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Abstract: We suggest a framework to analyse how sophisticated decision makers combine

multiple sources of information to form predictions. In particular, we focus on situations

in which: (i) Decision makers understand each information source in isolation but are un-

certain about the correlation between the sources; (ii) Decision makers consider a range of

bounded correlation scenarios to yield a set of possible predictions; (iii) Decision makers

face ambiguity in relation to the set of predictions they consider. We measure the bound on

correlation scenarios by using the notion of pointwise mutual information. We show that the

set of predictions the decision makers considers is completely characterised by two parame-

ters: the Naïve-Bayes interpretation of forecasts (correlation neglect), and the bound on the

correlation between information sources. The analysis yields two countervailing e¤ects on

behaviour. First, when the Naïve-Bayes interpretation of information is relatively precise,

it can induce risky behaviour, irrespective of what correlation scenario is chosen. Second,

a higher correlation bound creates more uncertainty and therefore potentially more conser-

vative behaviour. We show how this trade-o¤ a¤ects behaviour in di¤erent applications,

including �nancial investments, group decision making and CDO ratings. For the latter, we

show that when faced with complex assets, decision makers are likely to behave in ways that

are consistent with complete correlation neglect.
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1 Introduction

When confronted with multiple forecasts, we often have a better understanding of each

forecast separately than we do of how the sources relate to one another. This is apparent in

many situations when experts or organisations make predictions. In the �nance literature

this has been long recognised.2 Jiang and Tian (2016) point to several problems in estimating

correlation, including the lack of su¢ cient market data, instabilities in the correlation process

and the increasingly interconnected market patterns. The US �nancial crisis inquiry (FCIC)

report from 2011 cites the acknowledgment of the rating agency Moody�s that �In the absence

of meaningful default data, it is impossible to develop empirical default correlation measures

based on actual observations of defaults.�

In this paper we suggest a framework to model how sophisticated individuals combine

forecasts in complex environments. In particular, we focus on situations in which: (i) De-

cision makers understand each information source in isolation but are uncertain about the

correlation between the sources; (ii) Decision makers consider a range of bounded correla-

tion scenarios to yield a set of possible predictions; (iii) Decision makers face ambiguity in

relation to the set of predictions they consider.

In particular, we consider an environment in which an agent observes forecasts about a

potentially multidimensional state of the world, ! 2 
n. For each element !i in !; the agent

observes possibly multiple forecasts, each a probability distribution over 
. To combine the

multiple forecasts into a prediction about !, the agent considers a set of possible joint

information structures that could have yielded these forecasts. We allow for two types of

correlation in the consideration set of the agent: across the fundamentals (the elements in

!); and across the predictions (e.g., due to biases in polling techniques). For each joint

information structure in this set, that is consistent with the multiple forecasts, the agent

derives a Bayesian prediction over the state of the world. This process yields a set of

predictions about ! that is the focus of our analysis. For example, if the decision maker

only considers joint information structures which satisfy (conditional) independence across

forecasts, then the unique prediction that arises is the Naïve-Bayes (NB) belief.

Our main modeling assumption is to use a bound on the pointwise mutual information

(PMI) of information structures as the bound on the correlation scenarios the decision maker

2This is the motivation behind papers such as Du¢ e et al (2009).
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considers. PMI relates to the distance between the joint distribution and the independent

benchmark, that is, the multiplication of the marginal distributions. The higher is the

bound on the PMI, the more correlation levels can be considered. As we show, modelling

the perceptions of individuals about correlation in this way is general, distribution free, and

allows us to complete the model by using attitudes towards ambiguity as a model of decision

making when decision makers face multiple predictions.

We characterise the set of predictions of a decision maker who considers scenarios with

bounded correlation structures. We show that the set of predictions is convex and compact,

and is monotonic (set-wise) in the PMI bound. Moreover, it can be fully characterised by two

su¢ cient statistics: The PMI-bound and the Naïve-Bayes belief that assumes independence.

The above results allow us to analyze the ambiguity of decision makers vis a vis the set of

predictions they have generated. In particular, the convexity of the set of predictions allows

us to treat them as a set of priors. Moreover, the (set) monotonicity implies a metric by

which ambiguity increases as the PMI bound increases. Speci�cally, the model implies that

larger ambiguity over correlation structures can translate to larger ambiguity over the state

of the world.

In contrast to the e¤ect of a higher PMI bound, we show that as the NB prediction

becomes more informative the set of predictions shrinks. When the NB prediction converges

to a degenerate belief, all decision makers, whatever their preferences over ambiguity or

their PMI bounds, will make the same decisions. In particular, �xing the PMI-bound when

the NB belief becomes degenerate, the set of predictions shrinks and converges to the NB

prediction. In an application to the evaluation of �nancial assets we formalise the notion

that the complexity of securities distorts its evaluation towards correlation neglect. Focusing

on CDOs, we show that as the number of individual mortgages in a CDO increases, its

evaluation becomes highly dependent on the NB belief. Thus, the evaluation of complex

assets might su¤er from complete correlation neglect even when experts allow for a wide

family of correlation scenarios.

Our model therefore highlights an intuitive relation between the set of correlation struc-

tures the decision maker considers and her con�dence in the decision she takes. First, when

the NB belief is relatively precise, the decision maker behaves as if she completely neglects

correlation, which, as already explored in the literature, implies more extreme beliefs.3 Sec-

3This arises -with standard information structures such as the normal distribution- in Ortoleva and
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ond, correlation will a¤ect con�dence through a Knightian notion of uncertainty. A decision

maker who is ambiguity averse and who entertains di¤erent possible models of correlations

will tend to behave more cautiously. An increase in the set of possible correlation structure

may lead to more cautious behaviour.

To illustrate the implication of the tension between these two e¤ects we analyse several

applications. We consider a simple investment application in which investors observe past

investments by others and reassess their positions. We show that when the number of

investors is low, investors with a high correlation bound will reduce their initial risky positions

due to the cautiousness e¤ect described above. However, when the number of investors is

large, the observation of others�beliefs might imply that the NB belief becomes more precise.

In turn this will result in investors substantially increasing their risky behaviour. These

results can shed light on behaviour before and after the 2008 �nancial crisis. First, the

bounds on the correlation scenarios might have increased post 2008, contributing to a shift

from more risky to more cautious behaviour. Second, the volume of trade in a market can

be linked to the precision of the NB belief; a low volume of trade will indicate a less precise

belief, resulting in more cautiousness. In addition, as mentioned above, CDO pricing might

have changed drastically before and after 2008 due to similar forces.

Finally, we study the implications of our model to group decisions. We study a jury of

individuals that deliberate (that is, exchange their beliefs) and then vote. This is indeed

an environment in which individuals are exposed to the same evidence and hence the per-

ception of correlation is relevant. Moreover, jurors are obliged to deliberate and exchange

information. We show how the decisive voter is determined by their correlation bounds as

well as by their preferences (threshold of doubt). We contrast the normative properties of

our model to those of the literature. We show that juries can both over-acquit as well as

over-convict and that jury size a¤ects decisions in novel ways.

Our results contribute to several strands of the literature. First, our results are com-

plementary to Epstein and Halevy (2019) who also study the relation between uncertainty

about correlation and ambiguity. They consider preferences over lotteries that could either

depend on outcomes of draws from one urn or from two urns. They show in their experi-

ments that subjects exhibit stronger aversion to ambiguity when considering lotteries over

Snowberg (2015) and Glaeser and Sunstein (2009). In contrast, Sobel (2014) shows that correlation neglect

is not a necessary condition for extreme beliefs.
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the two urns rather than over each one separately, implying ambiguity aversion with relation

to correlation across urns. They consider a model which allows for multiple �sources� of

uncertainty, capturing risk, bias and correlation. Our model, in the prism of their analysis,

considers predictions of decision makers who already observe draws from di¤erent individual

�urns�, and therefore focuses only on ambiguity over correlation.

Second, we contribute to a recent large literature on correlation neglect, i.e., a behavioral

assumption that individuals neglect taking account of possible correlations between multiple

sources of information.4 Enke and Zimmerman (2013), Kallir and Sonsino (2009) and Eyster

and Weiszacker (2011) show how correlation neglect arises in experiments, with the latter

two focusing on �nancial decision making. The papers on correlation neglect assume, in some

environments, a misspeci�ed model held by the decision makers, inducing wrong beliefs. In

our framework the decision maker has a set of potentially misspeci�ed models, with bounded

degrees of correlation. Our results show that not only this too can end with a wrong belief,

but that the wrong belief is the one associated with complete correlation neglect. That is,

even when decision makers consider bounded correlation, when the naïve interpretation of

the data is very informative, they all behave as if they have correlation neglect.

Finally, our results contribute to the literature in �nance, which has since the 2008 crisis,

considered extensively the issue of the uncertainty about correlation in default rates as well as

across stress tests.5 Our framework rationalises the procedures employed by rating agencies

and investment banks when these evaluate complex assets. Risk analysis in �nancial �rms

that evaluate CDOs uses the individual level data of the loans making up a CDO, and then

considers di¤erent correlation scenarios. As the FCIC report documents, �The M3 Prime

model let Moody�s automate more of the process...Relying on loan-to-value ratios, borrower

credit scores, originator quality, and loan terms and other information, the model simulated

the performance of each loan in 1250 scenarios.�Indeed in practice, the set of scenarios that

4DeMarzo et al (2003) and Glaeser and Sunstein (2009) study how this a¤ects individual beliefs in

groups, Ortoleva and Snowberg (2015) study its implications for individual political beliefs and Levy and

Razin (2015a, 2015b) focus on the implication of correlation neglect in voting contexts. Alternatively, Ellis

and Piccione (2017) use an axiomatic approach to represent decision makers a¤ected by the complexity

of correlations among the consequences of feasible actions. More generally, there is a recent literature on

misspeci�ed models, see for example Esponda and Pouzo (2016), Bohren (2016) and Heidheus et al (2018).
5Du¢ e et al (2009), Brunnermeier (2009), Coval et al. (2009), and Ellis and Piccione (2017), examine

the e¤ects of such misperceptions on �nancial markets.
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are considered by this analysis has a particular structure; treating forecasts as independent

is often used as a benchmark.6 Around this benchmark, the level of correlation implicit in

these scenarios is typically bounded. Tractability and simplicity imply that the di¤erent

models used for generating correlation only allow for modest levels of correlation, using a

small number of correlation parameters. When dealing with large numbers of components

(e.g., the number of loans in a CDO), this implies bunching many assets to have the same

correlation patterns (the �homogenous pool�problem).

