
Approximate Multi-Matroid Intersection via
Iterative Refinement?

André Linhares†1, Neil Olver‡2, Chaitanya Swamy†1, and Rico Zenklusen§3

1 Dept. of Combinatorics and Optimization, Univ. Waterloo, Waterloo, Canada.
{alinhare,cswamy}@uwaterloo.ca

2 Dept. of Econometrics and Operations Research, Vrije Universiteit Amsterdam,
Amsterdam, The Netherlands; and CWI, Amsterdam, The Netherlands.

n.olver@vu.nl
3 Department of Mathematics, ETH Zurich, Zurich, Switzerland. ricoz@math.ethz.ch

Abstract. We introduce a new iterative rounding technique to round a
point in a matroid polytope subject to further matroid constraints. This
technique returns an independent set in one matroid with limited viola-
tions of the constraints of the other matroids. In addition to the classical
steps of iterative relaxation approaches, we iteratively refine involved
matroid constraints. This leads to more restrictive constraint systems
whose structure can be exploited to prove the existence of constraints
that can be dropped. Hence, throughout the iterations, we both tighten
constraints and later relax them by dropping constraints under certain
conditions. Due to the refinement step, we can deal with considerably
more general constraint classes than existing iterative relaxation and
rounding methods, which typically involve a single matroid polytope with
additional simple cardinality constraints that do not overlap too much.
We show that our rounding method, combined with an application of a
matroid intersection algorithm, yields the first 2-approximation for finding
a maximum-weight common independent set in 3 matroids.4 Moreover,
our 2-approximation is LP-based and settles the integrality gap for the
natural relaxation of the problem. Prior to our work, no upper bound
better than 3 was known for the integrality gap, which followed from
the greedy algorithm. We also discuss various other applications of our
techniques, including an extension that allows us to handle a mixture of
matroid and knapsack constraints.

1 Introduction

Matroids are among the most fundamental and well-studied structures in com-
binatorial optimization. Recall that a matroid is a pair M = (N, I), where N

? A preliminary version [21] appeared in the Proceedings of the 20th IPCO 2019.
† Research supported by NSERC grant 327620-09 and an NSERC DAS Award.
‡ Supported by NWO VIDI grant 016.Vidi.189.087.
§ Supported by Swiss National Science Foundation grant 200021 165866.
4 We follow the convention that an α-approximation for a maximization problem

returns a solution of value at least a 1/α fraction of the optimum.

2 Linhares, Olver, Swamy, Zenklusen

is a finite ground set and I ⊆ 2N is a family of sets, called independent sets,
such that (i) ∅ ∈ I, (ii) if A ∈ I and B ⊆ A, then B ∈ I, and (iii) if A,B ∈ I
with |A| > |B|, then there is an element e ∈ A \ B such that B ∪ {e} ∈ I. We
make the standard assumption that a matroid is specified via an independence
oracle, which, given S ⊆ N as input, returns if S ∈ I. Matroids capture many
interesting problems, and matroid-optimization algorithms provide a powerful
tool in the design and analysis of efficient algorithms. A key matroid optimization
problem is matroid intersection, wherein we seek a maximum-weight set that is
independent in two matroids. Various efficient algorithms are known for matroid
intersection, and we also have a celebrated min-max theorem and a polyhedral
understanding of the problem. The versatility of matroid intersection comes from
the fact that the intersection of matroids allows for describing a very broad family
of constraints.

Unfortunately, as soon as the intersection of 3 or more matroids is considered,
already the unweighted version of determining a maximum cardinality common
independent set becomes APX-hard. Due to its fundamental nature, and many
natural special cases, the problem of optimizing over 3 or more matroids has
received considerable attention. In particular, there is extensive prior work on
maximum cardinality problems [18, Chapter 5], maximization of submodular
functions over the intersection of multiple matroids (see [7, 11, 14, 19, 20] and
the references therein), and various interesting special cases like k-dimensional
matching (see [5,9,10,15,16] and the references therein; many of these results also
apply to the k-set packing problem, which generalizes k-dimensional matching).

Nevertheless, there are still basic open questions regarding the approximability
of the optimization over 3 or more matroids. Perhaps the most basic problem of
this type is the weighted 3-matroid intersection problem, defined as follows.

Weighted 3-matroid intersection.. Given matroids Mi = (N, Ii), for i =
1, 2, 3, on a common ground set N , and a weight vector w ∈ RN , solve

max {w(I) : I ∈ I1 ∩ I2 ∩ I3} ,
where we use the shorthand w(S) :=

∑
e∈S w(e) for any set S ⊆ N .

The unweighted 3-matroid intersection problem, which is also sometimes
called the cardinality version of 3-matroid intersection, is the special case where
w(e) = 1 for all e ∈ N , so w(S) = |S| for S ⊆ N .

The 3-matroid intersection problem has the following natural and canonical
linear programming relaxation:

max
{
wTx : x ∈ PI1 ∩ PI2 ∩ PI3

}
. (LP3-mat)

Here, PI ⊆ [0, 1]N denotes the matroid polytope of a matroid M = (N, I), i.e.,
the convex hull of all characteristic vectors of sets in I. It has a well-known
inequality description given by

PI =
{
x ∈ RN≥0 : x(S) ≤ rM (S) ∀S ⊆ N,S 6= ∅

}
, 5

5 We exclude the trivially satisfied constraint corresponding to S = ∅ to highlight that,
when referring later to a constraint of PI that is tight for some point x ∈ RN , then
such a constraint never corresponds to S = ∅.

Approximate Multi-Matroid Intersection via Iterative Refinement 3

where rM : 2N −→ Z≥0 is the rank function of M , defined by rM (S) := max
{
|I| :

I ∈ I, I ⊆ S
}

for any S ⊆ N . The rank function is submodular, and rM (S) can
be computed for any S ⊆ N using an independence oracle. It will therefore often
be convenient to assume that a matroid M is specified via its rank oracle that,
given S ⊆ N as input, returns rM (S). In particular, one can efficiently optimize
any linear function over PI given a rank oracle (or equivalently an independence
oracle). The above LP-relaxation extends naturally to the k-matroid intersection
problem, which is the extension of 3-matroid intersection to k matroids.

Whereas (LP3-mat), and its extension (LPk-mat) to k-matroid intersection,
are well-known LP-relaxations, there remain various gaps in our understand-
ing of these relaxations. It is widely known that the greedy algorithm is a
k-approximation for k-matroid intersection. Moreover, this approximation is
relative to OPT LPk-mat

(the optimal value of (LPk-mat)), which leads to the
current best upper bound of k on the integrality gap of (LPk-mat), for all k ≥ 3.
Interestingly, there is no example of matroids known for which (LPk-mat) has
integrality gap strictly larger than k− 1. A lower bound on the integrality gap of
k − 1 is achievable when all involved matroids are unitary partition matroids6

and k − 1 is a prime power [12].

Significant progress on approximating k-matroid intersection was achieved
by Lee, Sviridenko, and Vondrák [20], who presented, for any fixed ε > 0, a
(k−1+ε)-approximation, based on local search. Unfortunately, apart from the fact
that their method has a running time depending exponentially in ε−1, it does not
shed any insights on (LPk-mat), because the above guarantee is not relative to the
optimum value OPT LPk-mat

of (LPk-mat). Further progress on understanding the
quality of the LP-relaxations has only been achieved in special cases. In particular,
for unweighted 3-matroid intersection, a result by Aharoni and Berger [1] implies
that the integrality gap of (LP3-mat) with w being the all-ones vector is at most
2. Unfortunately, the purely combinatorial proof technique of Aharoni and Berger
does not seem to have any direct implications to the weighted case, nor is the
result algorithmic. More recently, for unweighted k-matroid intersection, Lau,
Ravi, and Singh [18, Chapter 5] presented an algorithmic counterpart for the
unweighed case for the intersection of any number k of matroids. More precisely,
they give an LP-based (k − 1)-approximation through iterative rounding. Their
proof is based on iteratively identifying an element with “large” fractional value,
picking it, and altering the fractional solution so that it remains feasible; the last
step crucially uses the fact that the instance is unweighted to control the loss in
the LP objective value. For the intersection of k unitary partition matroids, a
problem also known as k-dimensional matching, Chan and Lau [5] obtained a
(k − 1)-approximation based on (LPk-mat), and Parekh and Pritchard [22] later
obtained the same approximation factor for the intersection of k (not necessarily
unitary) partition matroids. Notice that whenever k − 1 is a prime power, these
results show, together with the above-mentioned integrality gap lower bound,

6 In a partition matroid, the constraints are bounds on the number of items selected
from each part in a given partition. If these bounds are all unit, the partition matroid
is called unitary.

