
Optimal stopping problems for running
minima with positive discounting rates

Pavel V. Gapeev∗

We present analytic solutions to some optimal stopping problems for the running minimum of a
geometric Brownian motion with exponential positive discounting rates. The proof is based on the
reduction of the original problems to the associated free-boundary problems and the solution of the
latter problems by means of the smooth-fit and normal-reflection conditions. We show that the optimal
stopping boundaries are determined as the minimal solutions of certain first-order nonlinear ordinary
differential equations. The obtained results are related to the valuation of perpetual dual American
lookback options with fixed and floating strikes in the Black-Merton-Scholes model from the point of
view of short sellers.

1. Introduction

The main aim of this paper is to present analytic solutions to the discounted optimal stopping problems
of (2.4) and (5.1) for the running minimum Y associated with the process X defined in (2.1)-(2.2) with
exponential positive discounting rates. These problems are related to the option pricing theory in mathe-
matical finance, where X can describe the price of the underlying risky asset on a financial market (see, e.g.
Shiryaev [39; Chapter VIII; Section 2a], Peskir and Shiryaev [33; Chapter VII; Section 25], or Detemple [9],
for an extensive overview of other related results in the area). In this view, the values in (2.4) and (5.1)
can be interpreted as rational (or no-arbitrage) prices of the perpetual dual American lookback options with
fixed and floating strikes L > 0 and LX > 0 in the Black-Merton-Scholes model from the point of view of
short sellers. The original perpetual Russian and American lookback options optimal stopping problems with
exponential negative discounting rates were formulated and solved in Shepp and Shiryaev [36]-[37] and Ped-
ersen [28], Guo and Shepp [22], and Beibel and Lerche [5], for a model with underlying geometric Brownian
motions, as well as in [11] for a model with exponential jump-diffusion processes.

In the case of L = 0, the problems in (2.4) and (5.1) become the dual Russian option problems for selling
short, which were formulated and explicitly solved by Shepp and Shiryaev [38], by means of reducing the initial
problem to an optimal stopping problem for a two-dimensional (continuous) Markov process and solving the
latter problem by using the smooth-fit and normal-reflection conditions. More recently, the problems in (2.4)
and (5.1) in the case of L = 0 were solved in [13] by means of reducing the initial problems to optimal stopping
problems for a one-dimensional diffusion process with reflection following the change-of-measure arguments
from Shepp and Shiryaev [37]. Gerber et al. [19] and Mordecki and Moreira [26] obtained closed form solutions
to the perpetual Russian option problems for diffusions with negative exponential jumps. Asmussen et al.
[1] derived explicit expressions for the values of the first passage time problems associated with the prices of
perpetual Russian options for Lévy processes with phase-type jumps by means of the martingale stopping and
Wiener-Hopf factorisation. Avram et al. [2] studied exit problems for spectrally negative Lévy processes and
applied the results to solving optimal stopping problems associated with perpetual Russian and American
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put options. Guo and Zervos [23] and Rodosthenous and Zervos [34] derived solutions for discounted optimal
stopping problems related to the pricing of perpetual American options with more general payoff functions
depending on the current values of the associated running maximum processes in diffusion models for the
underlying risky asset prices. Other more complicated optimal stopping problems and games within the
framework of models based on spectrally negative Lévy processes and their running maxima processes were
studied by Baurdoux and Kyprianou [6], Ott [27], Kyprianou and Ott [25], and Baurdoux and van Schaik [7]
among others.

In the present paper, we study the optimal stopping problems of (2.4) and (5.1) for the running minimum
Y of the geometric Brownian motion X with linear payoffs. In contrast to the dual Russian option problem
studied in [37], the problem of (2.4) is necessarily two-dimensional in the sense that it cannot be reduced to
an optimal stopping problem for a one-dimensional (time-homogeneous strong) Markov process. It is shown
that the optimal stopping boundaries for the process X can be expressed as functions of the current value
of the running minimum process Y . We obtain explicit expressions for the value functions in (2.4) and
(5.1) and apply the normal-reflection condition at the edge of the two-dimensional state space for (X, Y ) to
characterise the optimal stopping boundaries as the minimal solutions to the appropriate first-order nonlinear
ordinary differential equations. Other optimal stopping problems with exponential positive discounting rates
were recently considered by Xia and Zhou [40], Battauz et al. [3]-[4], De Donno et al. [8], and [14] among
others. Optimal stopping problems for three-dimensional continuous Markov processes having the running
maximum or minimum as well as the running maximum drawdown or drawup as components were recently
studied by Peskir [31]-[32], Glover et al. [20], and [16]-[18] among others.

The paper is organised as follows. In Section 2, we formulate the optimal stopping problem of (2.4) for
the two-dimensional Markov process (X, Y ) related to the perpetual dual American fixed-strike lookback
option problem. The latter problem is then reduced to the associated free-boundary problem for the value
function which satisfies the smooth-fit condition at the optimal stopping boundary and the normal-reflection
conditions at the edge of the state space of the two-dimensional process. In Section 3, we obtain analytic
solutions of the free-boundary problem and derive first-order nonlinear ordinary differential equations for
the candidate optimal stopping boundary under various relations between the parameters of the model. In
Section 4, we apply the change-of-variable formula with local time on surfaces from Peskir [30] to verify
that the resulting solution of the free-boundary problem provides the expressions for the value function and
optimal stopping boundary in the initial problem. In Section 5, we present explicit solutions for the associated
dual American floating-strike lookback option optimal stopping problem under various relations between the
parameters of the model. The main results of the paper are stated in Theorems 4.1 and 5.1.

2 The case of dual lookback options with fixed strikes

In this section, we introduce the setting and notation of the two-dimensional optimal stopping problem
which is related to the pricing of perpetual dual American fixed-strike lookback option and formulate an
associated free-boundary problem.

