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ABSTRACT

The Markov assumption (MA) is fundamental to the empirical validity of reinforcement learning.
In this paper, we propose a novel Forward-Backward Learning procedure to test MA in sequential
decision making. The proposed test does not assume any parametric form on the joint distribution
of the observed data and plays an important role for identifying the optimal policy in high-order
Markov decision processes and partially observable MDPs. We apply our test to both synthetic
datasets and a real data example from mobile health studies to illustrate its usefulness.

1 Introduction

Reinforcement learning (RL) is a general technique that allows an agent to learn and interact with an environment.
In RL, the state-action-reward triplet is typically modelled by the Markov decision process (MDP, see e.g. Puterman,
1994). Central to the empirical validity of various RL algorithms is the Markov assumption (MA). Under MA, there
exists an optimal stationary policy that is no worse than any non-stationary or history dependent policies (Puterman,
1994; Sutton & Barto, 2018). When this assumption is violated, the optimal policy might depend on lagged variables
and any stationary policy can be sub-optimal. Thus, MA forms the basis for us to select the set of state variables to
implement RL algorithms. The focus of this paper is to test MA in sequential decision making problems.

1.1 Contributions and advances of our test

First, our test is useful in identifying the optimal policy in high-order MDPs (HMDPs). Under HMDPs, the optimal
policy at time t depends not only on the current covariates S0,t, but also the past state-action pairs (S0,t−1, A0,t−1),
· · · , (S0,t−κ0+1, A0,t−κ0+1) for some κ0 > 1 (see Lemma 2 for a formal statement). In real-world applications, it
remains challenging to properly select the look-back period κ0. On one hand, κ0 shall be sufficiently large to guarantee
MA holds. On the other hand, including too many lagged variables will result in a very noisy policy. To determine κ0,
we propose to construct the state by concatenating measurements taken at time points t, · · · , t−k+1 and sequentially
apply our test for k = 1, 2, · · · , until the null hypothesis MA is not rejected. Then we use existing RL algorithms
based on the constructed state to estimate the optimal policy. We apply such a procedure to both synthetic and real
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datasets in Section 5.2. Results show that the estimated policy based on our constructed states achieves the largest
value in almost all cases.

Second, our test is useful in detecting partially observable MDPs. Suppose we concatenate measurements over suffi-
ciently many decision points and our test still rejects MA. Then we shall consider modelling the system dynamics by
partially observable MDPs (POMDPs) or other non-Markovian problems. Applying RL algorithms designed for these
settings have been shown to yield larger value functions than those for standard MDPs (see e.g. Hausknecht & Stone,
2015). In Section 5.3, we illustrate the usefulness of our test in detecting POMDPs.

Third, we propose a novel testing procedure to test MA. To the best of our knowledge, this is the first work on
developing valid statistical tests for MA in sequential decision making. Major challenges arise when the state vector
is high-dimensional. This is certainly the case as we convert the process into an MDP by concatenating data over
multiple decision points. To deal with high-dimensionality, we proposed a novel forward-backward learning procedure
to construct the test statistic. The key ingredient of our test lies in constructing a doubly robust estimating equation
to alleviate biases of modern machine learning algorithms. This ensures our test statistic has a tractable limiting
distribution. In addition, since the test is constructed based on forward and backward learners (see Section 3.2 for
details) estimated using the state-of-the-art machine learning estimation methods, it is well-suited to high-dimensional
settings.

Lastly, our test is valid as either the number of trajectories n or the number of decision points T in each trajectory
diverges to infinity. It can thus be applied to a variety of sequential decision making problems ranging from the
Framingham heart study (Tsao & Vasan, 2015) with over two thousand trajectories to the OhioT1DM dataset (Marling
& Bunescu, 2018a) that contains eight weeks’ worth of data for six trajectories. Our test can also be applied to
applications from video games where both n and T approach infinity.

1.2 Related work

There exists a huge literature on developing RL algorithms. Some recent popular methods include fitted Q-iteration
(Riedmiller, 2005), deep Q-network (Mnih et al., 2015), double Q-learning (Van Hasselt et al., 2016), asynchronous
advantage actor-critic (Mnih et al., 2016), etc. All the above mentioned methods model the sequential decision making
problems by MDPs. When the Markov assumption is violated, the foundation of these algorithms is shaking hence
may lead to deterioration of their performance to different degrees.

Currently, only a few methods have been proposed to test the Markov assumption. Among those available, Chen &
Hong (2012) developed such a test in time series analysis. Constructing their test statistic requires to estimate the
conditional characteristic function (CCF) of the current measurements given those taken in the past. Chen & Hong
(2012) proposed to estimate the CCF based on local polynomial regression (Stone, 1977). We note their method
cannot be directly used to test MA in MDP. Even though we can extend their method to our setup, the resulting test
will perform poorly in settings where the dimension of the state vector is large, since local polynomial fitting suffers
from the curse of dimensionality.

Our work is also related to the literature on conditional independence testing (see e.g. Zhang et al., 2012; Su & White,
2014; Wang et al., 2015; Huang et al., 2016; Wang & Hong, 2018; Berrett et al., 2020). However, all the above methods
require observations to be independent and are not suitable to our settings where measurements are time dependent.

1.3 Organization of the paper

The rest of the paper is organized as follows. In Section 2, we introduce the MDP, HMDP and POMDP models, and
establish the existence of the optimal stationary policy under MA. In Section 3, we introduce our testing procedure
for MA and prove the validity of our test. In Section 4, we introduce a forward procedure based on our test for model
selection. Empirical studies are presented in Section 5.

2 Model setup

2.1 MDP and existence of the optimal stationary policy

Let (S0,t, A0,t, R0,t) denote the state-action-reward triplet collected at time t. For any integer t ≥ 0, let S̄0,t =
(S0,0, A0,0, S0,1, A0,1, · · · , S0,t)

⊤ denote the state and action history. For simplicity, we assume the action set A is
finite and the rewards are uniformly bounded. In MDPs, it is typically assumed that the following Markov assumption
holds,
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Figure 1: Causal diagrams for MDPs, HMDPs and POMDPs. The solid lines represent the causal relationships and
the dashed lines indicate the information needed to implement the optimal policy.

P(S0,t+1 ∈ S, R0,t ∈ R|A0,t, S̄0,t, {R0,j}j<t)

= P(S,R;A0,t, S0,t),

for some Markov transition kernel P and any S ⊆ S,R ⊆ R, t ≥ 0 where S ∈ Rp denotes the state space.

A history-dependent policy π is a sequence of decision rules {πt}t≥0 where each πt maps S̄0,t to a probability mass
function πt(·|S̄0,t) on A. When there exists some function π∗ such that πt(·|S̄0,t) = π∗(·|S0,t) for any t ≥ 0 almost
surely, we refer to π as a stationary policy.

For a given discounted factor 0 < γ < 1, the objective of RL is to learn an optimal policy π = {πt}t≥0 that maximizes
the value function

V (π; s) =

+∞∑
t=0

γtEπt(R0,t|S0,0 = s),

for any s ∈ S, where the expectation Eπt is taken by assuming that the system follows πt. Let HR and SR denote the
class of history-dependent and stationary policies, respectively. The following lemma forms the basis of existing RL
algorithms.

Lemma 1 Under MA, there exists some πopt ∈ SR such that V (πopt; s) = supπ∈HR V (π; s) for any s ∈ S.

Lemma 1 implies that under MA, it suffices to restrict attention to stationary policies. This greatly simplifies the
estimating procedure of the optimal policy. When MA is violated however, we need to focus on history-dependent
policies as they may yield larger value functions.

When the state space is discrete, Lemma 1 is implied by Theorem 6.2.10 of Puterman (1994). For completeness, we
provide a proof in Appendix C.1 assuming S belongs to a general vector space. In the following, we introduce two
variants of MDPs, including HMDPs and POMDPs. These models are illustrated in Figure 1.

2.2 HMDP

It can be seen from Figure 1 that HMDPs are very similar to MDPs. The difference lies in that in HMDPs, S0,t+1 and
R0,t depend not only on (S0,t, A0,t), but (S0,t−1, A0,t−1), · · · , (S0,t−κ0+1, A0,t−κ0+1) for some integer κ0 > 1 as
well. Formally, we have

P(S0,t+1 ∈ S, R0,t ∈ R|A0,t, S̄0,t, {R0,j}j<t) = P(S,R; {A0,j}t−κ0<j≤t, {S0,j}t−κ0<j≤t), (1)

for some P , κ0 and any S ⊆ S,R ⊆ R, t > κ0. For any integer k > 0, define a new state variable

S0,t(k) = (S⊤
0,t, A0,t, S

⊤
0,t+1, A0,t+1, · · · , S⊤

0,t+k−1)
⊤.
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Let A0,t(k) = A0,t+k−1 and R0,t(k) = R0,t+k−1 for any t, k. It follows from (1) that the new process formed by the
triplets (S0,t(κ0), A0,t(κ0), R0,t(κ0))t≥0 satisfies MA.

For any k > 0, let SR(k) denote the set of stationary policies π = {πt}t≥0 such that πt depend on S̄0,t only through
S0,t−k(k). Suppose we are interested in identifying a policy that maximizes the following k-step value function

V (k)(π; s) =
∑
t≥0

γtEπt{R0,t(k)|S0,0(k) = s},

for any s ∈ S(k), the state space for S0,t(k). By Lemma 1, we obtain the following results.

Lemma 2 Assume (1) holds. Then there exists some πopt ∈ SR(κ0) such that V (k)(πopt; s) = supπ∈HR V
(k)(π; s)

for any s ∈ S(k) and k ≥ κ0.

Lemma 2 suggests that in HMDPs, identification of the optimal policy relies on correct specification of the look-back
period κ0. To determine κ0, we can sequentially test whether the triplets {(S0,t(k), A0,t(k), R0,t(k))}t≥0 satisfy MA
for k = 1, 2, · · · , until the null MA is not rejected.

2.3 POMDP

The POMDP model can be described as follows. At time t − 1, suppose the environment is in some hidden state
H0,t−1. The hidden variables {H0,t}t≥0 are unobserved. Suppose the agent chooses an action A0,t−1. Similar to
MDPs, this will cause the environment to transition to a new state H0,t at time t. At the same time, the agent receives
an observation S0,t ∈ S and a reward R0,t that depend on H0,t and A0,t−1. The goal is to estimate an optimal policy
based on the observed state-action pairs.

The observations in POMDPs do not satisfy the Markov property. To better illustrate this, consider the causal diagram
for POMDP depicted in Figure 1. The path S0,t−1 ← H0,t−1 → H0,t → H0,t+1 → S0,t+1 connects S0,t−1 and S0,t+1

without traversing S0,t and A0,t. As a result, S0,t+1 and S0,t−1 are not d-separated (see the definition of d-separation
on Page 16, Pearl, 2000) given S0,t and A0,t. Under the faithfulness assumption (see e.g. Kalisch & Bühlmann, 2007),
S0,t−1 and S0,t+1 are mutually dependent conditional on S0,t and A0,t. Similarly, we can show S0,t+k and S0,t−1

are mutually dependent conditional on {(S0,j , A0,j)}t≤j<t+k for any k > 1. As a result, the Markov assumption will
not hold no matter how many past measurements the state variable includes. This suggests in POMDPs, the optimal
policy could be history dependent.

