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Abstract. The effect of proportional transaction costs on systematically generated portfolios is studied em-5
pirically. The performance of several portfolios (the index tracking portfolio, the equally-weighted6
portfolio, the entropy-weighted portfolio, and the diversity-weighted portfolio) in the presence of7
dividends and transaction costs is examined under different configurations involving the trading fre-8
quency, constituent list size, and renewing frequency. All portfolios outperform the index tracking9
portfolio in the absence of transaction costs. This outperformance is statistically significant for daily10
and weekly traded portfolios but not for monthly traded portfolios. However, when proportional11
transaction costs of 0.5% are imposed, most portfolios no longer outperform the market. Some12
exceptional cases include the entropy-weighted and the diversity-weighted portfolios under specific13
configurations. The only statistical significant difference appears for the relative underperformance14
of the equally-weighted portfolio.15

Key words. Diversity-weighted portfolio; equally-weighted portfolio; functionally generated portfolio; portfolio16
analysis; Stochastic Portfolio Theory; transaction cost17

AMS subject classifications. 91G1018

1. Introduction. Although often neglected in portfolio analysis for sake of simplicity,19

transaction costs matter significantly for portfolio performance. Even small proportional20

transaction costs can have a large negative effect, especially when trades are made to rebalance21

the portfolio in a relatively high frequency. Hence, one should at least test the performance22

of a given portfolio when transaction costs are imposed, even if transaction costs are not23

explicitly taken into account while constructing the portfolio.24

In this paper, we examine the effects of imposing transaction costs on systematically25

generated portfolios, in particular, functionally generated portfolios. Such portfolios play a26

significant role in Stochastic Portfolio Theory; see [7]. [23] and [13] demonstrate empirically27

that functionally generated portfolios outperform the market portfolio in the absence of trans-28

action costs. To explore whether or to what extent this result still holds when transaction29

costs are imposed, we empirically examine the performance of portfolios (the index tracking30

portfolio, the equally-weighted portfolio, the entropy-weighted portfolio, and the diversity-31

weighted portfolio) under different configurations relating to trading frequency, transaction32

cost rate, constituent list size, and renewing frequency.33

[16] are among the first to study the impact of proportional transaction costs in portfolio34

choice. We refer to [12] and [17] for an overview of the transaction cost literature that evolved35

afterwards. Most of this literature focuses on the case of one risky asset only. For a discussion36
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2 J. RUF AND K. XIE

of transaction costs in the presence of several risky assets, we refer to [18], [4], and [22]. An37

empirical analysis of the effects of transaction costs is provided in [25], [1], [21], and [20]. We38

follow up on this research by providing a systematic analysis of the impact of transaction costs39

on functionally generated portfolios.40

When backtesting the portfolios with historical data, the index tracking portfolio is used as41

benchmark. In the absence of transaction costs, the equally-weighted, the entropy-weighted,42

and the diversity-weighted portfolios outperform the index tracking portfolio. The outperfor-43

mance is statistically significant for daily and weekly traded portfolios but not for monthly44

traded portfolios. In particular, the equally-weighted portfolio performs better than any45

other portfolio under the same configuration. When proportional transaction costs of 0.5%46

are imposed, however, the equally-weighted portfolio underperforms all other portfolios. The47

entropy-weighted and the diversity-weighted portfolios still outperform the benchmark but48

not significantly under appropriate trading frequencies and constituents list sizes with yearly49

excess returns around 1bp to 4bp.50

The following is an outline of this paper. In section 2, we propose a framework of backtest-51

ing portfolio performance in the presence of transaction costs. In particular, we incorporate52

proportional transaction costs when rebalancing a portfolio in subsection 2.1 and provide some53

practical considerations and details when backtesting portfolio performance in subsection 2.2.54

In section 3, we empirically examine the performance of several different portfolios under55

various configurations. The conclusions follow in section 4.56

2. Backtesting in the presence of transaction costs.57

2.1. Incorporating transaction costs into wealth dynamics. We shall study the perfor-58

mance of long-only stock portfolios that are rebalanced discretely. The market is not assumed59

to be frictionless; transaction costs are imposed when we trade in the market to rebalance the60

portfolios. The portfolios are constructed in such a way that their weights match given target61

weights after paying transaction costs. This construction is more rigid than the one in [11],62

for example, where the portfolio weights may deviate from the target weights.63

To be more specific, consider a market with d ≥ 2 stocks. Denote the amount of cur-64

rency invested in each stock by ψ(·) = (ψ1(·), · · · , ψd(·))′ and the total amount invested65

in a portfolio by V (·) =
∑d

i=1 ψi(·) ≥ 0. Furthermore, denote the portfolio weights by66

π(·) = (π1(·), · · · , πd(·))′. Note that ψi(·) = πi(·)V (·), for all i ∈ {1, · · · , d}.67

Assume that trading stocks involves proportional transaction costs at a time-invariant rate68

tcb (tcs), with 0 ≤ tcb, tcs < 1 for buying (selling) a stock. This means that the sale of one69

unit of currency of a stock nets only (1− tcs) units of currency in cash, while buying one unit70

of currency of a stock costs
(
1 + tcb

)
units of currency.71

Let us now consider how to trade the stocks in order to match the target weights when72

transaction costs are imposed. To begin, let us focus on trading at a specific time t. When73

rebalancing the portfolio at time t, we know the wealth ψ(t−) invested in each stock and74

hence the total wealth of the portfolio V (t−) =
∑d

i=1 ψi(t−) (exclusive of dividends). We also75

know the dividends paid at time t−, their total denoted by D(t−) ≥ 0.76

Given target weights π, we require π(t) = π after the portfolio is rebalanced at time t.77
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THE IMPACT OF PROPORTIONAL TRANSACTION COSTS 3