2.1 Formulation of the problem. For a precise formulation of the problem, let us consider a probability
space (Ω,F , P ) with a standard Brownian motion B = (Bt)t≥0 and its natural filtration (Ft)t≥0 . Let us
define the process X = (Xt)t≥0 by:

Xt = x exp
((
µ− σ2/2

)
t+ σ Bt

)
(2.1)

which solves the stochastic differential equation:

dXt = µXt dt+ σXt dBt (X0 = x) (2.2)

where x > 0 is fixed, and µ ∈ R , r > 0, and σ > 0 are some given constants. It is assumed that the process
X describes the price of a risky asset on a financial market, where µ is the local drift rate and σ is the
volatility rate. (Note that, in the case µ = −r , which corresponds to the exponential negative inflation rates,
the process (ertXt)t≥0 is a martingale with respect to the initial probability measure P .) Let us now define
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the associated with X running minimum process Y = (Yt)t≥0 by:

Yt = y ∧ min
0≤s≤t

Xs (2.3)

for an arbitrary 0 < y ≤ x . The main purpose of the present paper is to derive a solution to the optimal
stopping problem for the (time-homogeneous strong) Markov process (X, Y ) given by:

V∗(x, y) = inf
τ
Ex,y

[
erτ (Yτ + L)

]
(2.4)

where the infimum is taken over finite stopping times τ with respect to the natural filtration (Ft)t≥0 of the
process X , and L > 0 is fixed. Here Ex,y denotes the expectation under the assumption that the (two-
dimensional) process (X, Y ) defined in (2.1)-(2.3) starts at (x, y) ∈ E , and E = {(x, y) ∈ R2 | 0 < y ≤ x}
is the state space of the process (X, Y ). We observe from the structure of the reward in the expression of
(2.4) that the infimum there is actually taken over finite stopping times τ of the process X for which the
condition:

Ex,y
[
erτ
]
<∞ (2.5)

holds. (Note that, due to the assumption that L > 0, the condition of (2.5) turns out to be stronger than
the finiteness of the expected reward in (2.4) under L = 0 which is used in [38] and [13]. The verification of
this condition is very complicated and is actually skipped below for the cases of different relations between
the parameters of the model considered in the paper.) The operations of such contracts can be described as
follows. It is assumed that the short sellers receive the fixed payments V∗(x, y) at time 0 and incur obligations
to deliver to the buyers the payoffs erτ (Yτ +L) at some future times τ which the sellers can choose. In other
words, the sellers can obtain the assets at the best prices Yτ they could have obtained up to the time of
exercise τ with some additional fixed fee L > 0, but paid in the equivalent currency units at time 0, that is,
erτ (Yτ + L) (see [38] for the precise extensive formulation of the contract under L = 0). We recall that the
problem of (2.4) for the case of L = 0 was actually solved is [38] (see also [13] for a solution by means of the
change-of-measure arguments following [37]). Moreover, it follows from the result of [38; Section 2, Lemma]
that, if 0 < r ≤ (µ− σ2/2)2/(2σ2) and µ < σ2/2 holds, then V∗(x, y) = 0, for all (x, y) ∈ E , under L = 0.
In this respect, we further consider the cases in which either µ > σ2/2 or r > (µ− σ2/2)2/(2σ2) holds. The
optimal stopping problem dual to the one of (2.4) was solved in [28] and [22] for the case of an underlying
geometric Brownian motion (see also [11] for the case of an underlying jump-diffusion process).

2.2 Structure of the optimal stopping time. Let us first determine the structure of the optimal
stopping time in the problem of (2.4).

(i) By means of standard applications of Itô’s formula (see, e.g. [24; Chapter III, Theorem 3.3] and [35;
Chapter II, Theorem 3.2]) to the process ert(Yt + L), we obtain the representation:

ert (Yt + L) = y + L+

∫ t

0

ers r (Ys + L) I(Xs 6= Ys) ds+

∫ t

0

ers I(Xs = Ys) dYs (2.6)

for all t ≥ 0. Then, inserting τ instead of t and taking the expectation with respect to the probability
measure Px,y in (2.6), we get that the expected reward from (2.4) admits the representation:

Ex,y
[
erτ (Yτ + L)

]
= y + L+ Ex,y

[ ∫ τ

0

ers r (Ys + L) I(Xs 6= Ys) ds+

∫ τ

0

ers I(Xs = Ys) dYs

]
(2.7)

for any stopping time τ satisfying the condition of (2.5), where I(·) denotes the indicator function.
Let us now apply some heuristic arguments based on the probabilistic properties of the running minima

of geometric Brownian motions which are not directly used in the subsequent verification in the proof of
Theorem 4.1 below. More precisely, by virtue of properties of the running minimum Y from (2.3) of the
geometric Brownian motion X from (2.1)-(2.2) (see, e.g. [10; Subsection 3.3] for similar arguments applied
to the running maxima of the Bessel processes), it follows that, for some y′ > 0 fixed and an infinitesimally
small deterministic time interval ∆, we have:

Y∆ = y′ ∧ min
0≤s≤∆

Xs = y′ ∧ (y′ + ∆X) + o(∆) as ∆ ↓ 0, (2.8)
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where we set ∆X = X∆−y′ . Observe that ∆Y = o(∆) when ∆X ≥ 0, and ∆Y = ∆X+o(∆) when ∆X < 0,
where we set ∆Y = Y∆−y′ and recall that o(∆) denotes a random function satisfying o(∆)/∆→ 0 as ∆ ↓ 0
(P -a.s.). In this case, using the asymptotic formula:

Ey′,y′
[
∆X ; ∆X < 0

]
≡ Ey′,y′

[
∆X I(∆X < 0)

]
∼ −y′

√
∆

2π
as ∆ ↓ 0 (2.9)

as well as applying the representation in (2.7), we get:

Ey′,y′
[
er∆ r (y′ + L) ∆ + er∆ ∆Y

]
∼ er∆ r (y′ + L) ∆− er∆ y′

√
∆

2π
as ∆ ↓ 0 (2.10)

for each y′ > 0 fixed.
It follows from the results of general theory of optimal stopping problems for Markov processes (see, e.g.

