
Cryptocurrencies: Protocols for Consensus

Andrew Lewis-Pye ∗

February 20, 2020

The novel feature of Bitcoin [N+08] as a currency
is that it is designed to be decentralised, i.e. to be run
without the use of a central bank, or any centralised
point of control. Beyond simply serving as curren-
cies, however, cryptocurrencies like Bitcoin are really
protocols for reaching consensus over a decentralised
network of users. While running currencies is one
possible application of such protocols, one might con-
sider broad swathes of other possible applications. As
one example, we have already seen cryptocurrencies
used to instantiate decentralised autonomous organi-
sations [KOH19], whereby groups of investors come
together and coordinate their investments in a decen-
tralised fashion, according to the rules of a protocol
that is defined and executed ‘on the blockchain’. One
might also envisage new forms of decentralised finan-
cial markets, or perhaps even a truly decentralised
world-wide-web, in which open-source applications
are executed by a community of users, so as to ensure
that no single entity (such as Google or Facebook) ex-
erts excessive control over the flow of personal data
and other information.

There are many questions to be answered before we
can talk with any certainty about the extent to which
such possibilities can be realised. Some of these ques-
tions concern human responses, making the answers
especially hard to predict. How much appetite does
society have for decentralised applications, and (be-
yond the possibilities listed above) what might they
be? In what contexts will people feel that the sup-
posed advantages of decentralisation are worth the
corresponding trade-offs in efficiency? There are also
basic technical questions to be addressed. Perhaps

∗The author is a professor of mathematics at the London
School of Economics. His email address is a.lewis7@lse.ac.uk.

the best known of these is the so called scalability is-
sue: Can cryptocurrency protocols be made to handle
transactions at a rate sufficient to make them useful
on a large scale?

In this paper, we will describe how Bitcoin works
in simple terms. In particular, this means describ-
ing how the Bitcoin protocol uses hard computational
puzzles in order to establish consensus as to who owns
what. Then we will discuss some of the most signifi-
cant technical obstacles to the large scale application
of cryptocurrency protocols, and approaches that are
being developed to solve these problems.

Bitcoin and Nakamoto Consen-
sus

The Bitcoin network launched in January 2009. Since
that time, the total value of the currency has been
subject to wild fluctuations, but at the time of writ-
ing is in excess of $170 billion.1 Given the amount of
attention received by Bitcoin, it might be surprising
to find out that consensus protocols have been exten-
sively studied in the field of distributed computing
since at least the 1970s [Lyn96]. What differentiates
Bitcoin from previous protocols, however, is the fact
that it is a permissionless consensus protocol, i.e. it
is designed to establish consensus over a network of
users that anybody can join, with as many identi-
ties as they like in any role. Anybody with access to
basic computational hardware can join the Bitcoin
network, and users are often encouraged to establish
multiple public identities, so that it is harder to trace
who is trading with whom.

1For an up-to-date value, see coinmarketcap.com.

1

It is not difficult to see how the requirement for
permissionless entry complicates the process of es-
tablishing consensus. In the protocols that are tra-
ditionally studied in distributed computing, one as-
sumes a fixed set of users, and protocols typically
give performance guarantees under the condition that
only a certain minority of users behave improperly –
‘improper’ action might include malicious action by
users determined to undermine the process. In the
permissionless setting, however, a single user can es-
tablish as many identities as they like. Executing
a protocol that is only guaranteed to perform well
when malicious users are in the minority, is thus akin
to running an election in which people are allowed to
choose their own number of votes.

In the permissionless setting, one therefore needs
a mechanism for weighting the contribution of users
that goes beyond the system of ‘one user, one vote’.
The path taken by Bitcoin is to weight users accord-
ing to their computational power. This works be-
cause computational power is a scarce and testable
resource. A user might be able to double their num-
ber of identities in the system at essentially zero cost,
but this will not impact their level of influence. To do
that, they will need to increase their computational
power, which will be expensive.

Before we see how Bitcoin achieves this in more
detail, we will need to get a clearer picture of how
one might go about running a (centralised or decen-
tralised) digital currency in the first place. To explain
that, we will need some basic tools from cryptogra-
phy.

Basic tools from cryptography

The two basic tools that we will need from cryptogra-
phy are signature schemes and hash functions. Luck-
ily, we can entirely black-box the way in which these
tools are implemented. All that is required now is to
understand the functionality that they provide.