After trading, the wealth ψ(t) invested in each stock in the portfolio satisfies78

(2.1) ψj(t) = πj(t)

d∑
i=1

ψi(t), j ∈ {1, · · · , d}.79

We provide details about how to compute ψ(t) later in this subsection.80

As the portfolio needs to be self-financing, the amount of currency used to buy extra81

stocks should be exactly the amount of currency obtained from selling redundant stocks plus82

the dividends if there are any. This yields83

(2.2)
(

1 + tcb
) d∑
i=1

(ψi(t)− ψi(t−))+ = (1− tcs)
d∑
i=1

(ψi(t−)− ψi(t))+ +D(t−).84

The total transaction costs imposed from trading stocks at time t are computed by85

(2.3) TC(t) = tcb
d∑
i=1

(ψi(t)− ψi(t−))+ + tcs
d∑
i=1

(ψi(t−)− ψi(t))+ .86

Therefore, the total wealth of the portfolio at time t, given by V (t) =
∑d

i=1 ψi(t), satisfies87

V (t) = V (t−) +D(t−)− TC(t).88

Method of computing ψ(t). In the following, we propose a method to compute ψ(t),89

given ψ(t−), D(t−), and the target weights π. Throughout this section, we assume90

V (t−) > 0, D(t−) ≥ 0,
d∑
i=1

πi = 1, πj ≥ 0, and ψj(t−) ≥ 0,91

for all j ∈ {1, · · · , d}.92

To begin with, (2.1) implies that ψ(t) is of the form93

(2.4) ψj(t) = cV (t−)πj(t), j ∈ {1, · · · , d},94

for some c > 0. Note that if the market is frictionless, i.e., if tcb = tcs = 0, and if there95

are no dividends paid at time t−, i.e., if D(t−) = 0, then V (t) = V (t−) and c = 1. When96

transaction costs are imposed, we shall use the constraint (2.2) to determine c.97

To make headway, define98

(2.5) D̂ =
D(t−) + (1− tcs)

∑d
i=1 ψi(t−)1πi(t)=0

V (t−)
99

and100

cj =
πj(t−)

πj(t)
1πj(t)>0, j ∈ {1, · · · , d}.101
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4 J. RUF AND K. XIE

Then dividing both sides of (2.2) by V (t−) yields102

(2.6)
(

1 + tcb
) d∑
i=1

(c− ci)+ πi(t) = (1− tcs)
d∑
i=1

(ci − c)+ πi(t) + D̂.103

Note that the LHS of (2.6) is a continuous function of c and strictly increasing from 0104

to ∞, as c changes from mini∈{1,··· ,d} ci to ∞. Moreover, the RHS of (2.6) is a continuous105

function of c strictly decreasing from ∞ to D̂ ≥ 0, as c changes from −∞ to maxi∈{1,··· ,d} ci,106

and equals D̂ afterwards, as c changes from maxi∈{1,··· ,d} ci to ∞. Hence, both sides of (2.6)107

as functions of c must intersect at some unique point, i.e., a unique solution exists for (2.6).108

To proceed, define109

(2.7) D̂j =
(

1 + tcb
) d∑
i=1

(cj − ci)+ πi(t)− (1− tcs)
d∑
i=1

(ci − cj)+ πi(t), j ∈ {1, · · · , d}.110

We are now ready to provide an expression for the unknown constant c.111

Proposition 2.1. Recall that (2.5) and (2.7) imply D̂ ≥ 0 and mini∈{1,··· ,d} D̂i ≤ 0. Hence,112

(2.8) j = arg max
i∈{1,··· ,d}

{
D̂i; D̂i ≤ D̂

}
113

is well-defined. Then114

(2.9) c =

(
1 + tcb

)∑d
i=1 ciπi(t)1ci≤cj + (1− tcs)

∑d
i=1 ciπi(t)1ci>cj + D̂(

1 + tcb
)∑d

i=1 πi(t)1ci≤cj + (1− tcs)
∑d

i=1 πi(t)1ci>cj
115

solves (2.6) uniquely.116

The proof of Proposition 2.1 is given in Appendix A.117

Remark 2.2. In practice, we can apply both numerical and analytical methods to find the118

constant c. As suggested by (2.6), to find c numerically, we can simply search for the minimum119

of the function120

c 7→

∣∣∣∣∣(1 + tcb
) d∑
i=1

(c− ci)+ πi(t)− (1− tcs)
d∑
i=1

(ci − c)+ πi(t)− D̂

∣∣∣∣∣ .121

Alternatively, by determining the index j given by (2.8), we can apply Proposition 2.1 to122

compute c analytically.123

If the analytical approach is implemented, we can speed up the algorithm by making the124

following observations. We expect the value of c not to be far away from 1, which is precisely125

the value in the case of no transaction costs and no dividends. As suggested by the proof of126

Proposition 2.1, the family (D̂i)i∈{1,··· ,d} has the same ranking as (ci)i∈{1,··· ,d}. Therefore, we127

proceed by ranking all ci’s in ascending order and comparing D̂k with D̂, where128

k = arg max
i∈{1,··· ,d}

{ci; ci ≤ 1} .129
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If D̂k = D̂, then j = k and we are done. If D̂k > D̂, then we repeatedly compute D̂i130

corresponding to a smaller ci < ck each time until we find the exact index j. If D̂k < D̂, then131

we simply go the other way around.132

Proposition 2.1 is applied to determine the constant c used in (2.4) in order to compute133

