tz —t1+ky

2

=0 ((tg —t1+ k1)3(d‘171))
see Wu (2003) and then Cauchy-Schwarz inequality together with (90), we have that

E {F;ﬁl) (Z QOEQhE) £y (Z wgtge> }
0>k 0>ks

(95) = <Z PrOt, — é) ta—t1 4k Z QDEthfE

0>k L>ts—t1+ky

—O<k 1/2(3—t1+k1)dm_1/2>.

So, the contribution of the first and second terms of (92) is bounded by

oo
Z H h t2z — toi— 1) Z {Sokl Pto—t14ky PhsPta—ts+ks
t1<t2727 k1,ks=1;

t3<ty t1—ki1<ts—ks
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iniw—l/2 (t3 —t1 4+ kl)dw_lﬂ (t4 —t1+ kl)dw_1/2 (tg — 11+ k)l)dm_lﬂ}

o0

1 1 1
" t;g; (b = 10) 720 (1 — t5)' " kl%::h ks (t — ts + ks) T
t3<ty ti—k1<ts—ks
y 1
—2d, —d, —d, “o2d,
T2 (g )2 (b — g 4 )P (b — o+ KPP

which is 0 (1) by standard algebra using the fact that 1 = 2d,, + d; + v for some v > 0.
Next we examine the contribution due to the cumulant. For that purpose, by standard
algebra and the definition of the fourth cumulant, we have that it is

C’um( (Z€>k1 Petto—t, 9t — z) lgll))(zf>t3—t1+k1 W+t4t39t3£)5>
(Z€>k1 Pe0t, — ) ks (Zz>t3—t1+k1 ‘Pé@ts—ﬁ)

Fkgll) (Ze>k1 Pett,—t, Qtl—f) ) V(l) (Z€>k1 @é@tl_g) ;

(96) + Cum (1) (Ef>t3 t1+k1 80€+t4 —t3 Qts—é)
(1) J2i0)
(Zz>k3 Wé’ts%) L (Z€>t3 t+k WQtH)

(Z€>k1 Pett,—t, Qtl—e) 1 (Z€>k1 ‘Pthl—e) ;
+Cum s (1 /53 (Z€>t3 t1+k1 @Z@ts )
Fkg) (Z€>k3 Pty —tsOts—0 ) k(;a) (Z€>t3—t1+k1 Pott,—ts ‘Qt3—£)

~11 (Zé>k1 Petts—t, 0t — ) F 1 (2K>k1 Wgtl—e)
+Cum o 1 F( (E€>k3 @(Qt:;_f) (2 (Ze>t3 t1+k1 S04‘9153—6)
F, /53 (Zé>k3 Podt,—ts Oty ) Fy (Z£>t3 t1+ky Pltta—tsQts— )

Because
4

97) cum (ze,, 2ty 2ty 2t,) = E H zt, — 3E (z1,21,) B (21, 21,) »

=1
and (93) — (94), the contribution of the first term of (96) into the third term of (92) is o (1)
using (90), whereas the contribution due to the second term of (96) is also o (1) after we
notice that mean value theorem that cum (z,, 21, , 2t,, 2t,v) = 0 if v is independent of z,,
implies that the second term of (96) is

v (1 (1
F’El) (Zf>k1 SOZ-F&-M?&)—Z) ’Flgx) (Z€=t3*t1+k1 Pott,—ts Qt:s—f) )
Cum Fk1 (Zbkl Sgthlfe) ;
3—t1 kl I 3
(Zé:ktg - Pltts—ts Qt3—£> Flgd) (Z€>k3 @Egts—é)
and then that for instance

(Z Pltts—t;0ts— ) F/ij( Z W+t4—t3Qt3—z>

0>ks I>t3—t1+ky

q

ts—ti1+k

E Potts—ts0ts—0

0>k3

=0 ((ta — ts + k)12,

<CFE
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Likewise the contribution due to the third and fourth are also o (1). So, this finishes the

proof that the second term in (91) is o (1).
Next we examine the first term in (91), which is

L (e )

t1<ta; =1
t3<ty

X Z {E (Rtlfkl [1751} Rts*’% [1753]) E (Rtlfkl [1?52} Rt3*k3 [1t4])
ki,k3=1
+E (Rtl_kl [1t1] Rts—ks [1754]) E (Rtl_kl [1752} Rts—ks [1753])
+Cum (Rtlfkl [1t1] ;,R’tlfkl [1t2] ;,R’ts.*k:; [1t3] ;’R’t3*k3 [1754})}} .

Because R [1¢] is a martingale difference, the first and second terms are different than

(98)

zero only if t; — k1 = t3 — ks, in which case is

1 2 >
s > Il h(tai—t2i1)Y E(Ry—x 16 Rey—k [11,])) E (Re, —k [11,] Re, i [11,])
t1<t2§i:1 k=1

t3<ty
which is o(1). Indeed, (89) and Cauchy-Schwarz inequality imply that the last displayed

expression is bounded by

1 { 1
n? 1—2d, 1—2d,
" t1<tasts<ta (t2 - tl) (t4 — t3)

o0

1

X

; Rl (k 4t — ) % (b ta— )" (k+ta— 1) ™%

1

22D
) 2—2d,—2d 1—2d 1—d, 1—d,
h<tota<t, (t2 — 1) Pt —t3) T (ta—ta) " (ta — 1)

n 2
1
<Z r2—2d,—2d, ) =o(1)

IN

IN
S

t=1
because d; + 2d,; < 1. Assuming that ¢; — k1 < t3 — k3 without loss of generality, the third

term of (98) is also o (1). Indeed, observing that if we replace Ry, _, [1¢,] by

tg—tl-‘rkl—l tg—tl-‘rkl—l
é:kg sz’g-‘r].

£:k3+1
there, the cumulant is zero as the last displayed expression is independent of Ry, _, [14,],
Ry, —k, [1t,] and Ry, i, [14,]. So we have then that the cumulant is

tgftl +k31 —1
F(l)
T Phs+ty—ts Otg—ks L'y Potta—t30t3—0 | »

Cum (Re, —ky [16,]5 Rty [L2]5 Rty V1] Ry [11a] = Gty [L1]) -
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. 0o .
But Rts—ks [1t4} — Gt3—ks [1t4] 18 z£:t3_t1+k1 Potty—t30ts—1 times

1) ts—ti+k1—1 ) tz—t1+ki—1
1 1
B, < Z Perty—ts th—e> —Fia ( Z Pltta—ts 9t3—€>

£:k3 Z:kg-‘rl

ts—t1 +k’1—1
#®
T Plhatty—ts Ots—ks ks Potty—tsOts—0
l=ks+1

2q(d,—1)

by Taylor’s expansion, and whose gth moment is O ((t4 —t3+ k3) ) by routine ex-

tension of (33) to (35) of Wu (2003). So, proceeding as we did with the contribution due
to the cumulant in expression (92) yields that the third term of (98) is also o(1). So, this
finishes that the first term of (91), and hence the first term of (85), is o, (1).

