
Journal of Environmental Management 272 (2020) 111051

Available online 15 July 2020
0301-4797/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Research article 

Predicting flood insurance claims with hydrologic and socioeconomic 
demographics via machine learning: Exploring the roles of topography, 
minority populations, and political dissimilarity 

James Knighton a,*, Brian Buchanan b, Christian Guzman c, Rebecca Elliott d, Eric White e, 
Brian Rahm f 

a The National Socio-Environmental Synthesis Center, Annapolis, MD, USA 
b New York State Department of Environmental Conservation, NY, USA 
c University of Massachusetts Amherst, MA, USA 
d Department of Sociology, London School of Economics, UK 
e Coastal Protection and Restoration Authority of Louisiana, LA, USA 
f Water Resources Institute of New York, NY, USA   

A R T I C L E  I N F O   

Keywords: 
Flooding insurance claims 
Random forest 
Vulnerability 
Socio-hydrology 
Flooding 
FEMA 
LIS-FLOOD 

A B S T R A C T   

Current research on flooding risk often focuses on understanding hazards, de-emphasizing the complex pathways 
of exposure and vulnerability. We investigated the use of both hydrologic and social demographic data for flood 
exposure mapping with Random Forest (RF) regression and classification algorithms trained to predict both 
parcel- and tract-level flood insurance claims within New York State, US. Topographic characteristics best 
described flood claim frequency, but RF prediction skill was improved at both spatial scales when socioeconomic 
data was incorporated. Substantial improvements occurred at the tract-level when the percentage of minority 
residents, housing stock value and age, and the political dissimilarity index of voting precincts were used to 
predict insurance claims. Census tracts with higher numbers of claims and greater densities of low-lying tax 
parcels tended to have low proportions of minority residents, newer houses, and less political similarity to state 
level government. We compared this data-driven approach and a physically-based pluvial flood routing model for 
prediction of the spatial extents of flooding claims in two nearby catchments of differing land use. The floodplain 
we defined with physically based modeling agreed well with existing federal flood insurance rate maps, but 
underestimated the spatial extents of historical claim generating areas. In contrast, RF classification incorpo-
rating hydrologic and socioeconomic demographic data likely overestimated the flood-exposed areas. Our 
research indicates that quantitative incorporation of social data can improve flooding exposure estimates.   

1. Introduction 

In the US, extreme rainfall and riverine flooding events are dominant 
environmental mechanisms of economic loss, averaging 3.3 billion USD 
annually (NCDC, 2019). Environmental risk is the confluence of envi-
ronmental hazards (e.g. floods), exposure, and vulnerability, summed 
across all levels of hazard (Kron, 2005). Global climate change (Hir-
abayashi et al., 2013), land cover change (e.g. Wheater and Evans, 
2009), human population migration (e.g. Donner and Rodriguez, 2008), 
and socioeconomic conditions (e.g. Dixon et al., 2017) shift in ways that 
modify riverine flooding hazards, exposure, and vulnerability. 

Established methods to accurately quantify riverine flooding risks center 
strongly on accurate representations of the physical mechanisms by 
which floods are generated (i.e. hazards), but frequently neglect or 
de-emphasize the role of human-flood interactions necessary for trans-
lating hazard into exposure and risk (e.g. Metin et al., 2018; Elliott, 
2018, 2019; Koks et al., 2015). 

Physically-based hydrologic models allow us to carry forward our 
prior knowledge of the physics of water movement in the landscape (e.g. 
mass and energy balances) to place important constraints on hazard 
estimates. Historically, across the Contiguous United States (CONUS) 
there has been disparity in the methodologies, resolution, and 
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uncertainty in established flood hazard maps, possibly a result of the 
resources required to develop these estimates and the potential social 
outcomes of redrawing hazard boundaries (Kousky, 2018; Elliot, 2018; 
Pralle, 2019; Blessing et al., 2017; Nance, 2015). Spatially continuous 
maps of flooding hazards eliminate issues of availability and heteroge-
neous methodology. For example, Wing et al. (2018) developed a 30 m 
100-year riverine inundation map of CONUS through 2-dimensional 
surface flood routing, thereby establishing national coverage with a 
uniform methodology. Similar spatial datasets of discharge and inun-
dation have been developed at coarser resolutions (e.g. Knighton et al., 
2019a; Zheng et al., 2018; Dottori et al., 2016; Hirabayashi et al., 2013). 
Despite these advances in physical hazard mapping, there remain 
challenges to accurately identifying at-risk properties. In the US, hy-
drologic model-derived FEMA Flood Insurance Rate Maps (FIRMs; 
FEMA, 2019a) have been identified as inadequate representations of 
flood insurance claim-generating areas (e.g. Kousky, 2018; Highfield 
et al., 2013; Burby, 2001). 

The unstructured nature of machine learning algorithms potentially 
reduces the problematic structural biases, specific data-needs, and 
calibration challenges of hydrologic models. A variety of machine 
learning techniques have been used to map between widely available 
hydrologic and atmospheric features and flooding hazards (e.g. Wang 
et al., 2019; Chen et al., 2019; Bui et al., 2019; Souissi et al., 2019; 
Khosravi et al., 2019, 2018; Knighton et al., 2019a; Hong et al., 2018a, b; 
Shafizadeh-Moghadam et al., 2018; Woznicki et al., 2019; Ngo et al., 
2018; Ahmadlou et al., 2018; Giovannettone et al., 2018; Chapi et al., 
2017). Together these studies demonstrate that this broad family of 
methodologies can facilitate rapid riverine flood hazard estimates. 