[33; Chapter I, Subsection 2.2]) that the continuation and stopping regions of the optimal stopping problems
in (2.4) should have the form:

C∗ = {(x, y) ∈ E |V∗(x, y) < y + L} and D∗ = {(x, y) ∈ E |V∗(x, y) = y + L}. (2.11)

(It is seen from the solution presented in Theorem 4.1 below that V∗(x, y) is a continuous function, so that
the set C∗ is open and the set D∗ is closed.) Then, we observe from the expressions in (2.7) and (2.10) that
it is never optimal to stop the process (X, Y ) when Xt = Yt , for each t ≥ 0, so that all the points of the
diagonal {(x, y) ∈ R2 | 0 < x = y} belong to the continuation region C∗ in (2.11). Moreover, it follows from
the definition of the process (X, Y ) in (2.1)-(2.3) and the structure of the reward in (2.4) that, for each y > 0
fixed, there exists a sufficiently large x > 0 such that the point (x, y) belongs to the stopping region D∗ in
(2.11). According to arguments similar to the ones applied in [10; Subsection 3.3] and [29; Subsection 3.3],
the latter property can be explained by the fact that the costs of waiting until the process X coming from
such a large x > 0 decreases the current value of the running minimum process Y may be too large due to
the presence of the discounting factor in the reward functional of (2.4).

(ii) Let us denote by τ∗ = τ∗(x, y) the optimal stopping time in the problem of (2.4) given that the process
(X, Y ) starts at the point (x, y) ∈ E . Consider some point (x, y) ∈ C∗ and take another starting point (x′, y)
for the process (X, Y ) such that 0 < y ≤ x′ < x . Then, using the fact that the running minimum Y from
(2.3) of the process X from (2.1) started at the point x′ is less or equal to the running minimum started at
x , we obtain:

V∗(x
′, y)− (y + L) ≤ Ex′,y

[
erτ∗ (Yτ∗ + L)

]
− (y + L) (2.12)

≤ Ex,y
[
erτ∗ (Yτ∗ + L)

]
− (y + L) = V∗(x, y)− (y + L) < 0

so that (x′, y) ∈ C∗ . On the other hand, if we take some point (x, y) ∈ D∗ from (2.11) and use the
fact that the process (X, Y ) started at some point (x′′, y) such that x′′ > x ≥ y passes through (x, y)
before hitting the diagonal {(x, y) ∈ R2 | 0 < x = y} , then the equalities in (2.4) and (2.7) imply that
V∗(x

′′, y)− (y + L) ≥ V∗(x, y)− (y + L) = 0 holds, so that (x′′, y) ∈ D∗ . Hence, combining these arguments
together with the comments in [10; Subsection 3.3] and [29; Subsection 3.3], we may therefore conclude that
there exists a function h∗(y), for y > 0, such that the continuation and stopping regions C∗ and D∗ in (2.11)
take the form:

C∗ = {(x, y) ∈ E |x < h∗(y)} and D∗ = {(x, y) ∈ E |x ≥ h∗(y)} (2.13)

respectively. (Note that the existence of such a boundary h∗(y) can also be deduced from the concavity and
monotonicity of the function x 7→ V∗(x, y) on (y,∞), for each y > 0 fixed.)

(iii) Let us now determine the location of the optimal stopping boundary h∗(y). For this purpose, we
denote by U∗(x, y) the value function of the optimal stopping problem which can be obtained from the one
in (2.4) above or (5.1) below, by means of setting L = 0 there. It is shown in [38] (see also [13] for another
derivation) that the function U∗(x, y) ≡ V∗(x, y; 0) ≡ W∗(x, y; 0) with V∗(x, y) ≡ V∗(x, y;L) from (2.4) and
W∗(x, y) ≡ W∗(x, y;L) from (5.1) admits the explicit expression in (5.16) below, under L = 0, and the
optimal stopping time has the form η∗ = inf{t ≥ 0 |Xt ≥ a∗Yt} , where a∗ is defined by a∗ = b∗(0) with
b∗ ≡ b∗(L) determined from the expressions in (5.11), or (5.13), or (5.15), respectively (see Theorem 5.1
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Figure 1. A computer drawing of the optimal stopping boundary h∗(y).

below). (Note that a∗ here corresponds to θ in the notation of [38] and to 1/a∗ in the notations of [13].)
Suppose that h∗(y) > a∗y holds, for some y > 0. Then, for each x ∈ (a∗y, h∗(y)) given and fixed, we
would have V∗(x, y) < y + L = U∗(x, y) + L , contradicting the obvious fact that U∗(x, y) + L ≤ V∗(x, y),
for all (x, y) ∈ E , as it is clearly seen from the structure of the payoff in (2.4). Thus, we may conclude
that y < h∗(y) ≤ a∗y should hold, for all y > 0 (see Figure 1 above for a computer drawing of the optimal
stopping boundary h∗(y)).