Our results indicate that cautious or risky �nancial decisions can be a result of the tension

between ambiguity aversion and the Naïve-Bayes updating rule. There are many anecdotes

illustrating that decision making in organizations is sometimes akin to ambiguity attitudes,

where either �optimists�or �pessimists�prevail. Anil K Kashyap�s paper prepared for the

FCIC observes that before the crisis there was an: �...inherent tendency for the optimists

about the products to push aside the more cautious within the organization�. After the

crisis became apparent, �pessimism�prevailed: �Moody�s o¢ cials told the FCIC they recog-

nized that stress scenarios were not su¢ ciently severe...analysts took the �single worst case�

from the M3 Subprime model simulations and multiplied it by a factor in order to add

deterioration.�7

2 The model

In this Section we present a theoretical model in which we de�ne: (i) what a decision maker

observes, namely the set of forecasts; (ii) how she uses a joint information structure to

rationalise a set of forecasts and form a prediction on the state of the world; (iii) the level

of ambiguity she faces over joint information structures. We then use this model to derive

6The Naïve-Bayes classi�er, a method to analyse data by assuming di¤erent aspects of it are independent,

is one of the work horses of operations research and machine learning. Querubin and Dell (2017) document

how this approach was employed by the US military in the Vietnam war to assess which hamlets should be

bombed based on multidimensional data collected from each hamlet. For more on the Naive Bayes approach

see Russell and Norvig (2003) and Domingo and Pazzani (1996).
7Related to what we do in this paper a few recent papers have assumed ambiguity over correlation in

di¤erent applications. Jiang and Tian (2016) analyze a �nancial market in which investors have ambiguity

about the correlation between assets. They derive results relating to the volume of trade and asset prices.

Easley and O�hara (2009) look more generally at the role of ambiguity in �nancial markets.
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the set of predictions a decision maker can reach when combining forecasts.

2.1 Information

We �rst describe the information of the decision maker, which includes the state space, some

prior knowledge, and observed forecasts.

The decision maker knows the following aspects of the environment:

1. The state space. The state is a n � tuple vector ! =f!1; :::; !ng; !i 2 
; ! 2 
n;

where n � 1 and 
 is a �nite space (in the Appendix we consider the case of continuous

distributions which may be more suitable for some applications).

2. Priors. The agent only knows the marginal prior distributions, pi(!i); over all elements

i 2 N .

3. Observed forecasts. The agent observes K forecasts. Speci�cally, there are ki forecasts

about each !i, so that
Pn

i=1 ki � K: A typical forecast j on element i is a (full support)

probability distribution, qji (!i); over 
. Let q denote the vector of theK observable forecasts.

The model allows us to consider both correlations between forecasts (even when n = 1)

as well as correlations across the di¤erent elements of the state (when n > 1). For example,

correlation across forecasts arises or when banks that conduct stress tests persistently ignore

the same type of information (or, in another application, when political pollsters�strategies

systematically neglect parts of the population across US states). Correlation across the

elements of the state arises for example when the returns of assets are correlated (or when

the voting outcome across US states depends on a common shock).

The decision maker will combine these forecasts to reach a set of predictions about the

state. A prediction about the state is a probability distribution � over 
n and we are

interested in the set of rationalisable predictions, as we de�ne formally below.

2.2 Rational predictions

To combine forecasts into rationalisable predictions, the agent will need to consider the

process according to which the observed forecasts were derived, that is, a joint information

structure.

A joint information structure is a vector (S; 
n; p(!); f̂(s;!)) consisting of:
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1. A joint prior distribution, p(!); for which the marginal on element i is pi(!i):

2. A set of K � tuple vectors of signals S = �ni=1 �kij=1 S
j
i ; where S

j
i is �nite and denotes

the set of signals for information source j about element i.

3. A joint probability distribution of signals and states, f̂(s;!); where s 2S. Speci�cally,

let f̂(s;!) = p(!)f̂(sj!); where f̂(sj!) is the distribution over signals generated by !:

Also let f̂ ji (sj!i) denote the marginal information structure for source j on element i that is

derived from f̂(sj!):

Note that in a joint information structure, both the elements of the state can be correlated,

through p(!); and the signals generating the di¤erent forecasts could be correlated, through

f̂(sj!):

We are now ready to de�ne formally a rationalisable prediction:

De�nition 1: A joint information structure (S; 
n; p(!); f̂(s;!)) rationalizes a predic-

tion �(:); given q; if there exists s = fs11; s21; ::; sk11 ; :::; s12; :::; sknn g 2 S such that: (i) Rational

forecasts: qji (!i) = Pr(!ijsji ) =
pi(!i)f̂

j
i (s

j
i j!i)P

v2
 pi(v)f̂
j
i (s

j
i jv)
; 8j 2 Ki; i 2 N; (ii) Rational prediction:

�(!) = Pr(!js) = p(!)f̂(sj!)P
v2
n p(v)f̂(sjv)

:

In other words, the decision maker can ratioanlize a set of forecasts by constructing a

joint information structure and a set of signals so that each forecast can be derived by

Bayes rule given the forecaster�s signal, the prior over his assigned dimension of the state

and the marginal distribution generating the signal. Using this set of signals and the joint

information structure she can then generate a prediction on the state of the world. We will

be interested in the set of predictions that can be rationalized given q; and the set of joint

information structures considered by the decision maker.

In the main part of the analysis we assume that the agent only observes the forecasts

q: In the Appendix we show that our results are robust to the agent also observing the

signals and the marginal information structures of the di¤erent sources. Intuitively, the

information gleaned from marginals and signals is still not su¢ cient to recover the structure

of correlation, which is the main focus of our analysis.

We now de�ne the set of joint information structures over which the decision maker faces

ambiguity.
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2.3 Ambiguity over correlation

We now provide a general and simple one-parameter characterization for a set of joint in-

formation structures with bounded correlation, which will de�ne the level of ambiguity the

decision maker faces. To this end, we use the exponent of the pointwise mutual information

(ePMI) to de�ne bounds on the correlation between information structures. Speci�cally,

throughout the paper, we assume the following:

Assumption A1: There is a parameter 1 � a < 1; such that the decision maker only

considers joint information structures, (S; 
n; p(!); f̂(s;!)); so that at any state ! 2 
n

and for any vector of signals s 2S;

1

a
� f̂(s;!)

nQ
i=1

pi(!i)
kiQ
j=1

f̂ ji (s
j
i j!i)

� a:8

The ratio f̂(s;!)
nQ
i=1

pi(!i)

kiQ
j=1

f̂ji (s
j
i j!i)

is the (exponent) of the pointwise mutual information; this is

the ratio of the joint probability of some s and ! to the probability generated by its marginals

when we assume independence. If a = 1; then at any point s and !, this ratio equals 1,

implying that the decision maker considers only joint information structures that satisfy

independence. When a is larger than one, this implies that the decision maker considers

some correlation or in other words, that there is mutual information across the variables at

some s and ! (see also Example 1 below). The parameter a, the ePMI-bound, describes

therefore the extent of the ambiguity the decision maker faces over the set of correlation

scenarios. The larger is a; the larger is the set of joint information structures that satisfy

A1. Thus, ambiguity is larger when a is larger.

The formulation of the set is general, detail-free in terms of the underlying distribution

functions, and captures the maximal set of joint information structures with correlation

bounded by a. Note also that in di¤erent environments, individuals or organizations may be

able to have di¤erent such sets (for example, a may depend on the number of sources K):

It is often the case that the sets over which decision makers have ambiguity contain the

truth; our model will be general in the sense that pitted against the rational decision maker

who is aware of the true joint information structure, the decision maker may consider less

correlation or more correlation. We discuss this in our applications.
8All the results can be easily generalized if instead of the lower bound 1

a we use some �nite b < 1.
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The example below illustrates the relation between ePMI, the level of a; and correlation.

Speci�cally, we show how the ePMI values of a joint information structure must take values

which are both below and above 1, and hence the set of such joint information structures

will always include the case of (conditional) independence.

Example 1: Assume 
 = f0; 1g; two states, !1 and !2; and one information source

per state, so that n = 2 and ki = 1; with K = 2: Assume that the agent thinks that the

joint signal structure f̂(sj!) satis�es independence, but that the prior satis�es correlation,

as described in the following symmetric matrix, where p � p(0):

!2 = 0 !2 = 1

!1 = 0 p2 + " p(1� p)� "

!1 = 1 p(1� p)� " (1� p)2 + "

When " = 0; the ePMI equals 1 at any state. If " is positive then we have positive

correlation across the states, whereas if " is negative, we have negative correlation.

Suppose for the sake of exposition, that the decision maker only considers a positive ":

Note now that the ePMI at ! = (0; 0) is p2+"
p2

> 1; whereas the ePMI at ! = (0; 1) is
p(1�p)�"
p(1�p) < 1: This is a general property: whenever the ePMI at some point is greater than

1, it has to be smaller than 1 at another set of states or set of signals for the same state,

to maintain this as a distribution function. Thus �xing the ePMI at 1 is in some sense the

simplest possibility.

Moreover, note that the ePMI constraints for a positive ";

p(1� p)� "
p(1� p) � 1

2
;
p2 + "

p2
� a; (1� p)

2 + "

(1� p)2 � a;

imply, assuming wlog that p > 1
2
; and that a � p

1�p ; that:

" � p(1� p)(1� 1
a
):

Note that for the above example, the correlation coe¢ cient between the two states is

�" =
"

p(1�p) : As we need " � p(1 � p) for the above to be a joint distribution function, we

have that the correlation coe¢ cient satis�es �" � 1: Given the ePMI constraints however,

the decision maker considers only �" � 1� 1
a
; and hence bounded correlation.

Our formalisation in Assumption A1 implies that the ambiguity set contains a large set

of information structures around � = 0 ( therefore including also negative correlation in the
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example above). In some applications,see Jiang and Tian (2016), one can focus on sets of

ambiguity beliefs around a particular �. Some of our results below, such as Observation 1,

may apply also to these cases as long as the set considered falls within those that satisfy

assumption A1.

Let C(a;q) be the set of beliefs �(:) that are rationalisable, as in De�nition 1, given the

vector of forecasts q; by information structures that satisfy A1 for some ePMI-bound a: In

other words, the decision maker considers each joint information structure in her set, one

by one, and for each derives a rationalisable prediction (if feasible). Our main result below

characterizes C(a;q):

In the remainder of this Section we explain how the ePMI captures correlation. In short,

the average of the PMI is the well known mutual information measure, and moreover, it im-

plies bounded concordance, which is the most general non-parametric measure of correlation.

It therefore allows for a more general relation between variables than is typically captured

by assumptions such as linear correlation.

2.4 Pointwise mutual information: theoretical background.

PMI was suggested by Church and Hanks (1991) and is used in information theory and text

categorization or coding, to understand how much information one word or symbol provides

about the other, or to measure the co-occurrence of words or symbols. Let g(x1; :::; xn) be a

joint probability distribution of random variables ~x1; :::; ~xn; with marginal distributions gi(:):

The pointwise mutual information (PMI) at (x1; :::; xn) is ln[
g(x1;:::;xn)
�igi(:)

]. For example, for two

variables, it can also be written as

ln[
g(x1; x2)

�igi(:)
] = h(x1)� h(x1jx2)

where h(x1) = � log2 Pr(~x1 = x1) is the self information (entropy) of x1 and h(x1jx2) is the

conditional information.