3 Testing the Markov assumption

3.1 A CCF-based characterization of MA

For simplicity, suppose R0,t is a deterministic function of S0,t+1, A0,t and S0,t. This condition automatically holds if
we include R0,t in the set of state variables S0,t+1. It is also satisfied in our real dataset (see Section 5.2.1 for details).
Under this condition, MA is equivalent to the following,

P(S0,t+1 ∈ S|A0,t, S̄0,t) = P(S;A0,t, S0,t), (2)

for any S ⊆ S and t ≥ 0. Let {(S1,t, A1,t, R1,t)}0≤t≤T , {(S2,t, A2,t, R2,t)}0≤t≤T , · · · , {(Sn,t, An,t, Rn,t)}0≤t≤T

be i.i.d. copies of {(S0,t, A0,t, R0,t)}0≤t≤T . Given the observed data, we focus on testing the following hypothesis:

H0: The system is a MDP, i.e, (2) holds v.s
H1: The system is a HMDP or POMDP.

In the rest of this section, we present a CCF characterization of H0. For any random vectors Z1, Z2, Z3, we use the
notation Z1 ⊥⊥ Z2|Z3 to indicate that Z1 and Z2 are independent conditional on Z3. To test H0, it suffices to test the
following conditional independence assumptions:

S0,t ⊥⊥ {(S0,j , A0,j)}0≤j≤t−2|S0,t−1, A0,t−1,∀t > 1. (3)

For any t, let X0,t = (S⊤
0,t, A0,t)

⊤ denote the state-action pair. For any µ ∈ Rp, define the following CCF,

φt(µ|x) = E{exp(iµ⊤S0,t+1)|X0,t = x}. (4)

In the following, we present an equivalent representation for (3) based on (4).
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Theorem 1 (3) is equivalent to the following: for any t > 0, q ≥ 0, µ ∈ Rp, ν ∈ Rp+1, we have almost surely,

φt+q(µ|X0,t+q)E[exp(iν⊤X0,t−1)|{X0,j}t≤j≤t+q] (5)

= E[exp(iµ⊤S0,t+q+1 + iν⊤X0,t−1)|{X0,j}t≤j≤t+q].

Under H0, there exists some φ∗ such that φt = φ∗ for any t. By Theorem 1, we can show that

E{exp(iµ⊤S0,t+q+1)− φ∗(µ|X0,t+q)} exp(iν⊤X0,t−1)

= E exp(iµ⊤S0,t+q+1 + iν⊤X0,t−1)− Eφ∗(µ|X0,t+q) exp(iν
⊤X0,t−1) = 0,

for any t, q, µ, ν. This motivates us to consider the test statistic based on

1

n(T − q − 1)

n∑
j=1

T−q−1∑
t=1

{exp(iµ⊤Sj,t+q+1)− φ̂(µ|Xj,t+q)}{exp(iν⊤Xj,t−1)− φ̄(ν)}, (6)

where φ̂ denotes some nonparametric estimator for φ∗ and φ̄(ν) = n−1(T + 1)−1
∑

1≤j≤n,0≤t≤T exp(iν⊤Xj,t−1).

Modern machine learning (ML) algorithms are well-suited to estimating φ∗ in high-dimensional cases. However,
naively plugging ML estimators for φ̂ will cause a heavy bias in (6). Because of that, the resulting estimating equation
does not have a tractable limiting distribution. Kernel smoothers (Härdle, 1990) or local polynomial regression can be
used to reduce the estimation bias by properly choosing the bandwidth parameter. However, as commented in Section
1.2, these methods suffer from the curse of dimensionality and will perform poorly in cases as we concatenate data
over multiple decision points.

In the next section, we address these concerns by presenting a doubly-robust estimating equation to alleviate the
estimation bias. When observations are time independent, our method shares similar spirits with the double machine
learning method proposed by Chernozhukov et al. (2018) for statistical inference of the average treatment effects in
causal inference.

3.2 Forward-Backward Learning

To introduce our method, we define another CCF

ψt(ν|x) = E{exp(iν⊤X0,t−1)|X0,t = x}. (7)

We need the following two conditions.

(C1) Actions are generated by a fixed behavior policy.
(C2) Suppose the process {S0,t}t≥0 is strictly stationary.

Condition (C1) requires the agent to select actions based on information contained in the current state variable only.
Under H0, the process {S0,t}t≥0 forms a time-invariant Markov chain. When its initial distribution equals its station-
ary distribution, (C2) is automatically satisfied. This together with (C1) implies {X0,t}t≥0 is strictly stationary as well.
As a result, we have ψt = ψ∗ for some ψ∗ and any t > 0.

Theorem 2 Suppose H0, (C1) and (C2) hold. Then for any t > 0, q ≥ 0, µ ∈ Rp, ν ∈ Rp+1, we have

EΓ0(q, µ, ν) ≡ E{exp(iµ⊤S0,t+q+1)− φ∗(µ|X0,t+q)}{exp(iν⊤X0,t−1)− ψ∗(ν|X0,t)} = 0.

Moreover, the above equation is doubly-robust. That is, for any CCFs φ and ψ, the following holds as long as either
φ = φ∗ or ψ = ψ∗,

E{exp(iµ⊤S0,t+q+1)− φ(µ|X0,t+q)}{exp(iν⊤X0,t−1)− ψ(ν|X0,t)} = 0. (8)

Proof: When φ = φ∗, we have

E[exp(iµ⊤S0,t+q+1)− φ∗(µ|X0,t+q)|{X0,j}j≤t+q] = 0,

under MA. Assertion (8) thus follows. Under (C1), we have X0,t−1 ⊥⊥ {X0,j}j>t|X0,t for any t > 1. When ψ = ψ∗,
we can similarly show that

E[exp(iν⊤X0,t−1)− ψ∗(ν|X0,t)|{X0,j}j>t] = 0.

The doubly-robustness property thus follows.
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The propose algorithm estimates both φ∗ and ψ∗ using ML methods without specifying their parametric forms. Let
φ̂ and ψ̂ denote the corresponding estimators. Note that computing φ∗ is essentially estimating the characteristic
function of S0,t given S0,t−1. This corresponds to a forward prediction task. Similarly, estimating ψ∗ is a backward
prediction task. Thus, we refer to φ̂ and ψ̂ as forward and backward learners, respectively. Our proposed method
is referred to as the forward-backward learning algorithm. It is worth mentioning that although we focus on the
problem of testing MA in this paper, the proposed method can be applied to more general estimation and inference
problems with time-dependent observations.

Consider the following estimating equation,

1

n(T − q − 1)

n∑
j=1

T−q−1∑
t=1

{exp(iµ⊤Sj,t+q+1)− φ̂(µ|Xj,t+q)}{exp(iν⊤Xj,t−1)− ψ̂(ν|Xj,t)}. (9)

Unlike (6), the above estimating equation is doubly robust. This helps alleviate the impact of the biases in φ̂ and ψ̂.

Our test statistic is constructed based on a slightly modified version of (9) with cross-fitting. The use of cross-fitting
allows us to establish the limiting distribution of the estimating equation under minimal conditions.

Suppose we have at least two trajectories, i.e, n ≥ 2. We begin by randomly dividing {1, · · · , n} into L subsets
I(1), · · · , I(L) of equal size. Denote by I(−ℓ) = {1, · · · , n} − I(ℓ) for ℓ = 1, · · · ,L. Let φ̂(−ℓ) and ψ̂(−ℓ) denote the
forward and backward learners based on the data in I(−ℓ). For any µ, ν, q, define

Γ̂(q, µ, ν) =
n−1

T − q − 1

L∑
ℓ=1

∑
j∈I(ℓ)

T−q−1∑
t=1

{exp(iµ⊤Sj,t+q+1)− φ̂(−ℓ)(µ|Xj,t+q)}{exp(iν⊤Xj,t−1)− ψ̂(−ℓ)(ν|Xj,t)}.

Notice that Γ̂ is a complex-valued function. We use Γ̂R and Γ̂I to denote its real and imaginary part.

Algorithm 1 Forward-Backward Learning
Input: B, Q, L, α and the observed data.
Step 1: Randomly generate i.i.d. pairs {(µb, νb)}1≤b≤B from N(0, I); Randomly divide {1, · · · , n} into

∪
ℓ I(ℓ)

for ℓ = 1, · · · ,L, set I(−ℓ) = {1, · · · , n} − I(ℓ).
Step 2: Compute the forward and backward learners φ̂(−ℓ)(q, µb, ·) and ψ̂(−ℓ)(q, νb, ·) for q = 0, · · · , Q, b =
1, · · · , B based on modern ML methods.
Step 3: Compute Γ̂(q, µb, νb) for q = 0, · · · , Q, b = 1, · · · , B; Compute Ŝ according to (10).
Step 4: For q = 0, · · · , Q, compute an estimated covariance matrix Σ̂(q) according to (11) (see Appendix A.1 for
details).
Step 5: Use Monte Carlo to simulate the upper α/2-th critical value of maxq∈{0,...,Q} ∥{Σ̂(q)}1/2Zq∥∞ where
Z2, · · · ,ZQ are i.i.d. 2B-dimensional random vectors with identity covariance matrix. Denote this critical value by
ĉα.
Reject H0 if Ŝ is greater than ĉα.

To implement our test, we randomly sample i.i.d. pairs {(µb, νb)}1≤b≤B according to a multivariate normal distribu-
tion with zero mean and identity covariance matrix, where B is allowed to diverge with the number of observations.
LetQ be some large integer that is allowed to be proportion to T (see the condition in Theorem 3 below for details). We
calculate Γ̂R(q, µb, νb) and Γ̂I(q, µb, νb) for b = 1, · · · , B, q = 0, · · · , Q. Under H0, Γ̂R(q, µb, νb) and Γ̂I(q, µb, νb)
are close to zero. Thus, we reject H0 when one of these quantities has large absolute value. Our test statistic is given
by

Ŝ = max
b∈{1,··· ,B}

max
q∈{0,··· ,Q}

√
n(T − q − 1)max(|Γ̂R(q, µb, νb)|, |Γ̂I(q, µb, νb)|). (10)

Under H0, each Γ̂R(q, µb, νb) (or Γ̂I(q, µb, νb)) is asymptotically normal. As a result, Ŝ converges in distribution to a
maximum of some Gaussian random variables. For a given significance level α > 0, we reject H0 when Ŝ > ĉα for
some threshold ĉα computed by wild bootstrap (Wu, 1986). We detail our procedure in Algorithm 1.

Step 2 of our algorithm requires to estimate φ̂(−ℓ)(µb|·) and ψ̂(−ℓ)(νb|·) for b = 1, · · · , B. The integer B shall be
large enough to guarantee that our test has good power properties. Our method allows B to grow at an arbitrary
polynomial order of n × T (see the condition in Theorem 3 below for details). Separately applying ML algorithms
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B times to compute these leaners is computationally intensive. In Section 5.1, we use the random forests (Breiman,
2001) algorithm as an example to illustrate how these leaners can be simultaneously calculated. Other ML algorithms
could also be used.

3.3 Bidirectional asymptotics

In this section, we prove the validity of our test under a bidirectional-asymptotic framework where either n or T grows
to infinity. We begin by introducing some conditions.