Signature schemes. Presently, most cryptocurren-
cies use signature schemes that are implemented us-
ing Elliptic Curve Cryptography. The functionality
provided by these signature schemes is very simple.
When one user wishes to send a message to another,

the signature scheme produces a signature, which is
specific to that message and that user. This works
in such a way that any user receiving the message
together with the signature can efficiently verify who
the message came from. So the use of an appropriate
signature scheme means one cannot produce ‘fake’
messages purporting to be from other users.

Hash functions. Hash functions take binary strings
of any length as input, and produce strings of a fixed
length as output. Normally, we work with hash func-
tions which produce 256 bit strings, and the 256 bit
output is referred to as the hash of the input string.
Beyond that basic condition, a hash function is de-
signed to be as close as possible to being a random
string generator (subject to the condition that the
same input always gives the same output): Informally
speaking, the closer to being a random string genera-
tor, the better the hash function. This means that a
good hash function will satisfy two basic properties:

(a) Although in theory the function is not injective,
in practice we will never find two strings that
hash to the same value, because there are 2256

possible outputs.

(b) If tasked with finding a string that hashes to a
value with certain properties, there is no more
efficient method than trying inputs to the hash
function one at a time, and seeing what they
produce.

So if we are working with a good hash function, and
we are tasked with finding a string of a certain length
that hashes to a value starting with 10 zeros, then
there is no more fundamentally efficient method than
just plugging in input values, until we find one that
works.

Implementing a centralised digital cur-
rency

As we have already said, it is the aim of Bitcoin to
be decentralised. To understand what difficulties we
face in implementing a decentralised digital currency,
however, it is instructive to consider first how one
might implement a centralised digital currency, which

2

works with the use of a central bank. Once that sim-
ple case is dealt with, we can properly analyse what
difficulties arise in the decentralised case.

Presumably, we will want our currency to be di-
vided into units, or coins. For the sake of simplicity,
we will start by concentrating on what happens to
a single coin, and suppose that this coin is indivis-
ible. So the owner of the coin can either spend the
whole coin or nothing – they are not allowed to spend
half the coin. In that case, we might have the ‘coin’
simply be a ledger (i.e. an accounting record), which
records its sequence of owners. A coin is thus a binary
sequence, which could be visualised as below.

owned by

Frank
then by

Alice

For now, do not not worry about how Frank came to
own this coin in the first place – we will come to that
later. Instead, let us consider what needs to happen
when Alice, who presently owns the coin, wants to
transfer it to another user. In the presence of a cen-
tral bank this is simple: Alice can form a new version
of the coin recording that it now belongs to the new
user, Bob say, and send that new version of the coin
to the central bank. In order that the central bank
can be sure that the extension to the ledger really
was created by Alice, though, she will need to add
her signature – we will picture the relevant signature
as a little black box attached to the bottom right cor-
ner of that part of the ledger. Of course, if Alice has
to add her signature now, Frank will also have had
to add his signature when he transferred the coin to
Alice. The signature added to each extension of the
ledger can be seen as testimony by the previous owner
that they wish to transfer the coin to the new user.
The new version of the coin can then be represented
as below.

owned by

Frank
then by

Alice
then by

Bob

When the central bank sees the new version of the
coin, they can check to see that the signature is cor-
rect, and, if so, record the transaction as confirmed.

The use of a signature scheme therefore suffices to en-
sure that only Alice can spend her coin. This is not
the only thing we have to be careful about though.
We also need to be sure that Alice cannot spend her
coin twice. In the presence of the central bank, this
is also simple. Suppose Alice later creates a new ver-
sion of the coin, which transfers the coin to another
user Charlie instead. In this case, the central bank
will see that this transaction conflicts with the earlier
one that they have seen, and so will reject it.

This simple protocol therefore achieves two basic
aims:

1. Only Alice can spend her coin, and;

2. Alice cannot ‘double spend’.

So what changes when we try to do without the use
of a central bank? Let us suppose that all users now
store a copy of the coin. When Alice wishes to trans-
fer the coin to Bob, she forms a new version of the
coin, together with her signature, as before. Now,
however, rather than sending it to the central bank,
she simply sends the new version to various people
in the network of users, who check the signature and
then distribute it on to others, and so on. In this
case, the use of signatures still suffices to ensure that
only Alice can spend her coin. The issue is now that
it becomes tricky to ensure that Alice cannot spend
her coin twice. Alice could form two new versions of
the coin, corresponding to two different transactions.
If we could be certain that all other users saw these
two versions in the same order, then there would not
be a problem, as then users could just agree not to
allow the second transaction. Unfortunately, we have
no way of ensuring this is the case.2

Removing the central bank

From the discussion above, it is clear that we need
a protocol for establishing irreversible consensus on
transaction ordering. To describe how this can be

2The reader is encouraged to convince themself that there
is no simple solution here. For example, it might be tempting
to think that one should cancel both if one sees contradictory
transactions, but this will allow Alice to invalidate transactions
deliberately after they are considered to have cleared.