Summing over the PMIs, we can derive the well known measure of mutual information,

MI(X1; X2) =
P

x12X1
P

x22X2 g(x1; x2) ln[
g(x1;x2)
�igi(:)

] = H(X1) � H(X1jX2); which is always

non-negative as it equals the amount of uncertainty about X1 which is removed by knowing

X2: We can also express mutual information by using the de�nition of Kullback-Leibler
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divergence between the joint distribution and the product of the marginals:

MI(X1; X2) = DKL(g(x1; x2)jg1(x1)g2(x2));

and it can therefore capture how far from independence individuals believe their information

structures are. For our purposes, the local concept of the PMI is a more suitable concept

than the MI, as we are looking at ex-post rationalizations given some set of signals.9

The concept of the PMI is closely related to standard measures of correlation and specif-

ically it implies a bound on the concordance between information structures. Concordance

measures how well the relationship between two variables can be described using a monotonic

function.10 In the Appendix we show (Proposition B1) how a bounded PMI translates to a

bounded concordance measure.

3 The Main Result: Characterising C(a;q)

In this Section we characterise C(a;q); the set of rationalisable beliefs of the decision maker

that are derived from the set of joint information structure she considers, as de�ned in A1,

for an ePMI-bound a: Speci�cally, we are interested in understanding how ambiguity over

information sources translates into ambiguity over the state of the world.

Let �NB(:) denote a posterior belief of an individual who uses a Naive-Bayes approach,

that is, she believes that there is no correlation across the states or the information sources.

Our result below implies that this NB belief is a useful tool for the characterisation of the

whole set of belief, as Proposition 1 establishes.

Proposition 1: Suppose that n > 1 or K > 1: A belief �(:) is in C(a;q) for 1 � a <1

if and only if it satis�es

�(!)

�(!0)
=
�!
�!0

�NB(!)

�NB(!0)
; for any ! and !0;

9The PMI therefore does not distinguish between rare or frequent events.
10The most common measure of concordance is Spearman�s rank correlation coe¢ cient. A perfect Spear-

man correlation of +1 or -1 occurs when each of the variables is a perfect monotonic function of the other.
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for a vector � = (�!)!2
n satisfying �! 2 [ 1a ; a] for all !; where

�NB(!)

�NB(!0)
=

nQ
i=1

kiQ
j=1

qji (!i)

p(!i)ki�1

nQ
i=1

kiQ
j=1

qji (!
0
i)

p(!0i)
ki�1

Moreover, the set C(a;q) is compact and convex.

The result shows that there are two su¢ cient statistics that allow us to characterize the set

of beliefs held by the agent: the PMI-bound a and the NB posterior �NB(:). Thus, while the

decision maker is faced with a complicated environment, her Bayesian combined forecasts

can be derived with a simple heuristic-like behavior. She needs to consider the Naïve-

Bayes benchmark, as if she neglects correlation, and to adjust this by di¤erent �scenarios�

as determined by a:This is also helpful for the modeler as we had not made any speci�c

assumptions on distributions. We discuss in Section 4.2 how a modeler can also identify a:

As can be seen from the characterisation, when a = 1 then C(1; q) is a singleton and

contains a unique belief �NB(:). However, when a > 1, the set of beliefs is not unique

once we have multiple forecasts. When the decision maker considers also joint information

structures with some level of correlation, she can rationalise a larger set of beliefs about the

state of the world. Thus, ambiguity over joint information structures now translates into

ambiguity over the state of the world. This arises only when the decision maker considers

correlation, so that a > 1; and when there is more than one forecast. Speci�cally, when

there is more than one forecast, then the di¤erent levels of correlation considered �kick�in

to induce di¤erent beliefs, while when only one forecast exists, this e¤ect does not arise (in

that case, by rationalisability, her prediction is the unique forecast she is exposed to). Thus,

the decision maker becomes less con�dent in terms of facing larger ambiguity over the state

of the world when she considers correlation and when she has more than one forecast.11

11This is related to the notion of dilation introduced in Seindenfeld and Wasserman (1993). Seindenfeld

and Wasserman (1993) focus on lower and upper probability bounds for probability events. Dilation is

de�ned as a situation in which the probability bounds of an event A are strictly within the probability

bounds for the event in which A is conditional on B. When we compare an individual�s private belief to the

set of beliefs she gains after observing multiple sources, sometimes dilation occurs. See also Bose and Renou

(2014) and Epstein and Schneider (2007).
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3.1 Sketch of the proof

Necessity: It is easy to see the necessary part of the proof. Speci�cally, for any s and a

joint information structure, the ePMI constraints imply:

1
a

nQ
i=1

(pi(!i)
kiQ
j=1

f̂ ji (s
j
i j!i))

a
nQ
i=1

(pi(!0i)
kiQ
j=1

f̂ ji (s
j
i j!0i))

� p(!)f̂(sj!)
p(!0)f̂(sj!0)

�
a

nQ
i=1

(pi(!i)
kiQ
j=1

f̂ ji (s
j
i j!i))

1
a

nQ
i=1

(pi(!0i)
kiQ
j=1

f̂ ji (s
j
i j!0i))

By rationalisability however:

nQ
i=1

(pi(!i)
kiQ
j=1

f̂ ji (s
j
i j!i))

nQ
i=1

(pi(!0i)
kiQ
j=1

f̂ ji (s
j
i j!0i))

=

nQ
i=1

(pi(!i)
kiQ
j=1

qji (!i)
P
vi2


pi(vi)f̂
j
i (s

j
i jvi)

pi(!i)
)

nQ
i=1

(pi(!0i)
kiQ
j=1

qji (!
0
i)
P
vi2


pi(vi)f̂
j
i (s

j
i jvi)

pi(!0i)
)

=

nQ
i=1

kiQ
j=1

qji (!i)

pi(!i)ki�1

nQ
i=1

kiQ
j=1

qji (!
0
i)

pi(!0i)
ki�1

As a result:

1
a

nQ
i=1

kiQ
j=1

qji (!i)

pi(!i)ki�1

a
nQ
i=1

kiQ
j=1

qji (!
0
i)

pi(!0i)
ki�1

� p(!)f̂(sj!)
p(!0)f̂(sj!0)

�
a

nQ
i=1

kiQ
j=1

qji (!i)

pi(!i)ki�1

1
a

nQ
i=1

kiQ
j=1

qji (!
0
i)

pi(!0i)
ki�1

:

Note that when a = 1; there is then a unique feasible belief, �NB(:).

Su¢ ciency: The proof in the Appendix shows the su¢ ciency of the characterisation. We

show su¢ ciency by constructing an information structure that yields each belief in the set

and satis�es the rationalisability and ePMI constraints. Speci�cally, for any vector (�!)!2


that satis�es 1
a
� �! � a for any realisation of !; we construct an information structure that

induces the belief (suppose that n = 1 for simplicity but K > 1) :

�(!) =
�!

1

p(!)k�1

Q
j2K

qj(!)P
!02


�!0
1

p(!0)k�1

Q
j2K

qj(!0)
:

To do this, we de�ne the probability that each information source j receives a signal s� in

state ! 2 
; as �j! = "
qj(!)
p(!)

for some " > 0; and de�ne the probability that all sources receive

s� in state ! 2 
 as �! = �!
Q
j2K

�j!: It is easy to see from this that indeed

�(!) =
p(!)�!P

!02

p(!0)�!0

=
�!

1

p(!)k�1

Q
j2K

qj(!)P
!02


�v
1

p(!0)k�1

Q
j2K

qj(!0)
;
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and moreover that
p(!)�j!P

!02

p(v)�j!0

=
qj(!)P

!02

qj(!0)

= qj(!);

which implies that the posterior beliefs of all individuals are rationalized. It is also easy

to see that at any !; when all receive s�; the ePMI constraint is �!Q
j2K

�j!
= �! and is hence

satis�ed. By using small enough values of "; we are able to construct an information structure

that satis�es the ePMI constraints at all other points, that is, for any (!; s1; :::; sK); where

sj 2 fs�; s��g:

Convexity of C(a;q) : It is not straightforward to show convexity of the joint information

structures; due to the nature of the ePMI constraints, one cannot simply take a convex com-

bination of joint information structures where each rationalises a belief in C(a;q) in order to

rationalize a convex combination of beliefs. To prove convexity we therefore use our charac-

terization of the set of beliefs beliefs in C(a;q). Speci�cally, consider two beliefs � and �0 in

C(a;q). Then for any � 2 [0; 1]; we know that ��(!)+(1��)�0(!)
��(!0)+(1��)�0(!0) �

��(!0)+(1��)�0(!0)
��(!0)+(1��)�0(!0)a

2 �
NB(!)
�NB(!0) =

a2 �
NB(!)
�NB(!0) ; where we use

�(!)
�(!0) � a2 �

NB(!)
�NB(!0) ; and

�0(!)
�0(!0) � a2 �

NB(!)
�NB(!0) ; as both beliefs are in

C(a;q): The lower bound is similarly attained. Thus, convexity is proved directly on the set

of beliefs.

3.2 The Naïve-Bayes and cautiousness e¤ects

The characterisation of the maximal set of beliefs allows us to make two simple observations.

The �rst observation -which we call the Naïve-Bayes e¤ect- is that if the NB belief is very

precise, then the set C(a;q) will in some cases coincide with it, implying that individual

will behave as if she has correlation neglect. The second observation is that C(a;q) is larger

when a is larger. In the presence of ambiguity aversion, this may imply greater cautiousness.

In the next Section we show how the interaction between these two e¤ects induces sometimes

risky and sometimes cautious shifts in investment behaviour.

The Naïve-Bayes e¤ect: The characterisation in Proposition 1 allows us to see how the

precision of �NB(:) a¤ects the size of C(a;q): Consider the case where �NB(:) is very precise

(but not necessarily correct). This could arise for example when the number of forecasts

K grows large and when the NB belief converges to be degenerate. Consider a sequence
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of decision making problems with a sequence of vectors of forecasts qK and a sequence of

ambiguity sets characterised by aK . These imply a sequence of NB beliefs �NBqK (:) and sets

of beliefs C(aK ;qK) which are the focus of the observation below.

Observation 1: Suppose that there exists a !0 2 
n such that �NBqK (!
0) !K!1 1. If

limK!1(aK)
2(1 � �NBqK (!

0)) = 0 then C(aK ;qK) converges to the singleton belief which is

the degenerate belief on !0:

To see this, note that by Proposition 1 we have that with n states and K information

sources, �(:) 2 C(aK ;qK) is rationalisable if and only if it satis�es

�(!)

�(!0)
=
�!
�!0

�NBqK (!)

�NBqK (!
0)
;

for a vector � = (�!)!2
n satisfying �! 2 [ 1
aK
; aK ] for all ! 6= !0: Note that �!