(C3) Under H0, suppose the Markov chain {X0,t}t≥0 is geometrically ergodic when T →∞.
(C4) Suppose there exists some c0 > 1/2 such that

max
1≤b≤B

∫
x

|φ̂(−ℓ)(µb|x)− φ∗(µb|x)|2F(dx) = Op((nT )
−c0),

max
1≤b≤B

∫
x

|ψ̂(−ℓ)(νb|x)− ψ∗(νb|x)|2F(dx) = Op((nT )
−c0),

where F denotes the distribution function of X0,0. In addition, suppose φ̂(−ℓ) and ψ̂(−ℓ) are bounded functions.

Condition (C3) enables us to establish the limiting distribution of our test under the setting where T → ∞. Notice
that this condition is not needed when T is bounded. The geometric ergodicity assumption (see e.g. Tierney, 1994, for
definition) is weaker than the uniform ergodicity condition imposed in the existing reinforcement learning literature
(see e.g. Bhandari et al., 2018; Zou et al., 2019). There exist Markov chains that are not uniformly ergodic but may
still be geometrically ergodic (Mengersen & Tweedie, 1996).

The first part of Condition (C4) requires the prediction errors of estimated CCFs to satisfy certain uniform convergence
rates. This is the key condition to ensure valid control of the type-I error rate of our test. In practice, the capacity of
modern ML algorithms and their success in prediction tasks even in high-dimensional samples make this a reasonable
assumption. In theory, the uniform convergence rates in (C4) can be derived for popular ML methods such as random
forests (Biau, 2012) and deep neural networks (Schmidt-Hieber, 2020). The boundedness assumption in (C4) is
reasonable since φ∗ and ψ∗ are bounded by 1.

Theorem 3 Assume (C1)-(C4) hold. Suppose logB = O((nT )c
∗
) for any finite c∗ > 0 and Q ≤ max(ρ0T, T − 2)

for some constant ρ0 < 1. In addition, suppose there exists some ϵ0 > 0 such that the real and imaginary part of
Γ0(q, µ, ν) have variances greater than ϵ0 for any µ, ν and q ∈ {0, · · · , Q}. Then we have as either n → ∞ or
T →∞, P(Ŝ > ĉα) = α+ o(1).

Theorem 3 implies the type-I error rate of our test is well-controlled. Our proof relies on the high-dimensional mar-
tingale central limit theorem that is recently developed by Belloni & Oliveira (2018). This enables us to show the
asymptotic equivalence between the distribution of Ŝ and that of the bootstrap samples given the data, under settings
where B diverges with n and T . It is worthwhile to mention that the stationarity condition in (C2) is imposed to sim-
plify the presentation. Our test remains valid when (C2) is violated. To save space, we move the related discussions to
Appendix A.2.

4 Model selection

Algorithm 2 RL Model Selection
Input: B, Q, L, α and the observed data.
for k = 1, 2, · · · ,K do

Apply algorithm 1 with B, Q, L, α specified above to the data {(Sj,t(k), Aj,t(k))}1≤j≤n,0≤t≤T−k+1.
if H0 is not rejected then

Conclude the system is a k-th order MDP; Break.
end if

end for
Conclude the system is a POMDP.

Based on our test, we can choose which RL model to use to model the system dynamics. For any j, k, t, let

Sj,t(k) = (S⊤
j,t, Aj,t, S

⊤
j,t+1, Aj,t+1, · · · , S⊤

j,t+k)
⊤,

7
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and Aj,t(k) = Aj,t+k. Given a large integer K, our procedure sequentially test the null hypothesis MA based on
the concatenated data {(Sj,t(k), Aj,t(k))}1≤j≤n,0≤t≤T−k for k = 0, 1, · · · ,K. Once the null is not rejected, we
can conclude the system is a k-th order MDP and terminate our procedure. Otherwise, we conclude the system is a
POMDP. We summarize our method in Algorithm 2.

5 Numerical examples

This section is organized as follows. We discuss some implementation details in Section 5.1. In Section 5.2, we apply
our test to mobile health applications. We use both synthetic and real datasets to demonstrate the usefulness of our test
in detecting HMDPs. In Section 5.3, we apply our test to a POMDP problem to illustrate its consistency.

5.1 Implementation details

We first describe the algorithm we use to simultaneously compute {φ̂(−ℓ)(µb|·)}1≤b≤B . The algorithm for computing
backward learners can be similarly derived. Our method is motivated by the quantile regression forest algorithm
(Meinshausen, 2006). We detail our procedure below. %vspace-0.4cm

1. Apply the random forests algorithm with the response-predictor pairs {(Sj,t, Xj,t−1)}j∈I(−ℓ),1≤t≤T to grow
M trees T (θm) for m = 1, . . . ,M . Here θm denotes the parameters associated with the m-th tree. Denote
by l(x, θm) the leaf space of the m-th tree that predictor x fails into. %vspace-0.2cm

2. For any m ∈ {1, · · · , T}, (j, t) ∈ I(−ℓ) and x, compute the weight w(−ℓ)
j,t (x, θm) as

I{Xj,t ∈ l(x, θm)}
#{(l1, l2) : l1 ∈ I(−ℓ), Xl1,l2 ∈ l(x, θm)}

.

Average over all trees to calculate the weight of each training data as w(−ℓ)
j,t (x) =

∑M
m=1 w

(−ℓ)
j,t (x, θm)/M .

3. For any x and b ∈ {1, . . . , B}, compute the forward learner φ̂(−ℓ)(µb|x) as the weighted average∑
j∈I(−ℓ),1≤t≤T w

(−ℓ)
j,t (x) exp(iµ⊤

b Sj,t).

To implement this algorithm, the number of trees M is set to 100 and other tuning parameters are selected via 5-fold
cross-validation. To construct our test, the hyperparameters B, Q and L are fixed as 100, 8 and 3 respectively. All
state variables are normalized to have unit sampling variance before running the test. Normalization will not affect the
Type I error rate of our test but helps improve its power. Our experiments are run on an c5d.24xlarge instance on the
AWS EC2 platform, with 96 cores and 192GB RAM.

5.2 Applications in HMDP problems

5.2.1 THE OHIOT1DM Dataset

There has been increasing interest in applying RL algorithms to mobile health (mHealth) applications. In this section,
we use the OhioT1DM dataset Marling & Bunescu (2018b) as an example to illustrate the usefulness of test in mHealth
applications. The data contains continuous measurements for six patents with type 1 diabetes over eight weeks. In
order to apply RL algorithms, it is crucial to determine how many lagged variables we should include to construct the
state vector.

In our experiment, we divide each day of follow-up into one hour intervals and a treatment decision is made every hour.
We consider three important time-varying variables to construct S0,t, including the average blood glucose levels G0,t

during the one hour interval (t − 1, t], the carbohydrate estimate for the meal C0,t during (t − 1, t] and Ex0,t which
measures exercise intensity during (t − 1, t]. At time t, we define A0,t by discretizing the amount of insulin In0,t
injected and define R0,t according to the Index of Glycemic Control (Rodbard, 2009) that is a deterministic function
G0,t+1. To save space, we present detailed definitions of A0,t and R0,t in Appendix B.1.

5.2.2 synthetic data

We first simulate patients with type I diabetes to mimic the OhioT1DM dataset. According to our findings in Section
5.2.3, we model this sequential decision problem by a fourth order MDP. Specifically, we consider the following model
for G0,t:

G0,t = α+

4∑
i=1

(βT
i S0,t−i + ciA0,t−i) + E0,t,

8
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where α, {βi}4i=1 and {ci}4i=1 are computed by least-square estimation based on the OhioT1DM dataset. The error
term E0,t is set to follow N(0, 9).

At each time point, a patient randomly choose to consume food with probability p1 and take physical activity with
probability p2, where the amounts and intensities are independently generated from normal distributions. The initial
values of G0,t are also randomly sampled from a normal distribution. Actions are independently generated from a
multinoulli distribution. Parameters p1, p2 as well as other parameters in the above distributions are all estimated from
the data.

For each simulation, we generate N = 10, 15 or 20 trajectories according to the above model. For each trajectory, we
generate measurements with T = 1344 time points (8 weeks) after an initial burn-in period of 10 time points. For
k ∈ {1, . . . , 10}, we use our test to determine whether the system is a k-th order MDP. Under our generative model,
we have H0 holds when k ≥ 4 and H1 holds otherwise.

%vspace-0.2cm Empirical rejection rates of our test with different combinations of k, N and the significance level

Figure 2: Empirical rejection rates aggregated over 500 simulations with different combinations of α, N and k. α =
(0.05, 0.1) from left plot to right plot.

Figure 3: Value differences with different combinations of k and N .

α are reported in Figure 2. Results are aggregated over 500 simulations. It can be seen that the Type I error rate of
our test is close to the nominal level in almost all cases. In addition, its power increases with N , demonstrating the
consistency of our test.

Table 1: Policy evaluation results for the OhioT1DM dataset.

k 1 2 3 4 5 6 7 8 9 10
Estimated value V̄k -90.82 -57.53 -63.77 -52.57 -56.23 -60.05 -63.70 -54.85 -65.08 -59.59

To further illustrate the usefulness of our test, we apply Algorithm 2 with α = 0.01, K = 10 for model selection
and evaluate the policy learned based on the selected model. Specifically, let κ̂(l)0 denote the order of MDP estimated
by Algorithm 2 in the l-th simulation. For each k ∈ {1, · · · , 10}, we apply the fitted-Q iteration algorithm (Ernst

9



Does the Markov Decision Process Fit the Data: Testing for the Markov Property in Sequential Decision Making

et al., 2005, see Section B.2 for details) to the data {Sj,t(k), Aj,t(k), Rj,t(k)}1≤j≤N,0≤t≤T−k+1 generated in the
l-th simulation to learn an optimal policy π̂(l)(k) and then simulate 100 trajectories following π̂(l)(k) to compute the
average discounted reward V (l)(k) (see Appendix B.2 for details). Finally, for each k = 1, · · · , 10, we compute the
value difference

VD(k) =
1

500

500∑
l=1

{V (l)(k)− V (l)(κ̂
(l)
0 )},

to compare the policy learned based on our selected model with those by assuming the system is a k-th order MDP.
We report these value differences with different choices of N in Figure 3. It can be seen that VD(k) is smaller than or
close to zero in almost all cases. When k = 4, the value differences are very close to zero for large N . This suggests
that our method is useful in identifying the optimal policy in HMDPs.

5.2.3 real data analysis

The lengths of trajectories in the OhioT1DM dataset range from 1119 to 1288. To implement our test, we set T = 1100
and apply Algorithm 1 to test whether the system is a k-th order MDP. The corresponding p-values are reported in
Table 1. To apply Algorithm 2 for model selection, we set α = 0.01. Our algorithm stops after the fourth iteration.
The first four p-values are 0, 0, 0.001 and 0.068, respectively. Thus, we conclude the system is a 4-th order MDP.