2.3 The free-boundary problem. By means of standard arguments based on the application of Itô’s
formula (see, e.g. [24; Chapter V, Section 5.1]), it is shown that the infinitesimal operator L of the process
(X, Y ) from (2.1)-(2.3) acts on an arbitrary function F (x, y) from the class C2,1 on E according to the rule:

(LF )(x, y) = µx ∂xF (x, y) + (σ2x2/2) ∂xxF (x, y) in 0 < y < x (2.14)

∂yF (x, y) = 0 at x = y (2.15)

(see, e.g. [29; Subsection 3.1]). In order to find analytic expressions for the unknown value functions V∗(x, y)
from (2.4) and the unknown boundary h∗(y) from (2.13), we use the results of general theory of optimal
stopping problems for Markov processes (see, e.g. [33; Chapter IV, Section 8] as well as [33; Chapter V,
Sections 15-20] and references therein for optimal stopping problems for maximum processes). More precisely,
we reduce the optimal stopping problem of (2.4) to the equivalent free-boundary problem:

(LV + rV )(x, y) = 0 for (x, y) ∈ C such that x 6= y (2.16)

V (x, y)
∣∣
x=h(y)− = y + L (instantaneous stopping) (2.17)

∂xV (x, y)
∣∣
x=h(y)− = 0 (smooth fit) (2.18)

∂yV (x, y)
∣∣
x=y+

= 0 (normal reflection) (2.19)

V (x, y) = y + L for (x, y) ∈ D (2.20)

V (x, y) < y + L for (x, y) ∈ C (2.21)

(LV + rV )(x, y) > 0 for (x, y) ∈ D (2.22)

where C and D are defined as C∗ and D∗ in (2.13) with h(y) instead of h∗(y), respectively. Observe that
the subharmonic characterisation of the value function (see, e.g. [33; Chapter IV, Section 9]) implies that
V∗(x, y) are the largest function satisfying (2.16)-(2.17) and (2.20)-(2.21) with the boundary h∗(y). Here, the
conditions of (2.17)-(2.19) are satisfied, for all y > 0. We recall that, in the case of L = 0, the free-boundary
problem (2.16)-(2.22) was actually solved in [38] (see also [13] for another derivation).
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3 Solution to the free-boundary problem

In this section, we derive analytic solutions to the free-boundary problem stated in (2.16)-(2.22). For
this purpose, we consider three separate cases based on the different relations between the parameters of the
model.

3.1 The case 0 < r < (µ−σ2/2)2/(2σ2) and µ > σ2/2. Let us first assume that 0 < r < (µ−σ2/2)2/(2σ2)
and µ > σ2/2 holds. Then, the general solution of the second-order ordinary differential equation in (2.16)
has the form:

V (x, y) = C1(y)xγ1 + C2(y)xγ2 (3.1)

for all y < x < h(y), where Cj(y), j = 1, 2, are some arbitrary (continuously differentiable) functions, and
γj , j = 1, 2, are given by:

γj =
1

2
− µ

σ2
− (−1)j

√(
1

2
− µ

σ2

)2

− 2r

σ2
(3.2)

so that γ2 < γ1 < 0 in this case. (Note that γj , j = 1, 2, in (3.2) are the same as in the notations of [38] and
correspond to 1− ηj , j = 1, 2, in the notations of [13].) Then, by applying the conditions of (2.17)-(2.19) to
the function in (3.1), we obtain that the equalities:

C1(y)hγ1(y) + C2(y)hγ2(y) = y + L (3.3)

C1(y) γ1 h
γ1(y) + C2(y) γ2 h

γ2(y) = 0 (3.4)

C ′1(y) yγ1 + C ′2(y) yγ2 = 0 (3.5)

should hold, for all y > 0. Hence, by solving the system in (3.3)-(3.5), we obtain that the candidate value
function has the form:

V (x, y;h(y)) = (y + L)

(
γ2

γ2 − γ1

( x

h(y)

)γ1
− γ1

γ2 − γ1

( x

h(y)

)γ2)
(3.6)

for y ≤ x < h(y), and the candidate boundary satisfies the ordinary differential equation:

h′(y) =
h(y)

y + L

γ2(y/h(y))γ1 − γ1(y/h(y))γ2

γ1γ2((y/h(y))γ1 − (y/h(y))γ2)
(3.7)

for y > 0. Moreover, by means of straightforward computations, it can be deduced from the expression in
(3.6) that the first- and second-order partial derivatives ∂xV (x, y;h(y)) and ∂xxV (x, y;h(y)) of the function
V (x, y;h(y)) take the form:

∂xV (x, y;h(y)) =
γ1γ2(y + L)

(γ2 − γ1)h(y)

(( x

h(y)

)γ1−1

−
( x

h(y)

)γ2−1
)

(3.8)

and

∂xxV (x, y;h(y)) =
γ1γ2(y + L)

(γ2 − γ1)h2(y)

(
(γ1 − 1)

( x

h(y)

)γ1−2

− (γ2 − 1)
( x

h(y)

)γ2−2
)

(3.9)

on the interval y ≤ x < h(y), for each y > 0 fixed.

3.2 The case r = (µ− σ2/2)2/(2σ2) and µ > σ2/2. Let us now assume that r = (µ− σ2/2)2/(2σ2) and
µ > σ2/2 holds. Then, the general solution of the ordinary differential equation in (2.16) has the form:

V (x, y) = C1(y)xα lnx+ C2(y)xα (3.10)

for all y < x < h(y), where Cj(y), j = 1, 2, are some arbitrary functions, and α is given by:

α =
1

2
− µ

σ2
(3.11)
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so that α < 0 in this case. (Note that α in (3.11) is the same as in the notations of [38] and corresponds to
1−α on the notations of [13].) Then, by applying the conditions from (2.17)-(2.19) to the function in (3.10),
we get that the equalities:

C1(y)hα(y) lnh(y) + C2(y)hα(y) = y + L (3.12)

C1(y)αhα(y) lnh(y) + C1(y)hα(y) + C2(y)αhα(y) = 0 (3.13)

C ′1(y) yα ln y + C ′2(y) yα = 0 (3.14)

should hold, for all y > 0. Hence, by solving the system in (3.12)-(3.14), we obtain that the candidate value
function has the form:

V (x, y;h(y)) = (y + L)
( x

h(y)

)α(
1− α ln

( x

h(y)

))
(3.15)

for y ≤ x < h(y), and the candidate boundary satisfies the ordinary differential equation:

h′(y) =
h(y)

y + L

α ln(y/h(y))− 1

α2 ln(y/h(y))
(3.16)

for y > 0.