Data-driven mapping approaches may bypass the traditional hydro- 
meteorological requirements of hydrologic models (e.g. continuous data 
for rainfall, stream discharge, air temperatures, solar radiation, soil 
textures), however, there may be a stronger reliance on large datasets 
defining historically flooded locations. Another possible limitation of 
data-driven methodologies is that they may inadvertently carry forward 
conceptual limitations encoded in the training data. For example, 
Woznicki et al. (2019) and Giovannettone et al. (2018) present machine 
learning techniques trained to reliably estimate the Special Flood Haz-
ard Area (SFHA), with promise for generating SFHA maps in previously 
unstudied regions. When established FIRMs are used as training data, 
algorithms risk learning many of the same biases of the hydrologic 
modeling methodologies employed to establish the original inundation 
extent. Finally, focusing exclusively on prediction of inundated area 
neglects that hazards alone do not describe risks, nor are hydrometeo-
rological characteristics the only predictors of flooding loss (Di Baldas-
sarre et al., 2018). 

Political-ecology theory states that any environmental change will 
initiate a socioeconomic upheaval followed by an uneven redistribution 
of losses (Blaikie, 2008). This conceptual model has been used to 
describe cycles of flooding, loss, and recovery (Bolin and Kurtz, 2018). 
Uneven flooding losses across socioeconomic groups can reinforce 
existing systems of disparity, perpetuating flooding vulnerabilities. The 
consequences of extreme floods are often felt most by underrepresented 
portions of the population, which frequently align with race, class, and 
health in the US (Hale et al., 2018; Rufat et al., 2015). For example, 
lower income households in the US that cannot afford flooding insur-
ance or mitigation measures may experience greater losses during 
floods. These losses can necessitate a reliance on federal assistance and 
charities for recovery, leading to increased economic vulnerability to 
future floods (FEMA, 2018; Dixon et al., 2017). Identification of 
knowledge gaps between physical flooding mechanisms and the socio-
economic consequences of these events has prompted recent calls to 
re-center studies of water resources around human-water interactions 
(Di Baldassarre et al., 2019; Vorogushyn et al., 2018) and national flood 
insurance programs (e.g. FEMA, 2018) around risk. 

Advances in the study of flooding that account for social and eco-
nomic dimensions (e.g. Edelenbos et al., 2017; Merz et al., 2010) could 

facilitate both stronger risk mitigation policies and clearer risk 
communication (Aerts et al., 2018). Socioeconomic demographics may 
provide information on which properties are flood-exposed (e.g. Burton 
and Cutter, 2008; Boyce et al., 2006) and which residents are likely to 
generate insurance claims following loss events. In residential areas, 
publication of new flooding insurance products can reshape local per-
ceptions of risk (Elliott, 2018, 2019) and influence housing prices (Dixon 
et al., 2017; Indaco et al., 2019). Reduced property value can limit 
residents’ ability to relocate or borrow against their home, both of which 
possibly lead to continued exposure to floods (Siders et al., 2019) and 
possibly increased claims. Conversely, Elliott (2015) and Cutter et al. 
(2018) found that flooding in the US induced more migration among 
minority residents, leaving flood-prone areas inhabited primarily by 
white residents with the economic means for recovery. Geographic 
variations in property value may provide market evidence of a history of 
flood exposure (e.g. Indaco et al., 2019). Case studies of flood-prone 
regions have found both race (Atreya et al., 2015) and income (Dixon 
et al., 2017) to be predictive of the willingness or ability of residents to 
participate in NFIP. Finally, histories of segregation along lines of race, 
class, or beliefs have possibly clustered individuals with demographic 
similarities into areas of similar environmental risk. 

NFIP flood insurance claim records provide parcel- and tract-level 
information on historical flooding hazards and possibly hazard-risk re-
lationships (e.g. Czajkowski et al., 2017; Kousky and Michel-Kerjan, 
2017; Zhou et al., 2013). Participation in the NFIP has risen steadily 
over the past several decades to approximately 5 million homes, with an 
average of 60,000 flooding insurance claims (2008–2018) filed annually 
(FEMA, 2019b). Inaccurate FIRMs (Kousky, 2018), economic barriers 
(Dixon et al., 2017), and the risk perceptions of homeowners (Elliott, 
2018) can reduce participation in NFIP, which may limit the use of in-
surance claims as an unbiased picture of historical hazards and risk. We 
introduce a novel approach to map riverine flood insurance claims 
through random forest regression and classification trained directly on a 
state-wide dataset of US National Flood Insurance Program (NFIP) 
claims data within New York State (NYS), US. This new approach is used 
to address the following research questions:  

� Are hydrologic conditions and social demographics predictive of the 
rate at which flood insurance claims are generated from census tracts 
and individual parcels in NYS? 
� Can a risk-based classification algorithm incorporating social de-

mographics identify the spatial distribution of flooding claims more 
reliably than a classic hydrodynamic modeling-based approach 
which focuses exclusively on hazards? 

2. Methodology 

2.1. Study region 

NYS, located in the northeastern US, experiences riverine and coastal 
flooding with average annual residential insurance claims totaling 110 
million USD. Flooding loss claims are spatially distributed across the 
state with the highest density of claims centered on urban areas 
(Fig. 1d). Despite population density variations within NYS, reports of 
historical flash flooding events were found to be unbiased by density 
(Marjerison et al., 2016). Regional, extreme runoff events are initiated 
by several dominant mechanisms: tropical moisture export derived 
intense precipitation in the late summer and fall seasons (Frei et al., 
2015; Huang et al., 2018), localized convective rainfall in the summer, 
and regional extratropical winter and spring precipitation and snowmelt 
often on saturated soils, leading to a seasonally bimodal flooding regime 
(Knighton et al., 2017; Villarini, 2016). The dominant mode of runoff 
generation across NYS is saturation-excess (Buchanan et al., 2018). 