ψ(t). Note that, in this subsection, we take ψ(t−) and D(t−) as given. In the next subsection,134

we discuss how to compute ψ(t−) and D(t−) from the data.135

2.2. Practical considerations. For the preparation of the empirical study in the next136

section, we now introduce the method used to backtest the portfolio performance. To begin137

with, assume that we are given the total market capitalizations S(·) = (S1(·), · · · , Sd(·))′ and138

the daily returns r(·) = (r1(·), · · · , rd(·))′ for all stocks. Assume that there are in total N139

days. For all l ∈ {1, · · · , N}, let tl denote the end of day l, at which the end of day total140

market capitalizations and the daily returns for day l are available. Moreover, if we trade on141

day l, then we call day l a trading day and the trade is made at time tl.142

Now focus on a specific trading day l with l ∈ {1, · · · , N} and fix i ∈ {1, · · · , d} for the143

moment. In subsection 2.1, given ψ(tl−) and D(tl−), as well as the target weights specified by144

the corresponding portfolio at time tl, we have shown how to compute ψ(tl). In the following,145

we show how to obtain ψ(tl−) and D(tl−).146

The daily return ri(tl) includes the dividends of stock i if there are any. We decompose147

the daily return ri(tl) into two parts: the dividend yield rDi (tl) and the realised rate rRi (tl).148

The dividend yield rDi (tl) is computed as149

(2.10) rDi (tl) = max

{
1 + ri(tl)−

Si(tl)

Si(tl−1)
, 0

}
150

and yields the amount of dividends received at time tl for each unit of currency invested in151

stock i at time tl−1
1. The realised rate rRi (tl) is computed as152

rRi (tl) = ri(tl)− rDi (tl)153

and yields the units of currency held in stock i at time tl for each unit of currency invested in154

stock i at time tl−1.155

The maximum is used in (2.10) to make sure that the dividend yield is nonnegative.156

Indeed, occasionally the data may suggest Si(tl−1)(1 + ri(tl)) < Si(tl). This can happen, for157

example, when company i issues extra stocks at time tl. In this case, we simply assume that158

there are no dividends paid at time tl.159

A special situation requires us to pay extra attention. A few times, some stock i is delisted160

from the market at time tl, for example, due to bankruptcy or merger. In this case, we still161

have data for ri(tl), but not for Si(tl). To deal with this situation, we assume that there are162

no dividends paid in stock i at time tl. As a result, we have rDi (tl) = 0 and rRi (tl) = ri(tl) for163

1The dividends computed from the dividend yield rD contain not only the actual stock dividends, but also
other corporate actions. For example, AT&T, which dominated the telephone market for most of the 20th

century, was broken up into eight smaller companies in 1984. This lead to a significant drop in the stock price.
In our analysis below, we assume that the investor obtained cash in exchange (instead of stocks in the newly
established companies).
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6 J. RUF AND K. XIE

such stock i. To close the position in stock i, we assume that one needs to pay transaction164

costs.165

Without loss of generality, assume that there are n ≥ 1 days (including the trading day166

l) involved since the last trading day, i.e., the last trading day before l is l − n. For all167

k ∈ {l − n + 1, · · · , l}, we compute rD(tk) and rR(tk) as above. In particular, if some stock168

i in the portfolio is delisted from the market at time tu, for some u ∈ {l − n + 1, · · · , l − 1},169

then we set rRi (tv) = rDi (tv) = 0, for all v ∈ {u+ 1, · · · , l}.170

Then given ψ(tl−n), we compute171

ψi(tl−) = ψi(tl−n)
l∏

k=l−n+1

(
1 + rRi (tk)

)
, i ∈ {1, · · · , d}.172

Since all dividends paid between two consecutive trading days are only reinvested at time tl,173

the total dividends available for reinvesting are computed by174

D(tl−) =
d∑
i=1

ψi(tl−n)
l∑

k=l−n+1

rDi (tk)
k−1∏

u=l−n+1

(
1 + rRi (tu)

)
.175

3. Examples and empirical results. In this section, we analyze the performance of several176

portfolios empirically. The target weights are expressed in terms of the market weights µ(·) =177 (
µ1(·), · · · , µd(·)

)′
with components178

µj(·) =
Sj(·)∑d
i=1 Si(·)

, j ∈ {1, · · · , d}.179

We shall consider the largest d stocks. We will vary the number d between 100 and 500.180

The constituent list (the list of the top d stocks) is renewed either monthly or quarterly.181

Whenever we renew the constituent list, we keep the d stocks with the largest total market182

capitalizations at that time. We trade only these d stocks afterwards until we renew the183

constituent list again. If any of these stocks stops to exist in the market due to any reason, we184

simply invest in the remaining stocks without adding a new stock to the list before we renew185

it next time. Note that renewing the constituent list implies trading to replace the old top186

d stocks with the new top d stocks. We trade with a specific frequency, which can be either187

daily, weekly, or monthly. For research on optimal trading frequency, we refer to [6].188

At time t0, we take the transaction costs due to initializing a portfolio as sunk cost, i.e.,189

we set TC(t0) = 0. Moreover, we start a portfolio with initial wealth V (t0) = 1000. Note that190

unless otherwise mentioned, the logarithmic scale is used when plotting V (·) and TC(·) for the191

purpose of better interpretability. To simplify the analysis, we impose a uniform transaction192

cost rate tc on both buying and selling the stocks, i.e., we set tcb = tcs = tc.193