4 Linhares, Olver, Swamy, Zenklusen

that k − 1 is indeed the integrality gap of (LPk-mat) if all involved matroids are
partition matroids.

Although it is generally believed that a (k − 1)-approximation for k-matroid
intersection should exist, and that the integrality gap of (LPk-mat) is equal to
the known lower bound of k − 1, this has remained open even for 3-matroid
intersection (prior to our work). Recall that in this case, the best known upper
and lower bounds on the integrality gap of (LP3-mat) are 3 (via the classical
greedy algorithm) and 2, respectively. Moreover, the only method known to
beat the trivial 3-approximation of the greedy algorithm is the non-LP based
and computationally quite expensive (2 + ε)-approximation in [20]. One main
reason for the limited progress is the lack of techniques for rounding points in the
intersection of multiple matroid polytopes with sufficiently strong properties. In
particular, one technical difficulty that is encountered is that the tight constraints
(even at an extreme point) may have large overlap.

1.1 Our results.

We introduce a new iterative rounding approach to handle the above difficulties
that allows for dealing with a very general class of optimization problems involving
matroids. Before delving into the details of this technique, we highlight its main
implication in the context of 3-matroid intersection.

Theorem 1. There is an efficient algorithm that, given any instance of the 3-
matroid intersection problem, returns a common independent set R with w(R) ≥
1
2OPT LP3-mat

.

This is the first 2-approximation for 3-matroid intersection (with general weights).
Moreover, our result settles the integrality gap of (LP3-mat), since it matches the
known integrality gap lower bound of 2.

The chief new technical ingredient that leads to Theorem 1, and results
for other applications discussed in Section 3, is an approximation result based
on a novel iterative refinement technique (see Section 2.1). We will apply this
technique to the following more general problem, from which our results for
3-matroid intersection will be easily derived.

Let N = N0 be a finite ground set, Mi = (Ni, Ii) for i = 0, . . . , k be k + 1
matroids, where Ni ⊆ N , and w ∈ RN be a weight vector (note that negative
weights are allowed). We consider the problem

max
{
w(I) : I ∈ B0, I ∩Ni ∈ Ii ∀i ∈ [k]

}
, (1)

where B0 is the set of all bases of M0 and [k] := {1, . . . , k}. We consider matroids
Mi for i ∈ [k] defined on ground sets Ni that are subsets of N because, as
we show below, we obtain guarantees depending on how strongly the sets Ni
overlap; intuitively, problem (1) becomes easier as the overlap between N1, . . . , Nk
decreases, and our guarantee improves correspondingly.

We cannot hope to solve (1) optimally, as this would enable one to solve the
NP-hard k-matroid intersection problem. Our goal will be to find a basis of M0

of large weight that is “approximately independent” in the matroids M1, . . . ,Mk.

Approximate Multi-Matroid Intersection via Iterative Refinement 5

How should “approximate independence” be quantified? Perhaps the two
notions that first come to mind are additive and multiplicative violation of the
rank constraints. Whereas additive violations are common in the study of degree-
bounded MST problems, which can be cast as special cases of (1), it turns out
that such a guarantee is impossible to obtain (in polytime) for (1). More precisely,
we show in Section 4 (via a replication idea) that, even for k = 2, if we could
find in polytime a basis B of M0 satisfying |B| ≤ rMi

(B) + α for i = 1, 2, where
α = O(|N |1−ε) for any ε > 0, then we could efficiently find a basis of M0 that is
independent in M1, M2; the latter problem is easily seen to be NP-hard via a
reduction from Hamiltonian path. We therefore consider multiplicative violation
of the rank constraints. Given some α ≥ 1, we say that S ⊆ N is α-independent
for a matroid M = (N, I), if |T | ≤ α · rM (T) ∀T ⊆ S (equivalently, χS ∈ αPI ,
where χS is the characteristic vector of S). This is much stronger than simply
requiring that |S| ≤ α · rM (S), and it is easy to give examples where this weaker
notion admits sets that one would consider to be quite far from being independent.
An appealing feature of the stronger definition is that, using the min-max result
for matroid intersection (or via matroid partition; see, e.g., [8, Chapter 8]), it
follows easily that if α ∈ Z≥1, then S is α-independent if and only if S can be
partitioned into α independent sets of M . We now state the guarantee we obtain
for (1) precisely. We consider the following canonical LP relaxation of (1):

max
{
wTx : x ∈ RN≥0, x ∈ PB0

, x|Ni
∈ PIi ∀i ∈ [k]

}
, (LPmat)

where for a set S ⊆ N , we use x|S ∈ RS to denote the restriction of x to S, and
PB0

:= PI0 ∩{x ∈ RN : x(N) = rM0
(N)} is the matroid base polytope of M0. For

ease of notation, we will sometimes omit an explicit restriction to the relevant
ground set when this can cause no ambiguity; thus we may write x ∈ PIi instead
of x|Ni

∈ PIi ; R ∈ Ii instead of R ∩ Ni ∈ Ii; and “R is α-independent in Mi”
instead of “R ∩Ni is α-independent in Mi”.

Our main result for (1), based on a new iterative rounding algorithm for (LPmat)
described in Section 2, is the following.

Theorem 2. Let q1, . . . , qk ∈ Z≥1 such that∑
i∈[k]:e∈Ni

q−1
i ≤ 1 ∀e ∈ N . (2)

If (LPmat) is feasible, then one can efficiently compute R ⊆ N such that

(i) w(R) ≥ OPT LPmat
;

(ii) R ∈ B0; and
(iii) R is qi-independent in Mi for all i ∈ [k].

Note that, in particular, taking qi = maxe∈N
∣∣{j ∈ [k] : e ∈ Nj}

∣∣ for all i ∈ [k]
satisfies (2). Thus, we violate the constraints imposed by the other matroids
M1, . . . ,Mk by a multiplicative factor depending on how strongly the Nis overlap.

While we have stated Theorem 2 in terms of bases of M0, the following natural
variant is easily deduced from it and, as we will show subsequently, readily implies
our main result, Theorem 1.

6 Linhares, Olver, Swamy, Zenklusen

Corollary 3. Theorem 2 also holds when R is required only to be an independent
set in M0 (as opposed to a basis), and we replace PB0

in (LPmat) by PI0 .

Proof. We modify M0 to obtain a matroid M̂0 on the ground set N0∪F , where F
is a set of rM (N0) additional elements with 0 weight. We define the rank function

of M̂0 as r̂(S) := min{rM (S ∩N0) + |S ∩ F |, rM (N0)}. That is, M̂0 is the union
of M0 with a free matroid on F , but then truncated to have rank rM0(N0). Let

PB̂0
be the matroid base polytope of M̂0. It is now easy to see that if x ∈ RN0∪F

lies in PB̂0
, then x|N0

∈ PI0 . Moreover, we can extend x ∈ RN0 with x ∈ PI0
to x′ ∈ RN0∪F so that x′ ∈ PB̂0

and x′|N0
= x. The corollary thus follows by

applying Theorem 2 to M̂0,M1, . . . ,Mk. ut
A variety of problem settings can be handled via Theorem 2 and Corollary 3

in a unified way. We first show how to obtain a crisp, simple proof of Theorem 1.

Proof of Theorem 1. Given matroids Mi = (N, Ii) for i = 0, 1, 2, and a weight
vector w ∈ RN , we first solve (LP3-mat) to obtain an optimal solution x∗. Now we
utilize Corollary 3 with the same three matroids, and q1 = q2 = 2. Clearly, these
q-values satisfy (2), and x∗ is a feasible solution to (LPmat), when we replace PB0

by PI0 . Thus, we obtain a set A ∈ I0 with w(A) ≥ wTx∗ and χA ∈ 2PI1 ∩ 2PI2 .
It is well known that PI1 ∩ PI2 is a polytope with integral extreme points

(see, e.g., [8, Chapter 8]), known as the matroid intersection polytope. Since
χA/2 ∈ PI1 ∩ PI2 , by using an algorithm for (weighted) matroid intersection
applied to matroids M1 and M2 restricted to A we can find a set R ⊆ A such
that R ∈ I1 ∩ I2 and w(R) ≥ wTχA/2 ≥ wTx∗/2. Finally, since R ⊆ A and
A ∈ I0, we also have that R ∈ I0. ut

Beyond 3-matroid intersection, Theorem 2 is applicable to various constrained
(e.g., degree-bounded) spanning tree problems; we expand on this below. In
Section 3, we discuss an application in this direction, wherein we seek a min-cost
spanning tree satisfying matroid independence constraints on cuts defined by
a given collection of pairwise disjoint node-sets. Using Theorem 2, we obtain a
spanning tree with a multiplicative factor-2 violation of the matroid constraints.

