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Abstract— The rapid development of Unmanned Aerial Vehi-
cles (UAV) technologies over the recent years has been decisive
for their integration in emergency response missions. While
initial use by first responders focused on manual operations,
the need to improve utilization necessitates higher levels of
automation.

Contributing towards that end-goal, this work derives swarm
path planning algorithms that can effectively and efficiently be
employed to search and monitor the operating field. A swarm
is composed by two or more units, that coordinate to achieve
the mission objectives including minimizing search time while
ensuring coverage of the field. A graph theoretic approach is
followed to model the underlying swarm path planning problem
and mathematical programming is employed to describe a
number of important variants of the cooperative strategies
that arise. Thereafter, 4 algorithms are derived to solve the
swarm path planning problem that are computationally efficient
to implement and use in practice. A thorough performance
evaluation is conducted to understand the advantages and dis-
advantages of each heuristic using a number of key performance
metrics.

Index Terms— Path planning, drone swarms, emergency
response, mathematical programming

I. INTRODUCTION

Among the most important tasks, in any emergency re-
sponse mission, is to establish situational awareness and
search for survivors on the ground as soon as possible. To
date, both tasks have been carried out by first responders that
scan the affected area on foot carrying out visual inspections
in the process. Search operations have always been the most
significant and difficult task in a response mission mainly
due to the constraint accessibility to the field and harsh
environmental conditions. As such, searching the field is
by far the most resource hogging processes of a response;
involving a significant part of the human resources available
on the ground.

Unmanned Aerial Vehicles (UAVs) have the potential to
achieve this task both faster and safer, while minimizing
the extend of human resources that need to be devoted [1].
Emergency management experts have already realized the
many potential gains that these UAV platforms can offer,
and begun integrating UAVs operations in their response
workflows [2].

Undoubtedly, UAVs have transform the way emergency
operations are carried out. With today’s technology, UAVs
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can easily access hard to reach areas, support a variety
of on-board sensors to provide a real-time picture of the
situation on the ground [3], track the evolving and dynamic
situation [4], and enable the distribution of supplies to those
in need [5]. UAVs are already used to provide situational
awareness to first responders. During the recent wildfires
in California, Los Angeles Fire Department used UAVs to
assess the damages caused by the Creek Fire near Sylmar and
the Skirball Fire in the Bel Air and to recognize hotspots that
could potentially reignite. While UAV operations, to date,
have only been limited to manual flights, the need for a more
systematic and extended operation has driven demand for
automated functionalities, including searching across large
areas using a fleet of UAVs and monitoring the field for
changes.

Our work, is concerned with path (re)planning algorithms
employed by a centrally-controlled fleet of UAVs in an
emergency response mission. Since time is the most critical
performance indicator, it is important to search the whole
area as soon as possible. Flight routes are computed in a way
as to minimise the overall response time while maximizing
the coverage of the field taking into account the battery
resource limitations of individual units. Clearly, computed
routes can dynamically be updated over time to accommo-
date for modelling uncertainties and environmental changes.
The main contributions of this work can be summarised as
follows:

• Mathematical programming formulations are derived for
the multi-agent searching problem and for a number of
important variations to this problem.

• The hardness inherent with the derived formulations
led to the development of alternative novel heuristic
algorithms that are shown to perform well under real-
time constraints.

• Performance analysis is done through extensive simu-
lations over a board of relevant metrics to demonstrate
the applicability of the proposed solution.

• Empirical evaluation of the proposed algorithms and
their performance is seen through a series of real-life
test flights.

The rest of the paper is organized as follows. Section
II summarises the related work. Section III derives math-
ematical problem formulations for coordinated search paths
for emergency response. Section IV describes heuristics that
solve the baseline problem efficiently and Section V includes
simulation results.



II. RELATED WORK

To date extensive literature has looked into the problem of
path planning for area coverage by individual UAV agents.
To model the problem, variants of the traveling salesman
and vehicle routing problems have been considered [6] [7],
[8] while heuristic [9] [10], and meta-heuristic algorithms
[11] [12] [13] [14] have been proposed to solve practical
instances of the problem with short computation times. To
further improve on the execution times, various decompo-
sition techniques have also been investigated [15] [16]. To
deal with uncertainty in the model, a number of studies
have looked into stochastic modelling formulations with
partially observable Markov decision processes being the
most prominent example, [17].