To complete the proof of the lemma, we have to show that the second term of (85) is 0 (1).
We shall only examine explicitly the contribution due to the first sum, being the second term
identically handled. Now because [it] is a martingale difference, the term is

1 2
— Z {( h(tQi_t%—l))
n t1<t2; 1:1

t3<ty
99) Z {E (0t,-1: [102] 0ts—1s [11s]) B (0t0—rs [102] 011k [102])
Ky ks ka=1;

ti—k1<ts—ky
ts—ks<ts—ka

o

+Cum (@tl—kl [ 1] s §ts—ks [itg] s 9t —ky [itz] s 0ts—ky [LJ)}}-

t
The first term is clearly o (1), proceeding as with the first term in (85) after we notice that
E (@tl—kl [itl] Ots—ks [itg]) = 0 unless t; — k1 = t3 — ks, say. It goes without saying that
we have taken without loss of generality that ¢4 — kg4 < t5. If otherwise, we would have
considered the same expression but reversing the roles of the subindeces 4 and 2.

So, to complete the proof of the lemma we are left to examine the contribution due to the
cumulant is o (1), which in view of (90) it suffices to do so for

(100) Cum (Rtl—kl [1751] ;Rtg—ks [1753] ;Rt4—k4 [1752] ;Rt4—k4 [1754])
1 e 1 e
gOkl(‘0/743s0]€4<'0t2*t4+k4C’u’rn (QtlfklMi(fl)—k’l [1t1] ;QtsfksMgg)—kg [1t3] 3
(101) oM, [ s0n e MU [10])

Because (89), (97), Holder’s inequality and ¢4 — to < k4, the contribution due to (100) is

% > <12[h(t2z‘—t2i1)>

t<ta<ts<t, M=l

1 1
X Z 2(1-d,)  2(1—d.) Z
3

2(1—d, 2(1—d,
s K1 tata<ha k?4( V(g — g+ ky) 2170

K 1
<5 D
) 1—2d 1-2d 3—4d,
N7 lote<ts (2 —11) 'ty —t3) 'ty —t2)

which is 0 (1) because di + 2d, —1 <0 and h (t) = O (£*~1).
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Finally the contribution due to (101). We shall examine the case when ¢, — ki # t3 — k3
and assume that t; — k1 < t3 — k3, being the case t3 — k3 < t; — k1 symmetrically handled
and when t; — k; = t3 — k3 it follows by identical if not easier arguments. For that purpose
we shall use very often that for any twice continuous differentiable function g (-) we have
that

q

1
Elg(Y wwie|—a| D wore|—vn0-09| D e
>0 0> 05020 0> 05020

q

(102) =0 () Elg® | X e
00044,

and the observation that the cumulant factor in (101) is 03 times

o

103) B (oo My, [10] oMY, e MY, ] MY, [10])
When t; — k1 = t3 — k3 the only difference is that we have the extra term
B (ML, L] ML, [10]) B (ML, [T M, (2]

However the contribution of this term becomes negligible proceeding similarly. Now, for the
remaining of the lemma we employ the convention that say

1 ° (1
Mﬁg)_kg (1, # 61— k] = F,EB) - Z o0t ¢
O>ks;F#ts—t1+k,

That is it is just (87) where we have removed the dependence on g, _j, . Next

4
(104) E <Qt1—k‘1M§11)—k1 [1t1] Oty —ksy H Mizl)—kf [175(; 7é t1 — kl}) =0,
(=2
because g, is independent sequence by Condition 4 and also recall the equality
4 4 4 4 4 4 4
[Moe=TT¢=TI W=+ ¢ I (we=¢o+) (vi=¢) TI G
(=2 (=2 (=2 = =LA = (=2;#j

Thus, once we identify say vy and (, respectively as MS)_,W [in] and MS)—/@, [it,z i E b — kl] ,

we have that a typical term in (103) minus the left side of (104) is
1 < 1 < 1 <
E <9t1—k1M£11k1 [16.] 0ty (M&)% ] = MpL,, e - k1]>
MS)—M [it23 Fh - kl] MS)—M [it43 7l — kl]) :

The other terms in the latter difference proceeds similarly if not easily handled.
Because (102) and (90), Holder’s inequality implies that the last displayed expression is

90t3—t1+k1E031_k1E <M,§11)_k1 [itl] Oty —ks (Mg)—kj [its; *t, — kl])
(105) M A = kI ME st - kl])

+0 (80%3*t1+k1 (klk3]{74 (tg — 14+ k4))dm_1/2) )
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The contribution into (99) of the second term of (105) is

2 Z {Hh t21_t21 1)

t1<ta;
t3<ty

[e.9]

Z {[k1k3k4 (to — ta + ko) 2732 (tg — tg + ky) 22

ki1,ks,ka=1
tl—kl St.j—k?3<t4—k'4<t2

=o(1)

because 1 — 2d, — d; > 0. So we are left examining the contribution due to the first term of
(105). But that contribution is also o (1) repeating the same steps again but now when we
look at its difference with

Sots—tr‘rkl nglfklE (Ml(fll)—kl [itl] Qts—ks (Mgf)—kg [it37 7& 1 — kl])

Mij)_k4 (10,7t — ki ts — ks /Vlg)_;€4 (1t — ki ts — ks})

which is 0 by Condition 4. This concludes the proof of the lemma. I
LEMMA 16. Under Conditions 2 to 4 and di + 2d, < 1,

—ZE* ujuy) i iS—E(itis))zop* (1).

t<s

PROOF. By Lemma 13, it suffices to show
(106) ~ Z (B* (uful) — vy (It = s])) (1e1s — E (11s)) = 0p- (1).
t<s

We will examine explicitly the scenario where in Condition 4 we assume b; = 0 for all j in
which case 7; = 1J;. First, by definition -y, ([t — s[) = > 7277, ;s and since {ej };_; is
independent and identically distributed with variance 82, we have that, for any L (n) > Cn,

L(n) L(n)

_~2
E” (uguy) Zﬂ'jet ]Zﬂ-kes E| = Zﬂj Tjt|t—s| = A ([t = s).

Now the contribution due to 377/ 11|, TjTjt|i—s| into the left of (106) is o, (1) by
Lemma 13 because

oo (e o]

_ 1 1
Z TGT 4 |t—s| = K Z jlfdl ( P |t - ‘)170{11
Jj=L(n)+1—|t—s| j=L(n)+1-|t—s| J s
K

~

C(L(n) [t = st

and then because L (n) > Kn and that 52 = o2 (1 + 0, (1)).
Next, the contribution due to

L(n)—|t—s|

1 . . . .
D 2 Fifes — mTps | (B — B (1))

t<s =0
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into the left of (106). By standard algebra, it is

. L(n)—|t—s| L(n)—|t—s|
n > Yo @m0 DD (Fes — Tis)) T
t<s Jj=0 J=0
L(n)—|t—s|
(107) Y F =) (Fjapms) — Tyapms)) | ¢ (Reds = B (L))
j=0

By Lemma 1, the third term of (107) is bounded by

L(n)—|t—s|

N 21 . . . .
‘dl—dl‘ -3 . T | (L — E (L))
Lrpp =0
RIS o] ) S——
—l—’d1—d1’ — — | E |11
n\ o Jl+It=s) ’

which is o, (1) because c?l —dy =0, (m_l/ 2) by Proposition 6 and then Condition 4 and
Lemma 13. Now, as the first and second terms of (107) are similar, we shall only handle the
first one explicitly, which is bounded by

. L(n)—|t—s|
(@ —a)=> S mmas | Gd - E(1d)
n t<s j=0
L(n)—|t—s| —
tla-al XY T i),
" t<s 7=0 J

Clearly the first term of the last displayed expression is o, (1), whereas the second is bounded
by
n [ L(n)—|t—s] = n
Z Z Ul O, (mfl) =0, (m*1 log n) Zﬁt
t=1 j=0 J t=1
=0, (ndlm_1 log n) =0, (1)
by Condition 4. This completes the proof of the lemma. |

LEMMA 17. Under Condition 4 and that {x},., is a Gaussian sequence, if d, <1/3,
then

I o .
In () = — > aidy (x)
" ot=1

is tight, where d,, = n'/2T (d, < 1/3) +n'/?/1log"?nZ (d, = 1/3).