3

achieved, we will initially describe a protocol that
differs from Bitcoin in certain ways, and then we will
describe what changes are required to make it the
same as Bitcoin later.

Previously, we simplified things by concentrating
on one coin. Let us now drop that simplification, and
have all users store a universal ledger, which records
what happens to all coins. We can also drop the
simplification that coins are indivisible if we want,
and allow transactions which transfer partial units
of currency. So, according to this modified picture,
each user stores a universal ledger, which is just a
‘chain’ of signed transactions. Each transaction in
this chain might now follow an unrelated transaction,
which transfers a different coin (or part of it) between
a different pair of users: The universal ledger is just
a chain of transactions recording all transfers of cur-
rency that occur between users.

The reader will notice that in the picture above,
we have each transaction pointing to the previous
transaction. We should be clear about how this is
achieved, because it is important that we create a
tamper proof ledger: We do not want a malicious
user to be able to remove intermediate transactions
and produce a version of the universal ledger which
looks valid. What we do is to have each signed trans-
action include the hash of the previous transaction
as part of its data. Since hash values are (in effect)
unique, this hash value serves as a unique identifier.

What happens next is the key new idea:

A We specify a computational puzzle correspond-
ing to each transaction, which is specific to the
transaction, and which can only be solved with a
lot of computational work. The puzzle is chosen
so that, while the solution takes a lot of com-
putational work to find, a correct solution can
easily (i.e. efficiently) be verified as correct. The
solution to the puzzle corresponding to a given
transaction is called a ‘proof-of-work’ (PoW) for
that transaction.

B We insist that a transaction cannot be included
in the universal ledger, unless accompanied by
the corresponding PoW.

Do not worry immediately about precisely how the
PoW is specified – we will come back to that shortly.
Now when Alice wants to spend her coin, she sends
the signed transaction out into the network of users,
all of whom start trying to produce the necessary
PoW. Only once the PoW is found can the transac-
tion be appended to the universal ledger. So now
transactions are added to the chain at the rate at
which PoWs are found by the network of users. The
PoWs are deliberately constructed to require time
and resources to complete. Exactly how difficult they
are to find is the determining factor in how fast the
chain grows.

Of course, the danger we are concerned with is
that a malicious user might try to form alternative
versions of the ledger. How are we to know which
version of the ledger is ‘correct’? In order to deal
with these issues, we make two further stipulations
(the way in which these stipulations prevent double
spending will be explained shortly):

C We specify that the ‘correct’ version of the ledger
is the longest one. So when users create new
transactions, they are asked to have these ex-
tend the ‘longest chain’ of transactions (with the
corresponding PoWs supplied) they have seen.

D For a certain security parameter k, a given user
will consider a transaction t as ‘confirmed’ if t
belongs to a chain C which is at least k transac-
tions longer than any they have seen that does
not include t, and if t is followed by at least k
many transactions in C.

The choice of k will depend on how sure one needs
to be that double spending does not occur. For the
sake of concreteness, the reader might think of k = 6
as a reasonable choice.

These are quite simple modifications. How do they
prevent double spending? The basic idea is as follows.
Suppose that at a certain point in time, Alice wants
to double spend. Let us suppose that the longest
chain of transactions is as depicted below, and that
the confirmed transaction t that Alice wants to re-
verse is third one (circled).

4

In order to reverse this transaction, Alice will have to
form a new chain that does not include t. This means
branching off before t, and building from there.

For people to believe it, however, this new chain will
have to be the longest chain. The difficulty for Alice
is that while she builds her new chain of transactions,
the rest of the network combined is working to build
the other longer chain.

So long as Alice does not have more computational
power than the rest of the network combined, she
will not be able to produce PoWs faster than they
can. Her chain will therefore grow at a slower rate
than the longest chain, and her attempt to double
spend will fail.3 So long as no malicious user (or
coordinated set of users) has more power than the
rest of the network combined, what we have achieved
is a tamper proof universal ledger, which establishes
irreversible consensus on transaction ordering, and
which operates in a decentralised way.

To finish this section, we now fulfil some earlier
promises. We have to explain how PoWs are defined,
what changes are necessary to make the protocol like
Bitcoin, and how users come to own coins in the first
place.