For each example, we provide tables with the yearly returns2, the excess returns (relative194

to the corresponding index tracking portfolio), the standard deviations of the yearly returns,195

2The t-statistics of yearly returns of all portfolios considered in this section range from 3.29 to 4.98. Since
they are all significant, we shall omit these numbers in the tables below.
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the Sharpe ratios3, and the average ratio of the yearly transaction costs to the beginning of196

year portfolio wealth of the portfolios.197

Data source. The data of the total market capitalizations S(·) and the daily returns r(·)198

is downloaded from the CRSP US Stock Database4. This database contains the traded stocks199

on all major US exchanges. More precisely, we focus on ordinary common stocks5. The data200

starts January 2nd, 1962 and ends December 30th, 2016.201

The total market capitalizations are computed by multiplying the numbers of outstanding202

shares with the share prices, and are essential in determining the target weights. The daily203

returns include dividends but also delisting returns in case stocks get delisted (for example,204

the recovery rate in case a traded firm goes bankrupt).205

3.1. Index tracking portfolio. In this subsection, we introduce the index tracking port-206

folio. This portfolio is used to benchmark the performance of other portfolios studied in the207

following subsections. The index tracking portfolio has target weights208

πj(·) = µj(·), j ∈ {1, · · · , d}.209

Note that this portfolio is rebalanced only when the constituent list changes or when dividends210

are reinvested.211

The index tracking portfolio includes the effects of paying transaction costs and reinvesting212

dividends. In contrast, the capitalization index with wealth process213

d∑
i=1

Si(·)×
1000∑d
i=1 Si(t0)

214

does not take transaction costs and dividends into consideration.215

In the following, we examine the performance of the index tracking portfolio under different216

trading frequencies, renewing frequencies, as well as constituent list sizes d, when there are217

no transaction costs, i.e., when tc = 0, and when tc = 0.5% and tc = 1%, respectively. These218

numbers are consistent with the transaction cost estimates in [25], [15], [19], and [10].219

Varying the trading frequency. We fix the constituent list size d = 100 and use monthly220

renewing frequency. Table 1 shows the performance of the index tracking portfolio and the221

corresponding capitalization index under daily, weekly, and monthly trading frequencies, re-222

spectively. Note that the capitalization index does not depend on the trading frequency. As223

expected, with the same trading frequency, the portfolio performs worse under a larger trans-224

action cost rate tc. In addition, the portfolio outperforms the corresponding index, which225

implies that the dividends paid exceed the transaction costs imposed even if tc = 1%.226

Varying the renewing frequency. Still fixing the constituent list size d = 100, we now227

use daily trading frequency and vary the renewing frequency between monthly and quarterly228

3To compute the Sharpe ratios of the portfolios and the indices, the one-year U.S. Treasury yields are used.
The data of these yields can be downloaded from https://www.federalreserve.gov.

4See http://www.crsp.com/products/research-products/crsp-us-stock-databases for details.
5Those stocks in CRSP which have ‘Share Code’ 10, 11, or 12.
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Table 1
Yearly returns (YR) in percentage, standard deviations of yearly returns (Std), Sharpe ratios (SR), and the

average ratio of the yearly transaction costs to the beginning of year portfolio wealth (TR) in percentage of the
index tracking portfolio (IT) and the corresponding capitalization index (CI) under different trading frequencies,
renewing frequencies, constitute list sizes, and transaction cost rates tc. The first superscripts d, w, and m
indicate daily, weekly, and monthly trading frequencies, respectively, and the second superscripts M and Q
correspond to monthly and quarterly renewing frequencies, respectively. The first subscripts s and l indicate
d = 100 and d = 500, respectively, and the second subscript x corresponds to tc = x%.

CIMs ITd,M
s,0 ITd,M

s,0.5 ITd,M
s,1 ITw,M

s,0 ITw,M
s,0.5 ITw,M

s,1 ITm,M
s,0 ITm,M

s,0.5 ITm,M
s,1

YR 8.84 10.30 10.09 9.89 10.30 10.10 9.90 10.27 10.08 9.89
Std 16.59 16.87 16.84 16.81 16.88 16.85 16.82 16.88 16.86 16.83
SR 0.22 0.30 0.29 0.28 0.30 0.29 0.28 0.30 0.29 0.28
TR 0.21 0.42 0.20 0.40 0.19 0.38

CIQs ITd,Q
s,0 ITd,Q

s,0.5 ITd,Q
s,1 CIMl ITd,M

l,0 ITd,M
l,0.5 ITd,M

l,1

YR 8.82 10.34 10.20 10.06 9.01 10.83 10.71 10.59
Std 16.44 16.83 16.81 16.79 16.15 16.61 16.60 16.58
SR 0.22 0.31 0.30 0.29 0.24 0.34 0.33 0.33
TR 0.15 0.29 0.14 0.27

frequencies, respectively. As shown in Table 1, under the same transaction cost rate tc, the less229

frequently the constituent list is renewed, the better the portfolio performs. As trades are made230

when we renew the constituent list, renewing more frequently will impose larger transaction231

costs, which impacts the performance of the portfolio to a higher degree. Additionally, the232

more frequently the constituent list is renewed, the more sensitive the portfolio is to a larger233

transaction cost rate tc.234

Varying the constituent list size d. With daily trading and monthly renewing frequencies,235

we now backtest the performance of the index tracking portfolio under different constituent236

list sizes d. As shown in Table 1, the portfolio outperforms the corresponding index even with237

transaction cost rate tc = 1%. The more stocks the constituent list contains, the better the238

portfolio performs.239

3.2. Equally-weighted portfolio. This subsection examines the equally-weighted portfolio240

(see [3] and [26] for a discussion of this portfolio in the context of defined contribution plans,241

and [5] for a careful study of its properties). Here, the target weights are given by242