�!0
<

(aK)
2 1��

NB
qK

(!0)

�NBqK
(!0) but as limK!1(aK)

2(1 � �NBqK (!
0)) = 0 this implies that �(!)

�(!0) has to con-

verge to zero.

The observation above illustrates that even when the decision maker considers information

structures with high degrees of correlation, a very precise NB belief may overwhelm consid-

erations of correlation. As our set of predictions is the maximal set for all rational decision

makers who consider bounded correlation, the observation that the set of predictions can

shrink to a singleton NB belief implies that behaviour à la correlation neglect can arise for all

types of assumptions on the decision maker. In other words, even when the decision maker

does not have ambiguity over the set of joint information structures, but has a prior over

these, the result is the same. Or, alternatively, if the decision maker considers only a subset

of correlation structures which does not include independence, the limit result would be that

her beliefs would still converge to the NB belief, as the whole set of predictions -which would

include her predictions for anyK; will shrink to that belief. The following example illustrates

the fact that the decision maker can satisfy the condition in the observation above while still

considering, ex ante, high degrees of correlation.

Example 2: In this example we provide an information structure that satis�es: (i)

aK ! 1; along with large degrees of ex ante correlation across signals for all K; 12 (ii)
12Note that aK captures ex post correlation as it is the bound on the ePMI at every point, that is, for any

states and forecasts.

16



limK!1(aK)
2(1� �NBqK (!

0)) = 0: Speci�cally, consider just one state, ! 2 f0; 1g; with a uni-

form prior. The decision maker believes she receives predictions according to the following

information structure: With probability � > 0; the signals are correlated as explained be-

low, and with probability 1� � each signal j is drawn independently, where sj 2 f0; 1g and

Pr(sj = !j!) = q > 1
2
: In the correlated event, when ! = 1; with probability �; a number

qK of the signals are randomly chosen and are assigned to have sj = 1 and the remaining

are assigned with sj = 0 (choose q so that qK is a number): When ! = 0; with probability

�; a number qK is drawn to assigned to have sj = 0 and the remainder is assigned to have

sj = 1: Thus the marginal probability of each signal to provide the correct realisation is

q: Note that with probability � the realisations of the signals are highly correlated (and

provide information that is equivalent to that of one signal only). Speci�cally, the correlated

event is chosen to mimic the most likely events under independence. Intuitively then, the

decision maker here is �suspicious�at distributions of realisations that mimic the most likely

events under independence, and believes that these arise from correlation. We show in the

Appendix that for this information structure, aK = �
p
2�
p
Kq(1� q) + (1��)!K!1 1;

while limK!1 a
2
K(1 � �NBqK (1)) = 0; where qK is the vector of forecasts in which all entries

are q: Speci�cally, this arises as aK becomes large in the slowest rate possible,13 while �NB(:)

becomes degenerate in the fastest rate possible. The example illustrates that the condition

derived in Observation 1 builds on the fact that the upper bound for aK might be achieved

at a di¤erent event to the event that the individual actually observes in the (ex-post) data.14

Note that the NB benchmark -while relying on many pieces of information- can still di¤er

substantially from the rational belief given the true joint information structure. For example,

the true probability distribution could be that the forecasts are positively correlated -either

all q or all 1 � q- with a probability close to one. A rational prediction upon observing a

vector of forecasts in which all entries are q; as considered in Example 2, implies then only a

belief q that the state is 1, while in the Example above the belief would be the degenerate NB

belief. Moreover, this true information structure would generate the observation described

in Example 2 (a vector of forecasts in which all entries are q) with a high likelihood.

13This is the case as the highest degree of correlation arises for an event which is the most likely under

independence.
14The example can easily be generalised to cases in which upon observing the ex-post data the individual

always entertains some level of correlation, but in the limit converges to believe the data is independent.
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Put di¤erently, note that a decision maker who considers the true information structure

will not arrive at a wrong prediction. Thus, when the true correlation structure has bounded

levels of correlation in the limit, then indeed it cannot be that �NBqK (!
0) will become degener-

ate on the wrong state (as there would be su¢ cient independent information to enable correct

NB-belief). However, when this is not the case, then a decision maker who is aware of the

true information structure will need to consider aK so that limK!1(aK)
2(1� �NBqK (!

0)) > 0:

The cautiousness e¤ect: The Proposition also unravels a simple relation between con�-

dence and correlation:

Observation 2: If a < a0; then C(a;q) � C(a0;q):

In our model individuals who consider a larger set of joint information structures enabling

for greater degrees of correlation, will end up with a larger set of predictions. Thus, consid-

ering more joint information structures will reduce con�dence in the sense that individuals

may not be sure what is the right belief. Fixing their level of ambiguity aversion, or atti-

tudes to ambiguity, considering an increased level of correlation can induce a more cautious

behaviour, as we show below. Speci�cally, for any �NB(:); a high enough a can generate a

low enough minimum belief in this set. Along with ambiguity aversion, or alternatively with

pessimists taking hold in organizations, this can result in a more cautious behaviour. Thus

the level of a will create the cautiousness e¤ect. This e¤ect can explain pessimistic behavior

in �nancial markets when investors believe they face unknown levels of correlation as we now

explore.

4 Applications

In this Section we consider three applications. We �rst illustrate how the NB e¤ect in�u-

ences CDO rating, especially when the CDO is complex. We then consider an investment

environment where investors can observe others�behaviour. In this application we highlight

the interaction between the volume of trade and investor con�dence that results from the NB

and the cautiousness e¤ects. Finally, we consider an application to a group decision making

(juries) and show how group decisions can further be distorted when jurors are uncertain

about the correlation in the evidence they observe.
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4.1 Complex CDO rating

In this Section we provide a simple model of risk management for CDOs. Relying on Obser-

vation 1, we will show that for complex CDOs, for any ePMI-bounded dependence structure

across loans that one considers, the CDO can receive the highest rating.

Consider the case in which a CDO consists of n loans, each with a binary state of default

(D) or no default (ND), 
 = fD;NDg. Suppose that a particular tranche of the CDO

defaults if at least a share � of the individual loans default.

In this application the uncertainty over correlation will be about the correlation between

the defaults of the individual loans, i.e., through the prior p over the state. Therefore,

we assume that there are no observable forecasts. The prior marginal probability of each

loan defaulting (or !i = D) is pi(!i = D) = pi; and therefore we have n Bernoulli trials,

each with a marginal probability of D equal to pi. When the trials are independent, this

is a Poisson Binomial distribution. Below, when we take n to be large we will assume that

limn!1
Pn
i=1 pi
n

= � <1. Again, we assume a to be �xed although the result can be extended

to consider a sequence an:

This is the simplest static model that can describe a CDO (alternatively, one can consider

a dynamic probability of default, meaning a Poisson distribution, which our model can easily

be extended to). Moreover, other models typically assume a particular parametric family of

copulas to assess the cumulative risk of assets.15 We instead describe ePMI bounds without

resorting to any functional forms.

By Proposition 1, for any state !; we have that a belief �(:) is in the set C(a;q) i¤:

�(!)

�(!0)
=
�!�

NB(!)

�!0�NB(!0)
=

�!
nQ
i=1

pi(!i)

�!0
nQ
i=1

pi(!0i)

for any �!; �!0 2 [ 1a ; a]:

Let 
l be the set of states which have exactly l loans withD and let !l be a generic element

of this set. Then the probability that the CDO defaults when no correlation is considered is:

nP
l=d�ne

P
!l2
l

�NB(!l)

Let us now consider the worst case scenario among the scenarios determined by the extent

of correlation a: Using Proposition 1 we can derive the following:
15See for example Wang et al (2009).
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Remark 1: The worst-case scenario is that the CDO fails with probability

a2
nP

l=d�ne

P
!l2
l

�NB(!l)

1 + (a2 � 1)
nP

l=d�ne

P
!l2
l

�NB(!l)
:

As a CDO fails in many environments, Remark 1 allows us to see that our analysis easily

carries through for a combination of states. We can now use this to formalise CDO rating.

We focus on what rating is awarded when the CDO is complex, i.e., when n is large. To

compute the probability of default under no correlation for a large n; we can approximate

the Poisson Binomial distribution with a Poisson distribution with a mean �:16 This implies

that in the limit, under independence, there will be a share d�ne of assets that would fail.

As a result, a rating agency which considers no correlation, will, for a large n; approximate
nP

l=d�ne

P
!l2
l

�NB(!l); the probability that the CDO fails, by 0 if � > �; and by one if � < �:

In other words, while the probability of each feasible state ! does not become degenerate,

the cumulative probability of many states together -which is the relevant one for the case of

the CDO failing or not- does converge to be degenerate.

Suppose that the rating agency chooses a triple A rating to the CDO if its probability of

default is lower than some exogenous cuto¤ x > 0: Given the above discussion, we can then

establish:

Proposition 2: For any x > 0 and a <1; if � > �, there is a large enough n such that

the CDO receives the highest rating.

Given that the NB-belief converges to be degenerate for large n; the extent of correlation

bound a is immaterial, and even rating agencies that consider the worst case scenario will,

when � > �; award the highest rating for any level of x: In other words, neither a nor x are

important for the rating rule.

This implies that with complex securities composed of many assets, there are environments

in which taking bounded correlation into consideration will not change investors�behaviour.