Defining PoWs

In fact, it will be useful to define PoWs for binary
strings more generally – of course transactions are
specified by binary strings of a particular sort. To do
this we fix a good hash function h, and work with a
difficulty parameter d, which (is not to be confused
with the security parameter k and) can be adjusted
to determine how hard the PoW is to find. For two
strings x and y, let xy denote the concatenation of x

3A caveat is that finding PoW is best modelled as proba-
bilisitic. So there will be some chance Alice succeeds in double
spending, but it will be small.

and y. Then we define a PoW for x to be any string
y such that h(xy) starts with d many zeros. Given
the properties of a good hash function described ear-
lier, this means that there is no more efficient way
to find a PoW for x than to plug through possible
values for y, requiring 2d many attempts on average.
The expected time it will take a user to find a PoW
is therefore proportional to the rate at which they
can process hash values, and for larger d the PoW
will be harder to find. Defining PoW in this way also
means that the process by which the network as a
whole finds PoWs can reasonably be modelled as a
Poisson process: In any second there is some indepen-
dent probability that a PoW will be found, and that
probability depends on the rate at which the network
as a whole can process hashes.

Using blocks of transactions

The most significant difference between the protocol
we have described and Bitcoin, is that in Bitcoin the
ledger does not consist of individual transactions, but
blocks of transactions (hence the term ‘blockchain’).
Each block is a binary string, which contains within
its data a few thousand transactions,4 together with
a hash value specifying the previous block. So now,
individual transactions are sent out into the network,
as before. Rather than requiring a PoW for each in-
dividual transaction, however, Bitcoin asks users to
collect large sets of transactions into blocks, and only
requires one PoW per block. The main reason5 for
this is worth understanding properly, because it also
relates quite directly to the issue of scalability, which
we will discuss in the next section. The key realisa-
tion here, is that we have to take careful account of
the fact that the underlying communication network

4At the time of writing the monthly mean is just over 2000
transactions per block.

5There is a second reason. We want the rate at which PoWs
are found, rather than the rate at which users wish to execute
transactions, to be the determining factor in how fast the chain
grows. One PoW per transaction therefore means requiring a
queue of transactions: If there is no queue and if users wish
to execute x many transactions each hour, then x many trans-
actions will be added to the chain each hour, and it will be
the rate at which users wish to execute transactions that de-
termines how fast the chain grows.

5

has latency, i.e. it takes time for messages to prop-
agate through the network. This latency becomes
especially problematic when we work at the level of
individual transactions, since they are likely to be
produced at a rate which is high compared to net-
work latency. For the sake of concreteness, it may
be useful to work with some precise numbers. So, as
an example, let us suppose that it takes 10 seconds
for a transaction to propagate through the network
of users. Suppose that we are using the protocol as
defined previously, so that PoWs are required for in-
dividual transactions, rather than for blocks. To be-
gin with, let us suppose that the difficulty parameter
is set so that the network as a whole finds PoWs for
transactions once every 10 minutes on average. Con-
sider a point in time at which all users have seen
the same longest chain C, and consider what hap-
pens when a PoW for a new transaction t1 is found
by a certain user, so that t1 can be appended to C.
The PoW for t1 then begins to propagate through
the network. The crucial observation is that there is
then the following danger: During those 10 seconds of
propagation time, there is some chance that another
user, who has not yet seen the new extended version
of the ledger, will find a PoW for another transaction
t2. In this case, we now have an honestly produced
fork, which splits the honest users.

t1

t2

While some users will be looking to find PoWs to ex-
tend one version of the chain, others will be working
to extend the other. At least briefly, this makes it
slightly easier for a malicious user to double spend,
because now they only have to outcompete each com-
ponent of the divided network.

In that example the chance of a fork is quite low,
because PoWs are only produced once every 10 min-
utes on average, while propagation time is 10 seconds.
If we have a PoW produced every minute on aver-
age, however, then the appearance of a fork will now
be 10 times as likely. The problem we have is that,
practically speaking, we will need transactions to be
processed at a much higher rate than one per minute:
Bitcoin can process 7 transactions a second and this

is generally regarded as being unacceptably slow for
large scale adoption. If PoWs are being produced at
a rate of 7 per second, then we will not only see forks
of the kind described above. We will see forks within
forks within forks, with different honest users split
between many different chains, and the security of
the protocol will be dramatically compromised. This
problem is avoided by using blocks, because blocks
of transactions can be produced much more slowly:
In Bitcoin the difficulty of the PoW is adjusted so as
to ensure that one block is produced every 10 min-
utes on average. This means that, most of the time,
all honest users will be working to extend the same
chain.

