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Assessing partial association between ordinal variables:
quantification, visualization, and hypothesis testing

Abstract

Partial association refers to the relationship between variables Y1, Y2, . . . , YK while

adjusting for a set of covariates X = {X1, . . . , Xp}. To assess such an association

when Yk’s are recorded on ordinal scales, a classical approach is to use partial corre-

lation between the latent continuous variables. This so-called polychoric correlation is

inadequate, as it requires multivariate normality and it only reflects a linear associa-

tion. We propose a new framework for studying ordinal-ordinal partial association by

using surrogate residuals (Liu and Zhang, JASA, 2018). We justify that conditional

on X, Yk and Yl are independent if and only if their corresponding surrogate residual

variables are independent. Based on this result, we develop a general measure φ to

quantify association strength. As opposed to polychoric correlation, φ does not rely

on normality or models with the probit link, but instead it broadly applies to models

with any link functions. It can capture a non-linear or even non-monotonic association.

Moreover, the measure φ gives rise to a general procedure for testing the hypothesis

of partial independence. Our framework also permits visualization tools, such as par-

tial regression plots and 3-D P-P plots, to examine the association structure, which is

otherwise unfeasible for ordinal data. We stress that the whole set of tools (measures,

p-values, and graphics) is developed within a single unified framework, which allows a

coherent inference. The analyses of the National Election Study (K = 5) and Big Five

Personality Traits (K = 50) demonstrate that our framework leads to a much fuller

assessment of partial association and yields deeper insights for domain researchers.

Key words: covariate adjustment, multivariate analysis, partial regression plot, polychoric

correlation, rating data, surrogate residual.
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1 Introduction

In many research fields, data are not recorded on a quantitative scale, but a rating scale, such

as (1,2,3,...) or (A,B,C,...). The observed symbol merely represents the rating, rather than

the numeric value, of the effect size. For example, in oncology research, patients’ general

well-being and everyday activities are quantified by various scoring systems, such as the

Zubrod score (0, 1, 2, . . . , 5) and the Karnofsky score (0, 10, 20, . . . , 100). Economic studies

often use three rating levels (low, middle, high) to indicate the socioeconomic status of an

individual. Political researchers may use a rating scale of “conservative, independent, and

liberal” or a finer scale to describe a voter or party’s political ideology. In social sciences, the

Likert-type scale, with 5 to 10 levels, has become the standard in questionnaires. Collectively,

data resulted from a rating scale are termed as ordinal data.

The nature of ordinal data presents special challenges in statistical inference, and inferen-

tial tools developed for quantitative variables may not be suitable for their analysis (Liu and

Agresti, 2005; Agresti, 2010; Zhang, 2011; Tutz, 2012). There remain fundamental problems

that have not been fully resolved. One such problem is: how to fully assess the association

between ordinal variables in the presence of a set of confounding covariates having to be con-

trolled for? A fuller assessment should at least include numerical quantification, graphical

representation, and statistical testing, ideally all in a single framework. The goal of this

paper is to establish such a unified framework and justify its utility for inference.

Generally speaking, association analysis investigates the relationship between two or more

variables. It plays an indispensable role in almost all research fields. Often, the very first

scientific question to address is whether or not the variables of interest are related, and if

yes, how? A comprehensive assessment can help researchers direct further analysis, such as

variable selection and model selection. For ordinal variables, there is a rich literature for

assessing association (see Lapp et al., 1998; Kateri, 2014 and references therein). Well-known
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are rank-based methods (Kendall, 1938; Goodman and Kruskal, 1954), polychoric correlation

(Tallis, 1962), association models (Goodman, 1979, 1985), local/global odds ratios (Dale,

1984), and multivariate logistic models (Glonek and McCullagh, 1995), to mention a few.

In need of adjusting for a set of covariates, the assessment of partial association is more

difficult. It has to remove the effect of the covariates (often termed as confounders), which

may correlate with the variables of interest. Liu and Agresti (2005) surveyed non-model-

based methods, where the adjustment is fulfilled by stratifying data using the covariates. For

instance, the Mantel-Haenszel-type methods (Mantel and Haenszel, 1959; Liu and Agresti,

1996) weight the odds ratios of each stratum. The odds-ratio-type measure, unlike Pearson’s

rho, may not directly reflect the strength of association. In addition, data stratification is

often subjective in the presence of quantitative covariates. When the number of quantita-

tive covariates grows, the number of strata can grow exponentially. The consistency result

requires that the number of strata increase proportional to the overall sample size (Liu and

Agresti, 1996), which is nevertheless fixed in practice.

A widely used strategy for adjusting for covariates is to use regression models (Fisher,

1924; Baba et al., 2004; Li and Shepherd, 2010). Specifically, we assume that the variable

of interest Yk (k = 1, 2, . . . , K) has Jk categories with the order 1 < 2 < · · · < Jk, and a set

of covariates X = {X1, . . . , Xp} need to be adjusted for. The adjustment can be realized by

using cumulative link models (McCullagh, 1980)

G−1
k (Pr{Yk ≤ j}) = αk,j − fk(X,βk), j = 1, . . . , Jk. (1)

Here, G−1
k (·) is a link function, which is the inverse of a continuous cumulative distribution

function Gk. The function fk(X,βk) expresses the effect of X on the transformed proba-

bilities Pr{Yk ≤ j}. A special but commonly used form is fk(X,βk) = Xβk. Model (1)

contains a broad class of useful models including ordered probit models with the probit link

G−1
k (γ) = Φ−1(γ) (McKelvey and Zavoina, 1975), proportional odds models (ordinal logit

model) with the logit link G−1
k (γ) = log(γ/(1− γ)) (McCullagh, 1980), proportional hazard
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models with the complementary log-log link G−1
k (γ) = log(− log(1− γ)) or negative log-log

link G−1
k (γ) = − log(− log(γ)) (Prentice and Gloeckler, 1978), relative risk models with the

logarithmic link G−1
k (γ) = log(γ) (Blizzard et al., 2013), and models with the t link (Albert

and Chib, 1993) or Cauchit link G−1
k (γ) = tan(π(γ − 0.5)) (Agresti, 2010). Model (1) can

be induced by assuming there exists a latent continuous trait Zk that underlies the discrete

outcome Yk. Suppose Zk = fk(X,βk)+εk, where εk ∼ Gk and it is independent of X. Given

a series of cutpoints on the continuous scale −∞ = αk,0 < αk,1 < · · · < αk,Jk = +∞, the

observed outcome Yk = j if the latent trait Zk falls in the j-th interval (αk,j−1, αk,j].

The latent structure of Model (1) incurs a classical model-based measure of partial asso-

ciation, namely, polychoric correlation (Pearson and Pearson, 1922; Tallis, 1962). However,

this measure relies on a strong assumption of multivariate normality, namely,
Z1

Z2

...

ZK

 ∼MN



f1(X,β1)

f2(X,β2)
...

fK(X,βK)

 ,


1 ρ12 · · · ρ1K

ρ21 1 · · · ρ2K

...
... · · · ...

ρK1 ρK1 · · · 1


 . (2)

Such a latent multivariate structure requires the marginal distribution of Yk follow Model

(1) with the probit link, i.e., Gk(·) = Φ(·) for all k’s. Polychoric correlation uses ρkl in (2) as

a substitute to measure the partial association between Yk and Yl. It has been used widely in

social and behavioral sciences (Olsson, 1979; Rigdon and Ferguson Jr, 1991; Jöreskog, 1994;

Yiu and Poon, 2008). Nevertheless, it has at least three major limitations.

(L-1) It gauges correlation between the latent variables. It may misconvey the true strength

of association between ordinal variables, as it remains constant regardless of the number

and location of cutpoints (i.e., the values of αk,j).

(L-2) It requires the multivariate normality assumption and applies to Model (1) with a

probit link only. It does not generalize to models with other link functions.

(L-3) It merely measures the strength of linear association in the latent structure, and it

may not reflect a non-linear or non-monotonic structure of association.

4



Motivated by these major limitations, we propose a new framework for studying ordinal-

ordinal partial association. We adjust for covariates by regressing each Yk on the covariate

X, and use surrogate residual variables Rk’s proposed by Liu and Zhang (2018). Our de-

velopment relies on a key feature of surrogate residuals; that is, although Yk takes ordinal

values, its surrogate residual Rk is a continuous variable, which preserves the residual in-

formation in the form of a continuous distribution. The partial association between Yk’s is

then studied by examining the relationship between the residual variables Rk’s.

Our framework is built upon a fundamental result; that is, conditional on X, Yk and Yl

are independent if and only if their corresponding surrogate residual variables are indepen-

dent. This result does not hold for other residuals known so far. The result allows us to

develop a much fuller assessment of ordinal-ordinal partial association. Such an assessment

encompasses numerical measures, graphical representation, and hypothesis testing.

Specifically, we develop a class of measures, labeled generally by φ, to quantify the

strength of partial association. In contrary to polychoric correlation, φ has several advan-

tages: (A1) its size reflects the strength of association between the ordinal variables, rather

than the latent variables; (A2) it does not rely on the multivariate normality assumption

or the probit link, but instead it broadly applies to models with any link functions; and

(A3) it can capture non-linear or non-monotonic association, and it has potential to detect

dependence of any complex structures. These properties are evidenced by examples with

varying degrees of complexity of partial association. The measure φ also gives rise to a gen-

eral procedure for testing the hypothesis of partial independence, which can strengthen our

conclusion or facilitate our decision making. Moreover, our numerical assessment is com-

plemented by visualization tools, such as partial regression plots and 3-D P-P plots, which

were not effective for ordinal data. The graphical examination can reveal the structure of

association, which is otherwise hidden as illustrated in our real data analysis. We stress

that the measures, p-values, and graphics are all developed within a single framework. This
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unified framework allows us to establish a coherent inference scheme.

2 Assessing ordinal-ordinal partial association

2.1 A general framework

We propose to study the partial association between Yk’s through examining the relationship

between Rk’s. Here, Rk (k = 1, 2, . . . , K) is a surrogate residual variable (Liu and Zhang,

2018) obtained by regressing Yk on the covariate X using Model (1).

To numerically assess partial association between Yk and Yl, we define a general measure

φ = φ(Rk, Rl). (3)

The function φ(·, ·) is a general association measure for continuous variables. Choices of such

a function include

φρ = ρ(Rk, Rl) = Cov(Rk, Rl)
/√

Var(Rk)Var(Rl), (4)

φτ = τ(Rk, Rl) = Pr{(Rk −R∗k)(Rl −R∗l ) > 0} − Pr{(Rk −R∗k)(Rl −R∗l ) < 0}, (5)

φσ = 12

∫∫
[0,1]2
|C(u, v)− uv|dudv, where C(u, v) = Pr{Gk(Rk) ≤ u,Gl(Rl) ≤ v}. (6)

Here, φρ is Pearson’s correlation coefficient, φτ is Kendall’s tau (Kendall, 1938) where R∗ is

an independent copy of R, and φσ is Schweizer-Wolff’s sigma (Schweizer and Wolff, 1981)

where C(u, v) : [0, 1]2 → [0, 1] is a bivariate distribution function of (Gk(Rk), Gl(Rl)). Since

Gk(Rk) ∼ U(0, 1), C(u, v) is a bivariate copula function (see Section 3.4 for a detailed dis-

cussion). These three notions are known to have different utilities in quantifying association

strength for quantitative variables. They have an increasing level of complexity, reflecting

linear, monotonic, and the most general association. In Section 3, we will justify their util-

ities, both theoretically and numerically, for ordinal data. In Section 4, we will make use

of these measures to develop procedures for testing the hypothesis of partial independence.
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Our framework also enables us to use visualization tools that are developed for quantitative

data. Throughout the sections, we will demonstrate their effectiveness in the analysis of

ordinal data.