PROOF. To that end, we shall show the stronger statement that for all €,17 > 0, there is a
6 > 0 such that

(108) ZPr{ sup \Jn(x)—Jn(€5>r>e}<n

= 06<e<(6+1)0
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for large n. We shall consider explicitly only d, < 1/3. To that end, we first notice that due
to the properties of Hermite polynomials, we have that

(109) E|Tn (y) — Jn (2)] < KE (y;2 Zm It — s|)|?

ts 1
= KE(y; )

because E (it (z)xs) =0forall t,s=1,...,n and !E (it (z) 1y (x))! =0 (ﬂyx (It — s|)2)
by Condition 1, where = (x) = K {® (x) + ¢ (x) }. Now using Wu’s (2003) Lemma 4, we

have that

) (e+1)6 (e+1)5 o= 2

sup  Z2(z) <= 2% (2)dz + 25/ ( (Z)> dz
05<z< (0418 0 Jes 05 0z

= Uy ((5)
which implies that Z2 (£ + 1) §;£5) < §%vy (§), where

5> e (0) / 2(z)dz+252/R<aE&(j)>2dz.

LEL

On the other hand, proceeding as in Ho and Sun (1987), we obtain that

BT () - G @) =B (1 )ad) + 0 | -3 B (L) s () 2z

t,s=1

K_ _
= —E(y2) + K= (y;0),

So after we identify x with (k—1)p 4+ ¢0 and y with kp + ¢6, and denoting Ky =
TIn (kp+£6) — T, ((k — 1) p+ £0), we conclude that

where vy, = pv/2 (6) 4+ (F ((k = 1) p+ £5; kp + €5) /n)*/?, and then Billingsley’s (1969)
Theorem 12.2 implies that

K
Pe (e > 8) < 5 (Z )

< Kn (—E (5, (£ + 1)) + m2p*uy (5)) :

So proceeding as usual, see Lemma 14 of Wu (2003) for instance, we conclude that the

left side of (108) is bounded by
K [m
= (n +52U5 (5))
el

by choosing p and m such that p = 6/m < €/ (8¢con'/?), where m = [8 (sup,, f1 (z) =: co) nn'/?] +
1. Now choose § = €1 to finish the proof. |
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The next lemma is an extension of Dehling and Tagqu’s (1989) uniform reduction princi-
ple, which we state for simplicity.

LEMMA 18. Under Condition 4 and that {x},., is a standard Gaussian sequence, if

1/3 < dy, then
1 n
Pr<sup|— 1 (z)x

for some ¢ >0, where d,, =n3%~12 and 1, (z) = 1; (z) — 1 (z) (27 —1).

> 6} <Cn~¢,

PROOF. We first notice that [’ (x) (a:? — 1) is nothing but the second term in the Hermite
expansion of the indicator function Z (z; < ). Now denoting = (x) = K {® (z) + ¢ ()},
orthogonality of the Hermite polynomials imply that

1 < ’
dlet (y; @)
™ o=1

_ 1 <
<E(e) 5 > v (t=shI*

" ts=1

E

=Kn ¢

as in of Dehling and Taqqu’s (1989) Lemma 3.1. Now the proof proceeds step by step to that
of Dehling and Taqqu’s (1989) Lemma 3.2 after one partitions R as

—oo=x0 (k) <z (k) <..<z9t (k) =00, k=0,1,..., K,

z; (k) =inf {z: A (z) > A(c0)i27%},i=0,1,...,2¥ — 1 and where their A () is replaced
by

A(a:):Fx(x)—k/x <w+“’22_1> £ (w) duw.

LEMMA 19. Under Conditions 2 to 4 and dy + 2d, < 1, (in probability) G (x) is tight.

PROOF. First, denoting ¢} (z) = (it (r)— FE (it (z) | Fi=1)) uj, we have that

I 1 &K s
gZ(Jf):WZ§I($)+mZE(1t’]:tfl)uf
=1 =1

=: A} (x)+ B, (x).

Thus, we need to show that A’ () and B} (x) are tight. We examine the tightness of B} (x)
first. To that end, we notice that

1 n+M 1 n
B, (z) = iz SZI Vs () €pqnr—s + iz 8211\33,2 (7) e nrts

= Bp1 (x) + Bya (2),
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where ¥, 1 (z) and Ds2 (x) are as defined in (42) but with z; there being replaced by
E (1; (x) | Fi—1). We now adapt the proof of Wu’s (2003) Theorem 3. First using Lemma 4
of Wu (2003), we have that

B* 2 B* 2 2p* 2
E*Supw SQ/E*W d$+2/E*8n2(x) dr.
TER X R ox R 82.%'
Next because ¢; are iid (0, 3?), we have that
/E* OBy @) 1i/ i OF (1:(x) | Fi) 5 2d
R Oz o n s=1"R [t=1+s Oz o "

2

Now, arguing as we did with f]R E ’8%7;(33) dx in Lemma 12, we obtain that the right side

of the last displayed expression is bounded by

n

K& n 32 =
;Z Z Z SOt_j_,_l'lgtfsfjJrl s

s=1 j=—oc0 \t=s+max(1,j)
where, taking for simplicity b, = 0, Lemma 1 implies that it is
K n n n 2
3/2
Sl X Al (to()=0,(1)
s=1 j=—o00 \t=s+max(1,5)

2 % 2
as we argued in Lemma 1 because 1 — 2d,, — dy > 0. Similarly fR E*|280@)

dz=op,(1).

0%z
So, because
. N 0B}, (2
By (@) — Bip )] < Jo —ylsup | 2222 | e,
z€R 0z
we conclude that B}, () is tight.
Finally, the tightness of
m () =:Bjy 1 (2) + By o (),
where
1 M no
IS o (z ﬁ) s
n s=1 t=1
1 n—+M n+M—s+1 R
;1,2 (:’C) = n1/2 Z < Z ﬁt—i—sxt) €:<L—|—M—s
s=M+1 t=1

proceeds similarly to that of B}, (x), with the only difference that we now have, say, that

I
R

using Lemma 1.