Minting new coins

In Bitcoin, the users who look to provide the PoW for
blocks of transactions are referred to as ‘miners’, and
the process of searching for PoW is called ‘mining’.
Now, though, we have a problem of incentives to deal
with. Mining costs money. There are hardware and
electricity costs, amongst others. If the system is to
be secure against double spending, then we certainly
need lots money to be spent on mining – the security
of the system is directly determined by how much it
would cost a malicious user to establish more mining
power than the rest of the network. To incentivise
them to mine, this means that miners need to be
paid in one way or another, and it is here that it is
rather convenient that we happen to be designing a
currency. In the context of running a currency, the
solution becomes simple: We reward miners for find-
ing PoWs by giving them currency.6 This also, rather
neatly, solves the problem as to how users come to
own coins in the first place. It is when miners find
a PoW that they are assigned previously unowned
units of currency.

6It is often asked whether other forms of permissionless
blockchain will have more impact than cryptocurrencies. Once
one has the latter providing a tamper proof ledger, this can be
used for other applications. Without using a cryptocurrency,
however, the task of motivating users to follow protocol will
have to be achieved by means other than payment in currency.

6

The issue of scalability

There are various technical issues that need to be
addressed before cryptocurrencies see large scale
adoption. Among the less serious of these is that
Bitcoin requires fully participating users to download
the entire ledger (presently over 200GB). Much more
significant is the fact that proof-of-work protocols
are energy intensive, to the point that recent esti-
mates show Bitcoin consuming more energy than
the nation of Switzerland.7 The question that has
received most attention, however, is how to increase
transaction rates: While Visa is capable of handling
more than 65000 transactions per second, Bitcoin
can presently process 7 transactions per second. In
this section, we will explain why Bitcoin processes
transactions so slowly, and some proposed solutions.

The two transaction rate bottlenecks

There are two fundamental bottlenecks that limit
transaction rates for cryptocurrency protocols such
as Bitcoin.

The latency bottleneck. The Bitcoin protocol
limits the size of blocks to include a few thousand
transactions, and the PoW difficulty setting is ad-
justed every couple of weeks, so that blocks are pro-
duced once every 10 minutes on average. These two
factors – the cap on the size of blocks and the fixed
rate of block production – directly result in the lim-
ited transaction rate described above. To increase
transactions rates, though, it is tempting to think
that one could simply increase the size of blocks, or
have them produced more frequently. To increase
the transaction rate by a factor of 600, why not have
blocks being produced once per second? In fact, the
issue here is precisely the same as the motivation for
using blocks in the first place, which we discussed in
detail previously.8 Our earlier discussion considered
individual transactions, but precisely the same argu-
ment holds for blocks of transactions: The fact that

7See https://www.cbeci.org/comparisons/.
8For a more detailed analysis, we refer the reader to

[DW13].

the network has latency (blocks take a few seconds
to propagate through the network) means that when-
ever a block is produced, there is also the possibility
of an honestly produced fork in the blockchain. If
we double the rate of block production, then we dou-
ble the probability of that fork. If we were to have
a block produced once per second on average, then
we would see forks within forks within forks, and the
protocol would no longer be secure.9 Essentially the
same analysis holds in the case that we increase the
size of blocks, because doing so increases propagation
time. This increase in propagation time similarly in-
creases the probability of a fork.

The processor bottleneck. A basic feature of
Bitcoin that distinguishes it from centrally run cur-
rencies is that all fully participating users are re-
quired to process all transactions. For some appli-
cations of blockchain technology, however, one might
want to process many millions of transactions per sec-
ond.10 To achieve this (even if one solves the latency
bottleneck), one needs to deal with the fundamental
limitation that transactions can only be processed as
fast as can be handled by the slowest user required
to process all transactions. The prospect of a decen-
tralised Web 3.0 in which all users have to process
all interactions must surely be a non-starter. So how
can one work around this? Limiting the users who
have to process all transactions to a small set with
such capabilities constitutes a degree of centralisa-
tion. Another possibility is not to require any users
to process all transactions. For example, one might
consider a process called ‘sharding’, whereby one runs
a large number of blockchains that allow limited in-
teractions between them, while requiring each user
individually to process transactions on a small set of
blockchains at any given time.

Solutions in three layers

There are a multitude of mechanisms which have
been proposed with the aim of increasing transaction

9Of course, it might still be a good idea to increase the rate
by a lower factor.