2.2 The tool: surrogate residual

Our general measure φ relies on Liu-Zhang’s surrogate residuals. As they play a key role

in our development, we briefly review the surrogate residuals, present their properties, and

discuss their utility in the current context. The idea is to simulate a continuous variable S and

use it as a “surrogate” of the ordinal variable Y (the subscript is omitted in this subsection

for notational simplicity). Residuals are then defined based on S. For the cumulative link

model in (1), a surrogate variable S can be defined as follows

S ∼


Z | −∞ < Z ≤ α1 if Y = 1,

Z | α1 < Z ≤ α2 if Y = 2,

· · ·
Z | αJ−1 < Z ≤ +∞ if Y = J,

where Z is the classical latent variable that underlies Y , as described in the introduc-

tion. Conditional on Y , the variable S is sampled from a truncated distribution of Z.

An illustration is given in Figure 1, where we depict how to sample S for the model

G−1 (Pr{Y ≤ j}) = αj − Xβ, j = 1, 2, 3. The entire curve represents the distribution

of the latent variable Z, with Xβ specifying its mean conditional on X and G specifying its

shape. Given an observed discrete outcome, say Y = 1, S follows the truncated distribution

represented by the thickened curve to the left of the vertical line at α1. Similarly, when Y = 2

or 3, S follows the distribution truncated by the interval (α1, α2] or (α2,+∞). Conforming

to this rule, we can simulate a sample of S provided a sample of Y .

The definition of the surrogate variable S is not subject to the existence of the latent

variable Z. Needed is merely a joint probability distribution of (Y, Z) implied by the latent

structure of Model (1), rather than the realizations of Z. In fact, the construction of S can
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be written without using Z, but three components of Model (1), namely, f(X,β), αj’s and

G. Specifically,

S | (Y = j,X = x) ∼ G(c− f(x,β)) truncated by the interval [αj−1, αj). (7)

We use the variable S as a surrogate of Y in our analysis as it has three properties. (P-1)

S follows the same distribution as the latent variable Z, i.e., Pr{S ≤ c | X} ≡ Pr{Z ≤ c |

X} for any c and X. (P-2) Both S and Z give out the same outcome Y on the ordinal scale,

i.e., αj−1 < Z ≤ αj ⇔ Y = j ⇔ αj−1 < S ≤ αj for any j. (P-3) S is observable whereas Z

is not. On the continuous scale of S, Liu and Zhang (2018) defined a residual variable

R = S − E{S |X}. (8)

It is simply the difference between the surrogate variable S and its expectation, following the

same principle for defining residuals for ordinary linear models. This principle, nevertheless,

does not apply directly to the original ordinal data measured on a rating (not numeric) scale.

For cumulative link models in (1), the surrogate residual R = S − E{Z | X} = S −

f(X,β) −
∫∞
−∞ u dG(u). Liu and Zhang (2018) showed that R is independent of X, and

it follows the same distribution of the latent error ε. That is, Pr{R ≤ c | X} = Pr{R ≤

c} = G(c+
∫
u dG(u)). Moreover, as illustrated in Figure 1, R summarizes the direction and

magnitude of the residual randomness of S after removing the effect of X.

2.3 Key results

Using surrogate residuals, we establish a necessary and sufficient condition for determining

whether ordinal variables are conditionally independent or not. The results below lay the

foundation of our entire framework for quantification, visualization, and hypothesis testing.

Theorem 1. Assume that the ordinal variable Yk (k = 1, 2, . . . , K) follows Model (1). Con-

ditional on the covariate X, Yk and Yl are independent if and only if the corresponding

8



surrogate residual variables Rk and Rl, as defined in (8), are independent, i.e.,

(Yk⊥⊥ Yl) |X ⇔ (Rk⊥⊥ Rl) |X.

Corollary 1. Under the same condition of Theorem 1, if (Yk ⊥⊥ Yl) | X for any X, the

following results hold: (a) the conditional distribution of (Rk, Rl) |X is homogeneous across

all values of X, i.e., P(Rk ≤ rk, Rl ≤ rl |X) = P(Rk ≤ rk)P(Rl ≤ rl); and (b) Rk⊥⊥ Rl.

Theorem 1 and Corollary 1 enable us to convert the task of checking conditional indepen-

dence between Yk’s to that between the corresponding residual variables. This conversion is

natural if Yk’s were continuous variables, but it is not trivial for discrete variables. When Yk’s

are ordinal, alternative residuals RALT such as the sign-based residuals (Li and Shepherd,

2012) and the generalized residuals (Franses and Paap, 2001) cannot be used to establish

similar results. In fact, the illustration below shows that (Y1⊥⊥ Y2) |X ; RALT
1 ⊥⊥ RALT

2 .

Figure 2 displays scatter plots of several types of residuals when Y1 and Y2 are simulated

independently conditional on X. We observe that RALT
1 and RALT

2 are nevertheless not

independent for the sign-based residuals, generalized residuals, and deviance residuals. For

these residuals, the conditional distribution of RALT
2 varies depending on the value of RALT

1 .

This is not a coincidence but reflects a fundamental defect of these alternative residuals, i.e.,

their distribution varies depending on the value ofX (see Section 3.4 of Liu and Zhang, 2018).

In contrast, the surrogate residual variable Rk is independent of X. Without this property,

we would not have been able to establish Rk ⊥⊥ Rl in Corollary 1. Such an independence

between the surrogate residuals is observed in at the bottom right of Figure 2.

Remark 1. As a further explanation of the dependence of RALT
k ’s as seen in Figure 2, we

note that RALT
k ’s cumulative distribution function (CDF) Fk,X(c) = PrX{RALT

k ≤ c} is a

function of X. Given that the CDFs Fk,X(c) and Fl,X(c) share a common X, it is not

unusual to observe the dependency between RALT
k ’s even when Yk’s are partially independent.

Remark 2. Compared to the “if-and-only-if” result established for the surrogate residual in
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Theorem 1, the alternative sign-based residual RALT has a much weaker result, i.e., (Yk ⊥⊥

Yl) |X ⇒ E(RALT
k RALT

l |X) = 0 (Li and Shepherd, 2010), but not vice versa.

In the section below, we will establish properties of the association measures φρ, φτ , and

φσ in (4)-(6) with accompanying graphics. Their inference is deferred to Section 4.

3 Properties

First of all, an ideal assessment of partial association should be invariant to the labeling of

the ordered categories of Yk’s. Given that Yk has four categories, for instance, our inference

should remain the same regardless of the labels used to indicate its categories, (0,1,2,3) or

(1,2,5,10). The property below applies to the general φ in (3), including φρ, φτ and φσ.

Property 1. The association measure φ is invariant under strictly monotone transforma-

tions of Yk and Yl. Specifically, φ(Yk, Yl) ≡ φ(gk(Yk), gl(Yl)), where gk and gl are strictly

increasing (decreasing) functions.

In what follows, we consider association structures in an increasing order of complexity.

For the ease of understanding, we use the distribution and dependence of latent variables

to indicate the structural complexity. Studied are cases when the latent variables follow

(3.1) normal distributions and a linear association; (3.2) non-normal distributions; (3.3) a

nonlinear but monotonic association; and (3.4) a general non-normal non-monotonic associ-

ation. To allow an in-depth discussion, we focus on the bivariate analysis of (Y1, Y2) in the

simulated examples. The properties apply to any pair of (Yk, Yl) in a multivariate analysis.

3.1 Linear association

We begin with a setting where the latent variables follow a bivariate normal distribution

and the dependence is linear, i.e., (Z1, Z2) follow Model (2). This is the setting where the
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polychoric correlation ρ is applicable, but has limitations (L-1)-(L-3) (see the introduction)

in measuring the association between Yk’s. To illustrate (L-1) and the advantage of our

measure σρ, we consider an example before presenting our theoretical properties.

Example 1. Consider three pairs of ordinal variables (Y1, Y
(i)

2 ), i = 1, 2, 3, all following preset

models. Of interest is the association in each pair after adjusting a covariate X ∼ N(0, 1).

A computer simulation generates data, and we tabulate the first 20 observations in Table 1.

If we visually explore the relationship between Y1 and Y
(i)

2 , our common sense may lead

to a rough conclusion that the association between (Y1, Y
(2)

2 ) may be the weakest among the

three pairs. The intuition is from the fact that we barely observe the variability of Y
(2)

2 , nor

its co-movement as Y1 varies. However, if we use the polychoric correlation to measure such

an association, it is ρ(Y1, Y
(2)

2 | X) = 0.8, which indicates a very strong correlation. The

question is which is problematic, our intuition or the measure ρ?

Here is how we simulate the data. The ordinal variables (Y1, Y
(i)

2 ) are defined as dis-

cretized outcomes of two continuous variables (Z1, Z2) that follow the bivariate normal model

(2) with ρ = 0.8. The marginal distribution of Zi and the cutpoints can be found in Table 2.

The data of (Z1, Z2) are discarded and we only keep the data of (Y1, Y
(i)

2 ) and X for infer-

ence. Since all the three pairs (Y1, Y
(i)

2 ) are based on the same latent variables (Z1, Z2), their

polychoric correlations are all the same, i.e., ρ(Y1, Y
(i)

2 | X) = 0.8 for any i. This constant

measure does not reflect the varying number and positions of cutpoints among Y
(i)

2 ’s, as

depicted in Figure 3. In particular, the two cutpoints for Y
(2)

2 are on the tails, far from the

center, of the distribution of Z2. As a result, the data of Y
(2)

2 , as seen in Table 1, barely show

any variability, nor the co-movement with Y1. If the two cutpoints are further moved away

from the center and toward (minus) infinity, Y
(2)

2 will eventually become a constant. In this

situation, any sensible association measure is expected to converge to zero, as the degrees

of co-movement of (Y1, Y
(2)

2 ) will diminish. Nevertheless, the value of polychoric correlation

remains the same, and it always indicates a strong association ρ(Y1, Y
(2)

2 | X) = 0.8. This is
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an intrinsic problem of using polychoric correlation to measure partial association between

ordinal variables, as it ignores the impact of cutpoints on the variability of each variable

and the heterogeneity of the data generating process. Consequently, it may misconvey the

strength of the ordinal-ordinal association. In fact, the ordinal outcome Yk can be viewed as a

function of the latent variable Zk, i.e., Yk = Tk(Zk) where Tk is determined by the cutpoints

αkj’s. With this in mind, we can conclude that it is fundamentally flawed to always use

ρ(Z1, Z2 | X) as a measure of the partial association between Y1 = T1(Z1) and Y2 = T2(Z2),

regardless of the form (e.g., the number and locations of αkj’s) of Tk’s.

Unlike polychoric correlation, our association measure φρ takes into account the influence

of cutpoints. As observed in Table 2, if we use φρ to gauge partial association, the pair

(Y1, Y
(2)

2 ) turns out to have the weakest association among the three pairs as φρ(Y1, Y
(2)

2 ) =

0.08, in comparison with φρ(Y1, Y
(1)

2 ) = 0.48 and φρ(Y1, Y
(3)

2 ) = 0.61. The latter value

also indicates that as the cutpoints become “dense”, our φρ tends towards the polychoric

correlation ρ. All these observations are consistent with our intuition. We present below the

theoretic properties of φρ as well as its connection to polychoric correlation.

Property 2. Under Model (2), the association measure φρ has the following properties:

(a) φρ ∈ [−1, 1].

(b) φρ = 0 if ρ = 0.

(c) ρ1 = ρ2 ; φρ1 = φρ2.

(d) φρ → ρ as Jk →∞ and max |αk,j+1−αk,j| → 0, provided that
∫
u2 dGk(u) <∞ (k=1,2).