Even if the pessimists get their say in an organization, their recommendation would be to

provide a high rating. We therefore unravel a relation between complexity and correlation

neglect. Note that in �nancial markets, it is common to consider bounded levels of cor-

relation. Tractability and simplicity imply that the di¤erent models used for generating
16See Hodges and Le Cam (1960).
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correlation only allow for modest levels of correlation, using a small number of correlation

parameters. When dealing with large numbers of components (e.g., the number of loans in

a CDO), this implies bunching many assets to have the same correlation patterns.17

To illustrate the implication of Proposition 2, let us consider the following structure that

generates the true correlations between loans. Suppose that there is a default parameter p;

taken from some f(p) on [0; 1]; with Ef (p) = �p: When p is drawn, then a dpne of the assets

fail. The rating agency knows the true marginal probability of each asset to fail, which is

pi = �p; and considers di¤erent correlation scenarios around this marginal: We then have:

Proposition 3: For large n; CDOs receive the wrong triple A rating whenever 1�F (�) >

x and �p < �; and the wrong lower rating whenever 1� F (�) < x and �p > �:

To see why this arises, note that the rating agency, as in Proposition 2, will award the

highest rating when � < �; and the lowest when � > �: Given that the marginal proba-

bility of each asset to fail is �p; and thus the average failure probability � for the Poisson

approximation is �p; a triple A rating is awarded if and only if �p < �:However, given the true

information structure which exhibits full correlation, the probability that at least a share

of � assets fail is simply the probability that p � �; that is, 1 � F (�): This is because

whenever p is drawn, a share dpne defaults, and hence when p � � the CDO will fail. As a

result, e¢ cient rating implies a triple A rating, according to the exogenous cuto¤ x; if and

only if 1 � F (�) < x: Thus, a triple A rating is wrongly awarded when both �p < � and

1� F (�) > x; and is wrongly avoided when 1� F (�) < x and �p > �: Suppose for example

that f is uniform. Then e¢ cient triple A rating should be awarded when 1� � < x so that

� > 1� x; while instead the CDO is awarded a triple A rating whenever � > 0:5:

4.2 Risky and cautious investment shifts

We now consider a simple investment model to highlight the e¤ect of the interaction of

Observations 1 and 2. Assume a binary model with two equally likely states of the world,

! 2 f0; 1g. Assume that there is a safe asset which provides the same returns L > 0 at any
17Similarly, the families of correlation structures (copulas) that are often used, implicitly limit the levels of

correlation. Also, arbitrary historical correlation data, which typically exhibits moderate levels of correlation

over time, is often used to generate scenarios. See MacKenzie and Spears (2014) and the FCIC report

mentioned above.
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state, and a risky asset which provides 0 at state 0 and H > L in state 1. Each investor has

one unit of income to invest which she can split across these two assets. Assume a standard

concave utility V (:) of wealth. Thus in this simple model the agent would invest a higher

share in the risky asset the higher are her beliefs that the state is 1.18

There are k informed investors. Let each hold a prediction qj(!): Thus, in the �rst period,

they invest according to qj(1):19 Investments in the �rst period are observed; assume that

investors can then backtrack the beliefs of others, qj(1) for all j.20 Finally, in the second

period, the investors can adjust their investments following their observation of q:

For simplicity we assume that the PMI-bound of each investor j; aj; is �xed. As Obser-

vation 1 shows, our results will remain if we consider that these depend on k, as long as

they do not converge too fast to in�nity. To take into consideration the cautiousness e¤ect

that can arise with ambiguity as described following Observation 2, we assume here that

when individuals are faced with ambiguity, they use the max-min preferences as in Gilboa

and Schmeidler (1989).21 Thus, in the second period, after observing others�investments,

an individual j with ambiguity aversion will then base her investment decision on the belief

which minimises her utility, which is min�j(1)2C(aj ;q) �j(1).

Given Proposition 1, we can further simplify �NB(:): Let q̂(1) be the belief such that q̂(1)
1�q̂(1)

is the geometric average of f qj(1)
1�qj(1)gj2K ; i.e.,

q̂(1)
1�q̂(1) = (�j2K

qj(1)
1�qj(1))

1
k : We can now express

18Here we abstract from prices. See the discussion at the end of the section.
19We can assume that each investor receives a signal sj on !; knows the marginal qj(sj j!); and updates

her prediction to qj(!):We show in Appendix B how all our analysis also holds when the agents who combine

forecasts also have their own information. Speci�cally, we need to show that when the individual receives her

signal, her uncertainty about the joint information structure (but her knowledge of her marginal distribution)

leads her still to a unique belief, which is straightforward to show. Another issue is that as she needs her

marginal to update her belief to qj(!); the set of rationalisable beliefs may depend on her marginal. One

possibility is to assume that when combining forecasts the investors only remember their posterior belief and

not the process that lead to it. Alternatively we can conduct the same analysis as in Proposition 1, with the

knowledge of the marginals and signals (see Appendix B).
20This assumption is made here for simplicity. One can assume a weaker version in which just the quantity

invested is observed. In that case, after observing investments, agents will not infer the beliefs exactly but

rather will be able to compute lower bounds on these beliefs.
21Note that given the convexity of the set of beliefs C(a;q), we can use other attitudes towards ambiguity

to generate similar results.
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�NB(1) as (recall that k is the number of investors),

�NB(1) = q̂(1)k

(1�q̂(1))k+q̂(1)k :

And j0s minimum combined forecast can be then written as:

min
�(1)2C(aj ;q(1))

�(1) =
1

aj
q̂(1)k

aj(1�q̂(1))k+ 1

aj
q̂(1)k

: (1)

Thus the agent invests more in the second period if and only if:

qj(1)

1� qj(1) <
1

(aj)2
(
q̂(1)

1� q̂(1))
k: (2)

Proposition 4: In the second period, following exposure to q: (i) If aj < aj
0
; then

investor j will invest more in the risky asset compared with j0. (ii) For any k; there is 
 > 1

such that if aj > 
 then individual j will lower her investment in the risky asset compared

to her �rst period�s investment; (iii) For a large enough k; if q̂(1) > 1
2
; all investors will

increase their investment in the risky asset compared to their �rst period�s investment and if

q̂(1) < 1
2
; then all will decrease their investment in the risky asset.

Part (i) illustrates that individuals who consider a smaller set of correlated information

sources will behave in a more risky manner.22 This result also implies that we can identify

the individual PMI-bounds from choice data, as long as there is general data on behavior of

individuals in the face of ambiguity. Speci�cally, assume that given some ambiguous set of

priors over the state of the world, we isolate some individuals with max-min behaviour. That

is, these individuals invest according to the most conservative prior. Now take these max-min

individuals and present them with a unique prior and a set of forecasts. Di¤erent investment

behaviours should re�ect then di¤erent views of correlation; thus we can di¤erentiate those

who consider lower levels of correlation by their more risky behavior.

To see how parts (ii) and (iii) arise, recall that we have identi�ed the cautiousness e¤ect

and the Naïve-Bayes e¤ect. If beliefs are in general pessimistic (that is, q̂(1) < 1
2
), then

22Note that �standard� results in the literature on correlation neglect are typically of the form that

individuals with more correlation neglect will take more extreme decisions, but depending on the state of the

world these could be either on the risky or on the cautious side (see Glaeser and Sunstein 2009 or Ortoleva

and Snowberg 2015). The result above is di¤erent; it applies to any state of the world and any set of signals,

and arises from the reduced ambiguity that comes with lower perception of correlation.
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both go in the same direction inducing a cautious investment behaviour following exposure

to multiple sources. If on the other hand beliefs are optimistic (namely, q̂(1) > 1
2
) the two

e¤ects go in opposite direction. When the number of forecasts is small, the Naïve-Bayes

e¤ect is weak, as �NB(:) is not likely to be informative. We can then always �nd a high

enough level of ambiguity so that the cautiousness e¤ect will dominate.23 On the other

hand, when the number of forecasts is large, ( q̂(1)
1�q̂(1))

k becomes very large, and the NB belief

overcomes cautiousness to induce a substantial risky behaviour. To recap, con�dence can

arise when a is small or �NB(:) is relatively precise. On the other hand, cautiousness arises

when a is large, and �NB(:) is relatively imprecise.

Remark 2: While cautiousness is directly related to ambiguity, a cautious shift will not

always arise with �standard�forms of ambiguity. Suppose for example that individuals have

ambiguity over the prior in the set [1
2
� "i; 1

2
+ "i] for some "i. Suppose that the information

structures satisfy independence and that this is known, and that all individuals start from

some beliefs qi(1) = q > 1
2
; as above. Following the �rst period, individuals will always

become more optimistic and increase their level of investment. Ambiguity over the prior

implies that �rst and second period investment are both lower compared to the case of no

ambiguity, but that second period investment increases for any k.

Both of the e¤ects we unravel can potentially shed light on the behaviour of investors

before and after the 2008 �nancial crisis. Many investors had realized after 2008 that the

level of correlation in assets and across forecasts was much higher than initially perceived.

In response, as we document in the introduction, the worst case scenarios did not only

receive more weight in the overall assessment, but were also downgraded to capture a more

pessimistic outlook. This corresponds to a possible shift of the value of a which, as we show,

can contribute to a �con�dence crisis�and lower investment levels.

Another element that changes in the market is the informativeness of �NB(:) which depends

on the number of investors involved. A market with many investors (even small ones) is such

that individuals can observe many forecasts. Even if each investment is slightly optimistic,

it can be aggregated to a precise and very optimistic �NB(:); which will overshadow the

23This result has a �avour of dynamic inconsistency results in the Ambiguity literature. See Hanani and

Klibano¤ (2007) for updating that restricts the set of priors and avoids dynamic inconsistency, and the

discussions in Al-Najjar and Weinstein (2009) and Siniscalchi (2011).
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cautiousness e¤ect. On the other hand, once some skepticism arises, as happened after the

crisis, the market will consist of less investors. In this case, the benchmark �NB(:) would be

imprecise, and the cautiousness e¤ect will dominate.24

4.3 Jury decision making

In our �nal application we use our framework to study decision making in Juries. This is

indeed an environment in which individuals are exposed to the same evidence and hence the

perception of correlation is relevant. Moreover, jurors are obliged to deliberate and exchange

forecasts.25 The analysis in this application illustrates how observations 1 and 2 interact in

a collective decision making problem.

We adopt the canonical model of juries to our framework. There are n jurors who decide

to acquit, A, or convict, C, a defendant. There are two states of the world, one in which the

defendant is guilty, G, and another in which she is innocent, I. Assume that the prior about

these two states is uniform and that it is common knowledge.

As in our main model, a vector of beliefs, q(G) = (q1(G); :::; qn(G)), denotes the posterior

private belief of each juror that the defendant is guilty, attained after observing their signals

from the trial. During deliberation the jurors share their beliefs qi � qi(G) truthfully. Each

Juror has a correlation parameter ai > 1, satis�es A1, and updates her beliefs to the set

characterised in Proposition 1: Each juror receives a utility of 0 for a decision that matches

the state of the world, ��i if the jury convicts the innocent, and �(1��i) if the jury acquits

the guilty. As standard, we assume that �i 2 (0:5; 1).

We assume that to convict, a unanimous vote for conviction must be reached. As all

information is shared, there are no �pivotal�considerations, so we can simply assume that

each juror votes sincerely.26 That is, she votes to acquit (convict) if she prefers to do so

given her post-communication beliefs and her preferences.

24Note that we can extend the above analysis to include prices determined by market makers, with some

added assumptions which guarantee that there is asymmetric information between informed investors and

market makers, as in Avery and Zemsky (1998). See also the surveys of Vayanos and Wang (2013) and

Bikchandani and Sharma (2000).
25Goeree and Yariv (2011) and Guarnaschelli et al (2000) have shown that when the option to deliberate

(or to conduct a straw poll before decisions) is o¤ered, individuals overwhelmingly tend to be truthful, even

when there are con�icting preferences.
26The analysis can then be easily extended to other voting rules.
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Let q̂ be the number such that q̂
1�q̂ is the geometric average of f

qj

(1�qj)gj2N : As a juror uses

her worst-case utility to evaluate her payo¤ from convicting versus acquitting, she convicts

if and only if:

max
�i(I)2C(ai;qn)

�i(I)(��i) > max
�i(G)2C(ai;qn)

�i(G)(�(1� �i)),

�i

1� �i
<

max�i(G)2C(ai;qn) �
i(G)

1�min�i(G)2C(ai;qn) �i(G)
,

�i

1� �i
<

ai + 1
ai
( q̂
1�q̂ )

n

ai + 1
ai
( q̂
1�q̂ )

n

Let K(�i; ai) = 1
2
(
q
4 �i

1��i + (a
i)4(2�

i�1
1��i )

2 + (ai)2 2�
i�1

1��i ): It is easy to see that this is a

function that increases in �i and ai; and satis�es K(�i; 1) = �i

1��i : We then have:

Proposition 5: (i) The decisive juror is juror i� 2 N which maximizes K(�i; ai) for all

i 2 N:27 Hence the jury convicts (acquits) i¤

(
q̂

1� q̂ )
n > K(�i�; ai�):

(ii) As n grows large, if q̂
1�q̂ > � > 1 (

q̂
1�q̂ 6 � < 1) the jury only convicts (acquits).