πj(·) =
1

d
, j ∈ {1, · · · , d}.243

For each portfolio with a specific trading frequency, a specific renewing frequency, and244

a specific constituent list size d, we examine its performance when there are no transaction245

costs, i.e., when tc = 0, and when tc = 0.5% and tc = 1%, respectively. As shown in246

the following, the equally-weighted portfolio outperforms the corresponding index tracking247

portfolio when there are no transaction costs. This well-behaved performance of the equally-248

weighted portfolio within a frictionless market is popular in the academic literature. However,249

the equally-weighted portfolio is very sensitive to transaction costs. Its performance is strongly250

compromised even with a small transaction cost rate tc = 0.5%.251
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Varying the trading frequency. Let us fix d = 100 and apply monthly renewing frequency.252

Table 2 summarises the performance of the equally-weighted portfolio under different trading253

frequencies and transaction cost rates tc. When there are no transaction costs, i.e., when254

tc = 0, the equally-weighted portfolio outperforms the corresponding index tracking portfolio255

under all three different trading frequencies. A similar observation is also provided in [2]. In256

addition, the more frequently the portfolio is traded, the better it performs. Trading more257

frequently also allows to reinvest the dividends faster, which helps to enhance the portfolio258

performance.259

Table 2
Yearly returns (YR) and excess returns (ER) with respect to the index tracking portfolio shown in Table 1

in percentage (t-statistics in brackets), standard deviations of yearly returns (Std), Sharpe ratios (SR), and the
average ratio of the yearly transaction costs to the beginning of year portfolio wealth (TR) in percentage of the
equally-weighted portfolio (EW) under different trading frequencies, renewing frequencies, constitute list sizes,
and transaction cost rates tc. The superscripts and subscripts have the same meaning as in Table 1.

EWd,M
s,0 EWd,M

s,0.5 EWd,M
s,1 EWw,M

s,0 EWw,M
s,0.5 EWw,M

s,1 EWm,M
s,0 EWm,M

s,0.5 EWm,M
s,1

YR 11.10 9.19 7.31 10.94 9.82 8.72 10.53 9.81 9.10

ER
0.79

[2.35]
-0.91

[-2.77]
-2.58

[-7.80]
0.64

[1.92]
-0.27

[-0.83]
-1.18
[-3.60]

0.26
[0.84]

-0.27
[-0.88]

-0.79
[-2.60]

Std 16.83 16.65 16.48 16.93 16.81 16.69 17.00 16.91 16.83
SR 0.35 0.24 0.13 0.34 0.28 0.21 0.31 0.27 0.23
TR 1.81 3.58 1.06 2.10 0.68 1.36

EWd,Q
s,0 EWd,Q

s,0.5 EWd,Q
s,1 EWd,M

l,0 EWd,M
l,0.5 EWd,M

l,1

YR 11.21 9.47 7.76 12.52 10.46 8.43

ER
0.86

[2.34]
-0.73

[-2.06]
-2.30

[-6.56]
1.70

[3.08]
-0.25

[-0.47]
-2.16
[-4.07]

Std 16.82 16.65 16.50 17.07 16.90 16.74
SR 0.36 0.26 0.16 0.43 0.31 0.19
TR 1.64 3.25 1.94 3.85

When transaction costs are imposed, Table 2 suggests that under the same transaction260

cost rate tc, the more frequently the portfolio is traded, the larger the decrease in portfo-261

lio performance is. The performance of the equally-weighted portfolio is strongly affected262

by transaction costs. Even with tc = 0.5%, the corresponding index tracking portfolio out-263

performs the equally-weighted portfolio. However, slowing down trading helps to reduce the264

influence of transaction costs. Indeed, the performance of the monthly traded equally-weighted265

portfolio when tc = 1% is similar to that of the daily traded one when tc = 0.5%.266

Varying the renewing frequency. Now, with d = 100, and daily trading frequency, we267

examine the performance of the equally-weighted portfolio under monthly and quarterly re-268

newing frequencies, respectively. As shown in Table 2, under the same transaction cost rate269

tc, the less frequently the constituent list is renewed, the better the portfolio performs. With270

tc = 0.5%, the equally-weighted portfolio already performs worse than the corresponding in-271

dex tracking portfolio. In particular, the portfolio with a more frequent renewing frequency272

is more sensitive to transaction costs. As studied in more detail in subsection 3.4, the reason273

behind these observations is that trading on renewing days incurs extremely large transaction274

costs compared with trading on other days when the constituent list is not renewed. These275
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10 J. RUF AND K. XIE

large transaction costs paid on renewing days strongly impact the portfolio performance.276

Varying the market size d. With daily trading and monthly renewing frequencies, Table 2277

summarises the performance of the equally-weighted portfolio under different constituent list278

sizes d. The more stocks the constituent list contains, the better the portfolio performs under279

the same transaction cost rate tc. Again, its performance is reduced by transaction costs.280

Even with d = 500 and tc = 0.5%, the equally-weighted portfolio performs worse than the281

corresponding index tracking portfolio. In addition, the portfolio with a larger constituent282

list size d is not necessarily more sensitive to transaction costs.283

Sensitivity of the Sharpe ratio. We now study the sensitivity of the Sharpe ratio with re-284

spect to the transaction cost rate tc. Specifically, we compute the Sharpe ratios of the monthly285

traded equally-weighted and index tracking portfolio for tc ∈ {0, 0.01%, 0.02%, · · · , 0.5%}. As286

plotted in Figure 1, the Sharpe ratios of both the equally-weighted and the index tracking port-287

folio decrease as tc becomes larger. On the left hand side of the intersection when tc < 0.22%,288

the equally-weighted portfolio has a higher Sharpe ratio. On the right hand side of the inter-289

section when tc > 0.22%, the inverse situation holds. This indicates that the equally-weighted290

portfolio depends more on transaction costs than the index tracking portfolio.291

Figure 1. Sharpe ratios of the equally-weighted portfolio (EW) and the index tracking portfolio (IT) under
different transaction cost rates tc with d = 100, monthly trading frequency, and monthly renewing frequency.