10It is a simplification to talk only in terms of the number
of transactions. Transaction complexity is also a factor.

7

rates. They can be classified as belonging to three
layers.

Layer 0. These are solutions that do not involve
modifying the protocol itself, but aim instead to im-
prove on the underlying infrastructure used by the
protocol. Layer 0 solutions range from simply build-
ing a faster internet connection, to approaches such as
Bloxroute [KBKS18], which change the way in which
messages propagate through the network. At this
point, layer 0 solutions are generally best seen as ap-
proaches to dealing with the latency bottleneck.

Layer 1. These are solutions which involve modi-
fying the protocol itself, and can be aimed at dealing
with either the latency bottleneck or the processor
bottleneck.

Layer 2. These are protocols that are implemented
on top of the underlying cyrptocurrency. So the
underlying cryptocurrency is left unchanged, and
one runs an extra protocol which makes use of the
cryptocurrency’s blockchain. Generally, the aim is
to outsource work so that most transactions can
take place ‘off-chain’, with the underlying cryptocur-
rency blockchain being used (hopefully rarely) to
implement conflict resolution. To make these ideas
more concrete, we will later explain the basic idea
behind the Lightning Network, which is probably the
best known Layer 2 solution. Layer 2 solutions are
generally aimed at solving the processor bottleneck.

To finish this section, we will describe two well
known scalability solutions. Due to the limited avail-
able space, we will not say anything further about
Layer 0 solutions. We will briefly discuss a Layer 1
solution called the GHOST protocol [SZ15], which
aims at dealing with the latency bottleneck. Then
we will explain the basic idea behind the Lightning
Network [PD16], already mentioned above as a Layer
2 solution aimed at solving the processor bottleneck.

The GHOST protocol

Recall that the latency bottleneck was caused by
forks: While Bob is waiting for confirmation on a
transaction in which Alice sends him money, a fork
in the blockchain may split the honest users of the
network. Suppose that the transaction is in the block
B1 in the picture below.

B1

C1

C2

If the honest users are split between chains C1 and
C2, then these will each grow more slowly than if
there was a single chain. This makes it easier for
Alice to form a longer chain.

B1

B2
Alice’s
chain

The solution proposed by the GHOST (Greedy
Heaviest Observed SubTree) protocol is simple.
Rather than selecting the longest chain, we select
blocks according to their total number of descen-
dants. This means selecting the chain inductively:
Starting with the first block (the so-called ‘genesis’
block), we choose between children by selecting that
with the greatest total number of descendants, and
then iterate this process to form a longer chain, un-
til we come to a block with no children. This way
B1 will be selected over B2 in the picture above, be-
cause B1 has seven descendants, while B2 only has
five. So the consequence of using the GHOST proto-
col is that forks after B1 do not matter, in the sense
that they do not change the number of descendants
of B1, and so do not increase Alice’s chance of double
spending. We can increase the rate of block produc-
tion and, although there will be an increase in the
number of forks, Alice will still require more compu-
tational power than the rest of the network combined
to double spend.

Unfortunately, however, this modified selection
process only gives a partial solution to the latency

8

bottleneck. The reason is that, while forks after B1

now do not matter (for confirmation of B1), forks be-
fore B1 still do. To see why, recall that, in order to be
confirmed, B1 must belong to a chain which is longer
by some margin than any not including B1.

B1

If blocks are produced at a rate which is low com-
pared to the time it takes them to propagate through
the network, then such (possibly honestly produced)
ties are unlikely to persist for long – before too long,
an interval of time in which no blocks are produced
will suffice to break the tie. If the rate of block pro-
duction is too fast, however, then such ties may ex-
tend over long periods. This means long confirmation
times.

In summary, the GHOST protocol allows us to in-
crease the rate of block production without decreas-
ing the proportion of the network’s computational
power that Alice will need to double spend. If we
increase the rate too much, however, this will result
in extended confirmation times.

The Lightning Network

In order to explain the Lightning Network, we first
need to discuss ‘smart contracts’.