Next, we use cross-validation to evaluate our selected model. Specifically, we split the six trajectories into training and
testing sets, with each containing three trajectories. This yields a total of L =

(
6
3

)
= 20 combinations. Then for each

combination and k ∈ {1, · · · , 10}, we apply FQI to learn an optimal policy based on the training dataset by assuming
the system is a k-th order MDP and apply the Fitted Q evaluation algorithm Le et al. (2019) on the testing dataset to
evaluate its value (see Appendix B.3 for details). Finally, we aggregated these values over different combinations and
report them in Table 1. It can be seen that the policy learned based on our selected model achieves the largest value.

5.3 Applications in POMDP problems

We apply our test to the Tiger problem (Cassandra et al., 1994). The model is defined as follows: at the initial time
point, a tiger is randomly placed behind either the left or the right door with equal probability. At each time point,
the agent can select from one of the following three actions: (i) open the left door; (ii) open the right; (iii) listen for
tiger noises. But listening is not entirely accurate. If the agent chooses to listen, it will receive an observation S0,t that
corresponds to the estimated location of the tiger. Let H0,t denote the observed correct location of the tiger, we have
P(H0,t = S0,t) = 0.7 and P(H0,t ̸= S0,t) = 0.3. If the agent chooses to open one of two doors, it receives a penalty
of -100 if the tiger is behind that door or a reward R0,t of +10 otherwise. The game is then terminated.

We set T to 20. To generate the data, the behaviour policy is set to listening at time points t = 0, 1, 2, · · · , T − 1
and randomly choosing a door to open with equal probability at time T . For each simulation, we generate a total of
N trajectories and then apply Algorithm 1 to the data {(Sj,t(k), Aj,t(k))}1≤j≤N,0≤t≤T−k+1 for k = 1, . . . , 10. The
empirical rejection rates with N = 50, 100 and 200 and the significance level α = 0.05 and 0.1 are reported in the top
plots of Figure 4. It can be seen that our test has nonnegligible powers for detecting POMDPs. Take α = 0.1 as an
example. The rejection rate is well above 50% in almost all cases. Moreover, the power of our test increases as either
N increases or k decreases, as expected.

To evaluate the validity our test in this setting, we define a new state vector S∗
0,t = (S0,t,H0,t)

⊤ and repeat the
above experiment with this new state. Since the hidden variable is included in the state vector, the Markov property is
satisfied. The empirical rejection rates with different combinations of N , α and k are reported in the bottom plots of
Figure 4. It can be seen that the Type I error rates are well-controlled in almost all cases.
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A Additional details regarding our test

A.1 The covariance estimator Σ̂(q)

For any ℓ = 1, · · · ,L, j ∈ I(ℓ) and 0 < t < T − q, define vectors λR,q,j,t, λI,q,j,t ∈ RB such that the b-th element of
λR,q,j,t, λI,q,j,t correspond to the real and imaginary part of

{exp(iµ⊤Sj,t+q+1)− φ̂(−ℓ)(µ|Xj,t+q)}{exp(iν⊤Xj,t−1)− ψ̂(−ℓ)(ν|Xj,t)},

respectively. The matrix Σ̂(q) is defined by
L∑

ℓ=1

∑
j∈I(ℓ)

T−q−1∑
t=1

(λ⊤R,q,j,t, λ
⊤
I,q,j,t)

⊤(λ⊤R,q,j,t, λ
⊤
I,q,j,t)

n(T − q − 1)
. (11)

A.2 Validity of our test without the stationary assumption

When (C2) is violated, the relation ψ1 = ψ2 = · · · = ψT−1 might no longer hold. However, under (C1), (C3) and H0,
the marginal distribution function of X0,t can be well-approximated by some F on average. As a result, ψt’s can be
well-approximated by some ψ∗ on average. Let Ft denote the distribution function of X0,t. As long as the prediction
error satisfies

max
1≤b≤B

1

T

T∑
t=1

∫
x

|ψ̂(−ℓ)(νb|x)− ψt(νb|x)|2Ft(dx) = Op((nT )
−c0),

for some c0 > 1/2, our test remains valid.

B More on the OhioT1DM dataset

B.1 Detailed definitions of actions and rewards

We define A0,t as follows:

A0,t =


0, In0,t = 0;

m, 4m− 4 < In0,t ≤ 4m (m = 1, 2, 3);

4, In0,t > 12.

The Index of Glycemic Control is chosen as the immediate reward R0,t, defined by

R0,t =


− 1

30 (80− G0,t+1)
2, G0,t+1 < 80;

0, 80 ≤ G0,t+1 ≤ 140;

− 1
30 (G0,t+1 − 140)1.35, 140 ≤ G0,t+1.

B.2 Detailed procedure for value evaluation in simulations

In Section 5.2.2, we compare the policies learned with the selected order κ̂0 and fixed orders k ∈ {1, · · · , 10}. Below,
we provide more details on computing the value V (l)(k).

1. In the l-th simulation, generate N trajectories {(Sj,t, Aj,t)}1≤j≤N,0≤t≤1344, and apply Algorithm 2 with
α = 0.01 and K = 10 to estimate an order κ̂(l)0 . Also generate 100 trajectories of length 10 with the model
described in Section 5.2.2, denoted by {(Se

j,t, A
e
j,t)}1≤j≤100,0≤t<10.

2. For k = 1, . . . , 10, apply FQI (see below) to the concatenated data
{(Sj,t(k), Aj,t(k), Rj,t(k))}1≤j≤N,0≤t≤1344−k to learn an optimal policy π̂(l)(k).

3. For each initial trajectory {(Se
j,t, A

e
j,t)}0≤t<10, generate the data {(Se

j,t, A
e
j,t, R

e
j,t)}10≤t<60 following

π̂(l)(k). Compute the value V (l)(k) by

V (l)(k) =
1

100

100∑
j=1

50∑
t=10

γt−10Re
j,t,
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Algorithm 3 Fitted-Q iteration
Input: Data {Sj,t, Aj,t, Rj,t, Sj,t+1}j,t, function class F , decay rate γ, action space A
Randomly pick Q0 ∈ F
for k = 1, . . . ,K do

Update target values Zj,t = Rj,t + γmaxa∈AQk−1(Sj,t+1, a) for all (j, t);
Solve a regression problem to update the Q-function:

Qk = argminQ∈F
1
n

∑n
i=1{Q(Sj,t, Aj,t)− Zj,t}2

end for
Output: The estimated optimal policy π̂(·) = argmaxa∈AQK(·, a)

with γ = 0.9.

In our experiment,we use random forests to estimate the Q function during each iteration. The number of trees are set
as 100 and the other hyperparameters are selected by 5-fold cross-validation. The decay rate γ is set to 0.9.

B.3 Detailed procedure for value evaluation in real data analysis

In Section 5.2.3, we compare policies learned by assuming the data follows a k-th order MDP for k ∈ {1, · · · , 10}.
The policies are estimated by FQI. To evaluate the values of these policies based on the real dataset, we apply the
Fitted-Q evaluation (FQE) algorithm. Similar to FQI, it is an iterative algorithm based on the Bellman equation. We
recap the steps below.

Algorithm 4 Fitted-Q evaluation
Input: Data {Sj,t, Aj,t, Rj,t, Sj,t+1}j,t, policy π, function class F , decay rate γ
Randomly pick Q0 ∈ F
for k = 1, . . . ,K do

Update target values Zj,t = Rj,t + γQk−1(Sj,t+1, π(Sj,t+1)) for all (j, t);
Solve a regression problem to update the Q-function:

Qk = argminQ∈F
1
n

∑n
i=1{Q(Sj,t, Aj,t)− Zj,t}2

end for
Output: The estimated value V̂ (·) = QK(·, π(·))

Denote the trajectories for the six patients in the OhioT1DM dataset by {(Si,t, Ai,t)}1≤i≤6,1≤t≤1100, and let the index
set I = {1, 2, 3, 4, 5, 6}. We now describe the evaluation procedure in more details:

1. In l = 1, . . . , 20, divide I into a training set D(l)
1 and an validation set D(l)

2 = (D(l)
1 )c with |D(l)

1 | = |D
(l)
2 | =

3.

2. For each l ∈ {1, . . . , 20}, k ∈ {1, . . . , 10}, apply FQI to the data
{(Sj,t(k), Aj,t(k), Rj,t(k))}j∈D(l)

1 ,0≤t≤1100−k+1
to learn an optimal policy π̂(l)(k).

3. For each l ∈ {1, . . . , 20}, k ∈ {1, . . . , 10}, apply FQE to the data
{(Sj,t(k), Aj,t(k), Rj,t(k))}j∈D(l)

2 ,0≤t≤1100−k+1
to estimate the state-value function of π̂(l)(k), de-

noted by V̂ (l)
k (·). Generate 100 trajectories of length 10 according to the simulation model in Section 5.2.2.

Denote them by {(Se
j,t, A

e
j,t)}1≤j≤100,0≤t<10. Calculate the value under π̂(l)(k) by

V (l)(k) =
1

100

100∑
j=1

V̂
(l)
k (Se

j,(10−k)(k)).

4. Average over the 20 splits to compute the average value for each k by V (k) =
∑20

l=1 V
(l)(k)/20.

For both FQI and FQE, we use random forests to estimate the regression function. The number of trees are set to 75
and the other hyperparameters are selected by 5-fold cross-validation. We set γ = 0.9 in our experiments.

14



Does the Markov Decision Process Fit the Data: Testing for the Markov Property in Sequential Decision Making

C Technical proofs

C.1 Proof of Lemma 1

Consider a policy π = {πt}t≥0 ∈ HR. Suppose there exists some {π∗
t }t≥0 such that πt(·|S̄0,t) = π∗

t (·|S0,t) almost
surely for any t ≥ 0. We refer to such a policy π as a Markov policy. In addition, π is a deterministic policy if and
only if πt(a|S̄0,t) ∈ {0, 1} almost surely for any t ≥ 0 and a ∈ A. Let MR denotes the set of Markov policies and
SD denote the set of deterministic stationary policies, we have SD ⊆ SR ⊆ MR ⊆ HR. In the following, we focus on
proving

sup
π∈HR

V (π; s) = sup
π∈SD

V (π; s), ∀s ∈ S.

Since SD ⊆ SR, the assertion in Lemma 1 is thus satisfied.

We begin by providing a sketch of the proof. Our proof is divided into three steps. In the first step, we show

sup
π∈HR

V (π; s) = sup
π∈MR

V (π; s), ∀s ∈ S.

To prove this, we show in Section C.1.1 that for any such π ∈ HR and any s, there exists a Markov policy π∗ =
{π∗

t }t≥0 where each π∗
t depends on S0,t only such that

Pπ(A0,t = a, S0,t ∈ S|S0,0 = s) = Pπ∗
(A0,t = a, S0,t ∈ S|S0,0 = s), (12)

for any t ≥ 0, a ∈ A, S ⊆ S and s ∈ S where the probabilities Pπ and Pπ∗
are taken by assuming the system dynamics

follow π and π∗, respectively. Under MA, we have

Eπ(Y0,t|S0,0 = s) = Eπ{Eπ(Y0,t|A0,t, S0,t, S0,0 = s)|S0,0 = x} = Eπ{r(A0,t, S0,t)|S0,0 = x},

for some function r. This together with (12) yields that

Eπ(Y0,t|S0,0 = s) = Eπ∗
(Y0,t|S0,0 = s), ∀t ≥ 0,

and hence V (π; s) = V (π∗; s). This completes the proof for the first step.