If we rephrase Property 2, it says under Model (2), (a) our measure φρ has the same range

as the polychoric correlation ρ; (b) it is zero if the two latent variables Zk’s are independent;

(c) its value is not uniquely determined by ρ, but instead, it also reflects the influence of the

cutpoints αkj’s; and (d) its value converges to ρ if we have infinitely many cutpoints and

they are sufficiently dense on the real line. These proporties apply to the general measure φ

as long as it has the form (3). With respect to φτ in (5), for instance, Table 2 shows that its
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value varies, depending on the number and locations of the cutpoints. The smallest value of

0.05 occurs when the cutpoints are {−3, 3}, two points on the tail of the latent distribution

as illustrated in the center panel of Figure 3. The value of φτ increases to 0.44 as we add 11

more equal-spaced cutpoints as illustrated in the right panel of Figure 3. These properties

also hold in general for non-probit models, as similar patterns are observed in Table 2 where

the latent errors (ε1, ε2) follow a bivariate Gumbel distribution. The following subsection

will address the challenges that arise when the link function is not probit.

3.2 Link functions other than the probit

The second limitation (L-2) of polychoric correlation is that it relies on a vulnerable as-

sumption; that is, the latent variables Zk’s must follow a normal distribution. It will lose its

theoretical ground if the link function in Model (1) is not probit. Moreover, it blindly en-

forces a multivariate structure, which requires any linear combination of (Z1, . . . , ZK) follows

a normal distribution. Such a prerequisite can hardly be justified as we do not observe Zk’s.

Bear in mind that the marginal distribution of Yk specified in Model (1) does not imply any

multivariate association structure. Our measure φρ has a desirable property as below.

Property 3. The association measure φρ does not require any upfront specification of the bi-

variate structure of the joint distribution of (Yk, Yl) (e.g., the bivariate normality of (Zk, Zl)).

It only requires a correct specification of the marginal distribution of each Yk.

Property 3 separates the task of assessing partial association between Yk’s from that of

specifying marginal distributions for each Yk. As a result, we do not have to impose any as-

sumption on the multivariate association structure up front. To study ordinal-ordinal partial

association, we only need to ensure that the marginal model for each Yk is specified correctly.

The association structure can be determined separately by examining the relationship be-

tween residual variables using our measures and graphics. This division of labor (i.e., the

separation of a work process into a number of tasks, with each task performed separately)
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is one of the most appealing features of our framework. Similar ideas have been used in the

development of generalized estimating equation (GEE) and copula methods, where efforts

of specifying marginal distributions and an association structure are divided completely and

conducted separately. This division of labor frees us from the normality assumption. As

for studying partial association, we are not confined to the probit link in Model (2) or the

log-family link in multivariate logistic models (Glonek and McCullagh, 1995). In fact, we

can use any link function in Model (1). This advantage broadens the applicability of our

framework. It enables us to study partial association when the latent variable does not follow

a symmetric and light-tailed distribution, as illustrated in the example below.

Example 2 (Complementary log-log link). We consider the situation where the link function

G−1
k (p) = log(− log(1 − p)) in the marginal models (1) for each Yk. Similar to Example 1,

the association between Y1 and Y2 is simulated through the corresponding latent variables

Z1 and Z2. For complementary log-log links, the latent error variable εk follows the standard

Gumbel distribution with a CDF F (x) = 1 − exp (− exp (x)). The two latent errors ε1 and

ε2 are associated with each other through a Gaussian copula with a correlation of 0.8. For

such models with a non-probit link, the polychoric correlation is not applicable, whereas our

measure φρ remains valid. As observed in Table 2, our measure φρ again reflects the impact

of the number and locations of the cutpoints. Comparing the values of φρ with those when

the latent variables follow a bivariate normal distribution, we see that our measure φρ also

captures the shape of the underlying distribution (or the link function). For example, when

the cutpoints are {−3, 3}, the value of φρ is 0.15 for the complementary log-log link which

has a much longer lower tail, as compared to 0.08 for the thin-tailed probit link.

The property of “division of labor” applies to any association measure as long as it is

defined in the general form of (3). The values of φτ , for instance, can be found in the bottom

row of Table 2, where the pattern appears similar to that in Example 1.
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3.3 Nonlinear but monotonic association

The division-of-labor feature allows us to examine partial association as if Yk’s were contin-

uous variables. Recall that for continuous variables, we may use linear models to adjust for

covariates and the ordinary residual (i.e., the difference between the fitted and observed val-

ues) to assess partial association. The association strength can be gauged by Pearson’s rho,

and the association structure can be inspected by a partial regression plot, where residuals

of the two variables are plotted against each other. Borrowing these ideas, we demonstrate

the utility of our framework in unveiling nonlinear structures of ordinal-ordinal association,

which were scarcely discussed in the literature.

Example 3 (Exponential association). The two ordinal variables Y1 and Y2 are simulated by

discretizing, respectively, the latent variables Z1 = 2X1 + 2X2 + ε1 and Z2 = X1− 2X2 + ε2,

where X1 ∼ N(0, 1) and X2 ∼ U(0, 1). We let ε1 ∼ logistic(0, 1) and consider two scenarios

of ε2: (1) ε
(1)
2 = ε1 + e; and (2) ε

(2)
2 = exp(ε1) + e. Here, e ∼ logistic(0, 1) independently of ε1.

The scatter plots in the first column of Figure 4 illustrate the relationship between ε1 and ε2,

which represents the partial association between Z1 and Z2 after adjustingX. Different from

the top plot, the bottom plot in this column exhibits a clear nonlinear association structure.

This nonlinearity, however, is hidden behind the discrete data, and it would not be known

unless we could directly observe the latent variables Zk’s. Using our approach, we provide

in the middle column of Figure 4 the scatter plots of the surrogate residuals R1 versus R2

(when the number of categories is 5). We stress that these residuals are obtained from the

discrete Yk’s, without requiring any observations of the latent Zk’s. It is evident that the

scatter plots capture the association patterns of the hidden variables. In particular, the

middle bottom plot reveals a nonlinear pattern, which otherwise may be concealed due to

the ordinal nature of the data. When the number of categories increases to 10, the patterns

remain similar (the right column). But the strength of the association measures φρ and

φτ is closer to that seen in the first column. This observation once again confirms that
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when the number of categories increases, the association measures between ordinal variables

approach their counterpart between latent variables (Property 2(d)). In fact, the proof of

Property 2(d) does not require the normality of and linearity between latent variables.

Another appealing feature of our framework is that we are not restricted to the use of

moment-based measures, but instead, we are allowed to use a wide scope of metrics to study

more complex association structures. In the presence of nonlinearity, the measure φρ studied

previously may not be ideal in gauging association. Taking the right column of Figure 4 for

example, φρ = 0.06 in the bottom plot does not necessarily indicate that the association is

much weaker than that in the top plot where φρ = 0.63. It is simply because the moment-

based φρ does not fully reflect the strength of a nonlinear association. Applying Kendall’s

tau, a rank-based method, to the two residuals, we obtain φτ = 0.47 for the nonlinear case

(the bottom plot), which is comparable to φτ = 0.46 for the linear case (the top plot).

Property 4. Without the adjustment for the covariates, our measure φτ is identical to

Kendall’s τ , i.e., φτ (Rk, Rl) ≡ τ(Yk, Yl).

In view of Property 4, our measure φτ generalizes Kendall’ tau to the cases where an

adjustment for covariates is applied. It makes it sensible to compare the value of τ(Yk, Yl)

before the adjustment with the value of φτ (Rk, Rl) after the adjustment. The difference

reflects the amount of correlation eliminated by removing confounding effects. This point

will be illustrated in our analysis of the National Election Study.

3.4 General association

When the association may not be linear or monotonic and the link function may not be

probit, we show how to assess partial association through surrogate residuals. First, we have

the following result due to Sklar’s theorem (Sklar, 1959).

Theorem 2. Let H be the joint distribution of the surrogate residual variables Rk and Rl
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in (8). There exists a unique copula C(u, v) such that for all (rk, rl) ∈ R2

H(rk, rl) = C(Gk(rk), Gl(rl)), (9)

where Gk(·) is the inverse of the link function in Model (1).

The establishment of Theorem 2 relies on a key fact that the surrogate residuals R1 and

R2 are continuous variables and each follows an explicit distribution, i.e., Rk ∼ Gk(·). For

the alternative residual RALT mentioned in Section 2.3, it is difficult, if not impossible, to

establish a simple and explicit copula expression, similar to (9), for the joint distribution H.

The difficulty rises from the fact that the distribution of RALT may not be continuous, nor

does its distribution have an explicit form (Section 3.4 of Liu and Zhang, 2018).

The implication of Theorem 2 is that given surrogate residuals, we can estimate the

copula function C(·, ·) empirically. Based on Ĉ(·, ·), measures and graphics can be developed

to examine partial association in light of the corollary below.

Corollary 2. If the ordinal variables Yk and Yl are partially independent, the copula C in

(9) is a product copula, i.e., Yk⊥⊥ Yl |X for any X ⇒ C(u, v) = C⊥(u, v) = uv.

Corollary 2 supports the use of φσ in (6) as a partial association measure for the general

setting. It calculates Schweizer-Wolff’s sigma between two surrogate residual variables Rk

and Rl. This φσ has potential to capture a non-monotonic association, which could be

otherwise missed by the existing measures. Moreover, since the product copula C⊥(u, v) = uv

corresponds to the case of independence, we can visualize the deviation (C(u, v) − uv) to

inspect the degree of independence. Specifically, we can plot (Ĉ(u, v)−uv) against (u, v) in a

3-D display, where Ĉ(u, v) is the empirical copula trained from the data. The example below

illustrates that this 3-D plot extends the idea of the probability-probability (P-P) plot.

Example 4 (Half-circle association). We simulate two ordinal variables Y1 and Y2 by dis-

cretizing the latent variables Z1 = X + ε1 and Z2 = 1.5X + ε2, where X ∼ N(0, 1). As
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depicted in Figure 5(a), we let the latent errors ε1 and ε2 have a half-circle association by

setting ε1 ∼ U(−3, 3) and ε2 = −
√

9− ε21 + e, where e ∼ N(0, 0.12), independent of ε1.

As the latent errors simulated as such are very different from the normal errors, the probit

link is not appropriate for fitting Model (1) to the ordinal data of Yk’s. Assuming the true

models as in (1), including the link functions, are known, we can obtain surrogate residu-

als R1 and R2. Figure 5(b) shows the partial regression plot of R1 versus R2. It reveals

the hidden half-circle pattern. This non-monotonic association may not be unmasked by

common Pearson’s correlation φρ = −0.01 or Kendall’s tau φτ = −0.01. In contrast, the

copula-based measure φσ = 0.33 indicates a nonignorable association. Displayed in Figure 6

is a 3-D plot of (Ĉ(u, v)−uv) against (u, v). If Yk’s are partially independent, the surface in

Figure 6 is expected to fall onto the horizontal plane. This is similar to the P-P plot where

the empirical line is expected to align with the theoretical line when the hypothesis holds.

Evident in Figure 6 is the departure of the surface from the horizontal plan, which is another

indicator of the dependency.

4 Inference

We have established the properties of φ = φ(R1, R2) = φ(R1,θ1 , R2,θ2), where the surrogate

residual variable Rk,θk relies on the unknown parameter θk = (αk,1, . . . , αk,Jk−1,β) in Model

(1). To make inference of φ, we obtain a consistent estimate of θk using the maximum

likelihood method. Let θ̃k denote such an estimate and rk,θ̃k a sample of the variable Rk,θ̃k
.

We discuss in this section how to use rk,θ̃k to carry out a variety of inferences of φ.

4.1 Estimation

We can obtain an empirical estimate of φ by using the empirical method of estimating

Pearson’s rho, Kendall’s tau, and Schweizer-Wolff’s sigma, namely, φ̂ = φ̂empirical(r1,θ̃1
, r2,θ̃2

).
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For example, the empirical estimate of Pearson’s rho is

φ̂empirical(r1, r2) =
n∑
i=1

(r1i − r̄1)(r2i − r̄2)/

√√√√ n∑
i=1

(r1i − r̄1)2

n∑
i=1

(r2i − r̄2)2.