Moreover, as shown in Figure 1, the Sharpe ratio is roughly affine in the transaction cost292

rate. As the standard deviations of yearly returns remain relatively stable for each portfolio,293

the average yearly return is also roughly affine in transaction cost rate. This observation is294

consistent with the value of yearly returns reported in all tables, regardless of the portfolio295

considered. In particular, the slope of the line, when multiplied by the negative of the standard296

deviation of the portfolio yearly return, is an approximation of the portfolio turnover, as297

suggested below by Remark 3.1.298
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Remark 3.1. Consider a single period from time 0 to time 1 and let tc1 and tc2 be two299

different transaction cost rates. Then, given the initial wealth V (0) of a portfolio at time 0,300

we have301

r1 − r2 ≈
V (1)− TC1 − V (0)

V (0)
− V (1)− TC2 − V (0)

V (0)
≈ (tc2 − tc1)TV

V (0)
= (tc2 − tc1)Turnover,302

where r1 and r2 are the net returns of the portfolio from time 0 to time 1 with tc1 and tc2,303

respectively, V (1) is the portfolio wealth at time 1 if there are no transaction costs, and TV304

is the trading volume of the portfolio. Therefore, we have305

SR1 − SR2

tc1 − tc2
≈ r1 − r2
σ(tc1 − tc2)

≈ −Turnover

σ
,306

where SR1 and SR2 are the Sharpe ratios of the portfolio with tc1 and tc2, respectively, and307

σ is the standard deviation of the portfolio return.308

3.3. Entropy-weighted portfolio. In this subsection, we consider the entropy-weighted309

portfolio (see Section 2.3 in [7] and Example 5.3 in [14]), which relies on target weights310

πj(·) =
µj(·) logµj(·)∑d
i=1 µi(·) logµi(·)

, j ∈ {1, · · · , d}.311

In the following, we examine the performance of the entropy-weighted portfolio under312

specific configurations when there are no transaction costs, i.e., when tc = 0, and when313

tc = 0.5%. The performance of the entropy-weighted portfolio is less sensitive to transaction314

costs and is better when tc = 0.5%, compared with that of the equally-weighted portfolio.315

Varying the trading frequency. As before, when backtesting the portfolio under different316

trading frequencies, we set the constituent list size d = 100 and apply monthly renewing fre-317

quency. Table 3 summarises the performance of the entropy-weighted portfolio under different318

trading frequencies. Compared with the equally-weighted portfolio summarised in Table 2,319

the entropy-weighted portfolio performs worse (but still outperforms the corresponding index320

tracking portfolio) when there are no transaction costs, i.e., when tc = 0. However, oppo-321

site to the equally-weighted portfolio, the weekly and the monthly traded entropy-weighted322

portfolio still outperforms the corresponding index tracking portfolio when tc = 0.5%.323

Over a large time horizon, the loss in the portfolio wealth resulting from paying transac-324

tion costs is usually higher than the cumulative transaction costs imposed. Indeed, paying325

transaction costs not only takes money out of the portfolio, but also deprives the opportunity326

for making potential gains.327

Varying the renewing frequency. With d = 100 and daily trading frequency, we now328

examine the performance of the entropy-weighted portfolio applying monthly and quarterly329

renewing frequencies, respectively. As shown in Table 3, similar to the equally-weighted330

portfolio, the less frequently the constituent list is renewed, the better the entropy-weighted331

portfolio performs. When transaction costs are imposed, its performance depends more on332

the renewing frequency. However, compared with the equally-weighted portfolio summarised333

in Table 2, the performance of the entropy-weighted portfolio is less sensitive to transaction334

costs under the same renewing frequency.335
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12 J. RUF AND K. XIE

Table 3
Yearly returns (YR) and excess returns (ER) with respect to the index tracking portfolio shown in Table 1

in percentage (t-statistics in brackets), standard deviations of yearly returns (Std), Sharpe ratios (SR), and
the average ratio of the yearly transaction costs to the beginning of year portfolio wealth (TR) in percentage of
the entropy-weighted portfolio (ET) and the corresponding index tracking portfolio (IT) under different trading
frequencies, renewing frequencies, constitute list sizes, and transaction cost rates tc. The superscripts and
subscripts have the same meaning as in Table 1.