In Section 3.2, we also present a noteworthy extension of Theorem 2 that allows
one to handle both matroid independence and knapsack constraints. Suppose in
addition to the constraints imposed by the k+1 matroids M0,M1, . . . ,Mk, we also
impose t additional knapsack constraints. We obtain a basis R of M0 that satisfies
the other (matroid independence and knapsack) constraints approximately, where
we can trade off the violation of all involved constraints in a manner similar to
Theorem 2 (see Theorem 10 and its corollaries). By way of comparison, Chekuri
et al. [7] obtain (among other results) an O(k + t)-approximation for this setting
with no constraint violation.

1.2 Related work and connections.

By choosing M0 to be a graphic matroid, problem (1) generalizes many known
constrained spanning tree problems, including degree-bounded spanning trees,

Approximate Multi-Matroid Intersection via Iterative Refinement 7

and generalizations thereof considered by Bansal et al. [3], Király et al. [17],
and Zenklusen [25]. Theorem 2 thus yields a unified way to deal with various
spanning tree problems considered in the literature, where the degree constraints
are violated by at most a constant factor. However, as noted earlier, whereas the
above works obtain stronger, additive violation results, such guarantees are not
possible for our general problem (1) as we show in Section 4. This hardness of
obtaining small additive violations carries over to the spanning tree application
that we consider in Section 3 (which generalizes the matroidal degree-bounded
spanning tree problem considered in [25]).

To showcase how Theorem 2 can be used for such problems, consider the
minimum degree-bounded spanning tree problem, where given is a graph G =
(V,E) with edge weights w : E → R and degree bounds Bv ∈ Z≥1 for v ∈ V .
The nominal problem asks to find a spanning tree T ⊆ E with |T ∩ δ(v)| ≤ Bv
for v ∈ V minimizing w(T), where δ(v) denotes the set of edges incident with v.
Here one can apply Theorem 2 with M0 being the graphic matroid of G, and for
each v ∈ V we define a uniform matroid Mv with ground set δ(v) and rank Bv.
Theorem 2 with qv = 2 ∀v ∈ V and negated edge weights leads to a spanning tree
T with |T ∩ δ(v)| ≤ 2Bv ∀v ∈ V and weight no more than the optimal LP-weight.
Whereas this is a simple showcase example, Theorem 2 can be used in a similar
way for considerably more general constraints than just degree constraints.

Finally, we highlight a main difference of our approach compared to prior
techniques. Prior techniques for related problems, as used for example by Singh
and Lau [24], Király et al. [17], and Bansal et al. [3], successively drop constraints
of a relaxation. Also, interesting variations have been suggested that do not just
drop constraints but may relax constraints by replacing a constraint by a weaker
family (see work by Bansal et al. [2]). In contrast, our method does not just relax
constraints, but also strengthens the constraint family in some iterations, so as
to simplify it and enable one to drop constraints later on.

2 Our rounding technique

Our rounding technique heavily relies on a simple yet very useful “splitting”
procedure for matroids, which we call matroid refinement.

2.1 Matroid refinement

Let M = (N, I) be a matroid with rank function rM : 2N → Z≥0, and let
S (N , S 6= ∅. The refinement of M with respect to S consists of the matroids
M (1) = M |S obtained by restricting M to S, and M (2) = M/S obtained by
contracting S in M . Formally, the independent sets of the two matroids M (1) =
(S, I(1)),M (2) = (N \ S, I(2)) are given by

I(1) = {I ⊆ S : I ∈ I}
and I(2) = {I ⊆ N \ S : I ∪ IS ∈ I} ,

8 Linhares, Olver, Swamy, Zenklusen

where IS ∈ I is a maximum cardinality independent subset of S. It is well-known
that the definition of I(2) does not depend on which set IS is chosen. The rank
function of M (1) and M (2) are given by

rM(1)(A) = rM (A) ∀A ⊆ S ,
and rM(2)(B) = rM (B ∪ S)− rM (S) ∀B ⊆ N \ S .

(3)

For a proof of this, and more information on matroid restrictions and contractions,
we refer the reader to [23, Volume B, Chapter 39]. The following lemmas describe
some basic yet important relations between a matroid M = (N, I) and its
refinement. We will use the notation defined above for the remainder of this
subsection.

Lemma 4. If x ∈ RN satisfies x|S ∈ PI(1) and x|N\S ∈ PI(2) , then x ∈ PI .

Proof. For any set A ⊆ N , we have

x(A) = x(A ∩ S) + x(A \ S)

≤ rM(1)(A ∩ S) + rM(2)(A \ S)

= rM (A ∩ S) + rM (A ∪ S)− rM (S)

≤ rM (A) ,

where the last inequality follows from rM (A∩S) + rM (A∪S) ≤ rM (A) + rM (S),
which holds by submodularity of rM . Because the above inequality holds for
every A ⊆ N , we obtain x ∈ PI as desired. ut

The description of refinement as replacing a matroid with two disjoint ones will
be most convenient for describing and analyzing our algorithm. There is an
alternative, more geometric, viewpoint one can take. The direct sum of M |S
and M/S is a matroid M ′ = (N, I ′) with I ′ ⊆ I. The matroid base polytope
of M ′ is precisely the face of the matroid base polytope of M defined by the
constraint x(S) = rM (S). The conditions on x in Lemma 4 exactly say that x is
in the matroid polytope of M ′, and the conclusion of the lemma is that such a
point is in the matroid polytope of M . From this perspective, the next lemma
shows that any point in the matroid polytope of M which is tight for S is in the
matroid polytope of M ′. This will help us later to show that, even after one of
our (well-chosen) refinement steps in our iterative algorithm, the previous linear
programming solution remains feasible.

Lemma 5. Let x ∈ PI be such that x(S) = rM (S). Then x|S ∈ PI(1) and
x|N\S ∈ PI(2) .

Proof. Recall that to show that a nonnegative vector y ∈ RN̄≥0 lies inside the
matroid polytope of a matroid with rank function r̄, it suffices to check that it
satisfies all the rank constraints y(I) ≤ r̄(I) for all I ⊆ N̄ .

For any I ⊆ S,

x|S(I) = x(I) ≤ rM (I) = rM(1)(I),

Approximate Multi-Matroid Intersection via Iterative Refinement 9

and hence it is clear that x|S ∈ PI(1) .
To see that x|N\S ∈ PI(2) , consider any I ⊆ N \ S. We have

x(I) = x(I) + x(S)− rM (S)

= x(I ∪ S)− rM (S)

≤ rM (I ∪ S)− rM (S)

= rM(2)(S) ,

where the first equation is a consequence of x(S) = rM (S), the inequality is
implied by x ∈ PI , and the last equation holds due to (3). ut

Finally, the next lemma shows that a solution that is nearly independent in
both matroids obtained through refinement, is also nearly independent in the
original matroid before refinement.

Lemma 6. Let α ∈ Z≥1. If R1 is α-independent in M (1) and R2 is α-independent
in M (2), then then R1 ∪R2 is α-independent in M .

Proof. Let y = χR1∪R2/α. Then y|S ∈ PI(1) and y|N\S ∈ PI(2) , and so y ∈ PI
by Lemma 4. Thus χR1∪R2 ∈ αPI as required. ut

Intuitively, matroid refinement serves to partly decouple the matroid indepen-
dence constraints for M , thereby allowing one to work with somewhat “simpler”
matroids subsequently, and we leverage this carefully in our algorithm.

2.2 An algorithm based on iterative refinement and relaxation

Algorithm 1 describes our method to prove Theorem 2. Recall that the input
is an instance of problem (1), which consists of k + 1 matroids Mi = (Ni, Ii)
for i = 0, . . . , k, where each Ni is a subset of a finite ground set N = N0, and a
weight vector w ∈ RN . We are also given integers qi ≥ 1 for i ∈ [k] satisfying (2).