The result gives a simple characterisation of jury behaviour: the information held by the

group indicating that the defendant is guilty (summarized by the geometric mean q̂n) has

to be strong compared to the cuto¤ K(�i�; ai�) of the decisive juror. The decisive juror

is determined not only by her taste parameter �i�; but also by her correlation parameter

ai
�
. The less she considers correlation; the more �persuasive�is the information held by the

group, while the more she considers correlation, the more cautious she will be.

Are large groups better or worse than small groups? Note that now we identify two

obstacles for e¢ ciency. First, as in the investment application, the cautiousness and the NB

e¤ect may impede the behaviour of each juror, the former when the group is small and the

latter when the group is large. Second, in the juries case, the decisive juror is not necessarily

the �right�one. Unanimity rule indicates that the decisive juror should be the one with the

highest �i; for any known joint information structure: However, in our model, the identity of

the decisive juror will also depend on ai; speci�cally, it could be that the most lenient juror

will not consider su¢ cient correlation and hence will not be the decisive one.

27Speci�cally, K(�i; ai) = 1
2 (
q
4 �i

1��i + (a
i)4( 2�

i�1
1��i )

2 + (ai)2 2�
i�1

1��i ):
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To consider e¢ ciency we contrast two possible joint information structures: that of (condi-

tional) independence and that of full correlation. As before, the interesting case to consider

arises when q̂
1�q̂ > 1:

28 In the result below we compare the equilibrium behaviour of juries

to the e¢ cient course of action, for each of these information structures.

Proposition 6: (i) Suppose that the jurors receive conditionally independent signals on

the state of the world. Then, when ai
�
is large enough, small juries will acquit too frequently

(compared to the e¢ cient course of action) while large enough juries will behave e¢ ciently.

(ii) Suppose that there is one draw of an informative signal which all jurors observe. Then

small juries acquit too frequently for a large ai
�
and convict too frequently for a small ai

�
:

When the jury is large it convicts too frequently.

To see the intuition, note �rst that the optimal course of behaviour, given the social desire

for unanimity, is to compare the cuto¤ for the most extreme judge with the aggregated

information. That is, when information sources are independent, the jury should convict i¤

maxi2N �
i <

1+ q̂
1�q̂

n

2+( 1�q̂
q̂

n
+ q̂
1�q̂

n
)
; and when information sources are fully correlated, then the jury

should convict i¤maxi2N �
i < q:

How does behaviour compare to the e¢ cient one? One feature of ine¢ ciency was already

identi�ed in the previous Section. Speci�cally, consider one juror�s decision. We have seen

that when q̂
1�q̂ > 1; a small number of forecasts can induce a cautious behaviour (that is, in

favour of acquittal), while a large number of forecasts will induce a behaviour in line with

correlation neglect. When the signals are indeed independent, this means that small juries

over-acquit, and that large juries behave e¢ ciently.29 When the signals are fully correlated,

it is large juries that induce a conviction bias.30

28When q̂
1�q̂ < 1; all individuals would acquit for all a

i (recall that �i > 0:5) which is the e¢ cient course

of action for both information structures we consider:
29This is in contrast with the predictions of Feddersen and Pesendorfer (1998), but in line with the exper-

iments of Goeree and Yariv (2011) and Guarnaschelli et al (2000). These experiments allow for deliberation

and �nd that larger juries are more accurate in their decisions.
30The experiments reported in Schkade et al (2000) show a severity shift that arises when jurors deliberate

so that they tend to award higher punitive damages. In Schkade et al (2000) there is little control over

both the information sources of participants and what they might believe about them: Participants are

only shown the same videos of evidence and are not given any additional information. Our model generates

such shifts for large groups; for the case described above, some individuals with �i > q > 1
2 would acquit

pre-deliberation, while all would convict post-deliberation.
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However, in contrast to the previous Section, collective decision making introduces another

ine¢ ciency which arises as the decisive jury is not the �right� one; when the signals are

correlated, small juries can also over-convict if ai
�
is too low. Intuitively, the decisive juror is

determined both by her preference cuto¤and correlation parameter, while e¢ ciency demands

that only the preference parameter, together with the true information structure, should

determine who is decisive. Speci�cally, e¢ ciency means that the jury should convict if

maxi2N �
i < q while in our model the jury convicts i¤ �i

�
<

ai
�
+ 1

ai
�

q̂
1�q̂

n

2ai
�+ 1

ai
� (

1�q̂
q̂

n
+ q̂
1�q̂

n
)
: However, as

max �i � �i� ; and if the decisive juror does not perceive su¢ cient correlation, it can be that
ai
�
+ 1

ai
�

q̂
1�q̂

n

2ai�+ 1

ai
� (

1�q̂
q̂

n
+ q̂
1�q̂

n
)
> �i

�
while maxi2N �

i > q:

5 Conclusion

We suggest a new framework to analyse how sophisticated decision makers make decisions

when they face ambiguity over the correlation of multiple sources of information. The deci-

sion makers generate a set of predictions based on a set of �correlation scenarios�and take

a decision based on their attitudes towards ambiguity. Their set of predictions are fully

characterised by the level of correlation they consider and the Naïve-Bayes interpretation

of the information. A larger consideration set of correlation scenarios increases ambiguity

and therefore induces more conservative or cautious behaviour. On the other hand the level

of information implicit in a Naïve-Bayes interpretation of forecasts pushes individuals or

organisations to be more con�dent and sometimes engage in risky behaviour. We therefore

uncover a relation between complexity, con�dence, and correlation, and illustrate its e¤ects

on CDO rating, investment behaviour, and group decision making.
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6 Appendix

6.1 Appendix A

Proof of Proposition 1.

We �rst consider n = 1 and K > 1:

Step 1: Let �(:) 2 C(a;q). Then there exists an information structure (S 0; f 0) with S 0 =

fs�; s��gk which rationalises �(:) and satis�es A1.

Assume that an information structure (S = �j2KSj; f(sj!)) rationalises �(:):Without loss

of generality relabel signals so that the vector of signals that rationalises �(!) is (s�; s�:::; s�)

so that �(!) = f(!js�; s�:::; s�). In addition we have that the following rationalizability and

ePMI constraints are satis�ed,

8j 2 K and 8! 2 
; qj(!) = f j(!js�)

8s =(s1; :::; sk) 2 �j2KSj and 8! 2 
;
1

a
� f(sj!)Y

j2K
f j(sjj!)

� a.

Construct the new information structure (S 0; f 0(:j!)) by keeping the same distribution

over signals as in (S; f); while keeping the label s� and bundling all possible signals s 6= s�

32



under one signal s��: In particular, 8! 2 
;

f 0(s�; :::; s�j!) = f(s�; :::; s�j!)

f 0(s��; s�; :::; s�j!) =
P

s2S1=fs�g
f(s; s�; :::; s�j!);

and so on. Note that (S 0; f 0) rationalises �(:) by de�nition.

It remains to show that the ePMI constraints hold for (S 0; f 0) so that it satis�es A1. Note

�rst that the ePMI constraint for (s�; :::; s�) holds by de�nition of (S 0; f 0). Consider any

other pro�le of signals s 2fs�; s��gk: The ePMI constraint for s can be expressed in terms

of the information structure (S; f) as
Pm
l=1 clPm
l=1 c

0
l
where cl = f(slj!) for some sl = (s1l ; :::; skl ) 2 S

where we sum over all sl that compose s; and c0l =
Q
j2K

f j(sjl j!): But as the original ePMI

constraints hold, this also implies that 1
a
�
Pm

l=1
clPm

l=1
c0l
� a: Thus the ePMI constraints are

satis�ed also for (S 0; f 0):�

Wlog assume that the agent rationalizes the set of posteriors she observes by believing

that all sources have received the signal s�. For any v 2 
; let �v = Pr(all receive s�jv) and

let �iv = Pr(i receives s
�jv):

Step 2: Suppose n=1 and K>1. For any �(!) that satis�es the necessary condition in

the Proposition, there exists an information structure that satis�es A1 and rationalizes this

belief.

Take any vector (�!)!2
 that satis�es 1
a
� �! � a for any realisation of ! and consider

the belief

�(!) =
�!

1

p(!)k�1

Q
j2K

qj(!)P
v2


�v
1

p(v)k�1

Q
j2K

qj(v)
:

Using this vector (�!)!2
 we now construct an information structure that will satisfy all

ePMI constraints and the rationalisability constraints, and will rationalise the belief �(!).

Let �! = �!
Q
j2K

�j! and let �
j
! = " q

j(!)
p(!)

: This implies that this information structure

generates the belief as desired as �(!) = p(!)�!P
v2


p(v)�v
=

�!
1

p(!)k�1

Q
j2K

qj(!)P
v2


�v
1

p(v)k�1

Q
j2K

qj(v)
:

Note that p(!)�j!P
v2


p(v)�jv
= qj(!)P

v2

qj(v)

= qj(!) which implies that the posterior beliefs of all

individuals are rationalized.
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We now specify the joint distribution over signals, making sure that all the ePMI con-

straints are satis�ed. For all ! 2 
, set the joint probability of each event in which two or

more sources receive s�, but not when all sources receive s�, to satisfy independence. For

example, the probability that all m sources in the set M and only these individuals receive

s� in state !, for 1 < m < k; is
Q
j2M

�j!
Q

j2K=M
(1 � �j!). Thus for all these cases the ePMI

constraints are satis�ed.

At any state, we then need to verify the ePMI constraints in the following events: when

one source exactly had received s�; or when all received s��. Let us focus on some realisation

!. Consider �rst the event in which only one source had received s�:

P r(sj = s�; all others receive s��j!) = "q
j(!)

p(!)
��!�"

qj(!)

p(!)
(

P
M�K=fjg
jM j�1

Q
i2M

�i!
Q

l2K=M[fjg
(1��l!))

The ePMI is:

" q
j(!)
p(!)

� �! � " q
j(!)
p(!)

(
P

M�K=fjg
jM j�1

Q
i2M

�i!
Q

l2K=M[fjg
(1� �l!))