In Appendix A, we establish the consistency of the estimate φ̂ under certain mild conditions.

The estimate φ̂ uses surrogate residuals from a single draw from the sampling scheme

(7). To reduce its variability and increase inference efficiency, we recommend to conduct M

(> 1) draws and use the average as the final estimate (see e.g., Hong and He, 2010)

φ̂(M) =
1

M

M∑
m=1

φ̂empirical(r
(m)

1,θ̃1
, r

(m)

2,θ̃2
). (10)

Our numerical study adopts M = 30 as any larger number merely leads to a minimal

improvement on the variance reduction.

4.2 Standard error, confidence interval, and p-value

To evaluate the uncertainty of φ̂(M) in (10), we propose a bootstrap algorithm as follows:

[Step 1] obtain a size-n bootstrap sample (x∗,y∗k) by resampling from the given sample

(x,yk); [Step 2] fit Model (1) to the bootstrap sample and obtain an estimate θ̃∗k; [Step 3]

obtain M samples of surrogate residuals (r
∗(1)

k,θ̃∗k
, ..., r

∗(M)

k,θ̃∗k
); and [Step 4] calculate the value

of φ̂(M) in (10). Repeating Steps (1-4) B times, we have a bootstrap set {φ̂∗1, φ̂∗2, . . . , φ̂∗B}

(superscript (M) omitted). Its empirical distribution is denoted by F̂ ∗B(φ).

We can use the bootstrap distribution F̂ ∗B(φ) to draw a variety of inferences (Efron

and Tibshirani, 1994). For example, its standard deviation is an estimate of the standard

error of φ̂(M). The interval (F̂
∗(−1)
B (α/2), F̂

∗(−1)
B (1 − α/2)) yields a 100(1 − α)% confidence

interval. For testing the hypothesis of independence, namely, H0 : φ = 0, the p-value is

2 min(F̂ ∗B(0), 1− F̂ ∗B(0)). More generally, we can use 2 min(F̂ ∗B(δ), 1− F̂ ∗B(−δ)) as a p-value to

test a composite hypothesis such as H0 : |φ| ≤ δ, where δ is a positive threshold representing
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the association strength that is meaningful to domain researchers. The integrative use of

these outcomes leads to a more informed conclusion, as they provide answers to the following

questions: (i) how large is the association size? (ii) what are its confidence limits? (iii) is it

statistically significant? and (iv) is it practically significant as well? The feature of allowing

a comprehensive inference distinguishes our framework from the literature that only focuses

on testing of the hypothesis of independence (e.g., Li and Shepherd, 2010; Zhu et al., 2012).

A dichotomous decision (rejecting a simple null hypothesis or not) may be far from being

adequate for understanding a scientific issue.

5 Simulation studies

Simulation I. As our inference relies on the bootstrap distribution F̂ ∗B(φ), we first and

foremost numerically evaluate its approximation accuracy. We simulate data using the set-

tings of Examples 1 and 2. For each simulated sample, we follow the algorithm in Section

4 and obtain B = 2000 bootstrap replicates {φ̂∗1, φ̂∗2, . . . , φ̂∗B} of the estimate φ̂(M) in (10).

We set M = 30 consistently in the simulation and omit this superscript. To compare the

bootstrap distribution F̂ ∗B(φ) with the true distribution F0(φ), we calculate their means,

standard deviations, 2.5% quantiles, and 97.5% quantiles, respectively. The simulation is

repeated 1000 times and the averages of those statistics are reported in Table 3. We see

that in general, the mean and standard deviation (SD) of F̂ ∗B(φ) are very close to the true

values. This approximation remains very well in cases of a small sample size (n = 100) and a

non-normal (Gumbel) latent distribution, which supports the use of SD(F̂ ∗B(φ)) to estimate

the standard error of φ̂ in practice. Furthermore, Table 3 suggests the approximation is

remarkably accurate even on the the distribution tails, as reflected by the close proximity of

the estimated 2.5% and 97.5% quantiles to their true values. This observation confirms the

validity of using F̂ ∗B(φ) to construct confidence intervals and p-values for hypothesis testing.

In fact, Table 3 shows that the 95% confidence intervals have coverage probabilities close
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to their nominal levels. In the rest of this section, we show how p-values should be used

together with measures and graphics to achieve a full assessment of partial association.

Simulation II. We use exactly the same simulation setting of Li and Shepherd (2010).

Specifically, Y1 is generated from an ordered logit model {logit(P{Y1 ≤ j|X}) = α1,j−β1X},

and conditional on Y1, Y2 is generated from {logit(P{Y2 ≤ j|X}) = α2,j−(β2X+η1I(Y1=1) +

...+η5I(Y1=5))}, j = 1, ..., Jk. The parameter vector η = (η1, ..., η5) controls the degrees of the

partial association between Y1 and Y2. Li and Shepherd (2010) considered four scenarios:

(1) η = (0, 0, 0, 0, 0) (the null); (2) η = (−0.4,−0.2, 0, 0.2, 0.4) (linear effect); (3) η =

(−0.30, 0.18, 0.20, 0.22, 0.24) (nonlinear-monotonic effect); and (4) η = (−0.2, 0, 0.2, 0,−0.2)

(non-monotonic effect). We compare the type I error and power of our methods with those

of the likelihood ratio test (LRT) and Li-Shepherd (LS) method. The LRT may be regarded

as the gold standard in this setting as the partial association is determined solely by η.

Table 4 shows that compared to this gold standard, our method yields slightly lower type I

error but even higher power in scenarios (2) and (3). We also observe that the power of our

φρ-based, φτ -based methods, and the LS method is close to each other, with the LS method

being slightly more powerful under the logit model. This leads to a speculation that the

actual associations might be approximately linear for all scenarios, despite that Scenarios

(3)-(4) are termed “nonlinear-monotonic” and “non-monotonic” by Li and Shepherd (2010).

The speculation is confirmed by our graphical inspection in Figure 7, where no clear signs of

non-linearity are spotted in the three partial regression plots. For the “non-monotonic” case,

the plot on the right of Figure 7 explains why our and LS methods all have low power as

the lowess curve is almost flat. This insight is otherwise not available without our graphical

inspection. In this case, the LRT method exhibits much higher power as seen in Table 4.

As a further analysis, we replace the logit link with the complementary log-log link in the

simulation models and repeat all the analysis. Similar results are observed in Table 4.

Simulation III. As our testing procedure is developed based on strength measures, we
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are allowed to test whether or not the association is negligible. For instance, an association

may be deemed as negligible if its strength is no more than a threshold δ. In this case, it

is sensible to test H0 : |φ| ≤ δ versus H1 : |φ| > δ. Table 5 shows the type I error and

power when δ = 0.1. Considered are four scenarios including Scenario (2) (negligible linear

effect) and Scenario (3) (negligible monotonic effect) used in the previous simulation, and

(5) η = (−1,−0.5, 0, 0.5, 1) (non-negligible linear effect) and (6) η = (−1.2, 0, 0.3, 0.5, 0.6)

(non-negligible monotonic effect). As the null is composite, the type I error of our methods

is much below the nominal level of 0.05. On the other hand, at the alternatives, our methods

retain reasonable power to claim that the association is not negligible. Our result points to

the fact that it is not straightforward to use the LRT and LS methods to claim an effect

being non-negligible without a measure of association strength.

Simulation IV. We carry out further analysis to examine testing power when the asso-

ciation is not linear. We follow the setting of Example 3 (Section 3.3) and simulate the latent

errors as ε1 ∼ logistic(0, 1) and ε2 = c · eε1 + e, where e ∼ logistic(0, 1). The coefficient c

controls the degree of non-linearity, with a large value indicating more notable non-linearity.

For c = {1, 0.5, 0.1, 0.05, 0.01}, the power for testing H0: φ = 0 is shown in Table 6. When

c is small (e.g., c = 0.05, 0.1), our φρ-based method exhibits the highest power. This is not

surprising as the association is approximately linear. Our φτ -based method is notably less

powerful, so is the LS method. When c increases to 0.5 or 1, the power of our φτ -based

method catches up and even surpasses that of the φρ-based method. This is expected as the

measure φτ is more capable of capturing a non-linear association. This point can be clearly

seen in Table 7, where the estimates of φτ and φρ are compared. When the degree of non-

linearity is low (c ≤ 0.1), the size of φ̂τ remains slightly smaller than that of φ̂ρ. But when

c = 1, the effect size φ̂τ is substantially larger (e.g, 0.302 versus 0.139 when n = 200). This

simulation underlines the importance of having strength measures beyond testing results.
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6 Real data examples

We analyze two survey data sets from the National Election Study and “BIG5” (personality

traits) project. The analyses demonstrate the advantages of our entire framework over

traditional methods, which often simply test independence and merely yield a dichotomous

conclusion. We illustrate the integrative use of our measures, graphics, and p-values will

result in substantial evidence, based on which a more informed inference can be made.

6.1 Analysis of the National Election Study

A traditional research question in political science is how voters’ partisanship (e.g. party

identification) relates to their voting behavior (Bartels, 2000). To answer this question,

we analyze a data set of the 1996 American National Election (Rosenstone et al., 2016),

which is collected by the American National Election Study project (https://www.icpsr.

umich.edu/icpsrweb/ICPSR/series/00003). The sample consists of 944 individuals who

responded to a survey. The variable “VOTE” indicates a respondent’s voting preference

for the two presidential candidates, Bill Clinton (Democratic) and Bob Dole (Republican).

The variable “PID” is a respondent’s party identification with 7 ordinal levels (from strong

Democratic to strong Republican). The data are tabulated in Table 8.

The association between PID and VOTE in Table 8 is manifest as Republicans are

inclined to support Dole. The estimate of Kendall’s is 0.675 (0.012) (in the parentheses

is an estimate of the standard error), which supports the common perception that VOTE is

strongly correlated with PID. However, such a seemingly strong correlation may simply be

a result of confounding factors. For instance, demographic factors, such as age, income and

education, may correlate with both variables. Without adjusting for confounders and assess

partial association, it remains unknown to what extent VOTE is truly influenced by PID.
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6.1.1 Detailed bivariate analysis of VOTE and PID

We adjust for three potential confounders (age, income, and education) by applying Model

(1) to VOTE and PID, respectively (see Table 9 for inference results). The probit link is

chosen as commonly used in political science. This assumption of the latent variables being

normal can be validated in model diagnostics (Liu and Zhang, 2018) by drawing a Q-Q plot

of surrogate residuals versus theoretical normal quantiles (see Figure 8). We stress that

although the probit link is used in each marginal model, we do not require that the two

latent variables jointly follow a bivariate normal distribution. Such an assumption is, in fact,

not supported by the data, as will be seen later.

To numerically assess the partial association between VOTE and PID, we obtain an esti-

mate of the tau-based measure φ̂τ (rV OTE, rPID) = 0.415 (0.010) using the surrogate residuals

rV OTE and rPID. The value of 0.415 indicates the association strength after adjusting for

the covariates. Recall that before such an adjustment, φ̂τ = τ̂ = 0.675 (0.012) (Property 4).

Our analysis reveals a (0.675-0.415)/0.675=38.5% reduction in association strength with the

confounding effects removed. In other words, these confounders account for 38.5% of the

“total correlation” between VOTE and PID. Without eliminating such a notable amount of

confounding effects, the influence of PID on VOTE could be overestimated.

To visualize the partial association between VOTE and PID, the partial regression plot

in Figure 9 scatters (rV OTE, rPID). The plot confirms a positive partial association, as

indicated by the fitted cubic smoothing splines (red dashed curve). Another eye-catching

pattern is that the majority of the points fall into Quadrant 1 (rV OTE > 0 and rPID > 0)

and Quadrant 3 (rV OTE < 0 and rPID < 0), with much fewer points found in Quadrants

2 and 4. The pattern leads to a conjecture that the points in Quadrant 1 (or Quadrant 3)

represent those who mostly voted for Dole (or Clinton). This conjecture is true once labels

are placed on the points (× for Dole and ◦ for Clinton). A more careful observation reveals

that those individuals with rPID < −1 seldom voted for Dole, whereas quite a few supporters
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of Clinton can be found among those with rPID > 1. This may indicate that the influence

of PID on VOTE is not symmetric after adjusting for age, income and education.