Algorithm 1 starts by solving the natural LP-relaxation in step 3 to obtain
an optimal extreme point x∗. As is common in iterative rounding algorithms, we
delete all elements of value 0 and fix all elements of value 1 through contractions
in steps 4 – 5. Apart from these standard operations, we refine the matroids
in steps 7 – 9, as long as there is a matroid M ′ = (N ′, I ′) in our collection M
with a nontrivial x∗-tight set S ⊆ N ′, i.e., x∗(S) = rM ′(S) and S /∈ {∅, N ′}.
Notice that after the refinement step, the q-values for the matroids in the new
collection M continue to satisfy (2). Step 11 is our relaxation step, where we
drop a matroid M ′ = (N ′, I ′) if |N ′| − rM ′(N ′) ≤ qM ′ − 1. This is the step that
results in a violation of the matroid constraints, but, as we show, the preceding
condition ensures that even if we select all elements of N ′ in the solution, the
violation is still within the prescribed bounds. Moreover, we will show in Lemma 7
that, whenever Algorithm 1 is at step 11, there is a matroid satisfying the given
conditions that can be dropped. We remark that, in step 11, one could also drop
all matroids M ′ ∈M fulfilling this condition, instead of just a single one, without
impacting the correctness of the algorithm.

10 Linhares, Olver, Swamy, Zenklusen

Algorithm 1 Iterative refinement and relaxation algorithm for Theorem 2

(Initialization.)
1: M← {M1, . . . ,Mk}, M̄0 = (N̄0, Ī0)←M0, qMi ← qi for all i ∈ [k].
2: R← ∅.

(Start of main loop.)
3: Compute an optimal vertex solution x∗ to (LPmat) for the matroids {M̄0} ∪M.

(Deletion and contraction.)
4: For each e ∈ N̄0 with x∗(e) = 0, delete e from M̄0 and all matroids inM containing
e.

5: For each e ∈ N̄0 with x∗(e) = 1, contract e in M̄0 and all matroids inM containing
e, and add e to R.

6: if N̄0 = ∅ then return R.

(Refinement.)
7: while there is a matroid M ′ = (N ′, I′) ∈M s.t. ∃ ∅ 6= S (N ′ with x∗(S) = rM′(S)

do
8: Set M ′1 = M ′|S , M ′2 = M ′/S, and qM′

1
= qM′

2
= qM′ .

9: Update M← (M\ {M ′}) ∪ {M ′1,M ′2}.
10: end while

(Relaxation.)
11: Find a matroid M ′ = (N ′, I′) ∈ M, such that |N ′| − rM′(N ′) ≤ qM′ − 1; remove

M ′ from M.

12: goto step 3.

In order to find an x∗-tight set ∅ 6= S (N ′ (if one exists) in step 7, one can,
for example, minimize the submodular function rM ′(A) − x∗(A) over the sets
∅ 6= A (N ′. Depending on the matroids involved, faster specialized approaches
can be employed.

It is perhaps illuminating to consider the combined effect of all the refinement
steps and step 11 corresponding to a given basic optimal solution x∗. Using
standard uncrossing techniques (see, e.g., [18, Chapter 5]), one can show that for
each matroid M ′ = (N ′, I ′) ∈M, there is a nested family of sets ∅ (S1 (. . . (
Sp ⊆ N ′ whose rank constraints span the x∗-tight constraints of M ′, and so any
Si can be used to refine M ′. The combined effect of all refinements for M ′ can be
seen as replacing M ′ by the matroids

(
M ′|S`

)
/S`−1 for ` = 1, . . . , p+ 1, where

S0 := ∅, Sp+1 := N ′. Step 11 chooses some M ′ ∈M and a “ring” S` \ S`−1 of its
nested family satisfying |S` \S`−1| − x∗(S` \S`−1) < qM ′ , and drops the matroid
created for this ring.

Analysis We first show that the algorithm is well defined, in the sense that a
matroid can always be dropped in step 11. Note that refinements guarantee that
whenever the algorithm is at step 11, then for any M ′ = (N ′, I ′) ∈M, only the
constraint of PI′ corresponding to N ′ may be x∗-tight. This allows us to leverage
ideas similar to those in [3, 17].

Approximate Multi-Matroid Intersection via Iterative Refinement 11

Lemma 7. Each time that step 11 is reached in an execution of Algorithm 1,
there exists at least one matroid M ′ ∈ M satisfying the stated conditions and
which hence can be dropped.

Proof. Consider the current collection of matroidsM at the beginning of step 11 in
some iteration of the algorithm. (Recall thatM does not contain M̄0, the current
version of M0.) Let x∗ be the current basic solution. It satisfies 0 < x∗(e) < 1
for all e ∈ N̄0, since elements with x∗(e) ∈ {0, 1} would have been deleted or
contracted in steps 4 and 5.

Consider a full-rank subsystem of (LPmat), Ax = b, consisting of linearly in-
dependent, x∗-tight constraints. By standard uncrossing arguments (see, e.g., [18,
Chapter 5]), we may assume that the constraints of Ax = b coming from the
matroid base polytope of M̄0 correspond to a nested family of sets. The system
Ax = b must contain some constraint corresponding to a matroid M ′ ∈ M.
Otherwise, we would have a full-rank system consisting of constraints coming
from only one matroid, namely M̄0, which would yield a unique integral solution;
but x∗ is not integral. Furthermore, for a matroid M ′ = (N ′, I ′) ∈ M, the
only constraint of PI′ that can be x∗-tight corresponds to N ′, as otherwise, M ′

would have been refined in step 7. So a matroid M ′ ∈ M gives rise to at most
one row of A, which we will also refer to as the row corresponding to M ′. Let
∅ (S1 (. . . (Sp ⊆ N̄0 denote the nested family of sets that give rise to the
constraints of M̄0 in our full-rank system.

Consider the following token-counting argument. Each e ∈ N̄0 gives x∗(e)
tokens to the row of A corresponding to the smallest set S` containing e (if one
exists). It also supplies

(
1− x∗(e)

)
/qM ′ tokens to every row corresponding to a

matroid M ′ ∈M whose ground set contains e. Since the q-values satisfy (2), for
each e ∈ N̄0 the sum of the amount of tokens supplied by e to the rows of A is
at most 1. We claim that there is some e ∈ N̄0 for which this sum is strictly less
than 1.

Before proving the claim, we show that it indeed implies the desired result.
It follows from the claim that the total amount of tokens distributed is strictly
smaller than the number of columns of A. Since Ax = b is a full-rank system and
hence A is a square matrix, this implies that there must exist a row of A that
receives strictly less than 1 token unit.

Note that every row of A corresponding to a set S` receives x∗(S`)−x∗(S`−1)
tokens, where S0 := ∅. This is positive (since x∗(e) > 0 for all e, and S`−1 (S`)
and an integer (since x∗(Si) = rM̄0

(Si) for each i ∈ [p]), and thus at least 1.
Along with the observation in the preceding paragraph, this implies that there
exists a row corresponding to a matroid M ′ = (N ′, I ′) ∈ M that receives less
than 1 token unit; thus |N ′| − x∗(N ′) < qM ′ . Since the rank function rM ′ of M ′

is integral, and rM ′(N ′) ≥ x∗(N ′), we have |N ′| − rM ′(N ′) ≤ qM ′ − 1 as desired.

Finally, we prove the claim that some e ∈ N̄0 supplies strictly less than one
token unit. If every element supplies exactly one token unit, then it must be that:

(i) Sp = N̄0,
(ii) inequality (2) is tight for all e ∈ N̄0, and

12 Linhares, Olver, Swamy, Zenklusen

(iii) for every e ∈ N̄0, every matroid M ′ = (N ′, I ′) ∈M with e ∈ N ′ gives rise
to a row.

Let AM ′ be the row of A corresponding to matroid M ′ ∈M. Then∑
M ′∈M

1

qM ′
·AM ′ = χN̄0 ,

which is the row of A corresponding to the constraint of M̄0 for the set Sp. This
contradicts that A has full rank. ut

Next, we observe that the algorithm does terminate.

Lemma 8. Algorithm 1 terminates after at most
∑k
i=1 |Ni| ≤ k|N | iterations

of the main loop.

Proof. Let us view a refinement operation as replacing a matroid M ′ ∈ M
with a matroid M ′1, and adding a new matroid M ′2 to M. Then each matroid
Mi = (Ni, Ii) in our input creates (directly or indirectly) at most |Ni| − 1
additional matroids, as the refinement of a matroid consists of two matroids with
disjoint and nonempty ground sets.