We selected two nearby catchments within the Hudson River 
Watershed (NYS, US), the Moodna and Hackensack catchments, for 
comparison of flood risk estimation methodologies. Moodna and 
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Hackensack are 484 km2 and 80 km2, respectively. Both catchments 
exist in a temperate climate region and receive about 130 cm of pre-
cipitation annually (Xie et al., 2010). The predominant soil class is 
Wethersfeld gravelly silt loam (saturated hydraulic conductivity [KSAT] 
¼ 1.5–5 mm1hr-1, available water capacity [AWC] ¼ 86 mm) (USDA, 
2019). The catchments are composed of contrasting land uses, where the 
Moodna is 17% developed land, 75% forest and wetland, 8% pasture, 
and the Hackensack is 62% developed land, 33% forest, and 5% pasture 
(Fry et al., 2011). Land use change was relatively static from 2001 to 
2016 within each catchment (USGS, 2016). Both catchments are dense 
with parcels designated as repetitive flood loss locations (Moodna ¼ 74, 
Hackensack ¼ 93). The CDC Social Vulnerability Index is a composite 
metric for environmental vulnerability. The SVI represents vulnerability 
across four subcategories (socioeconomic conditions, household 
composition, minority resident composition, and housing availability) 
on a scale of 0–1 (where 1 indicates the highest vulnerability) which are 
then aggregated to the composite SVI (Flanagan et al., 2011). The 
average SVI scores for Moodna and Hackensack were 0.21 (low) and 
0.38 (moderate) respectively. Moodna and Hackensack residents had 
similar socioeconomic stability (both ~ 0.07), but Hackensack had a 
greater proportion of aging (0.74 vs 0.50) and minority residents (0.52 
vs. 0.31) with less stable housing options (0.57 vs. 0.38) (Flanagan et al., 
2011). 

2.2. Parcel- and census tract-level flood insurance claim records 

We collected available parcel-level NYS NFIP flood insurance claim 
records (3947 parcels) covering January 1, 1975 through December 31, 
2018 (FEMA, 2019c). The location of parcel-level claims was deter-
mined by matching reported property addresses to tax parcel centroids 
(NYS, 2019a,2019b). Flood insurance claims used for analysis included 
2946 repetitive loss properties (i.e. at least two claims exceeding 2000 

USD) and 1001 non-repetitive loss properties. 
We computed the rate parameter for flooding insurance claim gen-

eration at the parcel level, λ, as the number of reported claims per year 
(Fig. 2a). The starting date for the claim duration (over which λ was 
computed) was defined as the maximum of January 1, 1975 and the year 
the structure was built as defined in the NYS tax parcel database (NYS, 
2019a,2019b). The ending date was defined as December 31, 2018, 
unless a flooding claim property was “mitigated” where the date of the 
last flood was used instead. We estimated the median λ for all 
claim-generating properties as 0.15 claims1year� 1 (6.7 year claim return 
period). We compiled a dataset of non-claim generating parcels where 
we assumed the rate parameter for flood claim generation at the parcel 
level, λ, was 0. To do so, we randomly selected 1889 tax parcels that 
were at least 200 m from the location of all existing flooding claim 
properties (Fig. 1). This approach likely underestimates λ for some 
properties that did not experience hydrologic extremes within the study 
period (1975–2018), but would submit insurance claims during less 
frequent extreme events. In total, the full dataset of claim-generating 
and non-claim generating parcels totaled 5836 records. 

We collected available tract-level NYS NFIP flood insurance claim 
records (4906 census tracts) covering January 1, 1975 through 
December 31, 2018 (FEMA, 2019c). The tract-level dataset documents 
166,942 flood claims. 

2.3. Hydrologic and social demographic data 

Variables included in the parcel-level random forest regression and 
classification models are presented in Table 1 (all variables considered 
in model development are presented in Table S1). Following the results 
of Woznicki et al. (2019), Khosravi et al. (2018), and Chapi et al. (2017), 
among others, we include several metrics describing the topographic 
position of each cell (horizontal flow distance [HFD], vertical flow 

Fig. 1. New York State (NYS) census tracts showing a) percentage of minority residents, b) number of parcels less than 0.1 m elevation above nearest stream, c) mean 
year built of houses, and d) number of flooding insurance claims (1978–2018). 
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distance [VFD], topographic wetness index [TWI; TWI ¼ ln
�

a
tanðbÞ

�
, 

where a is upslope contributing area and b is the local land slope], 
maximum TWI within 200 m of property [TWI200m], and slope; de-
scriptions in Table 1) computed in the System for Automated Geo-
scientific Analyses (SAGA; Conrad et al., 2015) from a 20 m digital 
elevation model (USGS, 2019). Socioeconomic characteristics available 
at the parcel-level (assessed home value and year built) were collected 
from the NYS tax records. 

Variables included in the tract-level random forest regression models 
are presented in Table 2 (all variables considered in model development 
are presented in Table S2). Tract-level socio-economic demographic 
data was collected from the USCB (2020) and CDC (2018), summarized 
in Table 2. Hydrologic variables were computed at a 20 m horizontal 
resolution and aggregated to the tract level. We considered the possi-
bility that participation in the NFIP was related to political geography 
and shared political capital (Pigg et al., 2013; Emery and Flora, 2006). 
Within the US, adoption of revised floodplain maps was significantly 

Fig. 2. Parcel-level random forest simulated versus observed flood claim frequency (λ), showing Nash Sutcliffe Efficiency (NSE) and Percent Bias (Pbias) of residuals 
for a-c) hydrologic variables and (d–f) hydrologic and socioeconomic variables, and g) variable importance scores (orange – hydrologic variables only; blue – hy-
drologic and social variables). Black lines indicate 1:1. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Table 1 
Parcel-level hydrologic and socio-economic random forest predictor variable 
descriptions and references.  