Research on coordinated fleets of UAVs has focused
predominantly on addressing the technological shortcoming
of individual agents including limited battery, and short
communication and sensing ranges [18] [19] [20] [21] [22]
[23].

In this paper, we investigate how coordinated mobility
control actions can be made to generate search paths for each
of a fleet of UAVs to follow so that searching can be split
between the agents and carried out in a parallel fashion so
as to improve response times. It should be emphasized here
that this problem is significantly different than what previous
studies have focused on as is evident form the reported liter-
ature. Moreover we derive novel mathematical programming
formulations of the problem and computationally efficient
heuristic algorithms that are shown to perform well in real-
time under various realistic scenarios.

III. PROBLEM FORMULATION

As previously emphasized, the aim is to compute routes
for each of k = 1, . . . ,K agents (UAVs) to rapidly search the
field. To address this problem, a graph theoretic approach is
followed to: 1) model the affected area as a complete directed
weighted graph G where arc costs represent flight times, and
2) use G to construct routes that will cover the field without
exceeding flight time constrains.

An illustrative example of a complete grid graph G is
presented in Fig. 1. Starting from a location s, considered
as the source, each agent visits nearby nodes that are within
the remaining flight time and returns to s. The challenge
is to build such routes in a way that the search area is
maximised while the total traversal cost in terms of flight
time is minimised.

Let the set of agents be denoted by K = {1, 2, . . . ,K}.
Graph G = (N,A) is assumed to be a complete graph where
N = {1, 2, . . . , n} is the set of nodes of G that we would
like to visit (i.e., search) by one or more agent and A is the
set of arcs of G. Hence, (i, j) ∈ A means that a UAV can
move from node i to node j and this has flying time cij ≥ 0.
We assume that if (i, j) ∈ A then we also have (j, i) ∈ A
with cij = cji.

Also let dij indicate the Euclidean distance from node i to
node j and v the speed by which UAVs traverse the graph.
In this paper we assume that weather conditions allow v

Fig. 1: Feasible tours performed by two UAVs starting at
source node s and returning to s within their remaining flight
time.

to be constant. The corresponding arc cost cij =
dij

v is then
assumed to be the total time needed to traverse the particular
arc of the graph. We let B(k) and the total flight time that
UAV k can achieve based its initial battery level.

Each agent is initially located at a source node s ∈ N and
its initial remaining flying time is B(k). We would like to
find a route for each k that starts at the source node s visits
some other nodes in N and returns to s with flying time
not exceeding B(k), ensuring the safe return of the UAV
back to the source. We assume that the route of each k can
repeat nodes and edges and the routes of different UAVs can
also overlap in nodes and edges. Thus, the feasible routes
of each UAV is a closed walk that goes through s but to
simplify notation we call them tours.

In this section we define two variations of the problem to
address particular mission objectives. These objectives either
minimise flight times (battery lives) or maximise the number
of nodes visited. For each one of the aforementioned prob-
lems we provide mathematical programming formulations in
the form of integer or mixed integer linear programs.

A. Minimising Flight Time - P1

The first problem we consider, (P1), has the objective
of minimizing the total flying time (battery consumption).
Further, we would like each node to be visited by some UAV
at least once. A mathematical programming flow formulation
of (P1) is shown below:
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The integer variable xk
ij denotes a flow on arc (i, j) for

UAV k indicating the number of times that agent traverses arc
(i, j) ∈ A. The objective (1) here is to minimise the total
battery consumption for all agents. Constraints (2) ensure
that all tours of the UAVs are within their remaining flying
time. Constraints (3) ensure that all nodes are visited by at
least one UAV by restricting the total outflow from each node
i ∈ N to be at least 1. Note that we allow each UAV to visit
a node more than once. The conservation of flow constraints
at each node i for each UAV are given in constraints (4).
In order to ensure that the flow for each UAV will be a
connected cycle that leaves s and returns to s we use the
Miller Tuck Zemlin (MTZ) subtour elimination constraints
(see [24]) as shown in (5), which are explained below.