With a slight abuse of notation, for any π ∈ SD, we denote by π(s) the action that the agent chooses according to π,
given that the current state equals s. In the second step, we show for any bounded function ν(·) on S that satisfies the
optimal Bellman equation

ν(s) = sup
π∈SD

{
r(π(s), s) + γ

∫
s′
ν(s′)P(ds′;π(s), s)

}
, ∀s ∈ S,

it satisfies

ν(s) = sup
π∗∈MR

V (π∗; s), ∀s ∈ S. (13)

The proof of (13) is given in Section C.1.2.

For any function ν, define the norm ∥ν∥∞ = sups∈S |ν(s)|. We have for any ν1 and ν2 that

sup
x

∣∣∣∣ sup
π∈SD

{
r(π(s), s) + γ

∫
s′
ν1(s

′)P(ds′;π(s), s)
}
− sup

π∈SD

{
r(π(s), s) + γ

∫
s′
ν2(s

′)P(ds′;π(s), s)
}∣∣∣∣

≤ γ sup
π∈SD

sup
s∈S

∣∣∣∣∫
s′
ν1(s

′)P(ds′;π(s), s)−
∫
s′
ν2(s

′)P(ds′;π(s), s)
∣∣∣∣

≤ γ sup
π∈SD

sup
s∈S

∣∣∣∣∫
s′
∥ν1 − ν2∥∞P(ds′;π(s), s)

∣∣∣∣ ≤ γ∥ν1 − ν2∥∞.
By Banach’s fix point theorem, there exists a unique value function ν0 that satisfies the optimal Bellman equa-
tion. Combining this together with the results obtained in the first two steps, we obtain that ν0 satisfies ν0(s) =
supπ∈HR V (π; s) for any s ∈ S. The proof is thus completed if we can show there exists a deterministic stationary
policy π∗∗ that satisfies

ν0(s) = V (π∗∗; s), ∀s ∈ S. (14)

We put the proof of (14) in Section C.1.3.
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C.1.1 Proof of (12)

Apparently, (12) holds with t = 0. Suppose (12) holds for t = k. We now show (12) holds for t = k + 1. Under MA,
we have

Pπ(S0,k+1 ∈ S|S0,0 = s) = Eπ{Pπ(S0,t+1 ∈ S|A0,t, S0,t, S0,0 = s)|S0,0 = x}

= Eπ{P(S;A0,t, S0,t)|S0,0 = x} = Eπ∗
{P(S;A0,t, S0,t)|S0,0 = x} = Pπ∗

(S0,k+1 ∈ S|S0,0 = s)
∆
= Gk+1(S; s).

Set π∗
k+1 to be the decision rule that satisfies

Pπ(A0,k+1 = a|S0,k+1, S0,0 = s) = Pπ∗
k+1(A0,k+1 = a|S0,k+1), ∀a ∈ A,

it follows that

Pπ(A0,k+1 = a, S0,k+1 ∈ S|S0,0 = s) =

∫
s′
Pπ(A0,k+1 = a|S0,k+1 = s′, S0,0 = s)Gk+1(ds

′; s)

=

∫
s′
Pπ∗

(A0,k+1 = a|S0,k+1 = s′, S0,0 = s)Gk+1(ds
′; s) = Pπ∗

(A0,k+1 = a, S0,k+1 ∈ S|S0,0 = s).

Thus, (12) holds for t = k + 1 as well. The proof is hence completed.

C.1.2 Proof of (13)

We first show for any bounded function ν that satisfies

ν(s) ≥ sup
π∈SD

{
r(π(s), s) + γ

∫
s′
ν(s′)P(ds′;π(s), s)

}
, ∀s ∈ S, (15)

we have

ν(s) ≥ sup
π∗∈MR

V (π∗; s), ∀s ∈ S. (16)

Then, we show for any bounded function ν that satisfies

sup
s∈S

[
ν(s)− sup

π∈SD

{
r(π(s), s) + γ

∫
s′
ν(s′)P(ds′;π(s), s)

}]
≤ 0,

we have

ν(s) ≤ sup
π∗∈MR

V (π∗; s), ∀s ∈ S. (17)

The proof is hence completed.

Proof of (16): Consider an arbitrary deterministic Markov policy π∗ = {π∗
t }t≥0. With a slight abuse of notation, we

denote by π∗
t (s) the action that the agent chooses following π∗

t , given that the current state equals s. It follows from
(15) that

ν(s) ≥ r(π∗
0(s), s) + γ

∫
s′
ν(s′)P(ds′;π∗

0(s), s), ∀s ∈ S.

By iteratively applying (15), we have

ν(s) ≥ r(π∗
0(s), s) +

K∑
k=1

γkEπ∗
{r(A0,k, X0,k)|S0,0 = x}+ γK+1Eπ∗

{ν(X0,K+1)|S0,0 = x}, ∀s ∈ S.

Since ν is bounded, the last term on the right-hand-side (RHS) converges to zero uniformly in x, as K → ∞. Let
K → ∞, we obtain ν(s) ≥ V (π∗; s), for any s ∈ S and any deterministic Markov policy π∗. Using Lemma 4.3.1 of
Puterman (1994), we can similarly show ν(s) ≥ V (π∗; s) for any s ∈ S and π∗ ∈ MR. This completes the proof of
(16).

Proof of (17): By definition, we have

inf
π∈SD

sup
s∈S

[
ν(s)−

{
r(π(s), s) + γ

∫
s′
ν(s′)P(ds′;π(s), s)

}]
≤ 0.
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Thus, for any ϵ > 0, there exists some π0 ∈ SD that satisfies

sup
s∈S

[
ν(s)−

{
r(π0(s), s) + γ

∫
s′
ν(s′)P(ds′;π0(s), s)

}]
≤ ϵ. (18)

Consider the following bounded linear operator L0,

L0ν(s) =

∫
s′
ν(s′)P(ds′;π0(s), s),

defined on the space of bounded functions. Let I0 denote the identity operator. Since γ < 1, the operator I0 − γL0 is
invertible and its inverse equals

∑+∞
k=0 γ

kLk
0 . It follows from (18) that

ν(s) ≤
+∞∑
k=0

γkLk
0{r(π0(s), s) + ϵ}, ∀s ∈ S.

Since V (π0; s) =
∑+∞

k=0 γ
kLk

0r(π0(s), s) and
∑+∞

k=0 γ
kLk

0ϵ ≤ ϵ/(1− γ), we obtain

ν(s) ≤ V (π0; s) +
ϵ

1− γ
.

Let ϵ→ 0, we obtain ν(s) ≤ supπ∗∈MR V (π∗; s) for any x. The proof is hence completed.

C.1.3 Proof of (14)

Since ν0(·) satisfies the optimal Bellman equation, we have

ν0(s) = argmax
π∈SD

{
r(π(s), s) + γ

∫
s′
ν0(s

′)P(ds′;π(s), s)
}
.

Let As be the available set of actions at a given state s. As a result, we have

ν0(s) = argmax
a∈As

{
r(a, s) + γ

∫
s′
ν0(s

′)P(ds′; a, s)
}
.

Since A is finite, so is As. As a result, the above argmax is achievable. Let π∗∗(s) be the action such that the above
argmax is achieved, we have

ν0(s) = r(π∗∗(s), s) + γ

∫
s′
ν0(s

′)P(ds′;π∗∗(s), s).

Similar to the proof of (13), we can show ν0(s) = V (π∗∗; s), for all s ∈ S. The proof is hence completed.

C.2 Proof of Theorem 1

The proof is divided into two parts. In the first part, we show (3)⇒ (5). In the second part, we show (5)⇒ (3).

C.2.1 Part 1

Under (3), S0,t+q+1 ⊥⊥ {X0,j}j<t+q|X0,t+q . It follows that

E[exp(iµ⊤S0,t+q+1 + iν⊤X0,t−1)|{X0,j}t≤j≤t+q] = φt+q(µ|X0,t+q)E[(iν⊤X0,t−1)|{X0,j}t≤j≤t+q].

The proof is hence completed.

C.2.2 Part 2

We introduce the following lemma before presenting the proof.

Lemma 3 For any random vectors Z1 ∈ Rq1 , Z2 ∈ Rq2 , Z3 ∈ Rq3 , suppose
E{exp(iµ⊤

1 Z1)|Z3}E{exp(iµ⊤
2 Z2)|Z3} = E{exp(iµ⊤

1 Z1 + iµ⊤
2 Z2)|Z3} for any µ1 ∈ Rq1 , µ2 ∈ Rq2 almost

surely. Then we have Z1 ⊥⊥ Z2|Z3.

17



Does the Markov Decision Process Fit the Data: Testing for the Markov Property in Sequential Decision Making

Let q = 0. By (5), we obtain

φt(µ|X0,t)E{exp(iν⊤X0,t−1)|X0,t} = E[exp(iµ⊤S0,t+1 + iν⊤X0,t−1)|X0,t],

for any t > 0, µ ∈ Rp, ν ∈ Rp+1. By Lemma 3, we obtain

S0,t+1 ⊥⊥ X0,t−1|X0,t, ∀t > 0. (19)

Set q = 1, we have by (5) that

φt+1(µ|X0,t+1)E{exp(iν⊤X0,t−1)|X0,t, X0,t+1} = E[exp(iµ⊤S0,t+2 + iν⊤X0,t−1)|X0,t, X0,t+1], (20)

for any t > 0, µ ∈ Rp, ν ∈ Rp+1. For any v ∈ Rp+1, multiply both sides of (20) by exp(iv⊤X0,t) and take
expectation with respect to X0,t conditional on X0,t+1, we obtain

E{exp(iµ⊤S0,t+2)|X0,t+1}E{exp(iv⊤X0,t−1 + iν⊤X0,t)|X0,t+1} = E[exp(iµ⊤S0,t+2 + iv⊤X0,t−1 + iν⊤X0,t)|X0,t+1].

By Lemma 3, we obtain

S0,t+2 ⊥⊥ X0,t−1, X0,t|X0,t+1, ∀t > 0. (21)

Similarly, we can show

S0,t+q+1 ⊥⊥ {S0,j}t−1≤j<t+q|X0,t+q, ∀t. (22)

Combining (19) with (21) and (22) yields (3). The proof is hence completed.

C.2.3 Proof of Lemma 3

Let Z̃1, Z̃2 be independent copies of Z1, Z2 such that Z̃1|Z3
d
= Z1|Z3, Z̃2|Z3

d
= Z2|Z3 and that Z̃1 ⊥⊥ Z̃2|Z̃3.