Since the number of original and created matroids is at most
∑k
i=1 |Ni|, and

a matroid is dropped in each iteration of the main loop, there can be at most∑k
i=1 |Ni| iterations in total. ut

We now complete the proof of Theorem 2.

Lemma 9. The set R returned by Algorithm 1 satisfies the properties stated in
Theorem 2.

Proof. We first observe that if we consider the value wTx∗+w(R) in each iteration
after step 3, this can only increase as the algorithm progresses. Indeed, when
we update M̄0 and M (via deletions, contractions, refinements, or dropping
matroids), x∗ restricted to the new ground set remains feasible for (LPmat) for
the new instance. This is immediate for deletions and contractions, and if a
matroid is dropped; it holds for refinements due to Lemma 5. So if the optimal
value of (LPmat) decreases between two executions of line 3 of Algorithm 1, then
this is only because we contract elements with x∗(e) = 1, which we include in R.
Thus the weight of the returned set is at least the weight of the initial fractional
solution, and property (i) holds.

We prove that the following invariant is maintained throughout the algorithm:

For any basis B of M̄0 that is qM ′-independent for all M ′ ∈M, R ∪B
is a basis of M0 that is qi-independent in Mi for each i ∈ [k].

This trivially holds at the start of the algorithm, and once N̄0 is reduced to the
empty set and the algorithm terminates, it immediately implies properties (ii)
and (iii).

Approximate Multi-Matroid Intersection via Iterative Refinement 13

The effect of deleting an element e in step 4 is simply to restrict to choices of
B which do not contain e; and the effect of contracting an element e in step 5
is to restrict to choices of B which do. When a matroid M ′ ∈M is replaced by
a refinement M ′1 and M ′2, any set B that is qM ′-independent in M ′1 and M ′2 is
qM ′ -independent in M ′ by Lemma 6. So in all these cases, assuming the invariant
holds before the operation, it will still hold afterwards.

All that remains is to consider the situation when a matroid M ′ = (N ′, I ′) ∈
M is dropped in step 11. Then rM ′(N ′) + qM ′ − 1 ≥ |N ′|, which means that
we can partition N ′ into a basis (which has size rM ′(N ′)) and at most qM ′ − 1
singletons. All singletons are independent in M ′ because x∗e > 0 for all e ∈ N ′.
Thus N ′ is qM ′-independent, and hence so is any B ⊆ N̄0. This means that if
B satisfies the conditions of the invariant before dropping M ′, it still does so
afterwards, and hence the invariant still holds. ut

3 Further applications and extensions

3.1 Generalized matroidal degree-bounded spanning tree (gmdst)

In this problem, we are given an undirected graph G = (V,E) with edge costs
c ∈ RE , disjoint node-sets S1, . . . , Sk, and matroids Mi = (δ(Si), Ii) for all i ∈ [k],
where δ(Si) is the set of edges of G that cross Si. We want to find a spanning
tree T of minimum cost such that T ∩ δ(Si) ∈ Ii for all i ∈ [k]. This generalizes
the matroidal degree-bounded MST problem considered by [25], wherein each
node {v} is an Si set. Clearly, each edge belongs to at most 2 ground sets of the
matroids {Mi}i∈[k]. Thus, by taking M0 to be the graphic matroid and setting
w = −c, Theorem 2 leads to a tree T of cost at most the optimum such that
T ∩ δ(Si) is 2-independent in Mi for all i ∈ [k].

We remark that, whereas [25] obtains an O(1)-additive violation of the matroid
constraints for the matroidal degree-bounded MST problem, such a polytime
additive guarantee is not possible for gmdst unless P = NP; see Section 4 and
the discussion after the proof of Theorem 15.

3.2 Extension to knapsack constraints

We can consider a generalization of (1) where, in addition to the matroids
M0, . . . ,Mk (over subsets of N) and the weight vector w ∈ RN , we have a family
Cx ≤ d of t knapsack constraints, where C ∈ Rt×N≥0 and d ∈ Rt≥0. The goal is to

find a maximum-weight set R such that R ∈ B0 ∩ I1 ∩ . . . ∩ Ik and CχR ≤ d.
Again, we consider the following natural LP-relaxation for this problem:

max
{
wTx : x ∈ RN≥0, x ∈ PB0 ,

x|Ni ∈ PIi ∀i ∈ [k], Cx ≤ d
}
.

(LPmatkn)

We show that Theorem 2 extends to yield the following result.

14 Linhares, Olver, Swamy, Zenklusen

Theorem 10. Let q1, . . . , qk ∈ Z≥1 be such that∑
i∈[k]:e∈Ni

1

qi
+
∑
i∈[t]

Cie ≤ 1 for all e ∈ N . (4)

If (LPmatkn) is feasible, then one can efficiently compute R ⊆ N such that

(i) R ∈ B0;
(ii) w(R) ≥ OPT LPmatkn

;
(iii) R is qi-independent in Mi for all i ∈ [k]; and
(iv)

∑
e∈R Cie ≤ di + 1 for all i ∈ [t].

This theorem yields additive violations of the knapsack constraints by only 1,
but (4) is correspondingly a rather strong condition. The theorem can be usefully
applied to rescalings of the knapsack constraints in order to satisfy (4). We
discuss this in detail after proving the theorem.

Proof. The algorithm leading to Theorem 10 is quite similar to Algorithm 1,
and so is its analysis, and we therefore highlight the crucial changes without
replicating the proof steps that remain identical.

In the algorithm, whenever we contract an element e, we now update di ←
di − Cie for every index i ∈ [t] corresponding to a knapsack constraint that has
not yet been dropped. After performing all possible deletions, contractions, and
refinements, we now either drop a matroid M ′ ∈ M′ in step 11 as before, or
we drop a knapsack constraint

∑
e∈N̄0

Ciex(e) ≤ di for some i ∈ [t] such that∑
e∈N̄0

Cie
(
1− x∗(e)

)
≤ 1.

To prove that the modified algorithm is valid, we need only argue that we can
always drop a matroid constraint, or a knapsack constraint in step 11 (modified
as above). This follows from the same token-counting argument as in the proof of
Lemma 7. Recall that if Ax = b is a full-rank subsystem of (LPmatkn) consisting
of linearly independent x∗-tight constraints, then we may assume that the rows
of A corresponding to the M̄0-constraints form a nested family C ⊆ 2N̄0 . We
define a token-assignment scheme, where each e ∈ N̄0 supplies x∗(e) tokens
to the row of A corresponding to the smallest set in C containing e (if one
exists), and

(
1 − x∗(e)

)
/qM ′ to each row arising from a matroid M ′ ∈ M in

our collection whose ground set contains e. Additionally, every e ∈ N̄0 now also
supplies Cie

(
1−x∗(e)

)
tokens to each row of A arising from a knapsack constraint

i ∈ [t]. Under this scheme, as before, given the constraint on our q-values, it
follows that every e ∈ N̄0 supplies at most 1 token unit. Also, as before, each
row of A corresponding to a M̄0 constraint receives at least 1 token unit. So
either there is some row coming from a matroid in M that receives strictly less
than 1 token unit, or there must be some row of A corresponding to a knapsack
constraint that receives at most 1 token unit; the latter case corresponds to a
knapsack constraint indexed by i ∈ [t] with

∑
e∈N̄0

Cie
(
1 − x∗(e)

)
≤ 1. (Note

that if all knapsack constraints have already been dropped, then we indeed have
a matroid in M receiving strictly less than one token as already shown in the
proof of Lemma 7.)

Approximate Multi-Matroid Intersection via Iterative Refinement 15

The proof of parts (i)–(iii) is exactly as before. To prove part (iv), consider the
i-th knapsack constraint. Note that the only place where we possibly introduce
a violation in the knapsack constraint is when we drop the constraint. If x∗

is the optimal solution just before we drop the constraint, then we know that∑
e∈N̄0

Ciex
∗(e) ≤ di. (Note that di refers to the updated budget.) It follows that

if S denotes the set of elements included from this residual ground set N̄0, then
the additive violation in the knapsack constraint is(∑

e∈S
Cie

)
− di ≤

(∑
e∈N̄0

Cie

)
− di ≤

∑
e∈N̄0

Cie
(
1− x∗(e)

)
≤ 1 ,

where the second inequality follows from
∑
e∈N̄0

Ciex
∗(e) ≤ di. ut

We now show how the freedom to rescale the knapsack constraints can be
used to obtain a more flexible version of Theorem 10 where one can trade off the
violation of all involved matroid and knapsack constraints.