Smart contracts. So far, we have considered only
very simple transactions, in which one user pays an-
other in a straightforward fashion: Alice transfers
funds to Bob, in such a way that Bob’s signature
now suffices to transfer the funds again. Bitcoin does
allow, though, for more sophisticated forms of trans-
action. One might require two signatures to spend
money, for example, or perhaps any two from a list
of three signatures – so now units of currency might
be regarded as having multiple ‘owners’. In such a
situation, where there are many forms a transaction
could take, how is Alice to specify the transaction she
wants to execute? The approach taken by Bitcoin is
to use a ‘scripting language’, which allows users to de-
scribe how a transaction should work. While Bitcoin

has a fairly simple scripting language, other cryp-
tocurrencies, such as Ethereum [W+14], use script-
ing languages which are sophisticated enough to be
Turing complete – this means that transactions can
be made to simulate any computation in any pro-
gramming language. As a mathematically minded
example, (in principle) one might publish a transac-
tion to the blockchain which automatically pays one
million units of currency to anybody who can pro-
duce a (suitably encoded) proof of the Riemann Hy-
pothesis!11 This is also a functionality whose signif-
icance depends on the information available to such
computations: If reliable information on stock mar-
kets and cryptocurrency prices were to be recorded
on the blockchain, then it would immediately become
possible to simulate futures, options, and essentially
any financial product that can be programmed us-
ing the given information. For our purposes now, the
point is this. Transactions can be specified to work
in much more sophisticated ways than simply trans-
ferring currency from one user to another.

A bidirectional payment channel. The aim of
the Lightning Network is to allow most transactions
to take place ‘off-chain’. This is achieved by estab-
lishing an auxiliary network of ‘payment channels’.
Before coming to the network as a whole, let us con-
sider briefly how to implement an individual channel
between two users.12

“Ten of each of our coins are
frozen until the channel is closed”

11While this is not presently realistic, it could soon be feasi-
ble through the use of smart contracts such as Truebit [TR18].

12There are a number of ways to implement these details.
The Lightning Network is built specifically for Bitcoin, which
means that it is designed with the particular functionalities
provided by the Bitcoin scripting language in mind. For the
sake of simplicity, however, we shall consider building a pay-
ment channel on top of a blockchain with a Turing complete
scripting language.

9

So let us suppose that Alice and Bob wish to set
up a payment channel between them. To initiate the
channel, they will need to send one transaction to
the underlying blockchain. This transaction is signed
by both of them, and says (in effect) that a certain
amount of each of their assets should be frozen until
the payment channel is ‘closed’ – closing the channel
has a precise meaning that we will discuss shortly.
For the sake of concreteness, let us suppose that they
each freeze ten coins. Once the channel is set up,
Alice and Bob can now trade off-chain, simply by
signing a sequence of timestamped IOUs. If Alice
buys something for three coins from Bob, then they
both sign a timestamped IOU stating that Alice owes
Bob three coins. If Bob then buys something for one
coin from Alice, they both sign a (later) timestamped
IOU stating that Alice now owes Bob two coins. They
can continue in this way, so long as neither ever owes
the other more than the ten coins they have frozen.
When either user wants to close the channel, they
send in the most recent IOU to the blockchain, so
that the frozen coins can be distributed to settle the
IOU. We must guard against the possibility that the
IOU sent is an old one, however. So, once an attempt
is made to close the channel, we allow a fixed duration
of time for the other user to counter with a more
recent IOU.

The network. The bidirectional payment chan-
nel described above required one transaction in the
blockchain to set up, and a maximum of two to close.
The system really becomes useful, however, once we
have established an extensive network of payment
channels.

Alice

Derek

Suppose now that Alice wishes to pay Derek, but

that they have not yet established a payment channel.
They could set up a new channel, but this would re-
quire sending transactions to the blockchain. Instead,
Alice can pay Derek via Bob and Charlie, if those ex-
isting channels are already in place. Of course, we
have to be careful to execute this so that no middle-
man can walk away with the money, but this can be
achieved fairly simply, with the appropriate crypto-
graphic protocols.

Discussion

Academically, the study of permissionless distributed
computing protocols is in its early phases, and is fer-
tile territory for theoreticians, with much work to be
done. Recent work [LPR20] has begun the process of
establishing the same sort of framework for the rig-
orous analysis of permissionless protocols as was de-
veloped for permissioned protocols over many years.
The hope is that, through the development of appro-
priate frameworks, a theory can be developed that
probes the limits of what is possible through the de-
velopment of impossibility results, as well as the for-
mal analysis of existing protocols. Although the Bit-
coin protocol was first described more than a decade
ago, the original paper did not provide a rigorous se-
curity analysis. Since then a number of researchers
have done great work towards providing such an anal-
ysis [Ren19, GKL15, PSS17], but the development of
appropriate frameworks for security analysis remains
an ongoing task. In addressing the issue of scalability,
and in dealing with the substantial issues of privacy
and transparency which arise in connection with the
use of cryptocurrencies, there is also plenty of scope
for the use of more advanced cryptographic methods
such as succinct zero-knowledge proofs [BSBHR18].