3.3 The case r > (µ− σ2/2)2/(2σ2). Let us finally assume that r > (µ− σ2/2)2/(2σ2) holds. Then, the
general solution of the ordinary differential equation in (2.16) has the form:

V (x, y) = C1(y)xα sin
(
β lnx

)
+ C2(y)xα cos

(
β lnx

)
(3.17)

for all y < x < h(y), where Cj(y), j = 1, 2, are some arbitrary functions, while α is given by (3.11) and β
is defined as:

β =

√
2r

σ2
−
(

1

2
− µ

σ2

)2

. (3.18)

(Note that β in (3.18) is the same as in the notations of [38] and [13].) Then, by applying the conditions
from (2.17)-(2.19) to the function in (3.17), we get that the equalities:

C1(y)hα(y) sin
(
β lnh(y)

)
+ C2(y)hα(y) cos

(
β lnh(y)

)
= y + L (3.19)(

C1(y)α− C2(y)β
)
hα(y) sin

(
β lnh(y)

)
+
(
C1(y)β + C2(y)α

)
hα(y) cos

(
β lnh(y)

)
= 0 (3.20)

C ′1(y) yα sin
(
β ln y

)
+ C ′2(y) yα cos

(
β ln y

)
= 0 (3.21)

should hold, for all y > 0. Hence, by solving the system in (3.19)-(3.21), we obtain that the candidate value
function has the form:

V (x, y;h(y)) = (y + L)
( x

h(y)

)α(
cos
(
β ln

( x

h(y)

))
− α

β
sin
(
β ln

( x

h(y)

)))
(3.22)

for y ≤ x < h(y), and the candidate boundary satisfies the ordinary differential equation:

h′(y) =
h(y)

y + L

α− β tan(β(ln(y/h(y)))

α2 + β2
(3.23)

for y > 0.

3.4 The minimal admissible solutions h∗(y). We further consider the minimal admissible solutions
h∗(y) of first-order nonlinear ordinary differential equations as the smallest possible solutions of the equations
in (3.7), (3.16), and (3.23) which satisfy the inequality h∗(y) > y , for all y > 0. By virtue of the classical
results on the existence and uniqueness of solutions for first-order nonlinear ordinary differential equations,
we may conclude that these equations admit (locally) unique solutions, in view of the facts that the right-
hand sides in (3.7), (3.16), and (3.23) are (locally) continuous in (y, h(y)) and (locally) Lipschitz in h(y), for
each y > 0 fixed (see, e.g. [29; Subsection 3.9]). Then, it is shown by means of technical arguments based
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on Picard’s method of successive approximations that there exists a unique solution h(y) to the equation in
(3.7), or (3.16), or (3.23), under the corresponding relations between the parameters of the model, for y > 0,
started at some point (y0, y0) such that y0 > 0 (see also [21; Subsection 3.2] and [29; Example 4.4] for similar
arguments based on the analysis of other first-order nonlinear ordinary differential equations, as well as the
solutions of the corresponding ordinary differential equations in [38; Formulae (2.8), (2.10), and (2.11)], under
L = 0). Hence, in order to construct the appropriate function h∗(y) which satisfies the equation in (3.7), or
(3.16), or (3.23), and stays strictly above the diagonal, we can follow the arguments from [32; Subsection 3.5]
(among others) which are based on the construction of sequences of the so-called bad-good solutions which
intersect the diagonal. For this purpose, for any sequence (yl)l∈N such that yl > 0 and yl ↑ ∞ as l→∞ , we
can construct the sequence of solutions hl(y), l ∈ N , to the equation in (3.7), or (3.16), or (3.23), for all y > 0
such that hl(yl) = yl holds, for each l ∈ N . It follows from the structure of these first-order nonlinear ordinary
differential equations that the property h′l(yl) = −∞ holds, for each l ∈ N (see also [28; pages 979-982] for
the analysis of solutions of the single first-order nonlinear differential equation corresponding to the case of
lookback put options). Observe that, by virtue of the uniqueness of solutions mentioned above, we know
that each two curves y 7→ hl(y) and y 7→ hm(y) cannot intersect, for l,m ∈ N , l 6= m , and thus, we see that
the sequence (hl(y))l∈N is increasing, so that the limit h∗(y) = liml→∞ hl(y) exists, for each y > 0. We may
therefore conclude that h∗(y) provides the minimal solution to the equation in (3.7), or (3.16), or (3.23) such
that h∗(y) > y holds, for all y > 0. Moreover, since the right-hand sides of the first-order nonlinear ordinary
differential equations in (3.7), (3.16), and (3.23) are (locally) Lipschitz in y , one can deduce by means of
Gronwall’s inequality that the functions hl(y), l ∈ N , are continuous, so that the function h∗(y) is continuous
too. The corresponding maximal admissible solutions of first-order nonlinear ordinary differential equations
and the associated maximality principle for solutions of optimal stopping problems which is equivalent to the
superharmonic characterisation of the payoff functions were established in [29] and further developed in [21],
[28], [22], [11], [6], [23], [31]-[32], [20], [27], [25], [7], [16]-[18], and [34] among other subsequent papers (see
also [33; Chapter I; Chapter V, Section 17] for other references).