Corollary 11. Let C ′ be obtained from C by scaling each row so that maxe∈N C
′
ie =

1 for all i ∈ [t]. Let q1, . . . , qk, p1, . . . , pt ∈ Z≥1 be such that

∑
i∈[k]:e∈Ni

1

qi
+
∑
i∈[t]

C ′ie
pi
≤ 1 ∀e ∈ N. (5)

Then if (LPmatkn) is feasible, one can efficiently compute R ⊆ N such that

(i) R ∈ B0;
(ii) w(R) ≥ OPT LPmatkn

;
(iii) R is qi-independent in Mi for all i ∈ [k]; and
(iv)

∑
e∈R Cie ≤ di + pi ·maxe∈N Cie for all i ∈ [t].

A simpler and less precise condition than (5) is∑
i∈[k]:e∈Ni

1

qi
+

∑
i∈[t]:Cie>0

1

pi
≤ 1 ∀e ∈ N. (6)

This condition clearly implies (5) since C ′ie ≤ 1 for all i ∈ [t], e ∈ N . To see the
difference between (5) and (6), consider the special case where pi = p for all
i ∈ [t]. Then (loosely speaking) condition (6) requires that p be proportional
to the maximum number of knapsack constraints an element participates in, a
quantity that is sometimes called the `0-column-sparsity of C. But Corollary 11
using the full strength of (5) shows that p can be chosen proportional to the
maximum `1-norm of any column of the normalized matrix C ′. In general, this
can be much smaller than the `0-column-sparsity of C.

Proof of Corollary 11. Consider the system C̃x ≤ d̃ obtained by scaling the i-th
knapsack constraint by αi := pi · maxe∈N Cie for all i ∈ [t]; that is, we have

C̃ie = Cie/αi = C ′ie/pi for all i ∈ [t], e ∈ N , and d̃i = di/αi for all i ∈ [t]. Notice

16 Linhares, Olver, Swamy, Zenklusen

that the conditions of Theorem 10 are fulfilled for the scaled instance, because
for any e ∈ N , we have by (5) that∑

i∈[k]:
e∈Ni

1

qi
+
∑
i∈[k]

C̃ie =
∑
i∈[k]:
e∈Ni

1

qi
+
∑
i∈[t]

C ′ie
pi
≤ 1 .

Applying Theorem 10 to the instance with the scaled knapsack constraints, we
obtain a set R guaranteed by Theorem 10 that clearly satisfies (i)–(iii). Moreover,
(iv) holds because the additive violation of 1 for each scaled knapsack constraint
translates to an additive violation of αi = pi ·maxe∈N Cie for the original instance.

ut

Applications and refinements. A variety of settings considered in the literature
can be viewed as special cases of the above setup. Specifically, Grandoni et
al. [13] consider the t-budgeted matroid independent-set (or basis) and t-budgeted
matroid intersection problems, which in turn generalize various problems, such
as t-budgeted spanning trees and t-budgeted bipartite matchings (see [13] for
an extensive discussion of work on these and other related problems). In our
setup, the above two problems correspond to the cases where k = 0 and k = 1,
respectively, and we have t knapsack constraints. (Recall we have k matroids
M1, . . . ,Mk in addition to M0; moreover, as discussed in the proof of Corollary 3,
while we state our problem in terms of finding a basis of M0, this can be used to
model the setting where we seek an independent set of M0.)

The t-budgeted matroid basis problem also captures the problem of minimizing
makespan on unrelated machines: matroid M0 encodes that every job is assigned
to a machine, and the knapsack constraints encode that the load on each machine
is at most a given makespan bound. We use this setup to illustrate the utility of
having bounds depending on the `1-column-sparsity of the knapsack constraints.
Recently, Chakrabarty and Swamy [4] considered a more general load-balancing
problem where one seeks to minimize the norm of the machine-loads vector under
a given monotone, symmetric norm. They show that this problem reduces to
the problem of finding a min-cost assignment of jobs to machines subject to
multiple load constraints for each machine. In this reduction, the load constraints
for a fixed machine involve a nested family of job-sets and have geometrically
increasing budgets. Therefore, after normalizing the load constraints by the
budgets, the `1 norm of each column becomes a constant. Hence, our results
yield a constant-factor violation of the machine-load constraints, and [4] show
that this leads to an O(1)-approximation for the minimum-norm load balancing
problem.

The work of [6, 13] yields (deterministic or randomized) polynomial time
approximation schemes for t-budgeted matroid independent-set and t-budgeted
matroid intersection problems, when t is a constant. While a direct application
of Corollary 11 results in a violation of both the matroid independence and
knapsack constraints, we show that this can be improved. First, for k ≤ 2, we
can translate approximate matroid independence into an approximation in the

Approximate Multi-Matroid Intersection via Iterative Refinement 17

objective, as shown in the proof of Theorem 1. Second, we show below that by
using a standard enumeration idea and insights from [13], we can eliminate the
violation in the knapsack constraints as well, when k, t = O(1). Consequently, we
obtain the following guarantees, when t = O(1).

� A PTAS for t-budgeted matroid independent set; this matches the guarantee
in [13].

� A (3 + δ)-approximation for t-budgeted 3-matroid intersection (i.e., k = 2),
wherein we seek a maximum-weight common independent set of 3 matroids
that satisfies t knapsack constraints (Theorem 14). This improves upon the
constant-factor approximation obtained by [7] for this problem. (Our result
also implies a (2 + δ)-approximation for t-budgeted 2-matroid intersection,
but here a PTAS is known, as noted earlier.)

In the sequel, we prove the second result. We do not explicitly prove the
first result as a similar result is already known, but this guarantee follows
from Theorem 13 below. We focus on the version where we seek a set that is
independent in all matroids; for the version where we seek a basis of M0, no
true approximation is possible even when M0 is the only matroid and t = 2 [13].
Recall that we are given matroids Mi = (Ni, Ii) for i = 0, . . . , k, where Ni ⊆ N
for all i = 0, . . . , k, a weight vector w ∈ RN≥0, and t knapsack constraints Cx ≤ d.

We want to maximize w(R) subject to R ∈ I0 ∩ I1 ∩ . . . ∩ Ik and CχR ≤ d. Let
Z∗ denote an optimal solution to the problem, and OPT = w(Z∗) denote the
optimal value. The following simple lemma will be useful.

Lemma 12 (Paraphrased from [13]). Let ` ∈ RN≥0, L ≥ 0, and δ ∈ (0, 1].
Further, let S ⊆ N be such that `(S) ≤ L. Then we can efficiently find S′ ⊆ S
such that w(S′) ≤ δw(S) + maxe∈S we and `(S \ S′) ≤ (1− δ)L.

Proof. We assume without loss of generality that `e > 0 for every e ∈ S;
otherwise, we could simply use the set S′ obtained by applying the lemma to the
set {e ∈ S : `e > 0} instead of S.

We sort the elements of S in increasing order of we/`e. Considering elements
of S in this sorted order, let S′ be the smallest prefix (which might be ∅) such
that `(S \S′) ≤ (1− δ)L. If S′ = ∅, then we are done, so assume otherwise. Let e′

be the last element in S′ under the sorted order, so mine∈S\S′ we/`e ≥ we′/`e′ =
maxe∈S′ we/`e. Let S′′ = S′ \ {e′}.

Due to the ordering of elements, we have w(S \S′′)/`(S \S′′) ≥ w(S)/`(S) ≥
w(S)/L. Due to the choice of S′, we have `(S \ S′′) > (1 − δ)L. Therefore,
w(S \ S′′) ≥ w(S) · `(S \ S′′)/L > (1− δ)w(S). It follows that w(S′′) < δw(S),
and hence w(S′) < δw(S) + we′ ≤ δw(S) + maxe∈S we. ut

We now show how to avoid violation of the knapsack constraints.

Theorem 13. Let q1, . . . , qk ∈ Z≥1, and ε > 0 satisfy∑
i∈[k]:e∈Ni

1

qi
+ ε|{i ∈ [t] : Cie > 0}| ≤ 1 for all e ∈ N.

18 Linhares, Olver, Swamy, Zenklusen

In time poly
(
|N |O(t2/ε2)

)
, one can compute R ⊆ N such that

(i) R ∈ I0;
(ii) w(R) ≥ (1− 2ε)OPT ;

(iii) R is qi-independent in Mi for all i ∈ [k]; and
(iv)

∑
e∈R Cie ≤ di for all i ∈ [t].