2
n+M n

2 n
dr = % Z Z Z @?134_1;%-‘1-5 =0p(1),

s=M+1j=—00 \t=max(1,j)

0By 2 ()
ox
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Next the tightness of A* (x). To that end, we first use the same decomposition as with
B (z), that is

1 n-+M 1 n
A (z) = iz Z Vs () Enynr—s + iz 255,2 (@) €nqnrss
s=1 s=1

= A (2) + A (2),

where U1 (z) and ¥, (x) are as defined in (42) but with z; there being replaced by
1 (z) =14 (z) — E (14 (%) | Fi—1). Because ¥y (z) ek, 5, o and Dy 2 (z) el ., are in-
dependent zero mean sequences, we have that

1 1 n+M 2

* A% 4 < o

ETAL (yi2)” = H,y, Evé,l(y;m)"i_ (n Z Ug,l(y;$)>
s=1

2
1 1 —
* A% 4 w4 Y
E* AL, (y;2)" = Hp nvs,z(y;ﬂf)Jr(nZv?,z(y;x))
s=1

since E*¢;* = H,, = O, (1). Now the proof proceeds after we notice that Lemma 1 yields

n n

n 2
%ZTJ% (y;2) = %Z ( Z Vi1t (y§33)> (1+0,(1))
s=1 s=1 \t=s+1

and that 1, (x) is a martingale difference with respect the oc—algebra generated by F;, it
implies that E (3}, Ve st (y; ac))2 = O (Jy — z|) and hence

* A% 1.
E n2 (y;$)4: (nlt (x,y)—i—(y—x)Q) Kn

Then since E; (2,y)* < K (F, (y) — F, (x)), proceeding as in Lemma 17, i.e. Theorems
12.2 and 15.5 of Billingsley (1968), we conclude that

(110) pr* { sup |Ars (x;y)| > e} <nKp.
lz—y|<d

Similarly, we can conclude that Pr* {sup‘x_y|<5 |AY ) (z3y)] > e} < nkK,. Hence A} () is
also tight so itis G (). 1

1.3. APPENDIX C.

We now present a Monte Carlo experiment to shed some light on the behaviour of our test,
and in particular how well the bootstrap algorithm performs in finite samples even in cases
where we do not have formal theoretical results, i.e. when 2d, + dy > 1 or d, + dy > 1/2
and z; is a non-Gaussian sequence.

To address the performance under the null hypothesis, we have generated the linear re-
gression model

(111) yp=a+Bri+u,t=1,...n,

where o = 5 =1 for three different sample sizes n = 128,256,512 and for different com-
binations of d, and d;. All throughout the errors {u;}; _, were generated as a sequence of
Gaussian random variables with mean 0, and we have chosen the 16 different combinations
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di,d, =0.1,..,0.4. For each sample size and each combination of d; and d,, we have sim-
ulated (111) when the regressor {x},_, were generated as a linear sequence for two sets of
innovations, i.e. when {g,};_; is standard Gaussian or a X3 centered around its mean. The
reason to consider these two scenarios is due to the different theoretical results that we have
obtained in Propositions 1 and 2, so we can address the question of how sensitive the dis-
tributional conditions of the regressor is on the performance of the test. The statistic 7y, (x)
were computed in the range x € [—1.0, 1.0] with a mesh width of 0.1 and we have chosen the
Kolmogorov's type of functional for ¢ (-). That is,

KSn = e:I?,?.L.},(Ql ‘nlm% (W)‘ ’
where {z,}7",, 7o = —1.0+ (£ — 1) 0.1.

In order to save computational time, for each sample we compute only one bootstrap coun-
terpart according to Section 3 and equations (3.1) and (3.2). The stacked bootstrapped statis-
tics are then used to construct critical values and confidence regions at appropriate levels.
For each combination of models and/or samples sizes n, 1000 iterations were performed.
This is the idea behind the WARP algorithm of Giacomini et al. (2013). Finally, to imple-
ment the bootstrap algorithm we need to choose the smoothing parameter m. Although an
algorithm as that described at then end of the previous section can be implemented, in this
Monte-Carlo experiment we have considered two different choices of m, namely m = n/4

and m = n/8. Likewise in the expression C (\) = exp {27[31:/;1 ] Ere*"’\}, we have chosen

¢, = 0 for r > 1 and the case ¢, = 0 for r > 1 with ¢; # 0. The first scenario uses the fact that
we know that there is no SM component whereas in the second we have taken [n/4m| = 1,
after we notice that in almost all cases [n/4m/| < 1. Finally, in all the tables, the first row in
each cell presents the results of the test for the 10% size whereas the second row are those
for the 5% size.

TABLES 1 TO 4

A general conclusion that we can draw from Tables I to 4 is the good performance of the
test even for samples sizes as small as n = 128. This performance is regardless the distri-
bution of the regressor x; and the choice of m = n/4 appears to perform slightly better for
moderate sample sizes, i.e. when n = 128. Also the tables suggests that even when we choose
¢1 # 0, there is no visible deterioration of the finite sample performance when compared to
the case of ¢; = 0. Another conclusion that we can draw from the above tables is that the
bootstrap appears to approximate the finite sample distribution of the test even in scenarios
for which we do not have formal theoretical results, say when d, = 0.4 and d; = 0.3 or 0.4
with Gaussian regressor or when d, + d; > 1/2 when we have a centered X% distribution.

To address the power of the test we have simulated the following two alternative regression
models

(112) yt:a—i-,@’a:t—i—'yx?—l—ut,t:1,...,n

(113) yr=a+ Bry+ysin(xy) +u, t=1,...,n

with v = 0.5 and 1.5. The second model being more difficult to detect as the function sin (z;)
is periodic and bounded by 1 and so its variability is smaller than that compared to a regressor
of the type 7. That is the signal/noise ratio for the second model is far smaller than for the
first. We present the results of the Monte Carlo experiment in Tables 5-16 below.

TABLES 5TO 16
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We should caution that when we consider the alternative model in (112), we only present the
results for v = 0.5, as the power of the test for all different combinations had always a 100%
rejection rate regardless whether x; is or it is not Gaussian and for all combinations of d; /d,.
The results for (113) illustrate a very good power performance although smaller than that
obtained for (112). However this is somehow expected as the power depends among other
issues on the “distance” between the null and alternative, being bigger for model (112) than
for model (113).
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TABLE1
Size when x; is Gaussian and C' (\) =1

di=.1 di=.2

n=128 n=256 n=512 n=128 n=256 n=512
almy 31 7 31 % 31 37 31 & 31 71 3
| 8.5 5.0 104 6.2 9.2 9.9 7.8 6.2 10.0 8.9 10.5 7.8
' 4.5 14 5.7 3.0 3.8 6.0 4.0 3.5 5.3 3.6 5.2 4.0
’ 11.1 7.8 8.4 9.0 12.2 8.8 10.1 9.8 8.5 7.6 11.9 10.6
’ 5.8 3.9 4.7 3.9 5.6 4.2 4.8 4.9 5.2 3.8 5.8 5.9
3 9.9 8.8 8.8 11.3 9.0 10.8 10.0 103 10.1 9.8 8.7 7.8
’ 5.0 4.6 3.7 4.5 54 4.6 53 6.0 4.7 3.8 3.9 4.2
4 12.1  10.0 9.9 9.1 7.6 123 9.3 7.0 8.2 9.5 9.7 8.0
’ 6.2 5.1 4.9 4.6 3.9 5.2 4.5 3.1 4.3 4.7 4.7 5.1