The MTZ subtour elimination constraints are used in the
well-known Travelling Salesman Problem (TSP) in order to
find a minimum-cost Hamiltonian tour (a tour that visits
all the nodes exactly once). These constraints eliminate
disconnected subtours. In our problem they do something
similar for the tour of each UAV. To define these constraints
continuous variables uk

i are used, which are known as node
potentials. Also, the parameter M used in the constraint is
a large positive integer, which we can set it to be a multiple
of the number of arcs in G. For example, suppose there
is a cycle 1 − 2 − 3 − 1 which means that all the flow
variables (1, 2), (2, 3), (3, 1) have positive flow and using
the MTZ constraints on these arcs we get u1 < u1 + 1 ≤
u2 < u2 + 1 ≤ u3 < u3 + 1 ≤ u1. This is impossible to
achieve and thus no such cycle will be formed. However, we
allow cycles that have the source s in them because the arcs
connected to s are excluded from the MTZ constraints. The
conservation of flow constraints on each node along with
the MTZ constraints on all nodes except s ensure that each
UAV will leave s and return to s. Therefore, constraints (5)
construct for each agent a tour that leaves and returns to the
source node.

B. Minimising Flight Time Alternative Formulation - P2

It is important to emphasize that in the above formula-
tion the MTZ constraints have been employed to eliminate
subtours. However, one drawback of these constraints is that
they do not allow certain cycles that could be acceptable
UAV routes. For example, in Fig. 2 the route shown is a an
acceptable UAV tour, however the MTZ constraints would
rule it out because of cycle 6−7−8−12−16−15−14−10−6;
even though this cycle is connected to the source via another
cycle.

To address this shortcoming, alternative subtour elimina-
tion constraints (ASEC) are designed that only eliminate
disconnected subtours. Problem (P2) below reformulates the
basic formulation expressed in (P1) to include those ASEC
constraints.

Fig. 2: The depicted tour would have been eliminated by the
MTZ constraints because of cycle 6 − 7 − 8 − 12 − 16 −
15− 14− 10− 6 even though it is a valid tour. The number
on each arc is the number of times the UAV passes through
that arc.
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Constraints (8) ensure that each UAV is connected to s
by setting the outflow out of s for each drone to be at
least 1. Constraints (9) are the alternative subtour elimination
constraints (ASEC). For Q ⊂ N , we define A(Q) to be the
set of arcs with only one end in Q and let A′(Q) to be
the set of arcs with both ends in Q. The right hand side of
the constraint is the total flow within set Q with respect to
UAV k and the sum on the left hand side is the total flow
in and out of Q. Thus if there is some flow within Q with
respect to k then the right hand side is positive which forces
the left hand side to be positive which means that the flow
in Q is connected to nodes outside of Q. This eliminates
disconnected flow cycles but does not eliminate flow cycles
that are connected to the source.

C. Maximising Number of Nodes Visited - P3

In the previous formulations, constraint (3) ensured that
all nodes are visited by some UAV. This is quite restrictive
in the sense that computing tours that visit all the nodes may
become infeasible for large instances of graph G since the
traversal costs in terms of flying time might be too large for
the available UAV resources. In problem (P3) we relax this
constraint and instead change the objective to maximise the
number of nodes visited. In order to do that we introduce new
binary variables zi that take the value 1 only when some UAV
visits node i in its tour, and 0 otherwise. The formulation of



problem (P3) is shown below:

(P3)max
∑
i∈N

zi (10)

s.t. zi ≤
K∑

k=1

∑
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xk
ij ∀ i ∈ N (11)
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zi ∈ {0, 1} and (2), (4), (6), (9)

Constraints (11) ensure that if there is no flow of node i
with respect to any UAV k then zi = 0 and constraints (12)
ensure that if there is some flow out of node i for any UAV
then zi = 1.

D. Hardness of Optimal Solutions

Problem (P1) can be easily shown to be NP -hard when
we notice that when k = 1 it becomes the Travelling Sales-
man Problem (TSP). Problems (P2) and (P3) on the one
hand relax the sub-tour elimination constraints by allowing
tours such as the one in Figure 2, but on the other hand they
include constraints (9), whose cardinality is exponential in
the number of nodes. Thus none of these problems scale well
for realistic network instances. In the next section we seek to
device heuristic solutions that can be solved efficiently and
used in practice to construct UAV tours in real-time.