Layer Type Description Primary Data 

House 
Value 

Social Assessed house value NYS (2019a, 
2019b) 

Year Built Social Year house was built NYS (2019a, 
2019b) 

PrecipMax Hydrologic Maximum observed precipitation 
(1978–2018) 

Xie et al. 
(2010) 

λ20mm Hydrologic Frequency of daily precip > 20 mm Xie et al. 
(2010) 

HFD Hydrologic Horizontal flow distance from 
nearest channel (m) 

USGS (2019) 

VFD Hydrologic Vertical flow distance from nearest 
channel (m) 

USGS (2019) 

TWI Hydrologic Topographic Wetness Index USGS (2019) 
TWI200m Hydrologic Maximum TWI within 200 m USGS (2019) 
Slope Hydrologic Local land surface slope (m1m� 1) USGS (2019)  
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correlated with county Democratic political lean (Wilson and Kousky, 
2019), possibly indicating a greater likelihood of NFIP participation by 
groups with unified political capital or a sense of access to organizations, 
connection to resources, and power brokers (Emery and Flora, 2006). 
States affected by flooding seem to be seeking assistance from the federal 
government across the political spectrum (Flavelle, 2020), yet political 
segregation may create polarization that would result in attitudes within 
a state as differing from the governing dominant political party (Dottle, 
2019). This then leads to either shared sense of cultural and political 
capital with the governance structure or a non-shared sense of cultural 
and political capital (Emery and Flora, 2006). While political capital 
could have the connotation of negative effects (Kostovetsky, 2015), here 
it is used to indicate the sense with which a populace seeks to engage 
with its state governance for positive effects (Emery and Flora, 2006). 
Based on this, we included a metric estimating a property’s similar-
ity/dissimilarity to its local state government (based on cultural and 
political capital) to capture differences in the rate of flood insurance 
claim submittals stemming from shared community beliefs (Emery and 
Flora, 2006). Similarity was estimated from the 2010 NYS gubernatorial 
voting results aggregated to voting precincts (Ansolabehere and Rodden, 
2011). The similarity metric was computed as the sum of all Democratic 
votes divided by the sum of all Democratic and Republican votes within 
each precinct (independent candidate votes were removed from 
consideration) and then aggregated to tracts by area. 

2.3.1. Random forest regression and classification analysis 
We developed several random forest algorithms for prediction of λ 

and total claims, at the parcel- and tract-levels respectively, given a 
collection of common hydrologic indicators of flooding potential and 
social vulnerability. The training, validation, and testing splits were 
approximately 70%, 15%, 15%. All random forest computations were 
performed with the h2o package (Candel et al., 2016) in R version 3.6.1. 
RF training was performed to optimize Mean Square Error. For all 
regression models we present Nash-Sutcliffe Efficiency (NSE) and 
percent bias (Pbias), scale independent objective functions that allow for 
comparison across training, validation and testing datasets. Cross-fold 
validation was used with 10 folds to reduce the effects of over-fitting. 

Inclusion of non-informative predictor variables can reduce RF per-
formance. An iterative process was used to screen out predictor variables 
(Tables 1 and 2) that did not improve RF predictive skill: 1) RF model 
training was performed, 2) test data objective functions and variable 
importance scores were computed, 3) the lowest importance variable 
and those variables with ranked correlations (ρ > 0.8) to more predictive 
variables were progressively removed from the analysis until test 
objective functions stabilized. All variables evaluated for inclusion in 
random forest models are presented in Tables S1 and S2. 

Following selection of the optimal set of variables, RF hyper-
parameters (number of trees [2–1000], maximum depth of individual 
trees [5–60]) were determined through a Monte Carlo sampling pro-
cedure where the RF model was fit 1000 times with randomly selected 
parameter values. Monte Carlo simulations suggested that objective 
function values modestly improved up to approximately 100 trees and a 

max depth of 40 splits in all models. We therefore used these values for 
all models. 

Socioeconomic demographic data is more widely available at the 
tract-level than for individual parcels, though all datasets are aggregated 
to a coarser scale. Thus, four different RF regression models for pre-
dicting claims were developed:  

� Regression prediction of parcel-level claims (λ) using only hydrologic 
predictors  
� Regression prediction of parcel-level λ using hydrologic and socio- 

economic predictors  
� Regression prediction of tract-level claims using only hydrologic 

predictors  
� Regression prediction of tract-level claims using hydrologic and 

socio-economic predictors 

We compared the capability of the classic methodology based on 
hydrologic and surface routing models to an alternative approach based 
on random forest classification to identify claim-generating properties 
within these study catchments.  

� Classification of parcel-level λ using hydrologic and socio-economic 
predictors 

For parcel-level regression analysis, the random forest was trained 
directly on λ defined continuously. For classification, λ was encoded as a 
binary response (0 – a property generated no claims within the date 
range of claims, 1 – a property generated at least one claim). Finally, we 
computed Spearman’s ranked correlation (ρ) between several predictor 
variables and λ for all parcels and total claims at the tract level to 
examine correlations among predictors. 

2.4. Flood hazard mapping via a physically based surface routing model 

For both the Moodna and Hackensack catchments, we compared the 
random forest generated flood claim predictions to a methodology 
which closely followed that of US FEMA FIRMs (FEMA, 2016), as well as 
being similar to the approach used in several recent studies which 
established high-resolution flooding hazard products (Wing et al., 2018; 
Quinn et al., 2019). Though FIRMs exist within each catchment, they are 
defined only for a subset of streams. We computed maximum water 
surface elevations resulting from the 100-year return period design 
storm with the physically-based two-dimensional pluvial flood routing 
model LISFLOOD-FP (model development described in Bates et al., 
[2010], Neal et al., [2012], and de Almeida et al., [2013], among 
others). 