Consider any µ1 ∈ Rq1 , µ2 ∈ Rq2 , µ3 ∈ Rq3 , we have

E exp(iµ⊤
1 Z̃1 + iµ⊤

2 Z̃2 + iµ⊤
3 Z3) = E[exp(iµ⊤

3 Z3)E{exp(iµ⊤
1 Z̃1 + iµ⊤

2 Z̃2)|Z3}] (23)

= E[exp(iµ⊤
3 Z3)E{exp(iµ⊤

1 Z̃1)|Z3}E{exp(iµ⊤
2 Z̃2)|Z3}] = E[exp(iµ⊤

3 Z3)E{exp(iµ⊤
1 Z1)|Z3}E{exp(iµ⊤

2 Z2)|Z3}].
Under the condition in Lemma 3, we have

E[exp(iµ⊤
3 Z3)E{exp(iµ⊤

1 Z1)|Z3}E{exp(iµ⊤
2 Z2)|Z3}] = E[exp(iµ⊤

3 Z3)E{exp(iµ⊤
1 Z1 + iµ⊤

2 Z2)|Z3}]
= E exp(iµ⊤

1 Z1 + iµ⊤
2 Z2 + iµ⊤

3 Z3).

This together with (23) yields

E exp(iµ⊤
1 Z̃1 + iµ⊤

2 Z̃2 + iµ⊤
3 Z3) = E exp(iµ⊤

1 Z1 + iµ⊤
2 Z2 + iµ⊤

3 Z3).

As a result, (Z̃1, Z̃2, Z3) and (Z1, Z2, Z3) have same characteristic functions. Therefore, we have (Z̃1, Z̃2, Z3)
d
=

(Z1, Z2, Z3). By construction, we have Z̃1 ⊥⊥ Z̃2|Z3. It follows that Z1 ⊥⊥ Z2|Z3.

C.3 Proof of Theorem 3

We focus on proving Theorem 3 in the more challenging setting where T → ∞. The number of trajectories n can be
either bounded or growing to∞. The case where T is bounded can be proven using similar arguments. We begin by
providing an outline of the proof. For any q, µ, ν, define

Γ∗(q, µ, ν) =
1

n(T − q − 1)

n∑
j=1

T−q−1∑
t=1

{exp(iµ⊤Sj,t+q+1)− φ∗(µ|Xj,t+q)}{exp(iν⊤Xj,t−1)− ψ∗(ν|Xj,t)}.

Denote by Γ∗
R and Γ∗

I the real and imaginary part of Γ∗, respectively.

We break the proof into three steps. In the first step, we show

max
b∈{1,··· ,B}

max
q∈{0,··· ,Q}

√
n(T − q − 1)|Γ̂(q, µb, νb)− Γ∗(q, µb, νb)| = op(log

−1/2(nT )). (24)

Proof of (24) relies largely on Condition (C4) which requires φ̂ and ψ̂ to satisfy certain uniform convergence rates.
This further implies that

Ŝ = S∗ + op(log
−1/2(nT )), (25)
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where
S∗ = max

b∈{1,··· ,B}
max

q∈{0,··· ,Q}

√
n(T − q − 1)max(|Γ∗

R(q, µb, νb)|, |Γ∗
I(q, µb, νb)|).

In the second step, we show for any z ∈ R and any sufficiently small ε > 0,

P(S∗ ≤ z) ≥ P(∥N(0, V0)∥∞ ≤ z − ε log−1/2(nT ))− o(1),
P(S∗ ≤ z) ≤ P(∥N(0, V0)∥∞ ≤ z + ε log−1/2(nT )) + o(1),

where the matrix V0 is defined in Step 2 of the proof. This together with (25) yields that

P(Ŝ ≤ z) ≥ P(∥N(0, V0)∥∞ ≤ z − 2ε log−1/2(nT ))− o(1), (26)

P(Ŝ ≤ z) ≤ P(∥N(0, V0)∥∞ ≤ z + 2ε log−1/2(nT )) + o(1). (27)

The proposed Bootstrap algorithm repeatedly generate random variables from ∥N(0, V̂ )∥∞ where the detailed form of
V̂ is given in the third step of the proof. The critical values ĉα is chosen to be the upper α-th quantile of ∥N(0, V̂ )∥∞.
In the third step, we show ∥V0 − V̂ ∥∞,∞ = O((nT )−c∗∗) for some c∗∗ > 0 with probability tending to 1, where
∥ · ∥∞,∞ denotes the elementwise max-norm. Combining this upper bound with some arguments used in proving (26)
and (27), we can show with probability tending to 1 that

P(Ŝ ≤ z) ≥ P(∥N(0, V̂ )∥∞ ≤ z − 2ε log−1/2(nT )|V̂ )− o(1),
P(Ŝ ≤ z) ≤ P(∥N(0, V̂ )∥∞ ≤ z + 2ε log−1/2(nT )|V̂ ) + o(1),

for any sufficiently small ε > 0 where P(·|V̂ ) denotes the conditional probability given V̂ . Set z = ĉα. It follows
from that

P(Ŝ ≤ ĉα) ≥ P(∥N(0, V̂ )∥∞ ≤ ĉα − 2ε log−1/2(nT )|V̂ )− o(1), (28)

P(Ŝ ≤ ĉα) ≤ P(∥N(0, V̂ )∥∞ ≤ ĉα + 2ε log−1/2(nT )|V̂ ) + o(1), (29)
with probability tending to 1. Under the given conditions in Theorem 3, the diagonal elements in V0 are bounded away
from zero. With probability tending to 1, the diagonal elements in V̂ is bounded away from zero as well. It follows
from Theorem 1 of Chernozhukov et al. (2017) that conditional on V̂ ,

P(∥N(0, V̂ )∥∞ ≤ ĉα + 2ε log−1/2(nT )|V̂ )− P(∥N(0, V̂ )∥∞ ≤ ĉα − 2ε log−1/2(nT )|V̂ )

≤ O(1)ε log1/2(BQ) log−1/2(nT ),

with probability tending to 1, where O(1) denotes some positive constant that is independent of ε. Under the given
conditions on B and Q, we obtain with probability tending to 1 that,

P(∥N(0, V̂ )∥∞ ≤ ĉα + 2ε log−1/2(nT )|V̂ )− P(∥N(0, V̂ )∥∞ ≤ ĉα − 2ε log−1/2(nT )|V̂ ) ≤ C∗ε,

for some constant C∗ > 0. This together with (28) and (29) yields

|P(Ŝ ≤ ĉα)− P(∥N(0, V̂ )∥∞ ≤ ĉα|V̂ )| ≤ C∗ε+ o(1),

with probability tending to 1. Notice that ε can be made arbitrarily small. The validity of our test thus follows.

In the following, we present our proof for each of the step. Suppose {µb, νb}1≤b≤B are fixed throughout the proof.
Denote by φ̂(ℓ)

R , φ̂(ℓ)
I the real and imaginary part of φ̂(ℓ) respectively. Without loss of generality, we assume the

absolute values of φ̂(ℓ)
R , φ̂(ℓ)

I are uniformly bounded by 1.

C.3.1 Step 1

With some calculations, we can show that for any q, µ, ν,

Γ̂(q, µ, ν) = Γ∗(q, µ, ν) +R1(q, µ, ν) +R2(q, µ, ν) +R3(q, µ, ν),

where the remainder terms R1, R2 and R3 are given by

R1(q, µ, ν) =
1

n(T − q − 1)

L∑
ℓ=1

∑
j∈I(ℓ)

T−q−1∑
t=1

{φ∗(µ|Xj,t+q)− φ̂(−ℓ)(µ|Xj,t+q)}{ψ∗(ν|Xj,t)− ψ̂(−ℓ)(ν|Xj,t)},

R2(q, µ, ν) =
1

n(T − q − 1)

L∑
ℓ=1

∑
j∈I(ℓ)

T−q−1∑
t=1

{exp(iµ⊤Sj,t+q+1)− φ∗(µ|Xj,t+q)}{ψ∗(ν|Xj,t)− ψ̂(−ℓ)(ν|Xj,t)},

R3(q, µ, ν) =
1

n(T − q − 1)

L∑
ℓ=1

∑
j∈I(ℓ)

T−q−1∑
t=1

{φ∗(µ|Xj,t+q)− φ̂(−ℓ)(µ|Xj,t+q)}{exp(iν⊤Xj,t−1)− ψ∗(ν|Xj,t)}.
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It suffices to show

max
b∈{1,··· ,B}

max
q∈{0,··· ,Q}

√
n(T − q − 1)|Rm(q, µb, νb)| = op(log

−1/2(nT )), (30)

for m = 1, 2, 3. In the following, we show (30) holds with m = 1, 2. Using similar arguments, one can show (30)
holds with m = 3.

Proof of (30) with m = 1: Since L is fixed, it suffices to show

max
b∈{1,··· ,B}

max
q∈{0,··· ,Q}

√
n(T − q − 1)|R1,ℓ(q, µb, νb)| = op(log

−1/2(nT )), (31)

where R1,ℓ(q, µb, νb) is defined by

1

n(T − q − 1)

∑
j∈I(ℓ)

T−q−1∑
t=1

{φ∗(µb|Xj,t+q)− φ̂(−ℓ)(µb|Xj,t+q)}{ψ∗(νb|Xj,t)− ψ̂(−ℓ)(νb|Xj,t)}.

Similarly, let φ∗
R and φ∗

I denote the real and imaginary part of φ∗. We can rewrite R1,ℓ(q, µb, νb) as R(1)
1,ℓ(q, µb, νb)−

R
(2)
1,ℓ(q, µb, νb) + iR

(3)
1,ℓ(q, µb, νb) + iR

(4)
1,ℓ(q, µb, νb) where

R
(1)
1,ℓ(q, µb, νb) =

1

n(T − q − 1)

∑
j∈I(ℓ)

T−q−1∑
t=1

{φ∗
R(µb|Xj,t+q)− φ̂(−ℓ)

R (µb|Xj,t+q)}{ψ∗
R(νb|Xj,t)− ψ̂(−ℓ)

R (νb|Xj,t)},

R
(2)
1,ℓ(q, µb, νb) =

1

n(T − q − 1)

∑
j∈I(ℓ)

T−q−1∑
t=1

{φ∗
I(µb|Xj,t+q)− φ̂(−ℓ)

I (µb|Xj,t+q)}{ψ∗
I (νb|Xj,t)− ψ̂(−ℓ)

I (νb|Xj,t)},

R
(3)
1,ℓ(q, µb, νb) =

1

n(T − q − 1)

∑
j∈I(ℓ)

T−q−1∑
t=1

{φ∗
R(µb|Xj,t+q)− φ̂(−ℓ)

R (µb|Xj,t+q)}{ψ∗
I (νb|Xj,t)− ψ̂(−ℓ)

I (νb|Xj,t)},

R
(4)
1,ℓ(q, µb, νb) =

1

n(T − q − 1)

∑
j∈I(ℓ)

T−q−1∑
t=1

{φ∗
R(µb|Xj,t+q)− φ̂(−ℓ)

R (µb|Xj,t+q)}{ψ∗
I (νb|Xj,t)− ψ̂(−ℓ)

I (νb|Xj,t)}.

To prove (31), it suffices to show

max
b∈{1,··· ,B}

max
q∈{0,··· ,Q}

√
n(T − q − 1)|R(s)

1,ℓ(q, µb, νb)| = op(log
−1/2(nT )), (32)

for s = 1, 2, 3, 4. For brevity, we only show (32) holds with s = 1.

By the Cauchy-Schwarz inequality, it suffices to show

max
b∈{1,··· ,B}

max
q∈{0,··· ,Q}

1√
n(T − q − 1)

∑
j∈I(ℓ)

T∑
t=1

{φ∗
R(µb|Xj,t)− φ̂(−ℓ)

R (µb|Xj,t)}2 = op(log
−1/2(nT )), (33)

max
b∈{1,··· ,B}

max
q∈{0,··· ,Q}

1√
n(T − q − 1)

∑
j∈I(ℓ)

T∑
t=1

{ψ∗
R(νb|Xj,t)− ψ̂(−ℓ)

R (νb|Xj,t)}2 = op(log
−1/2(nT )). (34)

In the following, we focus on proving (33). Proof of (34) is similar and is thus omitted.