" q
j(!)
p(!)

Q
l 6=j
(1� " ql(!)

p(!)
)

=

1� �!
Q

l2K=j
(" q

l(!)
p(!)

)� (
P

M�K=fjg
jM j�1

Q
i2M

�i!
Q

l2K=M[fjg
(1� �l!))Q

l 6=j
(1� " ql(!)

p(!)
)

!"!0 1;

as for all k; �k! goes to 0 with ": Thus, the ePMI can be made smaller than a and greater

than 1
a
; if " is small enough.

Consider now the event that all sources had received s�� in state !:

Pr(all received signal s��j!) = (1� "q
j(!)

p(!)
)� (1� "q

j(!)

p(!)
)(

P
M�K=fjg
jM j�2

Q
i2M

�i!
Q

l2K=M[fjg
(1� �l!))

�(k � 1)("q
j(!)

p(!)
� �! � "

qj(!)

p(!)
(

P
M�K=fjg
jM j�1

Q
i2M

�i!
Q

l2K=M[fjg
(1� �l!)));

where here we subtract all the events in which two or more received s� (but at most k�1);

and the k� 1 events in which just one player had received s� which we had described above.
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The ePMI is:

(1�" q
j(!)
p(!)

)

(1�" q
j(!)
p(!)

)
Q
l6=j
(1�" q

j(!)
p(!)

)

�
(1�" q

j(!)
p(!)

)(
P

M�K=fjg
jM j�2

Q
i2M

�i!

Q
l2K=M[fjg

(1��l!))�(k�1)("
qj(!)
p(!)

��!�" q
j(!)
p(!)

(
P

M�K=fjg
jM j�1

Q
i2M

�i!

Q
l2K=M[fjg

(1��l!)))

(1�" q
j(!)
p(!)

)
Q
l6=j
(1�" q

j(!)
p(!)

)

=

1�(
P

M�K=fjg
jM j�2

Q
i2M

�i!

Q
l2K=M[fjg

(1��l!))Q
l6=j
(1�" q

j(!)
p(!)

)

�"
(k�1)( q

j(!)
p(!)

��!"k�1
Q
i2K

(
qi(!)
p(!)

)� qj(!)
p(!)

(
P

M�K=fjg
jM j�1

Q
i2M

�i!

Q
l2K=M[fjg

(1��l!)))

(1�" q
j(!)
p(!)

)
Q
l6=j
(1�" q

j(!)
p(!)

)

! "!01:

which again can be made smaller than a and larger than 1
a
for low enough ". Thus all

constraints in state ! can be satis�ed. �.

Step 3: Suppose now that n>1. For any �(:) that satis�es the necessary condition in

the Proposition, there exists an information structure that satis�es A1 and rationalizes this

belief.

Consider the belief �(!) = �!�NB(!)P
v

�v�NB(v)
: Let f(s;!) =

Q
j2K

f ji (s
j
i j!i): Let f

j
i (s

j
i j!i) =

qji (!i)

pi(!i)

and let p(!) = �!
Q
i2N

pi(!i): The ePMI constraints are satis�ed as well as the rationalisability

constraints as pi(!i)f
j
i (s

j
i j!i)P

vi
pi(vi)f

j
i (s

j
i jvi)

=
qji (!i)P
vi
qji (vi)

= qji (!i): Moreover the belief can be generated by

�(!) =

p(!)
Q
i2N

Q
j2Ki

fji (s
j
i j!i)P

v p(v)
Q
i2N

Q
j2Ki

fji (s
j
i jvi)

=

p(!)
Q
i2N

Q
j2Ki

fji (s
j
i j!i)P

v p(v)
Q
i2N

Q
j2Ki

fji (s
j
i jvi)

= �!�NB(!)P
v

�v�NB(v)
as desired.�

Step 4: C(a;q) is compact and convex.

Compactness comes from the proof in the text and the previous steps. To prove convexity

consider two beliefs � and �0 that are in C(a;q). Note that from the above a belief �(:) is in

C(a;q) if and only if for any v; ! 2 
 we have,

�(!)

�(v)
=
�!
�v

�NB(!)

�NB(v)
:

Thus all likelihood ratios satisfy,

1

a2
�NB(!)

�NB(v)
� �(!)

�(v)
� a2�

NB(!)

�NB(v)
: (3)
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To prove convexity we show that we can �nd a vector �� with elements between 1
a
and a

that spans ��+(1��)�0: It will be enough to show that ��+(1��)�0 has likelihood ratios

in the bounds in (3). Note that �; �0 satisfy

1

a

2�NB(!)

�NB(v)
� �(!)

�(v)
� a2�

NB(!)

�NB(v)
;
1

a

2�NB(!)

�NB(v)
� �0(!)

�0(v)
� a2�

NB(!)

�NB(v)
;

we have that:

��(!) + (1� �)�0(!)
��(v) + (1� �)�0(v) �

��(v) + (1� �)�0(v)
��(v) + (1� �)�0(v)a

2�
NB(!)

�NB(v)
= a2

�NB(!)

�NB(v)
;

and similarly that,

��(!) + (1� �)�0(!)
��(v) + (1� �)�0(v) �

1

a

2�NB(!)

�NB(v)
:

So there must exist �� that spans �� + (1� �)�0:�

Proof for Example 2: It is easy to see that whenever a share of the realisations of the

same posterior is not qK; then the PMI equals 1 � �: The largest ePMI arises then when

the state is ! = 1 (0) and share of some speci�c qK realisations is q (1� q) and the other q

(1� q): This is therefore the upper bound of aK ; and it is
� 1

K!
(qK)!((1�q)K)!

+ (1� �)qqK(1� q)(1�q)K

qqK(1� q)(1�q)K

where in the nominator we have the probability of this event arising under the information

structure considered, and in the denominator the probability of this event arising under

independence, using the marginal probabilities. Note that aK will increase in the slowest

rate as it is largest under the event which is also the most probable under independence (for

large K):

Re-arranging and using Stirling�s formula for K!
(qK)!((1�q)K)! ; this becomes

�
1

1p
2�

1p
Kq(1�q)(q)qK(1�q)(1�q)K

qqK(1� q)(1�q)K
+ (1� �)

= �
p
2�
p
Kq(1� q) + (1� �)!K!1 1

Let us consider the event in which all forecasts are q: In this case, �NBqK (1) =
qK

qK+(1�q)K :

Our limit condition demands

lim
K!1

a2K(1� �NBqK (1)) = 0
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Note that

a2K(1� �NBK (1))

= (�
p
2�
p
Kq(1� q) + (1� �))2 (1� q)K

qK + (1� q)K

= (�22�Kq(1� q) + (1� �)2 + (1� �)�
p
2�
p
Kq(1� q)) (1� q)K

qK + (1� q)K

It is therefore su¢ cient to show that limK!1 �
22�Kq(1� q) (1�q)K

qK+(1�q)K = 0: But note that

lim
K!1

K
(1� q)K

qK + (1� q)K = lim
K!1

K

(1�q)K
qK

1 + (1�q)K
qK

< lim
K!1

K
(1� q)K
qK

= 0:�

Proof of Remark 1: First note that our results extend to a combination of states. That

is, we know that the maximum belief in the set

�(!) =
�!�

NB(!)

�!�NB(!) +
P

!0 6=! �!0�
NB(!0)

where �v 2 [1=a; a]; is attained when �! = a and �!0 = 1=a for all other !0: But also the

maximum in the set

�(!) + �(!0) =
�!�

NB(!)+�!0�
NB(!0)

�!�NB(!) + +�!0�NB(!0) +
P

v 6=!0;!00 �v�
NB(v)

;

by taking derivatives w.r.t. the �0s; is attained when �!; �!0 = a and �v = 1=a for all others.

Thus the worst case scenario is the highest belief that the CDO fails meaning:

a
nP

l=d�ne

P
!l2
l

�NB(!l)

a
nP

l=d�ne

P
!l2
l

�NB(!l) + 1
a
(1�

nP
l=d�ne

P
!l2
l

�NB(!l))

which equals the formulation in the text.�

Proof of Proposition 2: By the approximation and from Remark 1, we know that the

worst case scenario is

a(1� e��n
b�ncP
i=0

(�n)i

i!
)

a(1� e��n
b�ncP
i=0

(�n)i

i!
) + (1=a)(e��n

b�ncP
i=0

(�n)i

i!
)
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But note that for any � > � we have limn!1(1� e��n
b�ncP
i=0

�ni

i!
) = 0; implying that

lim
n!1

a(1� e��n
b�ncP
i=0

(�n)i

i!
)

a(1� e��n
b�ncP
i=0

(�n)i

i!
) + (1=a)(e��n

b�ncP
i=0

(�n)i

i!
)

= 0

Therefore, for any � > � we have that, for all x and for all a; the CDO is deemed safe.�

Proof of Proposition 3: In text.

Proof of Proposition 4: (i) The proof follows from the construction in Proposition 1,

Observation 1 and maxmin preferences. These imply that an individual i who has a lower

perception of correlation than an individual j; will choose to invest according to a higher

belief about state 1 and hence will invest more in risky asset. (ii) The proof follows from

the construction in Proposition 1. Fix K;N and q, as a goes to in�nity, the set C(a;q)

converges to span all possible beliefs. Therefore there is a 
 > 1 such that if 
 < a; each

investor will have a minimum belief that is lower than his qi(1) and hence will experience a

cautious shift. (iii) This is explained in the text.�

Proof of Proposition 5: In text.

Proof of Proposition 6: Consider the case of independent information. Note that the

optimal course of behaviour is to convict i¤ maxi2N �
i <

1+ q̂
1�q̂

n

2+( 1�q̂
q̂

n
+ q̂
1�q̂

n
)
: As for all ai

�
> 1;

ai
�
+ 1

ai
�

q̂
1�q̂

n

2ai�+ 1

ai
� (

1�q̂
q̂

n
+ q̂
1�q̂

n
)
<

1+ q̂
1�q̂

n

2+( 1�q̂
q̂

n
+ q̂
1�q̂

n
)
; the only distortion arises when

ai
�
+ 1

ai
�

q̂
1�q̂

n

2ai�+ 1

ai
� (

1�q̂
q̂

n
+ q̂
1�q̂

n
)
�

�i
� � maxi2N �

i � 1+ q̂
1�q̂

n

2+( 1�q̂
q̂

n
+ q̂
1�q̂

n
)
; which implies that juries over-acquit: When n is large

enough juries behave according to Naive-Bayes belief and hence no distortion arises.