LISFLOOD-FP (code release 5.9.6) models were developed at a 20 m 
horizontal grid resolution. The land surface was derived by coarsening 
the 10-m DEM (USGS, 2019; vertical error RMSE ¼ 1.55 m) to a 20 m 
resolution. Both LISFLOOD-FP models were initialized at a 1-s compu-
tational time step, which was decreased dynamically to maintain nu-
merical stability. A minimum depth threshold of 0.001 m was set for 

Table 2 
Tract-level hydrologic and socio-economic random forest predictor variable descriptions and references.  

Layer Type Description Reference 

%minority Social % minority residents within tract CDC (2019) 
Year Builtmean Social Mean year built of parcels within tract USCB (2020) 
House Value Social Mean value of parcels within tract USCB (2020) 
Similarity Social Shared political capital (i.e. similarity) determined from 2010 gov. election Ansolabehere and Rodden (2011) 
Precipmax Hydrologic Maximum observed precipitation (1978–2018) Xie et al. (2010) 
λ20mm Hydrologic Frequency of daily precip > 20 mm Xie et al. (2010) 
TWImax Hydrologic Maximum TWI within 200 m USGS (2019) 
VFDmean Hydrologic Vertical flow distance from nearest channel (m) USGS (2019) 
HFDmean Hydrologic Horizontal flow distance from nearest channel (m) USGS (2019) 
n parcels<0.1m Hydrologic n parcels within tract < 0.1 m above nearest stream USGS (2019)  
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hydraulic computations. Hydrologic surface losses were modeled with a 
constant loss rate of KSAT as derived from SSURGO soils data (USDA 
NRCS, 2019), neglecting the influence of subsurface stormwater 
collection systems. Each LISFLOOD-FP model was forced with the 24-h 
100-year return period precipitation depth applied to the SCS Type-2 
hyetograph (NOAA, 2019). 

LISFLOOD-FP simulations were validated against projected 100-year 
discharge rates (USGS, 2020) and through visual comparison of flooding 
extents defined in available FEMA FIRMs (FEMA, 2019b) for the 
Moodna and Hackesnsack catchments (model validation is discussed in 
more detail in supplemental Section S3). 

3. Results 

3.1. Prediction of parcel- and tract-level claims using random forest 
regression 

The random forest regression analysis shows some ability to estimate 
λ when trained against all claims data across NYS using only hydrologic 
predictors (Fig. 2a,b,c; test NSE ¼ 0.401). When NYS tax parcel derived 
socioeconomic predictors were included, the testing data set calibration 
improved slightly (Fig. 3f; test NSE ¼ 0.442). Predictive variables 
include hydrologic (VFD, TWI200m, PrecipMAX, λ20mm, and HFD) and 
socioeconomic predictors (Year Built and House Value) (Fig. 2g). All 
other variables (Table 1) were less predictive and were removed from 
analysis. 

At the tract level, incorporation of socio-economic predictors pro-
duced an NSE score (Fig. 3f; NSE ¼ 0.625) substantially higher than that 
obtained using only hydrologic variables (Fig. 3c; NSE ¼ 0.536). The 

Fig. 3. Census tract-level random forest simulated versus observed flood claim frequency (λ), showing Nash Sutcliffe Efficiency (NSE) and Percent Bias (Pbias) of 
residuals for a-c) hydrologic variables and (d–f) hydrologic and socioeconomic variables, and g) variable importance scores (orange – hydrologic variables only; blue 
– hydrologic and social variables). Black lines indicate 1:1. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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number of low-lying parcels (n parcels<0.1m) was the most predictive 
variable, followed by several hydrologic (TWIMAX, PrecipMAX, λ20mm) and 
socioeconomic variables (%minority, house value, year built, similarity) 
(Fig. 3g). As with the parcel-level analysis, all other variables (Table 2) 

were found to be less predictive and therefore removed from the 
analysis. 

Fig. 4. Correlations between Parcel-level variables and λ. ρ indicates Spearman’s ranked correlation values.  

Fig. 5. Correlations between Parcel-level variables and claims (a–d) and the number of parcels within a tract within 0.1 m elevation of the nearest stream (e–f) (size 
of circles is proportional to n claims). ρ indicates Spearman’s ranked correlation values between x and y variables. Values in parenthesis are correlation values 
between x variable and n claims. 
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3.2. Prediction of parcel -level claims using random forest classification 

The random forest model was trained to classify locations using all 
claims data and all hydrologic and social vulnerability predictors 
(Table 3). Performance of the random forest classification is presented in 
Table 2. The overall testing error rates (accuracy ¼ 0.962; sensitivity ¼
0.966; specificity ¼ 0.954; F1 ¼ 0.972; AUC ¼ 0.989; AUCPR ¼ 0.995) 
indicated the model was slightly more likely to generate a false positive 
than false negative (i.e. over-estimation of claims). 

3.3. Hydrologic and socioeconomic predictors of claims 

We computed Spearman’s ranked correlation (ρ) between several 
parcel-level predictor variables and λ (Fig. 6). Hydrologic variables VFD 
(ρ ¼ � 0.424), HFD (ρ ¼ � 0.196), and Slope (ρ ¼ � 0.394) all have 
negative rank correlation with λ, indicating the frequency of claims is 
higher in flat, low lying areas, adjacent to waterbodies, highlighting the 
importance of local hydrologic conditions. Similarly, TWI200m (ρ ¼
0.391) is positively rank correlated with λ, indicating that parcels 
adjacent to areas of high flow accumulation tend to generate more 
claims. The socio-economic variables of house value (ρ ¼ � 0.064) and 
year built (� 0.122) were weakly rank correlated with λ, possibly sug-
gesting that older less expensive properties are more likely to generate 
flood claims. 