Of course, there are many questions and issues that
we have not had space to discuss. For example, it re-
mains an ongoing task to develop a thorough incen-
tives based analysis of Bitcoin and other protocols:
The protocol may behave well when only a minority
of users (weighted by computational power) behave
badly, but are the other ‘honest’ users properly in-
centivised to follow the protocol? Is following the
protocol a Nash equilibrium according to an appro-

10

priate set of payoffs? In fact, these questions have
been shown to be somewhat problematic for Bitcoin.
There are contexts in which miners are incentivised to
deviate from the protocol [ES14], and the infrequent
nature of miner rewards also means that miners are
incentivised to form large ‘mining pools’. Today, a
small handful of mining pools carry out the majority
of the mining for Bitcoin, meaning that control of the
currency is really quite centralised.

Earlier on, we briefly mentioned the significant is-
sue that proof-of-work protocols are energy intensive.
A viable alternative to proof-of-work may be pro-
vided by ‘proof-of-stake’ (PoS): With a PoS protocol
users are selected to update state (i.e. to do things
like publish blocks of transactions) with probability
proportional to how much currency they own, rather
than their computational power. PoS protocols face
a different set of technical challenges [LPR20]. There
are good reasons to believe, however, that as well as
being energy efficient, PoS protocols may offer sig-
nificant benefits in terms of increased security and
decentralisation.

At this point it seems likely that very substantial
increases in transaction rates will be made possible
over time through a combination of approaches. At
least in the short to medium term, however, if we
are to see large scale adoption of cryptocurrencies,
then one might conjecture that this is likely to be
in applications such as the financial markets, where
computational efficiency is important to a point, but
where market efficiencies are key.

References

[BSBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and
Michael Riabzev, Scalable, transparent, and post-
quantum secure computational integrity, 2018.
https://eprint.iacr.org/2018/046.

[DW13] Christian Decker and Roger Wattenhofer, Infor-
mation propagation in the bitcoin network, Ieee
p2p 2013 proceedings, 2013, pp. 1–10.

[ES14] Ittay Eyal and Emin Gün Sirer, Majority is not
enough: Bitcoin mining is vulnerable, Interna-
tional conference on financial cryptography and
data security, 2014, pp. 436–454.

[GKL15] Juan Garay, Aggelos Kiayias, and Nikos Leonar-
dos, The bitcoin backbone protocol: Analysis and
applications, Annual international conference on
the theory and applications of cryptographic tech-
niques, 2015, pp. 281–310.

[KBKS18] Uri Klarman, Soumya Basu, Aleksandar Kuz-
manovic, and Emin Gün Sirer, bloxroute: A
scalable trustless blockchain distribution network
whitepaper, IEEE Internet of Things Journal
(2018).

[KOH19] Daniel Kraus, Thierry Obrist, and Olivier Hari,
Blockchains, smart contracts, decentralised au-
tonomous organisations and the law, Edward El-
gar Publishing, 2019.

[LPR20] Andrew Lewis-Pye and Tim Roughgarden, Re-
source pools and the cap theorem, submitted
(2020).

[Lyn96] Nancy A Lynch, Distributed algorithms, Elsevier,
1996.

[N+08] Satoshi Nakamoto et al., Bitcoin: A peer-to-peer
electronic cash system.(2008), 2008.

[PD16] Joseph Poon and Thaddeus Dryja, The bitcoin
lightning network: Scalable off-chain instant pay-
ments, 2016.

[PSS17] Rafael Pass, Lior Seeman, and Abhi Shelat, Anal-
ysis of the blockchain protocol in asynchronous
networks, Annual international conference on the
theory and applications of cryptographic tech-
niques, 2017, pp. 643–673.

[Ren19] Ling Ren, Analysis of nakamoto consensus, Cryp-
tology ePrint Archive, Report 2019/943.(2019).
https://eprint. iacr. org ?, 2019.

[SZ15] Yonatan Sompolinsky and Aviv Zohar, Secure
high-rate transaction processing in bitcoin, Inter-
national conference on financial cryptography and
data security, 2015, pp. 507–527.

[TR18] Jason Teutsch and Christian Reitwießner,
Truebit: a scalable verification solution for
blockchains, 2018.

[W+14] Gavin Wood et al., Ethereum: A secure decen-
tralised generalised transaction ledger, Ethereum
project yellow paper 151 (2014), no. 2014, 1–32.

11

https://eprint.iacr.org/2018/046