4. Main results and proofs

In this section, we show that the solution of the free-boundary problem from (2.16)-(2.22) found in the
previous section provides the solution of the initial optimal stopping problem of (2.4). Such a verification
assertion was proved in [38] for the solution of the associated two-dimensional optimal stopping problem
in the case L = 0 (see also [13] for another proof following the arguments of [37] and [39; Chapter VIII,
Subsection 2d]).

Theorem 4.1 Let the processes X and Y be given by the expressions in (2.1)-(2.3). Then, the value function
of the perpetual dual lookback optimal stopping problem from (2.4) in which the infimum is taken over all
finite stopping times τ of X satisfying the condition of (2.5) admits the representation:

V∗(x, y) =

{
V (x, y;h∗(y)), if y ≤ x < h∗(y)

y + L, if x ≥ h∗(y)
(4.1)

whenever the optimal stopping time being of the form:

τ∗ = inf{t ≥ 0 |Xt ≥ h∗(Yt)} (4.2)

satisfies the condition of (2.5), where the candidate value function and the boundary are specified as follows:
(i) if 0 < r < (µ−σ2/2)2/(2σ2) and µ > σ2/2 holds, then V (x, y;h∗(y)) takes the expression of (3.6), for

y ≤ x < h∗(y), and h∗(y) is the minimal solution of the (first-order nonlinear) ordinary differential equation
in (3.7) satisfying y < h∗(y)[≤ a∗y], for y > 0, with a∗ = b∗(0) from (5.11);

(ii) if r = (µ− σ2/2)2/(2σ2) and µ > σ2/2 holds, then V (x, y;h∗(y)) takes the expression of (3.15), for
y ≤ x < h∗(y), and h∗(y) is the minimal solution of the ordinary differential equation in (3.16) satisfying
y < h∗(y)[≤ a∗y], for y > 0, with a∗ = b∗(0) from (5.13);

(iii) if r > (µ−σ2/2)2/(2σ2) holds, then V (x, y;h∗(y)) takes the expression of (3.22), for y ≤ x < h∗(y),
and h∗(y) is the minimal solution of the ordinary differential equation in (3.23) satisfying y < h∗(y)[≤ a∗y],
for y > 0, with a∗ = b∗(0) from (5.15).
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Proof: In order to verify the assertions stated above, let us show that the function defined in (4.1) coincides
with the value function in (2.4) and the stopping time τ∗ from (4.2) is optimal under the assumption that is
satisfies the condition of (2.5). For this purpose, let us consider any solution h(y) of the ordinary differential
equation in (3.7), or (3.16), or (3.23) such that h(y) > y , for all y > 0. We thus denote by Vh(x, y) the right-
hand side of the expression in (4.1) associated with h(y). Then, by means of straightforward calculations of
the previous section, it is shown that the function Vh(x, y) solves the system of (2.16) with (2.20)-(2.22) and
satisfies the conditions of (2.17)-(2.19). We also recall that the function Vh(x, y) is C2,1 in C and D which
are defined as C∗ and D∗ in (2.13) with h(y) instead of h∗(y), respectively. Hence, taking into account the
assumption that h(y) is continuously differentiable, by applying the change-of-variable formula from [30] to
the process ertVh(Xt, Yt) (see also [33; Chapter II, Section 3.5] for a summary of the related results on the
local time-space formula as well as further references), we obtain:

ert Vh(Xt, Yt) = Vh(x, y) +

∫ t

0

ers (LVh + rVh)(Xs, Ys) I(Xs 6= h(Ys), Xs 6= Ys) ds (4.3)

+

∫ t

0

ers ∂yVh(Xs, Ys) I(Xs = Ys) dYs +Mt

for all t ≥ 0, where the process M = (Mt)t≥0 defined by:

Mt =

∫ t

0

ers ∂xVh(Xs, Ys) I(Xs 6= Ys)σXs dBs (4.4)

is a continuous local martingale with respect to the probability measure Px,y . Note that, since the time
spent by the process (X, Y ) at the boundary surface {(x, y) ∈ E |x = h(y)} as well as at the diagonal
{(x, y) ∈ R2 | 0 < x = y} is of Lebesgue measure zero, the indicator in the first line of the formula in (4.3) as
well as in the expression of (4.4) can be ignored. Moreover, since the component Y decreases only when the
process (X, Y ) is located on the diagonal {(x, y) ∈ R2 | 0 < x = y} , the indicator in the second line of (4.3)
can be set equal to one. Finally, taking into account the fact that the function Vh(x, y) satisfies the normal
reflection condition of (2.19) at the diagonal, we may conclude that the integral in the second line of (4.3) is
actually equal to zero.

It follows from straightforward calculations and the arguments from the previous section that the function
Vh(x, y) satisfies the second-order ordinary differential equation in (2.16), which together with the conditions
of (2.17)-(2.18) and (2.20) as well as the obvious fact that the inequality in (2.22) holds imply that the
inequality (LVh + rVh)(x, y) ≥ 0 holds, for any (x, y) ∈ E such that x 6= h(y) and x 6= y , as well.
Furthermore, we observe directly from the expressions in (3.6) with (3.8)-(3.9), and it can be shown by means
of the same methodology from the expressions in (3.15) and (3.22), that the function Vh(x, y) is concave and
increases to y+L , because its first-order partial derivative ∂xVh(x, y) is positive and decreases to zero, while
its second-order partial derivative ∂xxVh(x, y) is negative, on the interval y ≤ x < h(y), for each y > 0 fixed,
under the corresponding relations between the parameters of the model considered in the previous section
(see also [13; Subsection 4.2] for similar computations related to the case L = 0). Thus, we may conclude
that the inequality in (2.21) holds, which together with the conditions of (2.17)-(2.18) and (2.20) imply that
the inequality Vh(x, y) ≤ y + L holds, for all (x, y) ∈ E , too (see also [15; Section 3] and [12; Section 3]
for corresponding arguments applied for solutions of other optimal stopping problems). Let (κn)n∈N be the
localising sequence of stopping times for the process M from (4.4) such that κn = inf{t ≥ 0 | |Mt| ≥ n} , for
each n ∈ N . It therefore follows from the expression in (4.3) that the inequalities:

er(τ∧κn) (Yτ∧κn + L) ≥ er(τ∧κn) Vh(Xτ∧κn , Yτ∧κn) ≥ Vh(x, y) +Mτ∧κn (4.5)

hold, for any finite stopping time τ of the process X and each n ∈ N . Then, taking the expectation with
respect to Px,y in (4.5), by means of Doob’s optional sampling theorem (see, e.g. [24; Chapter I, Theorem 3.22]
and [35; Chapter II, Theorem 3.2]), we get that the inequalities:

Ex,y
[
er(τ∧κn) (Yτ∧κn + L)

]
≥ Ex,y

[
er(τ∧κn) Vh(Xτ∧κn , Yτ∧κn)

]
≥ Vh(x, y) + Ex,y

[
Mτ∧κn

]
= Vh(x, y) (4.6)

hold, for any stopping time τ such that the condition of (2.5) is satisfied, and each n ∈ N , where we recall
that L > 0 is fixed. Hence, taking into account the fact that the process Y defined in (2.3) and started at
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some y > 0 is decreasing, letting n go to infinity and applying the Lebesgue dominated convergence theorem
under the condition of (2.5), we obtain that the inequalities:

Ex,y
[
erτ (Yτ + L)

]
≥ Ex,y

[
erτ Vh(Xτ , Yτ )

]
≥ Vh(x, y) (4.7)

are satisfied, for any stopping time τ satisfying (2.5), and all (x, y) ∈ E . Thus, taking first the infimum over
all stopping times τ such that the condition of (2.5) holds, and then, the supremum over all boundaries h
in the expressions of (4.7), we conclude that the inequalities:

inf
τ
Ex,y

[
erτ (Yτ + L)

]
≥ sup

h
Vh(x, y) = Vh∗(x, y) (4.8)

are satisfied, for all (x, y) ∈ E , where h∗(y) is the minimal solution of the ordinary differential equation in
(3.7), or (3.16), or (3.23) such that h∗(y) > y , for each y > 0 fixed. By applying the standard comparison
arguments for solutions of ordinary differential equations or verifying directly (see also similar arguments in
[33; Chapter VI, Subsection 21.1.3, Remark 23.2] and [12; Remark 4.3] applied for solutions of other optimal
stopping problems), we observe that the function Vh(x, y) is (strictly) decreasing in the value h(y), for each
y > 0 fixed, we see that the supremum in (4.8) is attained over any sequence of solutions (hk(y))k∈N to the
equation in (3.7), or (3.16), or (3.23) such that hk(y) ↓ h∗(y) as k →∞ , for each y > 0 fixed. It follows from
the (local) uniqueness of the solutions to the ordinary differential equations in (3.7), (3.16), and (3.23) that no
distinct solutions intersect, so that the sequence (hk(y))k∈N is decreasing and the limit h∗(y) = limk→∞ hk(y)
exists, for each y > 0 fixed. Since the inequalities in (4.7) hold for h∗(y) too, we see that the expression
in (4.8) holds, for h∗(y) and (x, y) ∈ E as well. We also note that Vh(x, y) in (4.6) is subharmonic for the
Markov process (X, Y ) on E . Thus, taking into account the facts that Vh(x, y) is decreasing in h(y) > y
and the inequality Vh(x, y) ≤ y + L holds, for all (x, y) ∈ E , we observe that the selection of the minimal
solution h∗(y) such that h∗(y) > y , for all y > 0, is equivalent to the implementation of the subharmonic
characterisation of the value function (largest subharmonic function subdominating the payoff function, cf.
[29] or [33; Chapter I; Chapter V, Section 17]).

In order to prove the fact that the boundary h∗(y) is optimal, we consider the sequence of stopping times
τk defined as in (4.2) with hk(y) instead of h∗(y), where hk(y) is a solution to the ordinary differential
equation in (3.7), or (3.16), or (3.23) such that hk(y) > y holds, for all y > 0 and each k ∈ N . By virtue of
the fact that the functions Vhk(x, y) from the right-hand side of the expressions in (4.1) associated with the
boundaries hk(y), k ∈ N , satisfy the equation in (2.16) and the condition of (2.17), and taking into account
the structure of τ∗ in (4.2), it follows from the expression equivalent to the one in (4.3) that the equalities:

er(τk∧κn) (Yτk∧κn + L) = er(τk∧κn) Vhk(Xτk∧κn , Yτk∧κn) = Vhk(x, y) +Mτk∧κn (4.9)

hold, for all (x, y) ∈ E and each n, k ∈ N . Hence, taking into account the assumption that the stopping time
τ∗ from (4.2) satisfies the condition of (2.5) and letting k and n go to infinity as well as using the condition
of (2.17) and the property τk ↓ τ∗ (Px,y -a.s.) as k →∞ , we can apply the Lebesgue dominated convergence
theorem to the appropriate (diagonal) subsequence in the expression of (4.9) to obtain the equality:

Ex,y
[
erτ∗ (Yτ∗ + L)

]
= Ex,y

[
erτ∗ Vh∗(Xτ∗ , Yτ∗)