Analysis at the tract-level indicates similarly important hydrologic 
variables to those of parcel-level analysis: n parcels<0.1m (ρ ¼ 0.484), 
TWIMAX (ρ ¼ 0.409) (not shown are PrecipMAX [ρ ¼ 0.391], λ20mm [ρ ¼
0.391]) (Fig. 5). The socio-economic variables %minority (ρ ¼ � 0.408) 
and similarity (ρ ¼ � 0.407) were both negatively correlated with the 
number of claims (Fig. 5c and d), indicating that flooding claims are 
generated from tracts with predominantly white populations and po-
litical views dissimilar from state level government. Social demographic 
conditions could align with the availability of housing options more or 
less exposed to hazards, therefore we present rank correlations between 
predictive socio-economic predictors and n parcels<0.1m (Fig. 5e–h). 
Correlations indicate that tracts with higher numbers of low-lying tax 
parcels tended to have low proportions of minority residents (ρ ¼
� 0.477), newer houses (ρ ¼ 0.308), lower home values (ρ ¼ � 0.370), 
and higher political dissimilarity (ρ ¼ � 0.502). 

3.4. Comparison of hydrologic modeling hazard and random forest 
classification risk predictions 

The physically-based LISFLOOD-FP hazard approach to estimating 
the FHA (i.e. 1% annual exceedance inundated area) overlaps with 57% 
and 45% of historical insurance claims within Hackensack and Moodna, 
respectively (Fig. 6a, c). The random forest classification of flood 
generating claims captures 80.6% and 93.2% of claims within Hack-
ensack and Moodna, respectively (Fig. 6b, d). Within the existing SFHA, 

both LISFLOOD-FP and the random forest classification agree well. 
Outside of the SFHA, the random forest algorithm possibly over-
estimated flood claim-generating locations. 

4. Discussion 

4.1. Data-driven flood claim model development 

Flood insurance claim records can serve as a useful, but a possibly 
imperfect, proxy for flooding hazards and exposure. Similar to the 
conclusions of previous studies focusing on prediction of the inundated 
extent (e.g. Khosravi et al., 2019; Woznicki et al., 2019), topography 
alone was a strong predictor of claim frequency at the parcel- (Fig. 2g) 
and tract-levels (Fig. 3g). All regression models exhibited a bias towards 
over-estimating the frequency of claims from properties where there 
were no observed claims (Fig. 2a–f and 3a-f), possibly due to 
household-level heterogeneity in NFIP participation or differences in the 
selected level of coverage (Royal and Walls, 2019; Kousky and 
Michel-Kerjan, 2017). Uninsured homes outside of the SFHA may still 
submit flood claims to receive assistance in the form of the Individual 
and Households Program (IHP), though this support is more limited than 
economic relief provided to insured properties. Underreporting of 
flooding losses outside of the SFHA could occur because of a lack of 
insurance and federal support provided to these areas. Further, indi-
vidual perceptions of risk or shared political capital (Pigg et al., 2013) 
may lead to decisions to decline optional flooding insurance (Royal and 
Walls, 2019), which may result in a weaker understanding of NFIP in 
communities located beyond the SFHA. It is possible that RF residuals 
reflect decisions by some homeowners to purchase tail-loss coverage, 
which only covers infrequent extreme loss events (Kousky and 
Michel-Kerjan, 2017) rather than coverage for smaller more frequent 
events. Application of data-driven techniques well suited to handling 
zero-inflated datasets (e.g. Savage et al., 2015) could help to remedy this 
issue. 

The exposure-focused model presented here highlights the impor-
tance of dimensions beyond hydrometeorological land surface responses 
that influence the frequency of insurance claim generation. In a study of 
urban regions in Iran, Darabi et al. (2019) demonstrate that accounting 
for population density and building quality improved flooding risk es-
timates. Similarly, Li et al. (2019) show the importance of incorporating 
land use information (i.e. cultivated lands), economic development 
areas, and population for translating hazards into risks. Metin et al. 
(2018) proposed that changes to flooding vulnerabilities (changes in 
land use, asset values, and the role of “precaution”) can potentially 
outweigh external changes such as climate change causing thermody-
namic and dynamic shifts in extreme rainfall delivery mechanisms. Our 
results demonstrated that local topography was generally more predic-
tive of exposure than demographic information in NYS (Figs. 2g & 3g), 
though incorporation of socio-economic data at the tract level sub-
stantially improved RF claim prediction skill (Fig. 2f & f). 

4.2. Population demographics of flooding insurance claims in NYS 

Parcel-level analysis demonstrated that inclusion of socio-economic 
data can improve the prediction of the flood claim frequency of indi-
vidual parcels (Fig. 2c, f), though available demographic data was 
limited at this spatial scale. Analysis with data aggregated to the tract- 
level that included a broader suite of social demographic predictors 
(housing stock age and value, the proportion of minority residents, and 
community capital similarity) resulted in a larger improvement in pre-
diction skill (Fig. 3c, f). Census tracts with higher numbers of claims 
tended to have low proportions of minority residents, newer houses, and 
less political similarity to state level government. 

Mean house value was negatively correlated with the number of 
flood-exposed parcels within a tract (Fig. 5f). Depressed home values in 
low-lying areas could be the result changing market perceptions of risk 

Table 3 
Random forest parcel-level classification training, validation, and prediction 
error rates.    

Predicted 
Claim 

Predicted No 
Claim 

Error 
Rate 

Training n ¼
4052 

Observed 
Claim 

2795 0 0.00% 

Observed No 
Claim 

0 1257 0.00% 

Validation n ¼
846 

Observed 
Claim 

554 23 3.99% 

Observed No 
Claim 

26 243 9.67% 

Testing n ¼ 865 Observed 
Claim 

565 20 3.42% 

Observed No 
Claim 

13 267 4.64%  
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and subsequent reductions of at-risk house values (Siders et al., 2019). 
Decreases in home value could also be related to NFIP reforms (Big-
gert-Waters Act of 2012 and Grimm-Waters Act of 2013), which placed a 
greater proportion of the economic burden of insurance on at-risk 
properties, inducing a gradual loss of floodplain property market 
value (Indaco et al., 2019). The positive correlation between mean home 
age, exposure, and number of claims (Fig. 5e) may indicate survivor bias 
of buyout programs. Conversely, this could also represent new devel-
opment within floodplains. Despite the goal of NFIP to encourage 
depopulation of floodplains, federal subsidies for insurance may be 
reducing the economic incentive to migrate from at-risk areas (King, 
2009; Michel-Kerjan, 2010). Parcel-level analysis also identified house 
age and value as predictors of flood claim frequency, but indicated 
opposite correlations where individual properties with older houses 
generated more frequent claims (Fig. 4f). These relationships, visible in 
the parcel-scale data, possibly indicate that the demographics of 
repetitive-loss properties differ from those aggregated to the tract. 