Under (C2) and (C3), it follows from Theorem 3.7 of Bradley (2005) that {X0,t}t≥0 is exponentially β-mixing,
that is, the β-mixing coefficient of {X0,t}t≥0 β0(·) satisfies β0(t) = O(ρt) for some ρ < 1 and any t ≥ 0. Let
n0 = |I(ℓ)| = n/L and suppose I(ℓ) = {ℓ1, ℓ2, · · · , ℓn0}. Since {Xℓ1,t}t≥0, {Xℓ2,t}t≥0, · · · , {Xℓn0

,t}t≥0 are i.i.d
copies of {X0,t}t≥0, the β-mixing coefficient of

{Xℓ1,1, Xℓ1,2, · · · , Xℓ1,T , Xℓ2,1, Xℓ2,2, · · · , Xℓ2,T , · · · , Xℓn0 ,1
, Xℓn0 ,2

, · · · , Xℓn0 ,T
}

satisfies β(t) = O(ρt) for any t ≥ 0 as well.

Let ϕj,t,b denote φ∗
R(µb|Xj,t)− φ̂(−ℓ)

R (µb|Xj,t). By (C2), we have

max
j,t,b

EXj,tϕ4j,t,b ≤ 4 max
b∈{1,··· ,B}

∫
x

{φ∗
R(µb|x)− φ̂(−ℓ)

R (µb|x)}2F(dx) ≡ ∆, (35)
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where the expectation EXj,t is taken with respect to Xj,t. Notice that ∆ is a random variable that depends on
{µb, νb}1≤b≤B and {Xj,t}j∈I(−ℓ),0≤t≤T . By (35), we have

max
j,t,b

EXj,t(ϕ2j,t,b − EXj,tϕ2j,t,b)
2 ≤ ∆.

Under the boundedness assumption, we have |ϕj,t,b| ≤ 2 and hence |ϕ2j,t,b − EXj,tϕ2j,t,b| ≤ 4.

By Theorem 4.2 of Chen & Christensen (2015), we have for any integers τ ≥ 0 and 1 < d < n0T/2 that

P

∣∣∣∣∣∣
∑

j∈I(ℓ)

T∑
t=1

(ϕ2j,t,b − EX0,0ϕ20,0,b)

∣∣∣∣∣∣ ≥ 6τ

∣∣∣∣∣∣∆
 ≤ n0T

d
β(d) + P

∣∣∣∣∣∣
∑

(j,t)∈Ir

(ϕ2j,t,b − EX0,0ϕ20,0,b)

∣∣∣∣∣∣
2

≥ τ

∣∣∣∣∣∣∆


+4 exp

(
− τ2/2

n0Td∆+ 4dτ/3

)
,

where Ir denotes the last n0T − d⌊n0T/d⌋ elements in the list

{(ℓ1, 1), (ℓ1, 2), · · · , (ℓ1, T ), (ℓ2, 1), (ℓ2, 2), · · · , (ℓ2, T ), · · · , (ℓn0 , 1), (ℓn0 , 2), · · · , (ℓn0 , T )}, (36)

and ⌊z⌋ denote the largest integer that is smaller than or equal to z for any z. Suppose τ ≥ 4d. Notice that |Ir| ≤ d.
It follows that

P

∣∣∣∣∣∣
∑

(j,t)∈Ir

(ϕ2j,t,b − EX0,0ϕ20,0,b)

∣∣∣∣∣∣
2

≥ τ

∣∣∣∣∣∣∆
 = 0.

Notice that β(t) = O(ρt). Set d = −(c∗ + 3) log(n0T )/ log ρ, we obtain n0Tβ(d)/d = O(n−2
0 T−2B−1) =

O(B−1Q−1n−2T−2), since Q ≤ T , B = O((nT )c∗) and n0 = n/L. Here, the big-O notation is uniform in
b ∈ {1, · · · , B} and q ∈ {0, · · · , Q}. Set τ = max{3

√
∆n0Td log(Bn0T ), 11d log(Bn0T )}, we obtain that

τ2

4
≥ 2n0Td∆log(BTn0) and

τ2

4
≥ 8dτ log(BTn0)/3 and τ ≥ 4d,

as either n→∞ or T →∞. It follows that τ2/(2n0Td∆+ 8dτ/3) ≥ 2 log(Bn0T ) and hence

max
b∈{1,··· ,B}

max
q∈{0,··· ,Q}

P

∣∣∣∣∣∣
∑

j∈I(ℓ)

T∑
t=1

(ϕ2j,t,b − EX0,0ϕ20,0,b)

∣∣∣∣∣∣ ≥ 6τ

∣∣∣∣∣∣∆
 = O(B−1Q−1n−1T−1).

By Bonferroni’s inequality, we obtain

P

 max
b∈{1,··· ,B}

max
q∈{0,··· ,Q}

∣∣∣∣∣∣
∑

j∈I(ℓ)

T∑
t=1

(ϕ2j,t,b − EX0,0ϕ20,0,b)

∣∣∣∣∣∣ ≥ 6τ

∣∣∣∣∣∣∆
 = O(n−1T−1).

Thus, with probability 1−O(n−1T−1), we have

max
b∈{1,··· ,B}

max
q∈{0,··· ,Q}

∣∣∣∣∣∣
∑

j∈I(ℓ)

T∑
t=1

(ϕ2j,t,b − EX0,0ϕ20,0,b)

∣∣∣∣∣∣ = O(
√

∆n0T log(Bn0T ), log
2(Bn0T )). (37)

Under the given conditions on Q, we have T − q − 1 is proportional to T for any q ≤ Q. Combining (C4) and the
condition on B with (37) yields (33).

Proof of (30) with m = 2: Similar to the proof of (31), it suffices to show maxq,b
√
n(T − q − 1)|R2,ℓ(q, µb, νb)| =

op(log
−1/2(nT )), or maxq,b

√
n(T − q − 1)|R(r)

2,ℓ(q, µb, νb)| = op(log
−1/2(nT )) for any ℓ = 1, · · · ,L and r =
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1, 2, 3, 4 where

R2,ℓ(q, µ, ν) =
1

n(T − q − 1)

∑
j∈I(ℓ)

T−q−1∑
t=1

{exp(iµ⊤Sj,t+q+1)− φ∗(µ|Xj,t+q)}{ψ∗(ν|Xj,t)− ψ̂(−ℓ)(ν|Xj,t)},

R
(1)
2,ℓ(q, µ, ν) =

1

n(T − q − 1)

∑
j∈I(ℓ)

T−q−1∑
t=1

{cos(µ⊤Sj,t+q+1)− φ∗
R(µ|Xj,t+q)}{ψ∗

R(ν|Xj,t)− ψ̂(−ℓ)
R (ν|Xj,t)},

R
(2)
2,ℓ(q, µ, ν) =

1

n(T − q − 1)

∑
j∈I(ℓ)

T−q−1∑
t=1

{sin(µ⊤Sj,t+q+1)− φ∗
I(µ|Xj,t+q)}{ψ∗

I (ν|Xj,t)− ψ̂(−ℓ)
I (ν|Xj,t)},

R
(3)
2,ℓ(q, µ, ν) =

1

n(T − q − 1)

∑
j∈I(ℓ)

T−q−1∑
t=1

{cos(µ⊤Sj,t+q+1)− φ∗
R(µ|Xj,t+q)}{ψ∗

I (ν|Xj,t)− ψ̂(−ℓ)
I (ν|Xj,t)},

R
(4)
2,ℓ(q, µ, ν) =

1

n(T − q − 1)

∑
j∈I(ℓ)

T−q−1∑
t=1

{sin(µ⊤Sj,t+q+1)− φ∗
I(µ|Xj,t+q)}{ψ∗

R(ν|Xj,t)− ψ̂(−ℓ)
R (ν|Xj,t)}.

In the following, we only show maxq,b
√
n(T − q − 1)|R(1)

2,ℓ(q, µb, νb)| = op(log
−1/2(nT )) to save space.

Define the list

{(ℓ1, 1), (ℓ1, 2), · · · , (ℓ1, T − q), (ℓ2, 1), (ℓ2, 2), · · · , (ℓ2, T − q) · · · , (ℓn0
, 1), (ℓn0

, 2), · · · , (ℓn0
, T − q)}.

For any 1 ≤ g ≤ n0(T−q), denote by (ng, Tg) the g-th element in the list. LetF (0)
q = {Xℓ1,1, Xℓ1,2, · · · , Xℓ1,1+q}∪

{Xj,t : 0 ≤ t ≤ T, j ∈ I(−ℓ)} ∪ {µ1, · · · , µB , ν1, · · · , νB}. Then we recursively define F (g)
q as

F (g)
q =

{
F (g−1)

q ∪ {Xng,tg+q+1}, if g = 1 or ng = ng−1;

F (g−1)
q ∪ {Xng−1,T , Xng,1, Xng,2, · · · , Xng,1+q}, otherwise.

Let ϕ∗g,q,b = {cos(µ⊤
b Sng,tg+q+1) − φ∗

R(µb|Xng,tg+q)}{ψ∗
R(νb|Xng,tg ) − ψ̂

(−ℓ)
R (νb|Xng,tg )}. Under MA,

R
(1)
2,ℓ(q, µb, νb) can be rewritten as {n(T − q − 1)}−1

∑n0(T−q)
g=1 ϕ∗g,q,b and forms a sum of martingale difference

sequence with respect to the filtration {σ(F (g)
q ) : g ≥ 0} where σ(F (g)

q ) denotes the σ-algebra generated by variables
in F (g)

q . In the following, we apply concentration inequalities for martingales to bound maxq,b |R(1)
2,ℓ(q, µb, νb)|.

Under the boundedness condition, we have |ϕ∗g,q,b|2 ≤ 4{ψ∗
R(νb|Xng,tg )− ψ̂

(−ℓ)
R (νb|Xng,tg )}2. In addition, we have

by MA that

E{(ϕ∗g+1,q,b)
2|σ(F (g)

q )} = E[{cos(µ⊤
b Sng,tg+q+1)− φ∗

R(µb|Xng,tg+q)}2|Xng,tg+q]

×{ψ∗
R(νb|Xng,tg )− ψ̂

(−ℓ)
R (νb|Xng,tg )}2 ≤ 4{ψ∗

R(νb|Xng,tg )− ψ̂
(−ℓ)
R (νb|Xng,tg )}2.