ETd,M
s,0 ETd,M

s,0.5 ETw,M
s,0 ETw,M

s,0.5 ETm,M
s,0 ETm,M

s,0.5 ETd,Q
s,0 ETd,Q

s,0.5 ETd,M
l,0 ETd,M

l,0.5

YR 10.53 9.97 10.50 10.12 10.40 10.11 10.58 10.11 11.16 10.75

ER
0.23

[2.03]
-0.12

[-1.08]
0.21

[1.82]
0.02

[0.21]
0.14

[1.24]
0.03

[0.29]
0.24

[2.08]
-0.09

[-0.78]
0.33

[2.51]
0.04

[0.27]
Std 16.90 16.83 16.92 16.88 16.94 16.90 16.86 16.81 16.66 16.62
SR 0.32 0.28 0.31 0.29 0.31 0.29 0.32 0.29 0.36 0.34
TR 0.53 0.36 0.28 0.45 0.39

Varying the market size d. Applying daily trading and monthly renewing frequencies, we336

backtest the entropy-weighted portfolio under different constituent list sizes d (= 100 and 500,337

respectively), as shown in Table 3. Similar to the equally-weighted and the index tracking338

portfolio, the more stocks the constituent list contains, the better the entropy-weighted port-339

folio performs. Compared with the equally-weighted portfolio, the entropy-weighted portfolio340

with the same d depends less on transaction costs. In particular, with d = 500 and tc = 0.5%,341

the entropy-weighted portfolio still outperforms the corresponding index tracking portfolio.342

3.4. Diversity-weighted portfolio and smoothing transaction costs. One portfolio that343

draws much attention in Stochastic Portfolio Theory is the so-called diversity-weighted port-344

folio generated from the “measure of diversity”345

Gp(x) =

(
d∑
i=1

xpi

)1/p

, x ∈

{
(y1, · · · , yd)′ ∈ [0, 1]d;

d∑
i=1

yi = 1

}
,346

for some fixed p ∈ (0, 1). Without changing the relative ranking of the stocks, the function347

Gp(·) generates portfolio weights smaller (larger) than the corresponding market weights for348

stocks with large (small) market weights. This diversification property of Gp is closely re-349

lated to the implementation of relative arbitrage portfolios; see Section 7 in [9] for details.350

Section 6.3 in [7] provides a theoretical approximation of the diversity-weighted portfolio351

turnover. An empirical study of this portfolio using S&P 500 market data can be found in [8]352

and Chapter 7 of [7], as well as in Example 5 of [23].353

In the following, we examine the performance of this portfolio and illustrate the tradeoff354

between trading with a higher frequency and paying transaction costs. To achieve this, we355

shall replace the market weights by a smoothed version, given by356

µ(·) = αµ(·) + (1− α)Λ(·)357

with α ∈ (0, 1). Here, the moving average process Λ(·) = (Λ1(·), · · · ,Λd(·))′ is given by358

Λj(·) =


1
δ

∫ ·
0 µj(t)dt+ 1

δ

∫ 0
·−δ µj(0)dt on [0, δ)

1
δ

∫ ·
·−δ µj(t)dt on [δ,∞)

, j ∈ {1, · · · , d},359
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Table 4
Yearly returns (YR) and excess returns (ER) with respect to the index tracking portfolio (IT) summarised

here and in Table 1 in percentage (t-statistics in brackets), standard deviations of yearly returns (Std), Sharpe
ratios (SR), and the average ratio of the yearly transaction costs to the beginning of year portfolio wealth (TR)
in percentage of the diversity-weighted portfolio (DW) under different trading frequencies, convexity weights α,
and transaction cost rates tc with d = 100 and quarterly renewing frequency. The superscripts and subscripts
have the same meaning as in Table 1.

ITw,Q
s,0 ITw,Q

s,0.5 ITw,Q
s,1 α DWd,Q

s,0 DWd,Q
s,0.5 DWd,Q

s,1 DWw,Q
s,0 DWw,Q

s,0.5 DWw,Q
s,1

0.2 10.36 10.20 10.03 10.36 10.20 10.05
YR 10.34 10.20 10.06 0.6 10.43 10.18 9.93 10.42 10.23 10.03

1 10.54 10.11 9.68 10.51 10.24 9.96

0.2
0.02

[1.35]
0.00

[-0.23]
-0.03
[-1.78]

0.02
[1.30]

0.00
[0.24]

-0.01
[-0.78]

ER 0.6
0.09

[1.74]
-0.02

[-0.37]
-0.13
[-2.49]

0.09
[1.60]

0.03
[0.55]

-0.03
[-0.51]

1
0.20

[2.12]
-0.09

[-1.03]
-0.38
[-4.19]

0.18
[1.90]

0.04
[0.41]

-0.10
[-1.10]

0.2 16.84 16.81 16.79 16.85 16.83 16.80
Std 16.85 16.83 16.81 0.6 16.84 16.81 16.77 16.86 16.83 16.80

1 16.84 16.79 16.74 16.87 16.83 16.79

0.2 0.31 0.30 0.29 0.31 0.30 0.29
SR 0.31 0.30 0.29 0.6 0.31 0.30 0.28 0.31 0.30 0.29

1 0.32 0.29 0.27 0.32 0.30 0.28

0.2 0.16 0.32 0.15 0.29
TR 0.14 0.28 0.6 0.24 0.48 0.18 0.37

1 0.41 0.81 0.26 0.52

for a fixed constant δ > 0. This moving average process Λ(·) is also included in the portfolio360

generating function studied in [24]. Then the target weights are given by361

πj(·) = µj(·)

(
Ξj(·)−

d∑
i=1

µi(·)Ξi(·) + 1

)
, j ∈ {1, · · · , d},362

where363

Ξj(·) =
α
(
µj(·)