Census tracts with higher proportions of minority residents gener-
ated insurance claims at lower rates within NYS (Fig. 5c). We also 
observed a clear negative correlation between the proportion of mi-
nority residents within a tract and the number of flood-exposed parcels 
[n parcels<0.1m] (Fig. 5g), possibly indicating that race identifies dif-
ferences in exposure rather than differences in the willingness or ability 

to participate in NFIP across NYS. Our results are similar to those of 
Elliott (2015) and Cutter et al. (2018) who found that flood-exposed 
properties were predominantly white, as minorities with limited eco-
nomic means for recovery were more likely to relocate following a 
disaster. Hale et al. (2018) surveyed residents living within floodplains 
in the Wasatch Front, Utah US, and found that the population was 
predominantly white, and that racial minority residents were dispro-
portionately economically impacted by floods. Our observations might 
also reflect a history of racial segregation across NYS where minority 
populations become clustered (Besbris and Faber, 2017) within loca-
tions that also happen to be at low risk of flooding. 

Previous studies have found that flooding hazards disproportionately 
affect lower income communities in the US, who may also struggle to 
participate in the NFIP (FEMA, 2018; Dixon et al., 2017), likely 
imparting some demographic bias on flooding insurance claims records. 
Census tract per capita income was not predictive of the rate of claim 
generation, nor was income alone predictive of topographic exposure to 
hazards, despite positive correlation between the proportion of minority 
residents and social vulnerability. 

Shared political capital may be another driving motivation for flood 
claim submissions. Similar to race, we found similarity to be negatively 
correlated with both claims and the number of flood-exposed parcels 
(Fig. 5h). Strother (2018) argues that NFIP, a previously apolitical 

Fig. 6. Inundation maps derived from LISFLOOD-FP and random forest classification of claim generating areas for the Moodna and Hackensack catchments. His-
torical claim locations are shown as orange circles. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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program, became somewhat politicized after the passage of the 
Biggert-Waters Act of 2012 which proposed economic reform of NFIP 
through rate increases. Biggest-Waters, as well as several largely pub-
licized flooding events impacting densely populated regions (e.g. Hur-
ricanes Sandy [2012] and Harvey [2017]), likely increased the public 
awareness of the NFIP program and made US politicians sensitive to the 
potential electoral implications of NFIP reform (Strother, 2019). The 
Grimm-Waters Act of 2013, which largely preserved NFIP subsidies, was 
strongly supported by Democratic Senators (97% in favor) but only by 
some Republicans (53% in favor). In contrast, we found that claims were 
generated with greater frequency by less Democratic leaning census 
tracts across NYS (Fig. 5h), possibly suggesting limited influence of 
shared political capital. Rather, the slightly lower predictive skill of 
similarity (Fig. 3g) may point to an issue of multi-collinearity, reflecting 
correlation with the proportion of minority residents (ρ ¼ 0.72). 

4.3. Re-conceptualizing FEMA FIRMs and the SFHA with social 
demographic data 

In the US, FEMA Flood Insurance Rate Maps (FIRMs) delineate 
floodplains at specific frequencies of inundation to define insurance risk 
zones (FEMA, 2019c). The 1% annual exceedance probability inunda-
tion area (i.e. 100-year floodplain) is designated as the SFHA which 
demarcates the boundary within which: 1) the purchase of flooding 
insurance is mandatory for properties with mortgages from federally 
backed or insured lenders, and 2) flooding insurance premium rates are 
increased. Identification of high-risk properties is critical for sustainable 
implementation of insurance programs to hedge against flooding losses, 
plan future development, and to limit public exposure to flooding haz-
ards (FEMA, 2019b). FIRMs are developed through the NFIP, a collab-
oration between local and federal agencies. Modern FIRMs are derived 
from simulations of surface runoff from a calibrated hydrologic model 
which is routed over the land surface and stream channel via a one- or 
two-dimensional hydraulic model for the prediction of maximum 
riverine water surface elevations and the inundated extent. Despite very 
specific FIRMs mapping guidance (FEMA, 2016), much of the CONUS 
remains unmapped, or is mapped with outdated hydrologic techniques 
(Kousky, 2018). 

The FIRMs methodology distills riverine hazard down to one loss 
mechanism (i.e. inundation below the static water surface elevation 
defining the floodplain under a specific discharge frequency). This 
approach neglects that riverine flood losses may be related to other 
hazards such as: high overland flow velocities on steep slopes inducing 
erosion, deposition of suspended material on low slopes, or localized 
intense precipitation overwhelming natural and built water conveyance 
systems (e.g. roadside ditches, gutters) far from receiving waters (e.g. 
Knighton et al., 2018; Merz et al., 2010). In addition, hydrologic models 
may be developed around improper assumptions that limit their utility 
as unbiased predictors of flooding hazards including the misrepresen-
tation of the dominant modes of surface runoff (Buchanan et al., 2018), 
overly simplified representations of vegetation (Knighton et al., 2019b; 
Hwang et al., 2018), or inadequate parameterizations related to model 
calibration challenges (e.g. Schoups and Vrugt, 2010). 