d,=.3 d,=4

n=128 n=256 n=512 n=128 n=256 n=512
G m¥ ¥ T @l ¥ 3l 37 r| ¥ Tl ¥ 3
| 7.8 7.2 8.8 8.8 8.6 7.9 10.1 6.7 7.7 6.9 11.8 7.9
’ 3.6 4.2 4.5 3.9 4.0 4.8 5.5 3.1 3.5 34 4.6 3.3
) 8.5 7.1 8.6 7.6 14.2 7.2 8.1 79 9.5 8.0 10.2 8.6
' 5.2 34 4.3 3.0 6.6 4.3 44 3.6 5.6 3.7 5.3 4.4
3 9.1 8.5 9.8 6.9 9.3 8.9 94 8.3 10.5 7.8 9.8 8.0
’ 5.1 34 5.3 1.8 5.6 3.0 5.0 3.6 5.9 4.0 5.5 3.2
4 9.8 6.3 79 6.8 9.6 10.7 10.9 9.3 9.0 8.0 104 9.2
’ 3.7 3.0 34 2.8 4.7 5.8 5.5 3.3 40 4.1 5.1 4.5
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TABLE2
Size when x; is x5 and C'(\) =1
di=1 dj=2
n=128 n=256 n=512 n=128 n=256 n=512
o1 : : : : :
| 13.1 11.0 11.3  10.7 80 12.6 9.3 7.4 14.1 10.2 11.4 8.0
’ 6.2 4.0 5.6 4.8 37 6.5 5.0 3.1 5.9 5.2 3.7 2.9
) 9.3 9.4 9.9 9.2 11.6 8.2 9.0 9.9 9.6 9.7 9.9 8.9
’ 3.8 4.8 4.5 4.9 5.7 3.8 3.7 4.7 5.6 3.4 6.2 3.7
3 12.9 9.3 9.0 105 10.1  10.0 8.3 8.5 10.2 9.5 8.2 9.5
’ 5.8 4.1 5.8 54 4.1 7.4 3.7 3.6 4.9 4.7 4.9 5.6
4 7.7 8.0 8.8 8.6 9.9 10.8 11.2 9.1 94 99 10.0 10.5
) 3.5 4.1 4.6 4.2 3.3 3.8 4.7 4.2 4.8 5.9 5.8 5.0
dy=.3 dy=4
n=128 n=256 n=512 n=128 n=256 n=512
DN I : : : -
| 8.9 8.3 10.3 9.3 10.6 10.8 11.1 8.9 7.2 8.7 9.7 104
) 5.0 3.7 5.2 4.1 6.5 4.6 5.2 3.1 4.6 4.6 54 46
) 9.8 8.5 10.7 9.2 9.8 11.2 6.9 8.4 9.8 8.5 8.9 8.1
’ 5.8 3.9 5.4 3.0 5.5 3.7 34 3.0 4.6 4.2 4.5 34
3 8.8 7.0 7.9 8.9 11.0 8.4 8.9 7.2 9.1 10.0 10.1 6.9
’ 4.1 3.8 4.6 4.4 6.6 3.3 4.4 2.7 3.7 4.9 4.8 2.4
4 10.5 8.6 11.1 6.5 10.8 8.3 10.1 11.0 10.1 10.0 9.8 8.3
’ 5.1 2.9 5.4 3.6 5.5 4.6 4.2 2.9 5.9 5.1 5.0 3.7
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TABLE 3

Size when x; is Gaussian and C (A) =exp {Ele_")‘}

di=.1 di=2

n=128 n=256 n=512 n=128 n=256 n=512
dlmg 3§ 3 1 3 r 13 :
| 104 59 74 7.7 99 95 12.5 9.8 9.8 12.7 11.1 9.1
’ 6.2 2.2 3.8 3.9 50 3.7 6.1 6.1 4.9 7.1 6.9 3.5
) 9.0 7.2 11.5 6.3 9.5 5.9 11.1 8.0 9.8 8.1 102 8.5
’ 4.5 3.2 74 35 5.5 2.0 47 4.2 6.5 4.1 49 45
3 10.8 7.6 9.0 9.0 94 56 11.8 8.1 10.1 10.8 14.2 8.6
’ 4.9 3.7 48 4.1 40 24 6.6 40 6.3 54 7.5 4.8
4 8.8 9.8 11.5 9.3 124 7.2 124 11.7 8.8 8.8 10.7 12.8
’ 47 44 6.0 4.0 5.4 3.1 6.8 5.5 4.5 5.0 4.5 7.3

dy=. d,=4

n=128 n=256 n=512 n=128 n=256 n=512
dm3 $ [ T 3 T 3| T 3 T %l % 3
| 10.3 8.3 11.5 12.0 134 139 143 12.0 11.1  16.1 134 11.8
’ 54 43 5.7 4.6 69 75 6.7 6.7 5.9 8.0 50 47
) 10.8 9.4 105 11.7 12.7 10.5 99 14.1 12.1 125 12.5 133
’ 5.6 5.8 54 58 56 59 5.1 6.1 6.0 6.8 6.8 6.4
3 10.1 10.1 12.5 10.5 14.7 12.7 12.7 119 11.7 13.8 142 13.7
’ 33 4.2 59 56 6.1 9.0 7.0 5.1 64 7.7 6.9 6.0
4 122 10.2 11.2 149 14.1 139 129 143 132 14.1 125 15.6
’ 5.5 5.1 64 79 74 7.6 6.5 6.7 7.0 84 6.1 8.4




Size when x; is x5 and C () =exp {cre7}

TABLE 4
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di=.1 dj=2

n=128 n=256 n=512 n=128 n=256 n=512
dlmy § [ % 2§ 3 3 3 7 &l 1 3
| 8.1 87 87 9.0 91 8.1 106 114 11.8 100 97 88
: 41 40 3.6 39 41 33 6.2 5.7 6.5 5.5 42 65
,| 98 85 94 78 89 90 99 86 10.1 9.1 93 117
' 63 29 39 44 50 438 51 43 63 3.6 52 52
,| 84 94 10.1 105 110 95 98 10.4 120 82 103 11.8
: 48 47 47 70 58 3.7 47 64 70 46 50 6.7
| 10780 114 88 1.0 92 109 85 133 104 127 117
' 57 36 58 44 70 35 51 34 60 57 75 58

dy=3 dy=4

n=128 n=256 n=512 n=128 n=256 n=512
=N I N I N S N B I T A
| 10982 114 126 126 100 138 109 113 160 110 116
: 6.5 4.1 54 70 70 43 6.1 52 6.1 99 6.6 59
, | 137 115 122 102 128 109 123 119 124 145 152 133
' 60 57 6.3 49 71 62 54 59 65 73 86 7.9
3 84 10.8 123 106 122 127 134 123 121 121 157 120
‘ 36 62 70 60 6.5 66 53 62 71 65 83 64
| 13412 113 11.0 11.9 152 10.1 13.1 152 165 150 15.6
' 70 59 52 63 58 77 52 6.1 85 80 70 78