Consider now the case in which there is one draw of an informative signal and all observe

the same draw and form a posterior qi(G) = q. E¢ ciency means that that the jury should

convict if maxi2N �
i < q while in our model the jury convicts i¤ �i

�
<

ai
�
+ 1

ai
�

q̂
1�q̂

n

2ai
�
+ 1

ai
� (

1�q̂
q̂

n
+ q̂
1�q̂

n
)
:

Fix n to be small enough: When ai
�
is large enough then

ai
�
+ 1

ai
�

q̂
1�q̂

n

2ai�+ 1

ai
� (

1�q̂
q̂

n
+ q̂
1�q̂

n
)
< q. Otherwise

ai
�
+ 1

ai
�

q̂
1�q̂

n

2ai�+ 1

ai
� (

1�q̂
q̂

n
+ q̂
1�q̂

n
)
> q. Thus, for a small n; if ai

�
is large we can have an acquittal bias

as before (cautiousness e¤ect), while for a small ai
�
we can have a conviction bias due to

the neglect of correlation, in the case in which
ai
�
+ 1

ai
�

q̂
1�q̂

n

2ai
�
+ 1

ai
� (

1�q̂
q̂

n
+ q̂
1�q̂

n
)
> maxi2N �

i > q: As
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maxi2N �
i � �i

�
; the jury will convict while it is optimal to acquit. This e¤ect arises

because the decisive juror is not the right one. When n is high on the other hand, by the

NB e¤ect,
ai
�
+ 1

ai
�

q̂
1�q̂

n

2ai�+ 1

ai
� (

1�q̂
q̂

n
+ q̂
1�q̂

n
)
! 1 > q; and thus indeed we have a conviction bias when

maxi2N �
i > q:�

6.2 Appendix B: Other results

6.2.1 Pointwise mutual information and concordance

Proposition B1: Assume that there are two information sources, k and j. There is a

0 < �� < 1 such that any joint information structure that satis�es A1 has a Spearman�s �

(Kendal�s �) in [���; ��]:

Proof of Proposition B1: The bounds on the ePMI imply that there is an " such

that f(sk;sj j!)
fk(skj!)fj(sj j!) 2 [1 � "; 1 + "]: This implies that jf(sk; sjj!) � fk(skj!)f j(sjj!)j �

"fk(skj!)f j(sjj!): Summing up over all (sk; sj) and given x; y we get that jF (x; yj!) �

F k(xj!)F j(yj!)j � "F k(xj!)F j(yj!) � ": This implies that the distance between the copula

of any such information structure to the product copula is bounded by ".

Among all such information structures, take the supremum according to the highest copula.

That information structure has a Spearman�s � (Kendall�s �) that is strictly smaller than 1

(See Theorem 5.9.6 and Theorem 5.1.3 in Nelsen 2006).

Among all such information structures, take the in�mum according to the lowest copula.

That information structure has a Spearman�s � (or Kendall�s �) that is strictly larger than

-1 (See Theorem 5.9.6 and Theorem 5.1.3 in Nelsen 2006).

By Theorem 5.1.9 in Nelsen (2006), any other information structure will have a Spearman�s

� (Kendall�s �) in between the two copulas above.�

6.2.2 Agents with private information

In the application in Section 4.2, each agent receives a signal and generates a prediction.

There are two subtleties to consider in order to extend the model described in Section 2.

First, when the agent receives a signal, knows his marginal distribution, and updates his

belief, we need to show that she ends up with a unique rationalised belief even though

she can imagine many joint information structures. This we do in Proposition B2 below.
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Second, to extend our model directly from there, we need to assume that individuals forget

their marginals and signals when they combine forecasts, so the only information they have

is the vector q: In this case we are exactly in the same model as in Section 2. But note that

if not, our results still hold. Speci�cally, in Proposition B3 we show that the results extend

to the case in which the agent knows the marginal distributions and signals.

Proposition B2: Suppose that each agent receives a signal and knows his marginal .

Then each agent has a unique posterior. That is, given an observation of some s0 2 Sj;

individual j updates his belief to f j(!js0) = p(!)fj(s0j!)P
v2
 p(v)f

j(s0jv)
:

Proof: Individual j observes s0 2 Sj and considers all joint information structures which

have a marginal information structure that accords with his own. That is, all (�kl=1Ŝl; f̂(s; !))

for which
P

s�j2�j 6=lŜl f̂(s
0; s�jj!) = f j(s0j!) for all !: For any such joint information struc-

ture (�kl=1Ŝl; f̂(s; !)); we generate the posterior belief about state ! as

f̂ j(!js0) =
P

s�j2�j 6=lŜl p(!)f̂(s
0; s�jj!)P

v2

P

s�j2�j 6=lŜl p(v)f̂(s
0; s�jjv)

=
p(!)f j(s0j!)P
v2
 p(v)f

j(s0jv)

for all !:�

6.2.3 Observing signals and marginals

In the analysis above we have assumed that the agent only observes the forecasts. This

had allowed us to derive a set of rationalisable beliefs that is determined by the forecasts

q and not by the particulars of any information structure. An alternative assumption is

that the agent also observes the marginal information structures of the sources or their

signals. We now illustrate that relaxing these assumptions will not a¤ect our qualitative

results characterising C(a;q); what does change is that the set of beliefs might depend on

the particulars of these marginal information structures.

Consider for example the following information structure.31 Assume that there are two

information sources, (1 and 2) and consider for simplicity the case in which both have sym-

metric marginal information structures with binary signals (s� and s��) about two possible

realisations of the state (0 and 1). The agent then considers the set of possible symmetric

joint information structures which is given by:
31As we show in the appendix, any information structure that rationalizes a set of forecasts can be repli-

cated by a structure with two signals only for each forecaster. Thus, the example below, symmetry aside, is

general for the case of two realisations of the state.
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! = 0 s� s��

s� f(s�j0)� f0 f0

s�� f0 1� f(s�j0)� f0

! = 1 s� s��

s� f(s�j1)� f1 f1

s�� f1 1� f(s�j1)� f1

Note that even though the individual knows f(sj!), she still does not know f0 and f1:

Suppose now that she observes the forecasts as well as f(sj!); which is equivalent to observing

the signals and marginals. For expositional purposes, we focus on the case in which both

information sources observed the signal s�, i.e., q = ( f(s�j1)
f(s�j1)+f(s�j0) ;

f(s�j1)
f(s�j1)+f(s�j0)): We then

have:

Proposition B3: Given marginals f(s�j!) and forecasts q = ( f(s�j1)
f(s�j1)+f(s�j0) ;

f(s�j1)
f(s�j1)+f(s�j0));

the set of rationalisable beliefs is: (i) C(a;q) as in Proposition 1 if f(s�j1)
1�f(s�j1) � a �

1�f(s�j0)
f(s�j0) ,

(ii) Contained in C(a;q), convex and contains the NB belief if a < f(s�j1)
1�f(s�j1) or

1�f(s�j0)
f(s�j0) < a.

Proof: The ePMI constraints are:

1

a
� f(s�j!)� f!

f(s�j!)2 � a

1

a
� f!

f(s�j!)(1� f(s�j!)) � a

1

a
� 1� f(s�j!)� f!

(1� f(s�j!))2 � a

First note that the Naïve-Bayes belief satis�es all the constraints. Note that the belief

that the state is one is �1
�0+�1

:We proceed by charecterising the highest and lowest values we

can get for �!:

From the �rst ePMI constraints we have that: af(s�j!)2 � f(s�j!)2 � f! � 1
a
f(s�j!)2.

Note the third ePMI constraints above do not bind at the extremes of the above inequalities:

1

a
�
1� 2f(s�j!) + 1

a
f(s�j!)2

(1� f(s�j!))2 <
1� 2f(s�j!) + f(s�j!)2

(1� f(s�j!))2 = 1 < a;

where the LHS inequality is derived from

1

a
�
1� 2f(s�j!) + 1

a
f(s�j!)2

(1� f(s�j!))2 , (1� 2f(s�j!)) � a(1� 2f(s�j!)), 1 � a:

Similarly,

1

a
� 1 = 1� 2f(s�j!) + f(s�j!)2

(1� f(s�j!))2 � 1� 2f(s�j!) + af(s�j!)2
(1� f(s�j!))2 � a;
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where the RHS inequality is derived from

1� 2f(s�j!) + af(s�j!)2
(1� f(s�j!))2 � a, 1� 2f(s�j!) � a(1� 2f(s�j!)), 1 � a:

So the only constraints left are 1
a
� f!

f(s�j!)(1�f(s�j!)) � a: For this the extremes could matter

as while 1
a
� f(s�j!)� 1

a
f(s�j!)2

f(s�j!)(1�f(s�j!)) is satis�ed as
f(s�j!)� 1

a
f(s�j!)2

f(s�j!)(1�f(s�j!)) >
f(s�j!)�f(s�j!)2
f(s�j!)(1�f(s�j!)) = 1 � 1

a
; the

other side has f(s�j!)� 1
a
f(s�j!)2

f(s�j!)(1�f(s�j!)) � a,
f(s�j!)

(1�f(s�j!)) � a and similarly, for the other extreme, we

will need 1
a
� f(s�j!)�af(s�j!)2

f(s�j!)(1�f(s�j!)) , f(s�j!)(a+ 1) � 1, a � 1�f(s�j!)
f(s�j!) :�

6.2.4 Continuous distributions: The FGM transformation

In this subsection we show that our analysis can be extended to continuous distributions.

We use the FGM transformation to derive a family of information structures starting from

particular marginal information structures. This can then be useful in applications in which

continuous signal structures are more relevant.32

Suppose as above that the agent knows the marginal distributions as well as the signals

of his information sources. Suppose that n = 1; and that the marginals distributions are

symmetric, g(s1j!) and g(s2j!); with PDFs G(s1j!) and G(s2j!) respectively: We assume

that the agent perceives the following family of joint information structures, constructed

according to the FGM transformation:

g(s1; s2j!) = [1 + �!(2G(s1j!)� 1)(2G(s2j!)� 1)]g(s1j!)g(s2j!):

In this family, �! > (<)0 signi�es positive (negative) correlation. For this family to hold,

it has to be that j�j � 1: Furthermore, to satisfy the ePMI constraints for some a, we also

need:
1

a
� 1 � �! � 1�

1

a
:

It is then easy to show that Proposition 1 holds as well.33 The set of rationalisable beliefs

given some s; s0 is the set of all beliefs �(:js; s0) satisfying:

�(!js; s0)
�(!0js; s0) =


!(s; s
0)g(sj!)g(s0j!)


!0(s; s
0)g(sj!0)g(s0j!0) =


!(s; s
0)�NB(!js; s0)


!0(s; s
0)�NB(!0js; s0) ;

32In Laohakunakorn, Levy and Razin (forthcoming) we use this transformation to analyze the e¤ects of

corelation capacity on common value auctions.
33The su¢ ciency part is as in Section 3. The necessity part follows from directly from the assumption of

the FGM family of functions.

42



for any 
v(s; s
0) 2 1+�v(2G(sjv)� 1)(2G(s0jv)� 1); and �v 2 [ 1a � 1; 1�

1
a
]; for v 2 f!; !0g:

Note that when �v = 0 for all v; we have the Naïve-Bayes benchmark as before.
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