]
= Vh∗(x, y) (4.10)

for all (x, y) ∈ E , which together with the expression in (4.8) directly implies the desired assertion. We
finally recall from the results of part (iii) of Subsection 2.2 above implied by standard comparison arguments
applied to the value functions of the appropriate optimal stopping problems that the inequality h∗(y) ≤ a∗y
should hold for the optimal stopping boundary, that completes the verification. �

5. The case of dual lookback options with floating strikes

In this section, we present explicit solutions to the optimal stopping problem which is related to the
pricing of perpetual dual floating-strike lookback option.
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5.1 The optimal stopping and free-boundary problem. Let us now consider the following optimal
stopping problem:

W∗(x, y) = inf
ζ
Ex,y

[
erζ (Yζ + LXζ)

]
(5.1)

where the infimum is taken over finite stopping times ζ of the process X . Note that the problem of (5.1)
was solved in [38] for L = 0 (see also [13] for a solution by means of the change-of-measure arguments). It
can be shown by means of the same arguments as in Subsection 2.2 above that the optimal stopping time in
the problem of (5.1) has the structure:

ζ∗ = inf{t ≥ 0 |Xt ≥ b∗ Yt} (5.2)

with some number b∗ ≡ b∗(L) > 1. In order to find analytic expressions for the unknown value functions
W∗(x, y) from (5.1) and the unknown boundaries b∗y from (5.2), we can formulate the following free-boundary
problem:

(LW + rW )(x, y) = 0 for y < x < by (5.3)

W (x, y)
∣∣
x=(by)− = y + Lby (instantaneous stopping) (5.4)

∂xW (x, y)
∣∣
x=(by)− = L (smooth fit) (5.5)

∂yW (x, y)
∣∣
x=y+

= 0 (normal reflection) (5.6)

W (x, y) = y + Lx for 0 < by < x (5.7)

W (x, y) < y + Lx for y ≤ x < by (5.8)

(LW + rW )(x, y) > 0 for 0 < by < x (5.9)

where the conditions of (2.17)-(2.19) are satisfied, for all y > 0. We recall that in the case L = 0 the
free-boundary problem of (5.3)-(5.9) was actually solved in [38] (see also [13] for another derivation).

5.2 Solution to the free-boundary problem. Let us now present the solution of the free-boundary
problem in (5.3)-(5.9).

(i) Let us first assume that 0 < r < (µ − σ2/2)2/(2σ2) and µ > σ2/2 holds. In this case, by using
straightforward calculations from Subsection 3.1, it can be shown that the solution of the system in (5.3)-
(5.9) takes the form:

W (x, y; b∗y) =
(y + Lb∗y)γ2 − Lb∗y

γ2 − γ1

( x

b∗y

)γ1
− (y + Lb∗y)γ1 − Lb∗y

γ2 − γ1

( x

b∗y

)γ2
(5.10)

for 0 < y ≤ x < b∗y , and the value b∗ is determined by the arithmetic equation:

bγ1−γ2 =
(γ1 − 1)(L(γ2 − 1)b+ γ2)

(γ2 − 1)(L(γ1 − 1)b+ γ1)
. (5.11)

(ii) Let us now assume that r = (µ− σ2/2)2/(2σ2) and µ > σ2/2 holds. In this case, by using straight-
forward calculations from Subsection 3.2, it can be shown that the solution of the system in (5.3)-(5.9) takes
the form:

W (x, y; b∗y) = (y + Lb∗y)

(( x

b∗y

)α
− α

( x

b∗y

)α
ln
( x

b∗y

)α)
(5.12)

for 0 < y ≤ x < b∗y , and the value b∗ is given by:

b∗ = exp

(
1

α(α− 1)

)
. (5.13)

(Note that the latter does not depend on L and coincides with the corresponding optimal boundary in [38]
and [13] in this case.)
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(iii) Let us finally assume that r > (µ − σ2/2)2/(2σ2) holds. In this case, by using straightforward
calculations from Subsection 3.3, it can be shown that the solution of the system in (5.3)-(5.9) takes the
form:

W (x, y; b∗y) =
( x

b∗y

)α(
(y + Lb∗y) cos

(
β ln

( x

b∗y

))
− αy + (α− 1)Lb∗y

β
sin
(
β ln

( x

b∗y

)))
(5.14)

for 0 < y ≤ x < b∗y , and the value b∗ is determined by the arithmetic equation:

− cot
(
β ln b

)
= β(1 + Lb) + (1− α)(α + L(α− 1)b). (5.15)

Summarising the facts proved above, we formulate the following result which can be proved by means of
the same arguments as Theorem 4.1 above (see also proofs of [38; Theorem] and [13; Theorem 4.1]).

Theorem 5.1 Suppose that the assumptions of Theorem 4.1 hold. Then, the value function of the optimal
stopping problem in (5.1) admits the representations:

W∗(x, y) =

{
W (x, y; b∗y), if y ≤ x < b∗y

y + Lx, if x ≥ b∗y
(5.16)

and the optimal stopping time has the form of (5.2), where the candidate value functions and linear boundaries
are specified as follows:

(i): if 0 < r < (µ− σ2/2)2/(2σ2) and µ > σ2/2 holds, then W (x, y; b∗y) is given by (5.10), for y ≤ x <
b∗y , and while b∗ is determined by the arithmetic equation in (5.11);

(ii): if r = (µ− σ2/2)2/(2σ2) and µ > σ2/2 holds, then W (x, y; b∗y) is given by (5.12), for y ≤ x < b∗y ,
and b∗ is given by the explicit expression in (5.13);

(iii): if r > (µ − σ2/2)2/(2σ2) holds, then W (x, y; b∗y) is given by (5.14), for y ≤ x < b∗y , and b∗ is
determined by the arithmetic equation in (5.15).
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