Proof. We utilize a standard enumeration idea to reduce the violation of the
knapsack constraints to a multiplicative (1+O(ε/t)

)
-factor, and then use insights

from [13] to eliminate this violation altogether. The idea is to first guess all
elements included in the optimal solution Z∗ that have large we-weight. We
modify the matroids and the knapsack constraints to account for including these
elements. We now scale down the residual budgets of the knapsack constraints.
Since the maximum weight of any element in the residual instance is small,
Lemma 12 allows one to argue that there is some Z ′ ⊆ Z∗ that satisfies these
scaled budgets and still has large value. Now we guess the elements of Z ′ that have
large cost compared to the residual budget for any of the knapsack constraints,
and again modify the matroids and knapsack constraints accordingly. Applying
Corollary 11 to this instance, since, for every knapsack constraint, the maximum
cost of any element is small compared to its residual budget, we obtain a solution
that violates the scaled knapsack constraints by a small factor. Due to our scaling
of budgets, this translates to no violation of the original knapsack constraints.
We now furnish the details.

We assume that |Z∗| > dt/εe; otherwise, we can find an optimal solution
by brute force in poly

(
|N |O(t/ε)

)
time. For S ⊆ N and i ∈ [t], we use Ci(S) to

denote
∑
e∈S Cie. We guess the set A of dt/εe elements included in Z∗ that have

the largest we-weight. We prove below that there exists Z ′ ⊆ Z∗ \A such that
w(Z ′) ≥ (1 − 2ε)OPT − w(A), and Ci(Z

′) ≤ (1 − ε/t)
(
di − Ci(A)

)
for every

i ∈ [t]. For every i ∈ [t], we guess the set Bi of at most t/ε2 elements from Z ′

for which Cie >
ε2

t ·
(
di − Ci(A)

)
. (More precisely, by guessing, we mean that

we enumerate all possible choices for A and the Bis. For each such choice, we
execute the steps described below. The analysis shows that for the correct choice
of A and Bis, the set R returned has the desired properties.)

Let F := B1∪ . . .∪Bt. We modify the matroids by contracting all the elements
in A∪F , and deleting every element e ∈ N \ (A∪F) for which we > mine′∈A we′

or there exists i ∈ [t] with Cie >
ε2

t ·
(
di − Ci(A)

)
. Let N ′ denote the remaining

set of elements. So by construction, we have: (a) |A ∪ F | ≤ dt/εe + t2/ε2; (b)

N ′ ∩ (A ∪ F) = ∅; and (c) Cie ≤ ε2

t ·
(
di − Ci(A)

)
for all i ∈ [t], e ∈ N ′.

For each i ∈ [t], we modify the i-th knapsack constraint so that its budget is
d′i = (1− ε/t)

(
di −Ci(A)

)
−Ci(F) and we only consider elements from N ′. Call

this the residual instance.

We apply Corollary 11 to this residual instance with the qis given in the
theorem statement, and taking pi = 1/ε for all i ∈ [t]. Notice that these values
satisfy (5). Note that mimicking the construction as used in the proof of Corol-
lary 3 shows that Corollary 11 also holds when we require only an independent

Approximate Multi-Matroid Intersection via Iterative Refinement 19

set of M0; let R′ be the set returned by this variant of Corollary 11. We return
R = R′ ∪A ∪ F .

Property (a) above implies that there is O
(
|N |O(t2/ε2)

)
choices for A and the

Bis, which gives the stated running time.

We now prove that R satisfies all the desired properties. By the construction
of the residual instance, it follows that R ∈ I0, and R is qi-independent in Mi

for all i ∈ [k].
Let OPT ′ denote the optimal value for the residual instance. We prove that

OPT ′ ≥ (1− 2ε)OPT − w(A)− w(F), which implies that w(R′) ≥ OPT ′ (due
to guarantee (ii) of Corollary 11), and hence, w(R) = w(R′) + w(A) + w(F) ≥
(1− 2ε)OPT .

Consider the set Z = Z∗ \A. Consider the i-th knapsack constraint. We have
Ci(Z) ≤ di − Ci(A). Therefore, taking δ = ε/t, ` to be the i-th row of C, and
L = di − Ci(A) in Lemma 12, we can find Zi ⊆ Z such that w(Zi) ≤ εw(Z)/t+
maxe∈Z we and Ci(Z \ Zi) ≤ (1− ε/t)

(
di − Ci(A)

)
. Observe that maxe∈Z we ≤

mine∈A we ≤ εOPT/t, so w(Zi) ≤ 2εOPT/t. So the set Z ′ = Z \
(
Z1 ∪ . . . ∪ Zt)

satisfies w(Z ′) ≥ (1 − 2ε)OPT − w(A) and Ci(Z
′) ≤ (1 − ε/t)

(
di − Ci(A)

)
for

all i ∈ [t]. Therefore, Z ′ \ F is feasible for the residual instance, and OPT ′ ≥
w(Z ′)− w(F) ≥ (1− 2ε)OPT − w(A)− w(F).

Finally, for every i ∈ [t] we have Ci(R
′) ≤ d′i + 1

ε ·maxe∈N ′ Cie from guar-
antee (iv) of Corollary 11. By property (c) above, we then have Ci(R

′) ≤
d′i + ε

t ·
(
di − Ci(A)

)
= di − Ci(A)− Ci(F), and hence, Ci(R) ≤ di. ut

Theorem 14. Let 0 < δ ≤ 1/6. There is a
(
3 +O(δ)

)
-approximation algorithm

for t-budgeted 3-matroid intersection with running time poly
(
|N |O(t4/δ2)

)
, where

N is the common ground set of the matroids and the knapsack constraints.

Proof. Let Mi = (N, Ii) for i = 0, 1, 2 be the given matroids, Cx ≤ d be the t
knapsack constraints, and w ∈ RN≥0 be the given weight vector. Let OPT denote
the optimal value. We apply Corollary 13 to this instance taking q1 = q2 = 3, and
ε = δ/t. Since δ ≤ 1/3, clearly these values satisfy the condition in Corollary 13.

Therefore, in time poly
(
|N |O(t2/ε2)

)
= poly

(
|N |O(t4/δ2)

)
, we obtain a set R ∈ I0

that is 3-independent in M1, M2, satisfies all the knapsack constraints, and
has weight w(R) ≥ (1 − 2ε)OPT . As in the proof of Theorem 1, we can now
extract a subset R′ ⊆ R that is independent in all the matroids, and such that
w(R′) ≥ (1 − 2ε)OPT/3 ≥ OPT/(3 + 9ε). The last inequality follows since
1− 2ε ≥ (1 + 3ε)−1 as ε ≤ δ ≤ 1/6. ut

4 Impossibility of achieving small additive violations

We show that Theorem 2 for problem (1) cannot be strengthened to yield a basis
of M0 that has small additive violation for the matroid constraints of M1, . . . ,Mk,
even when k = 2.

20 Linhares, Olver, Swamy, Zenklusen

We first define additive violation precisely. Given a matroid M = (N, I),
we say that a set R ⊆ N is µ-additively independent in M if |R| − rM (R) ≤ µ;
equivalently, we can turn R into an independent set in M by removing at most µ
elements. Unlike results for degree-bounded spanning trees, or matroidal degree-
bounded MST [25], we show that small additive violation is not possible in
polytime (assuming P 6=NP) even for the special case of (1) where k = 2, so we
seek a basis of M0 that is independent in M1,M2.

Theorem 15. Let f(n) = O(n1−ε), where ε > 0 is a constant. Suppose we
have a polytime algorithm A for (1) that returns a basis B of M0 satisfying
|B| ≤ rMi

(B) + f(|N |) for i = 1, 2 Then we can find in polytime a basis of M0

that is independent in M1,M2.

The problem of finding a basis of M0 that is independent in M1,M2 is NP-
hard, as shown by an easy reduction from the directed Hamiltonian path problem.
Thus, Theorem 15 shows that it is NP-hard to obtain an additive violation for
problem (1) that is substantially better than linear violation.

Proof of Theorem 15. Choose t large enough so that t > 2f(t|N |). Since f(n) =
O
(
n1−ε), this is achieved by some t = poly(|N |). For each i ∈ {0, 1, 2}, let M ′i

be the direct sum of t copies of Mi. Let N ′ be the ground set of these matroids,
which consists of t disjoint copies of N , which we label N1, . . . , Nt.