TABLE 5
Power when z; is Gaussian for model (112)

and C N)=1
di=.1 di=2

n=128 n=256 n=512 n=128 n=256 n=512
% N O I T A A T I
| 989 97.6 100 100 100 100 99.1 977 100 100 100 100
’ 96.7 95.0 100 100 100 100 95.6 933 100 100 100 100
) 98.9 97.6 100 100 100 100 98.8 98.8 100 100 100 100
’ 97.0 96.1 100 99.9 100 100 96.6 95.5 100 100 100 100
3 99.0 99.1 100 100 100 100 99.1 974 100 100 100 100
’ 97.0 97.6 100 100 100 100 974 959 100 100 100 100
4 99.6 98.4 100 100 100 100 98.7 99.1 100 100 100 100
’ 97.2 969 100 100 100 100 97.7 953 100 100 100 100

d;=3 dy=4

n=128 n=256 n=512 n=128 n=256 n=512
dlmy ¥ % & % ¢ % 3 1 3] 7§ 3
] 984 97.1 100 100 100 100 95.1 934 99.8 100 100 100
’ 952 927 99.9 99.8 100 100 904 833 99.5 99.1 100 100
) 98.0 96.4 100 100 100 100 95.8 944 100 100 100 100
’ 95.1 93.0 100 100 100 100 914 86.8 99.7  99.8 100 100
3 98.0 985 100 100 100 100 959 95.7 100 100 100 100
’ 95.1 947 100 100 100 100 91.1 87.6 99.9 99.8 100 100
4 97.8 984 100 99.9 100 100 96.7 96.7 100 100 100 100
’ 96.0 95.8 100  99.9 100 100 94.6 925 100 99.8 100 100
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TABLE 6
Power when x; is Gaussian for model (113) with v =0.5
and C'(\) =1
di=1 di=2
n=128 n=256 n=512 n=128 n=256 n=512

n n n n

m= 2 ° 2 2

=]
=]
=]
=]
=]
1=

8 8 8 8 8 8
209 203 36.5 31.6 55,5 533 199 174 359 293 53.8 529
12.1  12.0 248 203 46.0 39.2 85 87 245 189 43.4  40.0

26.2 18.8 40.5 38.7 61.3 60.4 235 173 403 328 593 612
125 112 294 28.1 48.5 437 135 82 269 188 42.1 453

29.0 249 442 50.2 71.3 709 259 213 448 447 70.0 70.4
18.7 157 31.6 38.1 59.3  59.8 16.0 12.0 29.6 329 57.3  60.0

35.6 315 60.0 64.1 87.9 899 37.3  34.0 60.2 529 859 855
225 189 49.7 504 78.8 85.3 269 21.6 43.4 40.2 73.7 777

d;=3 di=4

n=128 n=256 n=512 n=128 n=256 n=512

n n n n

m= 2 ° 2 2

=]
=]
IN=1
=]
=]
=]

8 8 8 8 8 8
200 111 29.0 255 46.1 41.8 18.7 159 219 183 415 342
11.8 6.6 18.8 15.7 29.8  30.5 10.8 8.2 123 10.7 277 223

212 195 302 263 51.5 48.0 16.1 159 28.1 23.8 409 426
124 103 19.2 192 414 37.1 90 92 15.0 132 272 264

269 20.8 40.2 34.1 65.7 62.5 19.0 17.8 329 248 52.8 483
155 114 288 214 534 479 123 103 20.8 16.7 374 332

28.1 23.1 515 522 83.0 782 26.6 24.0 418 414 712 68.8
16.3 164 359 363 72.5 643 174 142 29.0 252 543 519
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TABLE 7
Power when z; is Gaussian for model (113) with v =1.5
and C N)=1
di=1 di=2
n=128 n=256 n=512 n=128 n=256 n=512
dlm? 1 7 31 7 3] % 31 % 3 7% 3
| 77.1 732 96.2 95.0 100 100 74.8 699 94.6 95.7 99.7 100
’ 67.0 57.0 93.7 90.5 100 99.9 61.8 57.2 91.8 92.1 99.6 99.8
) 80.0 76.6 972 975 99.9 100 79.0 759 96.2 974 100 100
' 71.9 583 945 95.7 99.8 99.9 69.4 60.1 92.0 93.6 100 99.9
3 86.0 86.8 99.5 99.2 100 100 83.5 820 99.5 989 100 100
’ 783 772 99.0 98.2 100 99.9 75.8  72.1 97.1 969 100 100
4 919 91.7 99.9 99.6 100 100 89.9 88.1 99.7 994 100 100
’ 87.7 86.5 99.6 99.2 100 100 82.6 80.7 99.6  98.5 100 100
d;=3 di=4
n=128 n=256 n=512 n=128 n=256 n=512
dlm? [ 7 3] 7 31 % 31 % 2] 7% 3
| 713 635 92.6 924 99.8  99.8 58.5 59.6 87.7 854 99.7 99.2
’ 58.2 50.2 84.4 86.5 99.7 994 43.0 43.6 81.0 753 98.6 98.4
) 72.1 68.2 974 93.0 99.9 100 69.9 59.9 914 89.2 100 99.7
’ 572 56.2 924 853 99.7  99.8 552 425 825 782 99.0 98.9
3 83.9 785 989 979 100 100 76.0 713 97.4 93.7 100 999
’ 71.1 64.6 96.9 953 99.9 999 60.9 544 93.2 89.9 100 99.8
4 89.4 86.2 99.7 993 100 100 86.3 839 97.8 985 100 99.9
’ 82.5 749 98.9 98.4 100 100 81.2 728 96.1 96.2 100 99.8




TABLE 8
Power when z; is Gaussian for model (112)

and C (A) =exp {cre7}
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di=.1 di=.2

n=128 n=256 n=512 n=128 n=256 n=512
dlmy y [ ¢ 3 ¢ ¥ % g § 31 3 3
| 98.7 989 100 100 100 100 98.8 98.2 100 100 100 100
’ 97.0 96.1 100 100 100 100 95.1 95.1 99.9 100 100 100
) 98.6 985 100 100 100 100 98.9 99.0 100 100 100 100
' 96.0 95.6 100 100 100 100 975 96.2 100 100 100 100
3 99.2 98.8 100 100 100 100 98.8 99.0 100 100 100 100
’ 973 973 100 100 100 100 96.6 96.5 100 100 100 100
4 99.3 99.1 100 100 100 100 99.1 99.0 100 100 100 100
’ 975 98.1 100 99.9 100 100 98.0 973 100 100 100 100