The partial regression plot in Figure 9 also exemplifies a case where the bivariate normal-

ity, as assumed by polychoric correlation, does not hold in general. Although the projection

of the points in Figure 9 to each margin (rPID or rV OTE) approximates reasonably well to

the normal distribution (see, Figure 8), the joint distribution of rPID and rV OTE does not

appear to follow a bivariate normal distribution. To see this, we project the points in Figure

9 to a 60-degree straight line and provide a histogram of the projected sample. The distribu-

tion seen in Figure 10 appears to have two modes and apparently does not follow a normal

distribution. Observations are similar if the sample is projected to 30- and 40-degree lines.

We therefore conclude that it is not appropriate to blindly impose the bivariate normality

assumption without a careful examination of the data using our framework.

The partial association between VOTE and PID can also be inspected through the lens

of a 3-D P-P plot. Plotted in Figure 11 is 12(Ĉ(u, v)− uv) against (u, v), where Ĉ(·, ·) is an

empirical copula trained from the data of (rPID, rV OTE). The whole surface stays well above

the horizontal plane, which is another indication of a sizable positive association.

6.1.2 Expanded multivariate analysis of 5 discrete variables

Following the bivariate analysis of VOTE and PID, we expand the examination to a set

of K = 5 discrete variables by incorporating selfLR, ClinLR, and DoleLR (i.e., Left-Right

placement of the respondent, Clinton, and Dole). These three variables are recorded on the

same seven-rating scales (from extremely liberal to extremely conservative). The same set

of covariates (age, income, and education) is adjusted using Model (1) with the probit link

(see Table 9 for the inference result). A comprehensive assessment of partial association is

presented in Table 10, which shows (a) the estimates of φτ for each pair of variables; (b)

the estimates of the standard errors of φ̂τ ; and (c) the statistical significance for testing
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H0 : φτ = 0. All of these inference outcomes are obtained using our framework.

We observe in Table 10 that the partial association is significant for all pairs of the 5

variables except the pair of (PID, DoleLR). By comparing the size of φ̂τ before and after

the adjustment, we see that the strength of all the significant associations is weakened

after adjusting for the covariates. The numerical assessments in Table 10 are accompanied

by the partial regression plots in Figure 12. The last column of this plot matrix reveals

that the partial association between DoleLR and other variables may not be linear or even

monotonic. For instance, the red lowess curve in the scatter plot of (rDoleLR, rV OTE) exhibits

an inverted-U shape, while that of (rDoleLR, rClinLR) resembles the shape of a beach chair.

Both are indications that the association may change its direction at a certain point, which

warrants our attention and may lead to new insights in the domain research.

6.2 Analysis of Big Five personality traits

To further illustrate the usefulness of our framework, we analyze a Big-Five data set with

a much higher dimension of variables (K = 50). The Big Five personality traits in-

clude extraversion, neuroticism, agreeableness, conscientiousness, and openness to experi-

ence. They were originally proposed in Tupes and Christal (1961) to represent major as-

pects of an individual’s personality. To study these traits, Goldberg (1992) developed 50

items for use in personality tests, 10 for each trait. For example, in the data set “BIG5”

(https://openpsychometrics.org/_rawdata/), the 50 items are measured on a five-rating

Likert scale (from 1=Disagree to 5=Agree), yielding a total of 50 columns of ordinal data.

A common research outcome often reported in social studies is the partial association

between the Big Five traits while adjusting for other traits of an individual (see, e.g., Erdheim

et al., 2006; Erdle et al., 2009). It reflects the bona fide connection between the Big Five traits

with potential confounding effects removed. In the data set “BIG5”, available covariates

include age, gender, engnat (is English native language), hand (what hand does participant
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use to write with), and source (how the participant came to the test). In what follows, we

adjust for these covariates and perform partial association analysis of the Big Five traits.

Our analysis focuses on the sample of 5287 Caucasian in the United States.

Seen in Figure 13 is a color-scaled partial association plot in the form of a 50×50 matrix.

It visualizes the strength of the partial association between the 50 survey items. The five

10 × 10 diagonal matrices are much darker than those off-diagonal matrix blocks. This

observation confirms that the survey items are more correlated to each other within each

trait. As the color of the off-diagonal matrix blocks are light, we may conclude that the

between-trait associations are weak, if they do exist. To decide if these weak associations

are significant statistically and practically, we carry out hypothesis testing as below.

We test the hypothesis that the partial association is zero (H0 : φτ = 0) between a survey

item of extraversion and an item of conscientiousness. The testing results are presented in

the left panel of Figure 14, where the significance (at α = 0.05) is indicated using an orange

dot. As the majority of the cells are filled, a quick conclusion may be that the two traits

are partially correlated. Nevertheless, it is known that a practically negligible association

may be statistically significant, simply as a result of a large sample size. We therefore carry

out further analysis by testing H0 : |φτ | ≤ 0.1. The results in the right panel of Figure 14,

with only one cell filled, may lead to a different conclusion; that is, the partial association

between the two traits may be insignificant in the practical sense. This example once again

demonstrates that our framework allows a fuller assessment of partial association.

7 Extension to general models

So far, we have focused on cumulative link models. In this section, we show that a straight-

forward extension to more general models naturally follows and the main result still holds.

Suppose the covariate adjustment is conducted through a parametric model. In its most

27



general form, the model can be written as

Yk ∼ Fk(yk;X,β), (11)

where Fk(·) is a discrete cumulative distribution function. This model is general enough

to encompass commonly used models such as the adjacent-category logit model and the

stereotype model. For the general model (11), Liu and Zhang (2018) defined a surrogate

variable Sk using the jittering method on the probability scale. Specifically, Sk | (Yk =

j) ∼ U [Fk(j − 1), Fk(j)]. A residual variable is defined using the same formula (8), i.e.,

Rk = Sk−E(Sk |X). This residual variable retains the key properties of Rk established for

cumulative link models. For instance, under Model (11), it has (a) zero expectation (E{Rk |

X} = 0); (b) an explicit distribution (Rk |X ∼ U(−1/2, 1/2)); and (c) independence of X

(Rk⊥⊥X) (Liu and Zhang, 2018).

Below we establish theoretical results that are parallel to the key results in Section 2.3.

Theorem 3. Assume that the ordinal variable Yk (k = 1, 2, . . . , K) follows Model (11).

Conditional on the covariate X, Yk and Yl are independent if and only if the corresponding

surrogate residual variables Rk and Rl, as defined in (8), are independent, i.e.,

(Yk⊥⊥ Yl) |X ⇔ (Rk⊥⊥ Rl) |X.

Corollary 3. Under the same condition of Theorem 3, if (Yk ⊥⊥ Yl) | X for any X, the

following results hold: (a) the conditional distribution of (Rk, Rl) |X is homogeneous across

all values of X, i.e., P(Rk ≤ rk, Rl ≤ rl |X) = P(Rk ≤ rk)P(Rl ≤ rl); and (b) Rk⊥⊥ Rl.

Theorem 3 and Corollary 3 justify that the core idea of this article still applies to

Model (11). In fact, the results here have reinforced our argument; that is, for any para-

metric model, we can convert the task of checking conditional independence between Yk’s

to that between the corresponding residual variables. What follows are two examples where

the adjacent-category logit model is used to carry out analysis.
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Example 5 (partial independence). Given the value of X, we simulate Y1 and Y2 inde-

pendently from the adjacent-category logit model log(πkj/πk,j+1) = αkj + βTkX, where

πkj = Pr(Yk = j). In this case, we expect to see their corresponding residuals to be in-

dependent. Figure 15 displays partial regression plots of four types of residuals. We observe

that the sign-based residuals, generalized residuals, and deviance residuals all exhibit cer-

tain patterns of dependence. The only exception is the plot of the surrogate residuals. This

example demonstrates that Corollary 3 does not hold for other residuals known so far. This

finding reinforces our conclusion established in Section 2.3; that is, the surrogate residual is

so far the only one that satisfies (Yk⊥⊥ Yl) |X ⇒ Rk⊥⊥ Rl.

Example 6 (partial dependence). We re-analyze the national election data where VOTE

and PID have been found to be dependent even after having adjusted for three confounders.

We repeat the analysis except using the adjacent-category logit model to fit the data. A

scatter plot of the surrogate residuals (rV OTE, rPID) is shown in Figure 16. Observed are

(a) a positive association; (b) the majority of data points falling into Quadrants 1 and 3;

and (c) more blue circles in Quadrant 4 than red crosses in Quadrant 2. These observations

are similar to those found in Figure 9 where the cumulative link model was used to fit the

data. The estimate of the measure φτ is 0.384 (0.011), which is also close to the previous

estimate 0.415 (0.010) based on the cumulative link model. We therefore conclude that the

inferences drawn out of the two models are similar. An expanded analysis of five discrete

variables, similar to Section 6.1.2, is conducted in Appendix E.

8 Discussion

We have established a new framework for studying partial association between ordinal vari-

ables. Our theories, simulated examples, and real applications have justified that the frame-

work has the following strengths: (1) Generality. The idea can be implemented using

general ordinal models including all commonly used parametric models. (2) Uniformity.
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It unifies quantification, visualization, and hypothesis testing in a single framework, which

allows a coherent inference. As a result, the measures, p-values, and graphics can comple-

ment and strengthen each other. (3) Capacity to load a vast tool set. It allows us to

study partial association between ordinal variables in the same way as we do for continuous

variables. As a result, it permits us to use the whole tool box developed for continuous data

(see, e.g., Balakrishnan and Lai, 2009). We conclude the paper with some final comments.

Choice of inference models

Our framework does not require the marginal model be the same for each Yk. If the models

use different link functions, the result is simply that the residuals Rk’s will have differ-

ent continuous distributions. It does not jeopardize the validity of applying our measures.

The interpretation follows the convention of interpreting correlation measures for continuous

variables with distinct distributions. What matters is the correct specification of the link

function and other components of each model. In practice, we should use the model that

best fits the data and well conforms to the domain conventions. More specifically, the model

should be examined using diagnostic tools (Liu and Zhang, 2018). We should not adopt a

model that exhibit clear evidence of being inconsistent with the data at hand. In cases where

two choices (e.g., the logit link versus probit link) are indistinguishable for a given data set,

we expect similar conclusions on the assessment of partial association. The final choice of

which to present may be made based on domain knowledge and expert opinions.

Computational implementation

To implement our framework for multiple variables, we need a fitted model for each variable.

The models can be fitted separately, which is equivalent to using a generalized estimating

equation (GEE) with an identity correlation structure. As a result, the inference of φ =

φ(Rk, Rl) in a multivariate setup is the same as the inference given these two variables only.

For a wide scope of GLMs, the R package “sure” is readily available to compute surrogate

residuals (Greenwell et al., 2018). Li et al. (2020) have developed a new R package “PAsso”
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to produce the measures, p-values, and graphics proposed in this paper.
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Sklar, A. (1959), “Fonctions de répartition à n dimensions et leurs marges,” Publ. Inst.

Statist. Univ. Paris, 8, 229–231.

Tallis, G. (1962), “The maximum likelihood estimation of correlation from contingency ta-

bles,” Biometrics, 18, 342–353.

Tupes, E. and Christal, R. (1961), “Recurrent personality factors based on trait ratings

(Tech. Rep.),” Lackland Air Force Base, TX: USAF.

Tutz, G. (2012), Regression for Categorical Data, Cambridge University Press: Cam-

bridge,UK.