Clearly, the instance (M ′0,M
′
1,M

′
2) is feasible if and only if the original instance

is feasible. Suppose that running A on the replicated instance yields a basis R′

of M ′0 that has the stated additive violation for the matroids M ′1,M
′
2. Hence,

there are two sets Q1, Q2 ⊆ R′ with |Q1|, |Q2| ≤ f(t|N |), such that R′ \ Qi is
independent in M ′i for i = 1, 2. Hence, R′ \ (Q1 ∪ Q2) is independent in both
M ′1 and M ′2. Because |Q1 ∪ Q2| ≤ 2f(t|N |) < t, we have by the pigeonhole
principle that there is one j ∈ [t] such that (Q1 ∪Q2)∩Nj = ∅. This implies that
R = R′ ∩Nj = (R′ \ (Q1 ∪Q2)) ∩Nj , when interpreted on the ground set N , is
independent in both M1 and M2. Moreover, the elements of R, when interpreted
on the ground set N , are a basis in M0 because R′ is a basis in M ′0. Hence, R is
the desired basis without any violations. ut

Theorem 15 holds whenever M0,M1,M2 come from classes of matroids that
are closed under direct sums. Its proof easily extends to the setting where we have
k + 1 matroids M0, . . . ,Mk, each of which comes from a class of matroids that is
closed under taking direct sums, and shows that achieving a much-better-than-
linear additive violation for problem (1) would enable one to obtain a basis of M0

that is independent in M1, . . . ,Mk. Consequently, if the latter problem is NP-
hard for the given classes of matroids, then obtaining an additive violation that
is much better than linear violation is NP-hard. In particular, this implies that
for the generalized matroidal degree-bounded spanning tree (gmdst) problem
considered in Section 3, since the family of graphic matroids is closed under taking
direct sums, and (gmdst) generalizes the NP-hard degree-bounded spanning
tree problem, it is NP-hard to achieve an additive violation substantially better
than linear for the matroid constraints.

Approximate Multi-Matroid Intersection via Iterative Refinement 21

5 Conclusions

We presented a new iterative rounding procedure applicable to the intersection of
several matroid polytopes and knapsack constraints. A key technical component
of our procedure is the refinement of matroids. In contrast with typical iterative
rounding procedures, a refinement replaces one matroid constraint by two that,
combined, are stronger than the original one. As such, this does not correspond
to a relaxation. The purpose of these refinement steps is to make it easier to drop
one of the newly-created matroid constraints at a later stage. One key implication
of our approach is an LP-relative 2-approximation for 3-matroid intersection.
Apart from being the first procedure that achieves a factor-2 approximation, it
also settles the integrality gap of the natural linear program for the intersection
of three matroids. We also present an extension that enables one to handle both
matroid independence and knapsack constraints. Moreover, we show that our
rounding framework allows one to capture various other natural problem settings
in a unified way.

A natural open question is to obtain an LP-relative (k − 1)-approximation
for the intersection of k matroids. It does not seem straightforward to adapt
our approach to this setting, because our method for 3-matroid intersection first
obtains a set that is independent in one of the matroids and is 2-independent
in the other two; it then crucially exploits the fact that the intersection of the
matroid polytopes of the other two matroids is integral. This enables us to
scale down our solution by a factor of 2 and observe that it must be a convex
combination of sets that are independent in all three matroids. Still, perhaps a
variation of our overall scheme, namely first obtaining an infeasible set and later
correcting it, could be a promising direction.

Acknowledgements. We are thankful to Lap Chi Lau for pointing us to relevant
literature, and to the anonymous referees for helpful suggestions for improving
the exposition.

References

1. R. Aharoni and E. Berger. The Intersection of a Matroid and a Simplicial Complex.
Transactions of the American Mathematical Society, 358(11): 4895–4917 (2006).

2. N. Bansal, R. Khandekar, J. Könemann, V. Nagarajan, and B. Peis. On generaliza-
tions of network design problems with degree bounds. Mathematical Programmming,
141(1-2): 479-506 (2013).

3. N. Bansal, R. Khandekar, and V. Nagarajan. Additive guarantees for degree-
bounded directed network design. SIAM Journal on Computing, 39(4):1413–1431,
2009.

4. D. Chakrabarty and C. Swamy. Approximation algorithms for minimum norm and
ordered optimization problems. In Proceedings of the 51st Annual ACM Symposium
on Theory of Computing (STOC), pages 126–137, 2019.

5. Y. H. Chan and L. C. Lau. On linear and semidefinite programming relaxations
for hypergraphic matching. Mathematical Programming, 135:123–148, 2012.

22 Linhares, Olver, Swamy, Zenklusen

6. C. Chekuri, J. Vondrák, and R. Zenklusen. Multi-budgeted matchings and matroid
intersection via dependent rounding. In Proceedings of the 22nd Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1080–1097, 2011.

7. C. Chekuri, J. Vondrák, and R. Zenklusen. Submodular function maximization via
the multilinear relaxation and contention resolution schemes. SIAM Journal on
Computing, 43(6):1831–1879, 2014.

8. W. J. Cook, W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver. Combinatorial
Optimization, 1997.

9. M. Cygan. Improved approximation for 3-dimensional matching via bounded
pathwidth local search. In Proceedings of 54th IEEE Symposium on Foundations
of Computer Science (FOCS), pages 509–518, 2013.

10. M. Cygan, F. Grandoni, and M. Mastrolilli. How to sell hyperedges: The hyper-
matching assignment problem. In Proceedings of the 24th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 342–351, 2013.

11. M. L. Fisher, G.L. Nemhauser, and L. A. Wolsey. An analysis of approximations
for maximizing submodular set functions - II. Mathematical Programming Study,
8:73–87, 1978.

12. Z. Füredi. Maximum degree and fractional matchings in uniform hypergraphs.
Combinatorica, 1(2):155–162, 1981.

13. F. Grandoni, R. Ravi, M. Singh, and R. Zenklusen. New approaches to multi-
objective optimization. Mathematical Programming, 146(1-2):525–554, 2014.

14. A. Gupta, A. Roth, G. Schoenebeck, and K. Talwar. Constrained non-monotone
submodular maximization: offline and secretary algorithms. In Proceedings of the
6th International Conference on Internet and Network Economics (WINE), pages
246–257, 2010.

15. M. M. Halldórsson. Approximating discrete collections via local improvements.
In Proceedings of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 160–169, 1995.

16. C. A. J. Hurkens and A. Schrijver. On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problems. SIAM Journal on Discrete Mathematics, 2(1):68–72, 1989.

17. T. Király, L. C. Lau, and M. Singh. Degree bounded matroids and submodular
flows. Combinatorica, 32(6): 703-720 (2012).

18. L. C. Lau, R. Ravi, and M. Singh. Iterative Methods in Combinatorial Optimization.
Cambridge University Press, New York, NY, USA, 1st edition, 2011.

19. J. Lee, V. Mirrokni, V. Nagarajan, and M. Sviridenko. Maximizing nonmonotone
submodular functions under matroid or knapsack constraints. SIAM Journal on
Discrete Mathematics, 23(4):2053–2078, 2010.

20. J. Lee, M. Sviridenko, and J. Vondrák. Submodular maximization over multiple
matroids via generalized exchange properties. Mathematics of Operations Research,
35(4):795–806, 2010.

21. A. Linhares, N. Olver, C. Swamy, and R. Zenklusen. Approximate multi-matroid
intersection via iterative refinement. In Proceedings of Integer Programming and
Combinatorial Optimization (IPCO), pages 299–312, 2019.

22. O. Parekh and D. Pritchard. Generalized hypergraph matching via iterated pack-
ing and local ratio. In Proceedings of Workshop on Approximation and Online
Algorithms (WAOA 2014), pages 207–223. Springer International Publishing, 2015.

23. A. Schrijver. Combinatorial Optimization, Polyhedra and Efficiency. Springer,
2003.

24. M. Singh and L. C. Lau. Approximating minimum bounded degree spanning trees
to within one of optimal. J. ACM, 62(1): 1:1-1:19 (2015).

Approximate Multi-Matroid Intersection via Iterative Refinement 23

25. R. Zenklusen. Matroidal degree-bounded minimum spanning trees. In Proceedings
of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1512–1521, 2012.

	Approximate Multi-Matroid Intersection via Iterative Refinement