di=3 d;=4

n=128 n=256 n=512 n=128 n=256 n=512
dlmy ¥ 3 ¢ ¢ ¥ % g § 3l 3 3
] 984 97.0 100 100 100 100 97.7 96.7 100 100 100 100
’ 96.1 94.1 100 99.9 100 100 945 924 99.7 100 100 100
) 98.8 983 100 100 100 100 973 96.2 100 100 100 100
’ 969 954 100 100 100 100 94.7 915 99.9 100 100 100
3 98.0 98.5 100 100 100 100 98.6 969 100 100 100 100
’ 95.1 947 100 100 100 100 96.3 934 100 100 100 100
4 979 979 100 100 100 100 973 978 100 100 100 100
’ 954 952 100 99.8 100 100 953 95.0 100 100 100 100
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TABLE 9
Power when z; is Gaussian for model (113) with v = 0.5

and C (A) =exp {cre7"}

di=.1 di=2

n=128 n=256 n=512 n=128 n=256 n=512
dy | m= 2 n n n n n n n n n n n

4 8 4 8 4 8 4 8 4 8 4 8
| 209 203 36.5 31.6 555 533 199 174 359 293 53.8 529
) 12.1 12.0 24.8 203 46.0 39.2 85 8.7 245 189 434 400
) 26.2 18.8 40.5 38.7 61.3 60.4 235 173 403 328 59.3 612
’ 125 112 294 28.1 48.5 437 13.5 82 269 18.8 42.1 453
3 29.0 249 442 502 71.3 709 259 213 448 447 70.0 70.4
’ 18.7 157 31.6 38.1 59.3 598 16.0 12.0 29.6 329 57.3  60.0
4 356 315 60.0 64.1 879 89.9 37.3 340 602 529 859 855
’ 225 189 49.7 504 78.8 853 269 21.6 434 402 737 777

d;=3 di=4

n=128 n=256 n=512 n=128 n=256 n=512
almy T 7 31 7 3 7 31 § 31 7§ 3
] 200 111 29.0 255 46.1 41.8 18.7 159 219 183 415 342
’ 11.8 6.6 18.8 157 29.8 30.5 10.8 8.2 123 107 27.7 223
) 21.2 195 302 263 51.5 48.0 16.1 159 28.1 238 40.9 426
’ 124 103 19.2 19.2 414 37.1 9.0 9.2 15.0 132 272 264
3 269 20.8 40.2 34.1 65.7 625 19.0 178 329 248 52.8 483
’ 155 114 28.8 214 534 479 123 103 20.8 16.7 374 332
4 28.1 23.1 515 522 83.0 782 26.6 24.0 41.8 414 712 68.8
’ 16.3 164 359 363 72.5 643 174 142 290 252 543 519




TABLE 10
Power when z; is Gaussian for model (113) with v = 1.5

and C (A) =exp {cre7}
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di=.1 di=2

n=128 n=256 n=512 n=128 n=256 n=512
almey $ 1 7 3 7 31 7 ¢ § 31 7 3
| 77.1 732 96.2 95.0 100 100 74.8 699 94.6 957 99.7 100
’ 67.0 57.0 93.7 90.5 100 99.9 61.8 572 91.8 92.1 99.6 99.8
) 80.0 76.6 972 975 99.9 100 79.0 759 96.2 974 100 100
’ 71.9 583 945 957 99.8 99.9 694 60.1 920 93.6 100 99.9
3 86.0 86.8 99.5 99.2 100 100 83.5 82.0 99.5 989 100 100
’ 783 772 99.0 98.2 100 99.9 75.8 72.1 97.1 969 100 100
4 919 917 99.9 99.6 100 100 89.9 88.1 99.7 99.4 100 100
’ 87.7 86.5 99.6 99.2 100 100 82.6 80.7 99.6 985 100 100

d;=3 di=4

n=128 n=256 n=512 n=128 n=256 n=512
almy $ 1 7 3 7 31 7 31 5 31 7 3
] 71.3 635 926 924 99.8 99.8 585 59.6 87.7 854 99.7 99.2
’ 582 50.2 84.4 86.5 99.7 99.4 43.0 43.6 81.0 753 98.6 98.4
) 72.1 68.2 974 93.0 99.9 100 699 599 914 89.2 100 99.7
’ 572 56.2 924 853 99.7 998 552 425 825 782 99.0 989
3 83.9 785 98.9 979 100 100 76.0 713 974 937 100 99.9
’ 71.1 64.6 96.9 953 99.9 99.9 60.9 544 93.2 899 100 99.8
4 89.4 86.2 99.7 993 100 100 86.3 83.9 97.8 985 100  99.9
’ 825 749 989 984 100 100 81.2 728 96.1 96.2 100 99.8
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TABLE 11
Power when ; is x5 for model (112)
and C (\) =1
di=1 d,=2
n=128 n=256 n=512 n=128 n=256 n=512
olwf 1 T 1] T I § 1] ¢ ¥ T 1
| 999 999 100 100 100 100 99.6 99.8 100 100 100 100
’ 98.0 98.6 100 100 100 100 99.1 98.1 100 100 100 100
) 99.9 99.6 100 100 100 100 100 99.8 100 100 100 100
’ 98.3 98.0 100 100 100 100 98.5 98.8 100 100 100 100
3 99.7 99.7 100 100 100 100 99.6 993 100 100 100 100
’ 98.6 985 100 100 100 100 98.8 98.1 100 100 100 100
4 99.2 993 100 100 100 100 99.3 99.1 100 100 100 100
’ 96.3 96.0 100 100 100 100 96.6 96.0 100 100 100 100
d=3 d=4
n=128 n=256 n=512 n=128 n=256 n=512
O T S N S N N N B
| 100 99.9 100 100 100 100 100  99.7 100 100 100 100
’ 994 98.9 100 100 100 100 98.0 98.3 100 100 100 100
) 99.7 99.7 100 100 100 100 99.8 99.6 100 100 100 100
’ 98.1 98.6 100 100 100 100 98.5 98.4 100 100 100 100
3 99.8 99.6 100 100 100 100 99.6  99.6 100 100 100 100
’ 97.8 979 100 100 100 100 98.5 97.1 100 100 100 100
4 994 98.8 100 100 100 100 98.9 989 100 100 100 100
’ 98.1 95.0 100 100 100 100 95.8 944 100 100 100 100
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TABLE 12
Power when ; is x5 for model (113) with v = 0.5
and C (\) =1
di=1 dj=2
n=128 n=256 n=512 n=128 n=256 n=512
Glwg T 7T T T Tl T 11 T r] T 1
| 70.6 704 954 953 100 100 776 67.2 96.7 94.7 99.9 100
’ 583 573 88.5 914 99.9 999 644 524 91.7 88.4 99.8 99.8
) 726 72.0 939 96.5 100 100 73.1 65.6 942 934 100 99.9
’ 58.2 535 88.5 919 999 99.9 587 534 88.0 88.8 99.4 99.6
3 776 72.0 96.5 955 100 100 679 704 94.1 934 99.9 100
) 64.2 60.6 91.6 928 99.9 99.8 53.0 57.1 91.6 87.0 99.9 995
4 77.6 73.7 96.9 96.7 99.9 100 720 71.6 96.1 95.0 100 100
’ 65.1 56.2 93.4 94.0 99.9 999 58.8 56.0 90.5 87.8 100 100
di=3 di=4
n=128 n=256 n=512 n=128 n=256 n=512
olm3 1 T 31 T 31 T ;| T 3 13
| 66.5 64.3 923 923 99.9 99.2 60.9 59.2 89.8 85.1 98.9 98.5
’ 55.6 518 83.8 85.6 99.6 97.8 459 438 77.0 727 96.8 949
) 69.8 63.1 923 89.6 99.7 99.6 63.7 544 81.8 84.0 98.8 98.1
’ 563 463 87.0 79.9 99.4 99.1 43.8 37.8 72.0 709 96.7 93.6
3 59.2 638 92.6 86.6 99.8 99.7 58.5 53.7 83.8 81.9 98.7 96.7
’ 439 458 85.7 743 99.7 98.9 404 38.8 69.4 66.1 97.1 89.5
4 70.8 63.1 90.2 914 99.7 99.8 60.9 60.7 83.6 78.9 972 96.9
’ 56.5 428 81.9 845 99.3 99.1 424 421 72.6  68.2 93.1 935
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TABLE 13
Power when ; is x5 for model (113) with vy = 1.5
and C (\) =1
d=1 4=2