34

https://doi.org/10.3886/ICPSR06896.v6


Yiu, C.-F. and Poon, W.-Y. (2008), “Estimating the polychoric correlation from misclassified

data,” British Journal of Mathematical and Statistical Psychology, 61, 49–74.

Zhang, H. (2011), “Statistical analysis in genetic studies of mental illnesses,” Statistical

Science, 26, 116–129.

Zhu, W., Jiang, Y., and Zhang, H. (2012), “Nonparametric covariate-adjusted association

tests based on the generalized Kendall’s tau,” Journal of the American Statistical Associ-

ation, 107, 1–11.

35



Appendix A. Technical details for Section 4 of Inference

In this appendix, we show a general procedure by which one can verify the consistency of

the estimate φ̂ = φ̂empirical(r1,θ̃1
, r2,θ̃2

) defined in Section 4.

For a specific measure φ of interest. we define an intermediate quantity

φ̃ = φ(R1,θ̃1
, R2,θ̃2

). (12)

The following result shows that φ̃ρ converges to φρ in probability under mild conditions.

Similar results can be established for φτ and φσ.

Theorem 4. Assuming that θ̃k − θk = op(1) and the conditions below hold

(C1) fk(X,βk) and ∂fk(X,βk)/∂βk are bounded in probability;

(C2) The density function gk(u) = G′k(u) is bounded from above.

Then, the random variable φ̃ρ = φρ + op(1).

Given φ̃ → φ as seen in Theorem 4, the general result below states that the estimate

φ̂ = φ̂empirical(r1,θ̃1
, r2,θ̃2

) is consistent provided that the condition (C3) holds.

(C3) φ̂ → φ̃ in probability uniformly in a neighborhood B(d1, d2) = {(θ̃1, θ̃2) :‖ θ̃1 − θ1 ‖≤

d1, ‖ θ̃2 − θ2 ‖≤ d2} of the true value (θ1,θ2).

Here, the uniform convergence means that for any ε > 0 and δ > 0, there exists an N such

that for all n > N and (θ̃1, θ̃2) ∈ B(d1, d2), Pr{|φ̂− φ̃| > ε} < δ.

Theorem 5. The estimate φ̂ = φ̂empirical(r1,θ̃1
, r2,θ̃2

) converges to φ in probability, provided

that the result in Theorem 4 and the condition (C3) hold.
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Appendix B: Proofs

Proofs for Section 2.3: A key result

Proof of Theorem 1. First, we prove (Yk ⊥⊥ Yl) | X ⇒ (Rk ⊥⊥ Rl) | X. By the definition,

the surrogate variable Sk ∼ (Zk | αk,Yk=yk−1 < Zk ≤ αk,Yk=yk) where Zk = fk(X,βk) + εk.

Thus, if (Yk ⊥⊥ Yl) | X, we have (Sk ⊥⊥ Sl) | X. It follows immediately (Rk ⊥⊥ Rl) | X as

Rk = Sk − fk(X,βk)−
∫∞
−∞ u dGk(u).

On the other side, we show that (Rk⊥⊥ Rl) |X ⇒ (Sk⊥⊥ Sl) |X ⇒ (Yk⊥⊥ Yl) |X. The

first “⇒” is a result of Sk = fk(X,βk) +
∫∞
−∞ u dGk(u) +Rk. The second “⇒” is due to the

fact that Yk = j if and only if αk,j−1 < Sk ≤ αk,j. This completes the proof.

Proof of Corollary 1. By Theorem 1, (Yk⊥⊥ Yl) |X ⇒ (Rk⊥⊥ Rl) |X. Thus,

P(Rk ≤ rk, Rl ≤ rl |X) = P(Rk ≤ rk |X)P(Rl ≤ rl |X) = P(Rk ≤ rk)P(Rl ≤ rl).

The last equation is due to the fact that the distribution of Rk does not depend on X, i.e.,

Rk ⊥⊥ X (see Theorem 2(b) in Liu and Zhang (2018)). If (Yk ⊥⊥ Yl) | X for any X, the

equation above holds for any X, which establishes Rk⊥⊥ Rl.

Proofs for Section 3.1: Linear association

Proof of Property 2. The result in Part(a) holds by definition. To see Part(b), note that

under Model 2, ρ = 0⇒ Y1⊥⊥ Y2 |X ⇒ R1⊥⊥ R2, by Theorem 1. Thus, φρ = ρ(R1, R2) = 0.

The conclusion in Part(c) is justified by the numerical result in Table 2.

In what follows, we prove the result in Part(d). It is known that the surrogate residual

Rk has the same distribution as the latent error εk, k = 1, 2 (Liu and Zhang, 2018, Theorem

3). Hence, E(Rk) = E(εk) = 0 and Var(Rk) = Var(εk).
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Given X, we write the surrogate residual Rk as

R1 |X = ε̃111(α∗1,0 < ε1 ≤ α∗1,1) + ε̃121(α∗1,1 < ε1 ≤ α∗1,2) + · · ·+ ε̃1J11(α∗1,J1−1 < ε1 ≤ α∗1,J1),

R2 |X = ε̃211(α∗2,0 < ε2 ≤ α∗2,1) + ε̃221(α∗2,1 < ε2 ≤ α∗2,2) + · · ·+ ε̃2J21(α∗2,J2−1 < ε2 ≤ α∗2,J2),

where α∗k,j = αk,j − fk(X,βk), and ε̃kj represents a truncated random variable, i.e., ε̃kj
ind.∼

εk|α∗k,j−1 < εk ≤ α∗k,j, independent of all other variables. Then,

E(R1R2 |X) = E

[
J1∑
i=1

J2∑
j=1

ε̃1i1(α∗1,i−1 < ε1 ≤ α∗1,i)ε̃2j1(α∗2,j−1 < ε2 ≤ α∗2,j)

]

=

J1∑
i=1

J2∑
j=1

Eε̃1iEε̃2jP
(
α∗1,i−1 < ε1 ≤ α∗1,i, α

∗
2,j−1 < ε2 ≤ α∗2,j

)
=

J1∑
i=1

J2∑
j=1

E
[
ε1|α∗1,i−1 < ε1 ≤ α∗1,i

]
E
[
ε2|α∗1,j−1 < ε2 ≤ α∗2,j

]
× P

(
α∗1,i−1 < ε1 ≤ α∗1,i, α

∗
2,j−1 < ε2 ≤ α∗2,j

)
.

Let Mk(X) be a discrete random variable, taking the value of E
[
εk|α∗k,j−1 < εk ≤ α∗k,j

]
with a probability of P

(
α∗k,j−1 < εk ≤ α∗k,j

)
. Then, E(R1R2 | X) = E(M1(X)M2(X) | X).

In what follows, we will show that E(M1(X)M2(X) |X)→ E(ε1ε2) at the same convergence

rate for any value of X. To see this, we write

E·|X |M1(X)M2(X)− ε1ε2| ≤ E·|X |M1(X)(M2(X)− ε2)|+ E·|X |ε2(M1(X)− ε1)|

≤
√
E·|X |M1(X)|2E·|X |M2(X)− ε2|2 +

√
E|ε2|2E·|X |M1(X)− ε1|2,

where E·|X denotes the conditional expectation givenX. The last inequality is from Cauchy-

Schwarz inequality. We can also establish the following two inequalities

E·|X |M1(X)|2 =

J1∑
i=1

[
E
(
ε1|α∗1,i−1 < ε1 ≤ α∗1,i

)]2 P (α∗1,i−1 < ε1 ≤ α∗1,i
)

≤
J1∑
i=1

E
(
ε21|α∗1,i−1 < ε1 ≤ α∗1,i

)
P
(
α∗1,i−1 < ε1 ≤ α∗1,i

)
= E|ε1|2;
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and

E·|X |Mk(X)− εk|2 =

∫
Ω

|Mk(X)(ω)− εk(ω)|2dP(ω)

≤
∫

Ω

max
j
|αk,j+1 − αk,j|2dP(ω) = max

j
|αk,j+1 − αk,j|2.

Therefore

E·|X |M1(X)M2(X)− ε1ε2| ≤
(√

E(ε21) +
√

E(ε22)

)
max
j
|αk,j+1 − αk,j|

Since the bound on the right side of the above inequality does not depend on X, it also

holds for the unconditional expectation E|M1(X)M2(X) − ε1ε2|. As a result, E(R1R2) =

E(M1(X)M2(X)) → E(ε1ε2), as long as both ε1 and ε2 have finite second moments. This

completes the proof.

Proofs for Section 3.3: Nonlinear but monotonic association

Proof of Property 4. Define the following events:

CY = {ω : (Y1 − Y ∗1 )(Y2 − Y ∗2 ) > 0} , CR = {ω : (R1 −R∗1)(R2 −R∗2) > 0}

DY = {ω : (Y1 − Y ∗1 )(Y2 − Y ∗2 ) < 0} , DR = {ω : (R1 −R∗1)(R2 −R∗2) < 0}

EY = {ω : (Y1 − Y ∗1 )(Y2 − Y ∗2 ) = 0} , ER = {ω : (R1 −R∗1)(R2 −R∗2) = 0}

In the absence of X, we have yk < y∗k ⇒ rk < r∗k and yk > y∗k ⇒ rk > r∗k. Thus,

P(CR) = P(CR ∩ CY ) + P(CR ∩DY ) + P(CR ∩ EY ) = P(CY ) + P(CR ∩ EY ).

Similarly, we have P(DR) = P(DY )+P(DR∩EY ). Given yk = y∗k, the conditional probabilities

P(rk < r∗k | yk = y∗k) = P(rk > r∗k | yk = y∗k), since rk is a random sample given yk. As a

result, P(CR ∩ EY ) = P(DR ∩ EY ). Therefore,

φτ (R1, R2) = τ(R1, R2) = P(CR)− P(DR) = P(CY )− P(DY ) = τ(Y1, Y2).

This completes the proof.
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Proofs for Section 3.4: General association

Proof of Theorem 2. This is a direct result of Sklar’s theorem, since both R1 and R2 are

continuous variables and the marginal distribution of Rk is Gk.

Proof of Corollary 2. In view of Theorem 1, Y1 and Y2 are partially independent if and only if

the surrogate residual variables R1 and R2 are independent. The later condition is equivalent

to requiring the copula C in Theorem 2 is a product copula, i.e., C(u, v) = uv.

Proofs for Section 7: Extension to general models

Proof of Theorem 3. As Rk = Sk −E(Sk |X) = Sk − 1/2, we only need to show (Yk⊥⊥ Yl) |

X ⇔ (Sk ⊥⊥ Sl) | X. By the definition of Sk | Yk = j ∼ U [Fk(j − 1), Fk(j)), (Yk ⊥⊥ Yl) |

X ⇒ (Sk ⊥⊥ Sl) | X. One the other hand, because Fk(j − 1) ≤ Sk < F (j) ⇒ Yk = j, we

immediately have (Sk⊥⊥ Sl) |X ⇒ (Yk⊥⊥ Yl) |X.

Proof of Corollary 3. By Theorem 3, (Yk⊥⊥ Yl) |X ⇒ (Rk⊥⊥ Rl) |X. Thus,

P(Rk ≤ rk, Rl ≤ rl |X) = P(Rk ≤ rk |X)P(Rl ≤ rl |X) = P(Rk ≤ rl)P(Rk ≤ rl).

The last equation is due to the fact that the distribution of Rk does not depend on X, i.e.,

Rk ⊥⊥ X (see Theorem 4(b) in Liu and Zhang (2018)). If (Yk ⊥⊥ Yl) | X for any X, the

equation above holds for any X, which establishes Rk⊥⊥ Rl.