Hydrologic modeling leverages our prior knowledge of physical 
processes that generate peak discharge and land inundation (e.g. runoff- 
infiltration partitioning, land surface gradient-based flood routing, 
surface depression storage, backwater effects from infrastructure, in-
teractions with stormwater collection systems). Hydrologic models can 
provide a well-supported lower bound on the area within which prop-
erties are likely to generate flood claims through accurate delineation of 
flood plains (Fig. 6a, c). Data driven machine learning approaches, 
employed here as a random forest classification, can possibly uncover 
more complex relationships between hazards and risks that are not 
explicitly simulated in hydrologic models. Further, we have demon-
strated that machine-learning techniques can readily incorporate non- 
traditional hydrologic datasets, such as social demographics, that 

could provide a more nuanced view of flooding and loss. 

4.4. Methodology limitations and opportunities 

There are several aspects of our methodology and the underlying 
datasets which potentially limited our results and subsequent discus-
sion. Here we present a review of these aspects of our methodology and 
discuss possible impacts on our analysis and opportunities for future 
research. 

First, our estimate of the durations over which λ was computed 
introduced some uncertainty that is difficult to quantify. We assumed 
that the date of building construction from the tax parcel database was 
reliable. Within NYS, clerical errors in the tax parcel data are 
acknowledged and handled through a formal process (NYS, 2019a, 
2019b). Many tax records contained null values, necessitating the 
assumption that the year these properties were built preceded that 
starting date of claim collection. For mitigated properties, it was 
assumed that the date of the final reported flood was a reasonable 
ending date for computation of λ. Mitigation should indicate a decrease 
in either the flood hazards and/or risks posed. As demonstrated by 
Kousky and Michel-Kerjan (2017), mitigated properties show a reduced 
frequency of claim generation; however, they do occasionally generate 
claims, which would cause us to underestimate the duration of exposure 
(and overestimate λ) for mitigated properties (4% of all claim generating 
properties). More refined estimates of the exposure duration could refine 
estimates of λ. 

Second, differences in local collection and storage of NFIP claims 
data can lead to errors and underreporting of economic losses (Gall, 
2017). Structural issues, such as spatial discrepancies in the prices of 
insurance (Dixon et al., 2017; Royal and Walls, 2019) and mis-
interpretations of risk information (Bell and Tobin, 2007) likely lead to 
underreporting of flooding losses through NFIP. Estimates of 
near-stream flood hazard areas are often readily available within 
CONUS, though there is no such centralized database of low flooding 
risk locations. Our approach to providing information on non-claim 
generating locations assumed that properties randomly selected within 
NYS experienced no flooding if no insurance claim had been submitted 
within the study period. Development of a spatial database of known 
low-risk locations should be a priority to relax our reliance on the as-
sumptions underpinning existing FIRMs and to prevent future method-
ologies from becoming over-conditioned by the data available on 
flooded properties. 

Third, we assumed the random forest inputs (Tables S1 and S2) were 
reliable predictors of hazards and risks. The RF model adequately cap-
tures flooding claims as a binary classification, but possibly additional 
predictors, such as spatially distributed riverine discharge return pe-
riods, could improve estimates of λ and tract-level claims. As our hy-
drologic predictors were chosen following other studies which 
successfully reproduced riverine flooding hazard frequency (e.g Woz-
nicki et al., 2019), we assume this was not a major limitation. Analysis 
incorporating several demographic predictors improved the model 
performance, suggesting future studies aiming to improve flood loss 
estimates should consider more refined social vulnerability data. A large 
proportion of flooding claims are generated by pre-FIRM properties 
(Kousky and Michel-Kerjan, 2017). Prediction of λ could be improved by 
examining the sequence of existing FIRM map development and build-
ing construction. Prediction might also be improved by including in-
formation of active NFIP policies, though this data is presently available 
only for the past decade (FEMA, 2019). 

Finally, we assumed that the duration over which claims were 
generated (43 years) was adequate to properly capture the stochastic 
nature of flood hazard mechanisms and insurance claim generation. The 
frequency of flooding from intense landfalling tropical storms for the 
NYS region decreases from approximately 0.5 year� 1 along the Atlantic 
coast (Czajkowski et al., 2017) to 0.05 year� 1 in Central New York 
(Knighton et al., 2017). The low frequency of the dominant extreme 
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rainfall delivery mechanism possibility introduced some uncertainty 
into the estimates of λ and claim totals for census tracts related to the 
period of record. 

5. Conclusions 

Existing methodologies for identifying properties at risk of experi-
encing flooding losses frequently center on well-defined hydrologic 
hazards with less emphasis on defining exposure and vulnerability to 
these hazards. We developed random forest regression models to predict 
the historical rates of parcel- and census tract-level flooding insurance 
claim submittals across New York State (NYS) US with both hydrologic 
and socioeconomic predictors. The frequency of flooding claims was 
best predicted by a combination of hydrologic (vertical distance to the 
nearest stream, topographic wetness index) and social demographic 
(percentage of minority residents, housing stock age and value, capital 
dissimilarity) predictors. 

Census tracts with higher numbers of claims and greater densities of 
low-lying tax parcels tended to have low proportions of minority resi-
dents, newer houses, and less political similarity to state level govern-
ment. Socioeconomic demographic variables correlated with the 
number of low-lying parcels in census tracts across NYS, suggesting 
demographic data may be predictive of exposure rather than a willing-
ness or ability to participate in NFIP. 

Our research broadly supports the concept that quantitative incor-
poration of socio-economic data can produce refined estimates of 
flooding risks. Historical flooding insurance claim records in NYS appear 
to be reliable datasets that should be further analyzed to understand 
hydrologic and social variations in flooding claim submittals. Future 
research should investigate higher resolution demographic information 
to refine flooding risk estimates and to better understand the pathways 
by which communities are vulnerable to flooding. 
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