It follows from Theorem 2.1 of Bercu & Touati (2008) that

P

∣∣∣∣∣∣
n0(T−q)∑

g=1

ϕ∗g,q,b

∣∣∣∣∣∣ ≥ τ,
n0(T−q)∑

g=1

4{ψ∗
R(νb|Xng,tg )− ψ̂

(−ℓ)
R (νb|Xng,tg )}2 ≤ y

 ≤ 2 exp

(
− τ

2

2y

)
, ∀y, τ,

and hence

P

∣∣∣∣∣∣
n0(T−q)∑

g=1

ϕ∗g,q,b

∣∣∣∣∣∣ ≥ τ, max
b∈{1,··· ,B}

∑
j∈I(ℓ)

T∑
t=1

{ψ∗
R(νb|Xj,t)− ψ̂(−ℓ)

R (νb|Xj,t)}2 ≤
y

4

 ≤ 2 exp

(
− τ

2

2y

)
, ∀y, τ,

By Bonferroni’s inequality, we obtain

P

 max
q∈{0,··· ,Q}
b∈{1,··· ,B}

∣∣∣∣∣∣
n0(T−q)∑

g=1

ϕ∗g,q,b

∣∣∣∣∣∣ ≥ τ, max
b∈{1,··· ,B}

∑
j∈I(ℓ)

T∑
t=1

{ψ∗
R(νb|Xj,t)− ψ̂(−ℓ)

R (νb|Xj,t)}2 ≤
y

4

 ≤ 2BQ exp

(
− τ

2

2y

)
,
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for any y, τ . Set y = 4ε
√
nT , we obtain

P

 max
q∈{0,··· ,Q}
b∈{1,··· ,B}

∣∣∣∣∣∣
n0(T−q)∑

g=1

ϕ∗g,q,b

∣∣∣∣∣∣ ≥ τ, max
b∈{1,··· ,B}

∑
j∈I(ℓ)

T∑
t=1

{ψ∗
R(νb|Xj,t)− ψ̂(−ℓ)

R (νb|Xj,t)}2 ≤
√
nT


≤ 2BQ exp

(
− τ2

2
√
nT

)
,

It follows from (34) that

P

 max
q∈{0,··· ,Q}
b∈{1,··· ,B}

∣∣∣∣∣∣
n0(T−q)∑

g=1

ϕ∗g,q,b

∣∣∣∣∣∣ ≥ τ
 ≤ 2BQ exp

(
− τ2

2
√
nT

)
+ o(1). (38)

Set τ = (nT )1/4
√
2 log(BQnT ), the right-hand-side (RHS) of (38) is o(1). Under the given conditions on B and Q,

we obtain maxq,b
√
n(T − q − 1)|R(1)

2,ℓ(q, µb, νb)| = op(log
−1/2(nT )).

C.3.2 Step 2

For any j ∈ I(ℓ) and 0 < t < T −q, define vectors λ∗R,q,j,t, λ
∗
I,q,j,t ∈ RB such that the b-th element of λ∗R,q,j,t, λ

∗
I,q,j,t

correspond to the real and imaginary part of
1√

n(T − q − 1)
{exp(iµ⊤

b Sj,t+q+1)− φ∗(µb|Xj,t+q)}{exp(iν⊤b Xj,t−1)− ψ∗(νb|Xj,t)},

respectively. Let λ∗q,j,t denote the (2B)-dimensional vector (λ∗⊤R,q,j,t, λ
∗⊤
I,q,j,t)

⊤. In addition, we define a (2B(Q+1))-
dimensional vector λ∗j,t as (λ∗⊤0,j,t, λ

∗⊤
1,j,t−1I(t > 1), · · · , λ∗⊤1,j,t−QI(t > Q))⊤. Define the list

(1, 1), (1, 2), · · · , (1, T − 1), (2, 1), (2, 2), · · · , (2, T − 1), · · · , (n, 1), (n, 2), · · · , (n, T − 1). (39)

For any 1 ≤ g ≤ n(T −1), let (ng, tg) be the g-th element in the list. Let F (0) = {X1,0}∪{µ1, · · · , µB , ν1, · · · , νB}
and recursively define F (g) as

F (g) =

{
F (g−1) ∪ {Xng,tg}, if g = 1 or ng = ng−1;
F (g−1) ∪ {Xng−1,T , Xng,0}, otherwise.

The high-dimensional vector Mn,T =
∑n(T−1)

g=1 λ∗ng,tg forms a sum of martingale difference sequence with respect to

the filtration {σ(F (g)) : g ≥ 0}. Notice that S∗ = ∥
∑n(T−1)

g=1 λ∗ng,tg∥∞. In this step, we apply the high-dimensional
martingale central limit theorem developed by Belloni & Oliveira (2018) to establish the limiting distribution of S∗.

For 1 ≤ g ≤ n(T − 1), let

Σg =

n(T−1)∑
g=1

E
(
λ∗ng,tgλ

∗⊤
ng,tg

∣∣∣F (g−1)
)
.

Let V ∗ =
∑n(T−1)

g=1 Σg . Using similar arguments in proving (37), we can show ∥V ∗ − V0∥∞,∞ =

O((nT )−1/2 log(BnT )) + O((nT )−1 log2(BnT )), with probability 1 − O(n−1T−1), where V0 = EV ∗. Under
the given conditions on B, we have ∥V ∗ − V0∥∞,∞ ≤ κB,n,T for some κB,n,T = O((nT )−1/2 log(nT )), with
probability 1−O(n−1T−1).

In addition, under the boundedness assumption in (C4), all the elements in V ∗ and V0 are uniformly bounded by some
constants. It follows that

E∥V ∗ − V0∥∞,∞ ≤ κB,n,T + P(∥V ∗ − V0∥∞,∞ > κB,n,T ) = O((nT )−1/2 log(nT )).

By Theorem 3.1 of Belloni & Oliveira (2018), we have for any Borel setR and any δ > 0 that

P(S∗ ∈ R) ≤ P(∥N(0, V0)∥∞ ∈ RCδ)| (40)

≤ C

 1

nT
+

log(BnT ) log(BQ)

δ2
√
nT

+
log3(BQ)

δ3
√
nT

+
log3(BQ)

δ3

n(T−1)∑
g=1

E∥ηg∥3∞

 ,
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for some constant C > 0.

Under the boundedness assumption in (C4), the absolute value of each element in Σg is uniformly bounded
by 16(n(T − q − 1))−1 = O(n−1T−1). With some calculations, we can show that

∑n(T−1)
g=1 E∥ηg∥3∞ =

O((nT )−1/2 log3/2(BQ)). In addition, we have Q = O(T ) and B = O((nT )c∗). Combining these together with
(40) yields

P(S∗ ∈ R) ≤ P(∥N(0, V0)∥∞ ∈ RCδ)|+O(1)

(
1

nT
+

log2(nT )

δ2
√
nT

+
log9/2(nT )

δ3
√
nT

)
, (41)

where O(1) denotes some positive constant.

SetR = (z,+∞) and δ = ε log−1/2(nT )/C, we obtain

P(S∗ ≤ z) ≥ P(∥N(0, V0)∥∞ ≤ z − ε log−1/2(nT ))− o(1).
SetR = (−∞, z], we can similarly show

P(S∗ ≤ z) ≤ P(∥N(0, V0)∥∞ ≤ z + ε log−1/2(nT )) + o(1).

This completes the proof of Step 2.

C.3.3 Step 3

We break the proof into two parts. In Part 1, we show V0 is a block diagonal matrix. Specifically, let V0,q1,q2 denote
the (2B)× (2B) submatrix of V0 formed by rows in {2q1B+1, 2q1B+2, · · · , 2(q1+1)B} and columns in {2q2B+
1, 2q2B + 2, · · · , 2(q2 + 1)B}. For any q1 ̸= q2, we show V0,q1,q2 = O(2B)×(2B).

Let Σ(q) denote V0,q,q . In Part 2, we provide an upper bound for maxq∈{0,··· ,Q} ∥Σ(q) − Σ̂(q)∥∞,∞. Let V̂ be a block
diagonal matrix where the main diagonal blocks are given by Σ̂(0), Σ̂(1), · · · , Σ̂(Q), we obtain ∥V0 − V̂ ∥∞,∞

Part 1: Let λ∗R,q,j,t,b and λ∗I,q,j,t,b denote the b-th element of λ∗R,q,j,t and λ∗I,q,j,t, respectively. Each element in
V0,q1,q2 equals E(

∑
j,t λ

∗
Z1,q1,j,t,b1

)(
∑

j,t λ
∗
Z2,q2,j,t,b2

) for some b1, b2 ∈ {1, · · · , B} and Z1, Z2 ∈ {R, I}. In the
following, we show

E

∑
j,t

λ∗R,q1,j,t,b1

∑
j,t

λ∗R,q2,j,t,b2

 = 0, ∀q1 ̸= q2.

Similarly, one can show E(
∑

j,t λ
∗
R,q1,j,t,b1

)(
∑

j,t λ
∗
I,q2,j,t,b2

) = 0 and E(
∑

j,t λ
∗
I,q1,j,t,b1

)(
∑

j,t λ
∗
I,q2,j,t,b2

) = 0 for
any q1 ̸= q2. This completes the proof for Part 1.

Since observations in different trajectories are i.i.d, it suffices to show∑
j

E

(∑
t

λ∗R,q1,j,t,b1

)(∑
t

λ∗R,q2,j,t,b2

)
= 0, ∀q1 ̸= q2,

or equivalently,

E

(∑
t

λ∗R,q1,0,t,b1

)(∑
t

λ∗R,q2,0,t,b2

)
= 0, ∀q1 ̸= q2, (42)

By definition, we have

λ∗R,q,0,t,b =
1√

n(T − q − 1)
{cos(µ⊤

b S0,t+q+1)− φ∗
R(µb|X0,t+q)}{cos(ν⊤b X0,t−1)− ψ∗

R(νb|X0,t)}.

Since q1 ̸= q2, for any t1, t2, we have either t1 + q1 ̸= t2 + q2 or t1 ̸= t2. Suppose t1 + q1 > t2 + q2. Under MA, we
have

E[{cos(µ⊤
b S0,t1+q1+1)− φ∗

R(µb|X0,t1+q1)}|{X0,j}j≤t1+q1 ] = 0, ∀b,
and hence

Eλ∗R,q1,0,t1,b1λ
∗
R,q2,0,t2,b2 = 0, ∀b1, b2. (43)
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Similarly, when t1 + q1 < t2 + q2, we can show (43) holds as well.

Suppose t1 < t2, under (C1) and H0, we have

E[{cos(ν⊤b X0,t1−1)− φ∗
R(νb|X0,t1)}|{X0,j}j≥t1 ] = 0, ∀b,

and hence (43) holds. Similarly, when t1 > t2, we can show (43) holds as well. This yields (42).

Part 2: For any q ∈ {0, · · · , Q}, we can represent Σ̂(q) − Σ(q) by

L∑
ℓ=1

∑
j∈I(ℓ)

T−q−1∑
t=1

(λ⊤R,q,j,t, λ
⊤
I,q,j,t)

⊤(λ⊤R,q,j,t, λ
⊤
I,q,j,t)− (λ∗⊤R,q,j,t, λ

∗⊤
I,q,j,t)

⊤(λ∗⊤R,q,j,t, λ
∗⊤
I,q,j,t)

n(T − q − 1)
. (44)

Using similar arguments in Step 1 of the proof, we can show with probability tending to 1 that the absolute value of
each element in (44) is upper bounded by c∗0(nT )

−c∗∗ for any q ∈ {0, · · · , Q} and some positive constants c0, c∗ > 0.
Thus we obtain maxq∈{0,··· ,Q} ∥Σ̂(q) −Σ(q)∥∞,∞ = O((nT )−c∗∗), with probability tending to 1. The proof is hence
completed.
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