Proofs for the theorems in Appendix A

Proof of Theorem 4. First, we show that E(Rk,θ̃k
) = E(Rk,θk | θk = θ̃k), as a function of θ̃k,

satisfies that

E(Rk,θ̃k
) = E(Rk,θk) + op(1). (13)
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Without loss of generality, we assume
∫∞
−∞ u dGk(u) = 0. Then,

E(Rk,θ̃k
|X) =

Jk∑
j=1

Eθ̃k(Rk | Yk = j,X) Pr(Yk = j |X)

=

Jk∑
j=1

{
Eθ̃k(Sk | Yk = j,X)− fk(X, β̃k)

}
Pr(Yk = j |X).

Note that fk(X, β̃k)
.
= fk(X,βk) + ∂fk(X,βk)/∂β

′
k(β̃k − βk) = fk(X,βk) + op(1), due

to the condition (C1). Let γk,j = αk,j − fk(X,βk) and γ̃k,j = α̃k,j − fk(X, β̃k), then

γ̃k,j = γk,j + op(1). Therefore, we have{
Eθ̃k(Sk | Yk = j,X)− fk(X, β̃k)

}
− {Eθk(Sk | Yk = j,X)− fk(X,βk)}

=

∫ γ̃k,j

γ̃k,j−1

u dGk(u)−
∫ γk,j

γk,j−1

u dGk(u)

=

∫ γ̃k,j

γk,j

u dGk(u)−
∫ γ̃k,j−1

γk,j−1

u dGk(u)

=vk,jgk(vk,j)(γ̃k,j − γk,j)− vk,j−1gk(vk,j−1)(γ̃k,j−1 − γk,j−1)

by the mean value theorem, where vk,j is a value between γ̃k,j and γk,j. Since the condition

(C2) holds, the last quantity above is op(1). We immediately have

E(Rk,θ̃k
|X) =

Jk∑
j=1

{Eθk(Sk | Yk = j,X)− fk(X,βk) + op(1)}Pr(Yk = j |X)

= E(Rk,θk |X) + op(1).

Since the op(1) term in the last quantity above does not depend on the value of X, we

conclude that the equality in (13) holds.

Similarly, we can establish

E(R2
k,θ̃k

) = E(R2
k,θk

) + op(1); (14)

E(R1,θ̃1
R2,θ̃2

) = E(R1,θ1R2,θ2) + op(1). (15)
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Combining the results in (13), (14) and (15), we can see

φ̃ρ = ρ(R1,θ̃1
, R2,θ̃2

) = Cov(R1,θ̃1
, R2,θ̃2

)
/√

Var(R1,θ̃1
)Var(R2,θ̃2

)

= {Cov(R1,θ1 , R2,θ2) + op(1)}
/{√

Var(R1,θ1)Var(R2,θ2) + op(1)

}
= ρ(R1,θ1 , R2,θ2) + op(1)

= φρ + op(1).

This completes the proof.

Proof of Theorem 5. For any given ε > 0, we write

Pr{|φ̂− φ| > ε} ≤ Pr{|φ̂− φ̃|+ |φ̃− φ| > ε} ≤ Pr{|φ̂− φ̃| > ε/2}+ Pr{|φ̃− φ| > ε/2}.

Since Pr{|φ̃− φ| > ε/2} → 0, we only need to show Pr{|φ̂− φ̃| > ε/2} → 0. Notice that

Pr{|φ̂− φ̃| > ε/2} ≤ Pr{|φ̂− φ̃| > ε/2 ∩ (θ̃1, θ̃2) ∈ B(d1, d2)}+ Pr{(θ̃1, θ̃2) /∈ B(d1, d2)}.

Both terms on the right side go to zero. This completes the proof.
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Appendix C. Figures

Section 2.2. The tool: surrogate residual

An illustration of the surrogate idea

α1 Xβ α2

Y = 1 Y = 2 Y = 3

S|(Y = 1)

R

Figure 1: An illustration of the surrogate variable S and surrogate residual R. Considered is
the model G−1 (Pr{Y ≤ j}) = αj −Xβ, j = 1, 2, 3. The entire curve represents the density
function corresponding to G, the inverse of the link function.
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Section 2.3 Key results

An illustration of residuals when two ordinal variables are partially independent
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Figure 2: An illustration of the association between the residual variables when the two
ordinal variables Y1 and Y2 are partially independent. We simulate two partially independent
latent variables Z1 = X + ε1 and Z2 = −X + ε2, where X ∼ N(0, 1) and (ε1, ε2) ∼ BN(0, I).
The ordinal outcomes Y1 and Y2 are obtained by applying the cutpoints {−3,−2, 0, 2, 3} and
{−2, 0, 2} to Z1 and Z2, respectively. Displayed is a random draw of 10000 observations.
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Section 3.1 Linear association

An illustration of the influence of cutpoints
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Figure 3: An illustration of the influence of cutpoints on the variability of ordinal variables
and the strength of association as discussed in Example 1.
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Section 3.3 Nonlinear but monotonic association

An illustration of linear and nonlinear partial associations
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Figure 4: An illustration of partial association between two latent variables (left column) and
that between two ordinal variables (middle and right columns) as discussed in Example 3.

Considered are two scenarios : (1) ε
(1)
2 = ε1 + e (top row); and (2) ε

(2)
2 = exp(ε1) + e (bottom

row). Displayed are scatter plots of latent errors (left column) and surrogate residuals when
the ordinal variables have 5 categories (middle column) or 10 (right column). The dashed
red curves are obtained from cubic smoothing splines.
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Section 3.4 General association

An illustration of a non-monotonic partial association
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Figure 5: An illustration of a half-circle association, which is not linear nor monotone, as
discussed in Example 4. Depicted are scatter plots of 2000 observations of (a) the latent
errors ε1 and ε2, and (b) the surrogate residuals R1 and R2 when the ordinal variables have
8 categories. The dashed red curve in (b) is obtained from cubic smoothing splines.
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Section 3.4 General association

A 3-D P-P plot in the presence of non-monotonic partial dependence

Figure 6: A 3-D plot of 12(C(u, v)−uv) where the empirical copula C(u, v) is obtained from
surrogate residuals R1 and R2 as discussed in Example 4.
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Section 5 Simulation studies – Simulation II

A graphical inspection of the scenarios considered by Li and Shepherd (2010)
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Figure 7: Partial regression plots for inspecting partial association for the simulation sce-
narios used by Li and Shepherd (2010). Displayed are scatter plots of surrogate residuals for
Scenario (2) η = (−0.4,−0.2, 0, 0.2, 0.4) (linear effect); (3) η = (−0.30, 0.18, 0.20, 0.22, 0.24)
(nonlinear-monotonic effect); and (4) η = (−0.2, 0, 0.2, 0,−0.2) (non-monotonic effect).
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Section 6.1 Analysis of the National Election Study

Diagnostics of the probit models used for VOTE and PID
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Figure 8: Q-Q plots of surrogate residuals versus theoretical normal quantiles. Examined
are the probit models for PID (left) and VOTE (right).
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Section 6.1 Analysis of the National Election Study

Visualizing the partial association between VOTE and PID
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Figure 9: Partial regression plot of VOTE versus PID after adjusting for age, income, and
education. Shown is a scatter plot of surrogate residuals for VOTE and PID. Blue circles
(or red crosses) indicate those who voted for Clinton (or Dole). The black dashed curve is
obtained from cubic smoothing splines.

51



Section 6.1 Analysis of the National Election Study

Evidence that rPID and rV OTE do not jointly follow a bivariate normal distribution
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Figure 10: Histogram of a sample projected from (rPID, rV OTE) in Figure 9 to a 60-degree
line. The red dashed curve represents the density function fitted using the kernel method.
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Section 6.1 Analysis of the National Election Study

Visualizing partial association through the lens of a 3-D P-P plot

Figure 11: A 3-D P-P plot for inspecting the partial association between PID and VOTE in
the National Election Study. Plotted is 12(Ĉ(u, v) − uv) against (u, v), where Ĉ(·, ·) is an
empirical copula trained from the data of (rPID, rV OTE).
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Section 6.1 Analysis of the National Election Study

Visualizing pairwise partial association between five discrete variables
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Figure 12: Partial regression plot matrix for 5 discrete variables in the National Election
Study after adjusting for age, income, and education. Shown are pairwise scatter plot of
surrogate residuals. Added red curves are obtained from cubic smoothing splines.
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Section 6.2 Analysis of Big Five personality traits

Partial correlation matrix for 50 survey variables measuring personality traits
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Figure 13: A color-scaled 50× 50 matrix of the partial association between 50 survey ques-
tions used to characterize Big Five personality traits. Displayed traits are Extraversion (E),
Neuroticism (N), Agreeableness (A), Conscientiousness (C), and Openness to experience (O).
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Section 6.2 Analysis of Big Five personality traits

Statistical significance for testing the nulls of no or a negligible partial association
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Figure 14: Hypothesis testing of the partial independence between two personality traits
Extraversion (E) and Conscientiousness (C). Each trait is measured by 10 survey questions
(C1-C10 or E1-E10). Every pair of the survey outcomes is tested with an orange dot indi-
cating a p-value less than 0.05. Displayed are the results for testing H0: φτ = 0 (left panel)
and H0: |φτ | < 0.1 (right panel).
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Section 7 Extension to general models

An illustration of residuals for adjacent-category logit models when two ordinal variables are

partially independent
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Figure 15: An illustration of the association between the residual variables when the two ordi-
nal variables Y1 and Y2 are partially independent. Conditional on X, Yk’s are independently
simulated from the adjacent-category logit model log(πkj/πk,j+1) = αkj +βTkX, j = 1, ..., Jk,
where X ∼ N(0, 1), α1j = {−3,−2, 0, 2, 3}, β1 = 1, α2j = {−2, 0, 2}, and β2 = −1. Dis-
played is a random draw of 10000 observations.
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Section 7 Extension to general models

Visualizing the partial association between VOTE and PID when adjacent-category logit

models are used
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Figure 16: Partial regression plot of VOTE versus PID after adjusting for age, income, and
education using the adjacent-category logit model. Shown is a scatter plot of surrogate
residuals defined for general models in Section 7. Blue circles (or red crosses) indicate those
who voted for Clinton (or Dole). The black dashed curve is obtained from cubic smoothing
splines.
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Appendix D. Tables

Section 3.1 Linear association

The data set to illustrate the influence of cutpoints (Example 1)

Table 1: Part of the data of ordinal variables (Y1, Y
(i)

2 ), i = 1, 2, 3

Y1 3 4 3 4 2 2 2 1 2 4 3 2 2 2 1 2 2 4 1 4

Y
(1)

2 3 3 2 4 2 2 1 1 2 4 3 1 2 3 1 1 2 4 1 3

Y
(2)

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 3 2 2

Y
(3)

2 9 8 6 10 7 7 4 5 7 13 9 5 6 8 1 4 7 14 4 8
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Section 3.1 Linear association

A comparison of partial association measures when the number and positions of cutpoints

very (Example 1)

Table 2: Partial association between ordinal variables (Y1, Y
(i)

2 ), i = 1, 2, 3. The three pairs
are discretized from the same set of latent variables (Z1, Z2) but with different cutpoints.
The latent variables (Z1, Z2) follow a bivariate normal distribution (Example 1) or a bivariate
Gumbel distribution (Example 2).

Ordinal variable Y1 Y
(1)

2 Y
(2)

2 Y
(3)

2

{1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3} {1, 2,..., 14}

Latent Variable Z1 = X + ε1 Z2 = 1.5X + ε2

cutpoints αkj’s {-1, 0, 1} {-1, 0, 1} {-3, 3} {-3, 3, by 0.5}

(ε1, ε2) follow a bivariate normal distribution

Polychoric correlation ρ 0.80 0.80 0.80

Proposed φρ 0.48 0.08 0.61

Proposed φτ 0.34 0.05 0.44

(ε1, ε2) follow a bivariate Gumbel distribution

Polychoric correlation ρ NA NA NA

Proposed φρ 0.44 0.15 0.54

Proposed φτ 0.34 0.08 0.43
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Section 5 Simulation studies – Simulation I

Approximation accuracy of the bootstrap distribution used for our unified inference

Table 3: Approximation accuracy of the bootstrap distribution F̂ ∗B(φ) to the true distribu-

tion of φ̂. Compared are functionals of the two distributions including the mean, standard
deviation (SD), 2.5% and 97.5% quantiles, and coverage probability (CP). The study follows
the same simulation settings used in Examples 1 and 2.