)p−1∑d
i=1 (µi(·))

p
, j ∈ {1, · · · , d}.364

To backtest the portfolio, we fix d = 100, the renewing frequency to be quarterly, and365

the “diversity degree” p = 0.8. Moreover, we compute the moving average process Λ(·) using366

a one-year window. To be more specific, with daily trading frequency, we set δ = 250; with367

weekly trading frequency, we set δ = 52. To compute Λ(·) under weekly trading frequency,368

we only use market weights µ’s on the days when transactions are made.369

Varying the convexity weight α and the trading frequency. In Table 4, we summarise370

the wealth processes of the diversity-weighted and the corresponding index tracking portfolio371

under both daily and weekly trading frequencies and with three different choices for the372

convexity weight α, when there are no transaction costs, i.e., when tc = 0, and when tc = 0.5%373

and tc = 1%, respectively.374
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We first consider the case when there are no transaction costs. Everything else equal, the375

daily traded diversity-weighted portfolio performs similarly to the weekly traded portfolio.376

Under either trading frequency, the smaller the convexity weight α is, the worse the port-377

folio performs. Generating the portfolio with a smaller α is somewhat alike to trading less378

frequently, as it assigns less weights on the volatile term µ(·) and more weights on the stable379

term Λ(·) when constructing µ(·), and thus makes µ(·) less volatile.380

Next, we consider the case with transaction costs. Under either daily or weekly trading381

frequency, a smaller convexity weight α tends to improve the portfolio performance when the382

transaction cost rate tc becomes larger. This can be useful, since decreasing α partially cancels383

out the effect of transaction costs. Moreover, when tc = 1%, the daily traded portfolio with384

α = 0.2 performs similarly as the weekly traded portfolio with α = 0.6. This indicates that,385

instead of trading less frequently in order to avoid paying transaction costs, one can adjust386

the convexity weight α to reach a more favourable balance between trading frequently and387

paying transaction costs.388

4. Conclusion. In this paper, we empirically study the impact of proportional transaction389

costs on systemically generated portfolios. Given a target portfolio, we provide a scheme to390

backtest the portfolio using total market capitalization and daily stock return time series. Im-391

plementing this scheme, we examine the performance of several portfolios (the index tracking392

portfolio, the equally-weighted portfolio, the entropy-weighted portfolio, and the diversity-393

weighted portfolio), assuming various transaction cost rates, trading frequencies, portfolio394

constituent list sizes, and renewing frequencies.395

As expected, everything else equal, a portfolio performs worse as transaction costs are396

higher and the portfolio renewing frequency of the underlying constituent list is higher. In397

the absence of transaction costs, trading under a higher frequency leads to better portfolio398

performance. However, in the presence of transaction costs, implementing a higher trading399

frequency can also result in larger transaction costs and reduce the portfolio performance400

significantly. Hence, trading under an appropriate frequency is necessary in practice. In401

addition, with or without transaction costs, a more diversified portfolio containing more stocks402

usually performs better.403

The empirical results indicate that the equally-weighted portfolio performs well relative404

to the index tracking portfolio when there are no transaction costs. However, the perfor-405

mance of the equally-weighted portfolio is very sensitive to transaction costs. Although the406

entropy-weighted portfolio performs a bit worse than the equally-weighted portfolio (but still407

outperforms the index tracking portfolio) when there are no transaction costs, its performance408

depends much less on transaction costs, compared to the equally-weighted portfolio.409

Appendix A. Proof of Proposition 2.1.410

Proof. By the definition of D̂j given in (2.7) and by some basic computations, (2.9) is411

equivalent to412

c = cj +
D̂ − D̂j(

1 + tcb
)∑d

i=1 πi(t)1ci≤cj + (1− tcs)
∑d

i=1 πi(t)1ci>cj
,413

which implies 1ci≤c ≥ 1ci≤cj , for all i ∈ {1, · · · , d}.414
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In the case maxi∈{1,··· ,d} D̂i ≤ D̂, we have 1ci≤cj = 1, hence 1ci≤c ≤ 1ci≤cj , for all i ∈415

{1, · · · , d}. In the case maxi∈{1,··· ,d} D̂i > D̂, define416

j′ = arg min
i∈{1,··· ,d}

{
D̂i; D̂i > D̂

}
.417

Then (2.9) is equivalent to418

c =

(
1 + tcb

)∑d
i=1 ciπi(t)1ci<cj′ + (1− tcs)

∑d
i=1 ciπi(t)1ci≥cj′ + D̂(

1 + tcb
)∑d

i=1 πi(t)1ci<cj′ + (1− tcs)
∑d

i=1 πi(t)1ci≥cj′

= cj′ +
D̂ − D̂j′(

1 + tcb
)∑d

i=1 πi(t)1ci<cj′ + (1− tcs)
∑d

i=1 πi(t)1ci≥cj′
,

419

which implies 1ci>c ≥ 1ci>cj , for all i ∈ {1, · · · , d}. All in all, we have shown 1ci≤c = 1ci≤cj ,420

for all i ∈ {1, · · · , d}.421

Define next422

Πb =
(

1 + tcb
) d∑
i=1

πi(t)1ci≤cj , Πs = (1− tcs)
d∑
i=1

πi(t)1ci>cj ,423

Π
b

=
(

1 + tcb
) d∑
i=1

ciπi(t)1ci≤cj , Π
s

= (1− tcs)

d∑
i=1

ciπi(t)1ci>cj .424

425

Hence, after inserting c by (2.9) into (2.6), the LHS of (2.6) becomes426

LHS = cΠb −Π
b

=
ΠbΠ

s −ΠsΠ
b

+ ΠbD̂

Πb + Πs
,427

and the RHS of (2.6) becomes428

RHS = Π
s − cΠs + D̂ =

ΠbΠ
s −ΠsΠ

b −ΠsD̂

Πb + Πs
+ D̂ = LHS.429

Therefore, c defined by (2.9) indeed solves (2.6).430
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