n=128 n=256 n=512 n=128 n=256 n=512

ORI B I T N T 0 N I A N

| 100 100 100 100 100 100 100 100 100 100 100 100

’ 100 100 100 100 100 100 100 100 100 100 100 100

) 100 100 100 100 100 100 100 100 100 100 100 100

’ 100 100 100 100 100 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100 100 100 100 100

3 100 100 100 100 100 100 100 100 100 100 100 100

4 100 100 100 100 100 100 100 100 100 100 100 100

’ 100 100 100 100 100 100 100 100 100 100 100 100

d=3 d=4
n=128 n=256 n=512 n=128 n=256 n=512

Clwy T T I T I
| 100 100 100 100 100 100 100  99.9 100 100 100 100
’ 100 100 100 100 100 100 100 99.7 100 100 100 100
) 99.9 999 100 100 100 100 100 99.9 100 100 100 100
’ 999 99.8 100 100 100 100 99.8 99.9 100 100 100 100
3 100 100 100 100 100 100 99.9 999 100 100 100 100
’ 100 100 100 100 100 100 99.9 99.6 100 100 100 100
4 100 100 100 100 100 100 100 99.9 100 100 100 100
’ 100 100 100 100 100 100 99.8 99.8 100 100 100 100




TABLE 14

Power when ; is x5 for model (112)

and C (\) = exp {G e~}
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di=.1 d;=2

n=128 n=256 n=512 n=128 n=256 n=512
S mf 3 % 3 % s § 3| 5 &l 3§ 3
| 100 99.9 100 100 100 100 100 99.6 100 100 100 100
’ 99.7 98.5 100 100 100 100 99.3 98.0 100 100 100 100
) 99.5 99.9 100 100 100 100 99.6 99.8 100 100 100 100
’ 98.3 98.5 100 100 100 100 98.8 98.2 100 100 100 100
3 99.9 99.6 100 100 100 100 99.9 99.6 100 100 100 100
’ 994 984 100 100 100 100 99.0 97.5 100 100 100 100
4 99.3 99.1 100 100 100 100 99.4 99.0 100 100 100 100
’ 97.7 97.6 100 100 100 100 96.8 96.6 100 100 100 100

d;=3 di=4

n=128 n=256 n=512 n=128 n=256 n=512
dy | m= 2 n n n n n n n n n n n

4 8 4 8 4 8 4 8 4 8 4 8
| 99.6 99.8 100 100 100 100 99.9 99.6 100 100 100 100
’ 98.0 98.5 100 100 100 100 99.3 98.9 100 100 100 100
) 99.9 99.6 100 100 100 100 99.6 99.9 100 100 100 100
’ 984 96.8 100 100 100 100 98.5 98.0 100 100 100 100
3 99.8 99.5 100 100 100 100 99.9 99.6 100 100 100 100
) 98.8 98.0 100 100 100 100 98.0 98.6 100 100 100 100
4 99.9 99.6 100 100 100 100 99.7 99.5 100 100 100 100
' 98.2 98.0 100 100 100 100 97.3 98.0 100 100 100 100
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TABLE 15

and C (\) = exp {G e~}

Power when ; is x5 for model (113) with vy = 0.5

di=.1 di=.2

n=128 n=256 n=512 n=128 n=256 n=512
G my T T rl ¥ orol ¥ orl T w71 3
| 70.6 704 954 953 100 100 77.6 67.2 96.7 94.7 99.9 100
’ 583 573 88.5 914 999 99.9 644 524 91.7 88.4 99.8 99.8
) 72.6 72.0 939 96.5 100 100 73.1 65.6 942 934 100 99.9
’ 582 535 88.5 91.9 999 99.9 587 534 88.0 88.8 99.4 99.6
3 77.6 72.0 96.5 95.5 100 100 679 70.4 94.1 934 99.9 100
’ 64.2 60.6 91.6 92.8 999 99.8 53.0 57.1 91.6 87.0 999 995
4 77.6 73.7 969 96.7 99.9 100 720 71.6 96.1 95.0 100 100
’ 65.1 56.2 934 940 999 99.9 58.8 56.0 90.5 87.8 100 100

di=.3 di=4

n=128 n=256 n=512 n=128 n=256 n=512
almy ¢ 7 3 7 31 7 31 § 31 7§ 3
| 66.5 64.3 923 923 999 99.2 60.9 59.2 89.8 85.1 989 98.5
’ 55.6 51.8 83.8 85.6 99.6 97.8 459 438 77.0 727 96.8 94.9
) 69.8 63.1 92.3 89.6 99.7 99.6 63.7 544 81.8 84.0 98.8 98.1
’ 56.3 46.3 87.0 79.9 994 99.1 43.8 378 72.0 70.9 96.7 93.6
3 59.2 63.8 92.6 86.6 99.8 99.7 58.5 53.7 83.8 81.9 98.7 96.7
’ 439 458 85.7 743 99.7 98.9 404 38.8 69.4 66.1 97.1 89.5
4 70.8 63.1 90.2 914 99.7 99.8 60.9 60.7 83.6 78.9 972 96.9
’ 56.5 42.8 81.9 845 99.3 99.1 424 421 72.6 68.2 93.1 935




TABLE 16

and C (\) = exp {Ge "}

Power when ; is x5 for model (113) with vy = 1.5
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di=.1 di=2
n=256 n=512 n=128 n=256 n=512
_ n n n n n n n n n n n
m= 4 4 8 4 8 4 8 4 8 4 8
100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100
100 100 100 100 100 100 100 100 100 100 100
di=3 di=4
n=256 n=512 n=128 n=256 n=512
_ 1 n n o1 n n 0 o1
m= 4 4 8 4 8 8 4 8 4 3
100 100 100 100 100 100 99.9 100 100 100 100
100 100 100 100 100 100 99.7 100 100 100 100
99.9 100 100 100 100 100 99.9 100 100 100 100
99.9 100 100 100 100 99.8 99.9 100 100 100 100
100 100 100 100 100 99.9 999 100 100 100 100
100 100 100 100 100 99.9 99.6 100 100 100 100
100 100 100 100 100 100 99.9 100 100 100 100
100 100 100 100 100 99.8 99.8 100 100 100 100
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