φ̂ρ φ̂τ

Mean SD 2.5%Q 97.5%Q CP Mean SD 2.5%Q 97.5%Q CP

(ε1, ε2) follow a bivariate normal distribution

n = 100

True 0.479 0.056 0.363 0.582 0.335 0.045 0.240 0.421

Bootstrap 0.476 0.054 0.364 0.574 0.941 0.332 0.044 0.243 0.416 0.942

n = 200

True 0.482 0.039 0.401 0.550 0.338 0.031 0.278 0.395

Bootstrap 0.477 0.038 0.399 0.549 0.938 0.334 0.031 0.271 0.394 0.932

n = 500

True 0.483 0.025 0.436 0.529 0.339 0.020 0.302 0.378

Bootstrap 0.483 0.024 0.435 0.529 0.951 0.339 0.020 0.300 0.377 0.953

(ε1, ε2) follow a bivariate Gumbel distribution

n = 100

True 0.441 0.054 0.331 0.536 0.339 0.043 0.250 0.418

Bootstrap 0.446 0.053 0.338 0.545 0.957 0.342 0.043 0.254 0.424 0.957

n = 200

True 0.437 0.037 0.364 0.510 0.339 0.030 0.280 0.400

Bootstrap 0.439 0.037 0.364 0.510 0.952 0.341 0.031 0.279 0.400 0.958

n = 500

True 0.436 0.024 0.389 0.483 0.341 0.020 0.300 0.379

Bootstrap 0.437 0.024 0.389 0.482 0.960 0.340 0.019 0.302 0.378 0.963
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Section 5 Simulation studies – Simulation II

Power comparison in the same setting of Li and Shepherd (JASA, 2010)

Table 4: Power analysis of Simulation II. The ordinal variable Y1 is generated from
G−1(P{Y1 ≤ j1|X}) = α1,j1−β1X, and conditional on Y1, Y2 is generated from G−1(P{Y2 ≤
j2|X}) = α2,j2−(β2X+η1I(Y1=1) + ...+η5I(Y1=5)). The parameters α1 = (−1, 0, 1, 2), β1 = 1,
α2 = (−1, 0, 1) and β2 = −0.5. Considered are four scenarios: (1) η = (0, 0, 0, 0, 0) (the
null); (2) η = (−0.4,−0.2, 0, 0.2, 0.4) (linear effect); (3) η = (−0.30, 0.18, 0.20, 0.22, 0.24)
(nonlinear-monotonic effect); and (4) η = (−0.2, 0, 0.2, 0,−0.2) (non-monotonic effect). The
results are calculated based on 1000 simulation replicates with a sample size of 500.

φρ-based φτ -based LS LRT

Logit link

Null 0.039 0.041 0.042 0.055

Linear 0.845 0.849 0.853 0.706

Nonlinear-monotonic 0.595 0.605 0.609 0.548

Nonmonotonic 0.070 0.067 0.070 0.301

Complementary log-log link

Null 0.059 0.057 0.057 0.057

Linear 0.859 0.899 0.912 0.797

Nonlinear-monotonic 0.892 0.882 0.899 0.934

Nonmonotonic 0.354 0.321 0.384 0.666

Note: “LS” stands for Li and Shepherd (2010)’s method and “LRT” the likelihood ratio test.
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Section 5 Simulation studies – Simulation III

Power comparison for testing the null of a negligible association

Table 5: Type I error and power for Simulation III where the null hypothesis is H0: |φ| ≤ 0.1.
Results are calculated based on 1000 replicates.

n = 200 n = 500

φρ-based φτ -based φρ-based φτ -based

Negligible linear effect (null) 0.024 0.003 0.006 0.000

Negligible monotonic effect (null) 0.005 0.001 0.006 0.000

Non-negligible linear effect 0.506 0.250 0.877 0.539

Non-negligible monotonic effect 0.627 0.378 0.946 0.743
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Section 5 Simulation studies – Simulation IV

Power comparison with a varying degree of nonlinearity of partial association

Table 6: Power for testing partial independence in Simulation IV. The coefficient c represents
the degree of non-linearity. The results are calculated using the significance level α = 0.01
and 1000 simulation replicates.

n = 60 n = 100 n = 200

c φρ-based φτ -based LS φρ-based φτ -based LS φρ-based φτ -based LS

c = 1 0.942 0.971 0.962 0.996 1.000 1.000 1.000 1.000 1.000

c = 0.5 0.798 0.804 0.783 0.956 0.975 0.974 0.999 1.000 1.000

c = 0.1 0.163 0.129 0.126 0.298 0.229 0.217 0.658 0.581 0.572

c = 0.05 0.069 0.047 0.047 0.133 0.094 0.093 0.287 0.215 0.208

c = 0.01 0.025 0.021 0.021 0.022 0.015 0.010 0.022 0.018 0.012

Note: “LS” stands for Li and Shepherd (2010)’s method.

Our measures with a varying degree of nonlinearity of partial association

Table 7: Estimates of our measures for gauging partial dependence in Simulation IV. The
coefficient c represents the degree of non-linearity. Estimated standard errors are reported
in parenthesis. The results are calculated based on 1000 simulation replicates.

n = 60 n = 100 n = 200

φ̂ρ φ̂τ φ̂ρ φ̂τ φ̂ρ φ̂τ

c = 1 0.207 (0.041) 0.297 (0.058) 0.178 (0.027) 0.302 (0.045) 0.139 (0.015) 0.302 (0.031)

c = 0.5 0.222 (0.055) 0.244 (0.067) 0.194 (0.037) 0.248 (0.050) 0.157 (0.022) 0.248 (0.036)

c = 0.1 0.148 (0.091) 0.105 (0.073) 0.144 (0.067) 0.106 (0.056) 0.134 (0.043) 0.111 (0.039)

c = 0.05 0.106 (0.100) 0.069 (0.073) 0.101 (0.079) 0.066 (0.060) 0.100 (0.050) 0.069 (0.040)

c = 0.01 0.037 (0.103) 0.022 (0.074) 0.033 (0.079) 0.019 (0.056) 0.034 (0.053) 0.020 (0.038)

64



Section 6.1 Analysis of the National Election Study

The data for VOTE and PID

Table 8: Two-way contingency table for VOTE and PID

strDem weakDem indDem indind indRep weakRep strRep

Clinton (labeled as 0) 197 169 101 26 24 26 8

Dole (labeled as 1) 3 11 7 11 70 124 167

Adjusting covariates through probit regression models

Table 9: Model inference results for the binary variable VOTE and ordinal variables PID,
selfLR, ClinLR and DoleLR in the analysis of 1996 National Election Study. Shown are the
maximum likelihood estimates of the regression coefficients and their standard deviations
(in the parentheses). The symbol * indicates statistical significance at the 0.05 level.

Age Income Education Intercepts

(β1) (β2) (β3) (α1) (α2) (α3) (α4) (α5) (α6)

VOTE 0.006* 0.008* 0.012 -1.019*

(0.003) (0.002) (0.017) (0.282)

PID 0.000 0.008* 0.011 -0.287 0.287 0.587* 0.688* 0.955* 1.460*

(0.002) (0.001) (0.014) (0.233) (0.232) (0.233) (0.233) (0.234) (0.236)

selfLR 0.004* 0.004* -0.055* -2.597* -1.600* -1.017* -0.293 0.199 1.379*

(0.002) (0.001) (0.014) (0.250) (0.232) (0.228) (0.228) (0.229) (0.235)

ClinLR -0.005* -0.005* -0.051* -2.432* -1.347* -0.677* -0.046 0.418 0.930*

(0.002) (0.001) (0.014) (0.238) (0.234) (0.232) (0.231) (0.231) (0.238)

DoleLR -0.002 0.003* 0.037* -1.660* -1.121* -0.757* -0.313 0.323 1.769*

(0.002) (0.001) (0.014) (0.246) (0.236) (0.235) (0.236) (0.237) (0.238)
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Section 6.1 Analysis of the National Election Study

Correlation matrix before and after the covariate adjustment

Table 10: Analysis of association and partial association between 5 discrete variables in the
National Election Study. Shown are the estimates of our measure φτ and their standard
errors (in the parenthesis). The symbol * indicates statistical significance at the 0.05 level.

Marginal association Partial association

PID selfLR ClinLR DoleLR PID selfLR ClinLR DoleLR

VOTE 0.675* 0.533* -0.447* -0.077* 0.415* 0.329* -0.260* -0.049*

(0.012) (0.020) (0.023) (0.029) (0.010) (0.013) (0.014) (0.016)
PID 0.511* -0.331* -0.025 0.421* -0.248* -0.032

(0.020) (0.023) (0.026) (0.017) (0.019) (0.020)
selfLR -0.194* -0.103* -0.151* -0.069*

(0.026) (0.024) (0.021) (0.019)
ClinLR -0.172* -0.130*

(0.029) (0.021)
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Appendix E. Re-analysis of the National Election Study

using the adjacent-category logit model (Section 7)

In this Appendix, we re-analyze the national election data examined in Section 6.1. Instead

of using a cumulative link model, we use the adjacent-category logit model to adjust for

covariates. The goal is to further demonstrate, beyond the bivariate analysis in Example 6,

that the proposed surrogate framework applies to general models.

We examine the partial association between K = 5 discrete variables including VOTE,

PID, selfLR, ClinLR, and DoleLR. Adjusted are three covariates: age, income, and education.

We carry out the same analysis as seen in Section 6.1.2, except that the adjacent-category

logit model is used to fit the data and obtain surrogate residuals. Our assessment of partial

association is summarized in Table 11, which shows (a) the estimates of φτ for each pair of

variables; (b) the estimates of the standard errors of φ̂τ ; and (c) the statistical significance

for testing H0 : φτ = 0. The result from the cumulative probit model is included for the

comparison purpose. It is evident that the new estimates φ̂τ ’s, on the right panel of Table 11,

are all close to their counterparts on the left panel. In addition, both models identify the

pair (PID, DoleLR) as not being partially associated at the 0.05 significance level.

Table 11: Comparison of the partial association analyses of the National Election Study
using two different models. Shown are the estimates of our measure φτ and their standard
errors (in the parenthesis). The symbol * indicates statistical significance at the 0.05 level.

Cumulative probit model Adjacent-category logit model

PID selfLR ClinLR DoleLR PID selfLR ClinLR DoleLR

VOTE 0.415* 0.329* -0.260* -0.049* 0.383* 0.310* -0.242* -0.056*

(0.010) (0.013) (0.014) (0.016) (0.015) (0.014) (0.015) (0.016)
PID 0.421* -0.248* -0.032 0.421* -0.249* -0.034

(0.017) (0.019) (0.020) (0.017) (0.019) (0.020)
selfLR -0.151* -0.069* -0.157* -0.070*

(0.021) (0.019) (0.021) (0.019)
ClinLR -0.130* -0.130*

(0.021) (0.021)
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The pairwise partial regression plots are displayed in Figure 17. Comparing this figure

with Figure 12 where the cumulative probit model is used, we see remarkable similarity in

terms of the direction and shape of the lowess curve. In particular, we once again observe

an inverted-U shape of the red lowess curve in the scatter plot of (rDoleLR, rV OTE), and the

shape of a beach chair in (rDoleLR, rClinLR). Our findings all together have strengthened the

conclusion made in Example 6; that is, the inferences drawn out the two models are similar.
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Figure 17: Partial regression plot matrix for 5 discrete variables in the National Election
Study using the adjacent-category logit model. Shown are pairwise scatter plot of surrogate
residuals. Added red curves are obtained from cubic smoothing splines.
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