IV. PRACTICAL HEURISTIC ALGORITHMS

A. Christofides Variant

Due to several similarities of (P1) and (P2) to the
travelling salesman problem (TSP), a variant of Christofides
Algorithm (CA), originally published in [25], is initially
employed to efficiently compute UAV tours. Christofides
algorithm is a constant 3

2 approximation algorithm. However,
our heuristic, called Christofides Variant (CV) heuristic, does
not have any approximation guarantee.

The idea of the CV heuristic is the following: we first
create a spanning tree of G with K branches coming out
of s by greedily selecting arcs in a round robin fashion
for each UAV k; then each branch subtree is converted to
a tour from s by adding to the subtree a minimum cost
perfect matching of the odd degree nodes of the subtree,
creating an Eulerian circuit and then short-cutting it (as in
Christofides algorithm, see [25]). Our problem also has the
battery capacity constraints in terms of flying time (see (2))
that we need to satisfy. In order to do that, we keep track
of the cost of each subtree. While the subtree cost is within
B(k)
2 we know that the resulting tour will be within B(k)

(see Appendix A); if the subtree cost exceeds this limit then
we need to make sure that the resulting tour has cost less
than B(k) to ensure that the UAV can return to s.

Let Sk = {s} be sets that correspond to each UAV that
we will grow at each iteration to form the UAV’s tour; let
Tk be the current subtree of UAV k, and let S = ∪Kk=1Sk.
Let Mk be a minimum cost perfect matching on Tk. If Q is
a set of arcs, then |Q| is the total cost of the arcs in Q.

Using a round robin for each UAV in the order k =
1, . . . ,K we add a minimum cost arc (i, j) with i ∈ Sk and
j ∈ N \S to Tk. Then we update Sk to be Sk∪{j} and also
update S. The above steps repeat while |Tk| is less than B(k)

2 ;
if adding a new arc (i, j) to Tk results in |Tk| exceeding
B(k)
2 then the new arc is added only if |tour(Tk)| ≤ B(k)

(see Appendix A), where tour(Tk) is the tour created as in
Christofides algorithm: find a Eulerian tour of the Eulerian
graph Tk ∪Mk and shortcut it (remove all nodes except if
they appear in the Eulerian tour for the first time) to get
tour(Tk).

It is important to note that the subtrees are build con-
currently and not one after the completion of another. In
the alternative case, creation of the subtrees would have
provided a huge advantage to the first UAV in terms of cost
but penalize subsequent branches. For instance, lets assume
that the first subtree built by the algorithm is for a UAV
with a very large battery availability. Then another UAV with
less available capacity (i.e., less available flight time) would
take on a significantly higher cost tour and thus contribute
significantly less in the search process. Hence the computed
tours would have significantly higher variance and thus take
on much longer to complete. Instead, by extending subtree
branches at the same time, tours are more balanced and
battery resources more efficiently used. The pseudocode is
depicted in Alg. 1.

Algorithm 1 Christofides Variant (CV) heuristic

Step 0:
Sk = {s}; S = ∪Kk=1Sk; Tk = ∅, R = {1, . . . ,K}.
Step 1:
for k ∈ R do

Find minimum cost arc (i, j) with i ∈ Sk, j ∈ N \ S.
if |Tk ∪ {(i, j)}| ≤ B(k)

2 then
Tk ← Tk ∪ {(i, j)}, Sk ← Sk ∪ {j}, Update S.

else
Compute tour(Tk) as in CA.

end if
if |tour(Tk)| ≤ B(k) then
Tk ← Tk ∪ {(i, j)}, Sk ← Sk ∪ {j}, Update S.

else
Remove k from R.

end if
end for
Step 2:
If R not empty repeat Step 1, else go to Step 3.
Step 3: Compute tour(Tk) for all k as in CA.

We use two variations of the CV heuristic: (1) as above
we compute an optimal minimum cost perfect matching and
we call that CV-OPT; (2) we use an approximate perfect
matching instead and we call that CV-AX. Even though the
minimum cost perfect matching problem can be solved in
polynomial time by the blossom algorithm by Edmonds (see
[26]) and improved versions thereafter, it is still too time
consuming for this kind of application. To approximate the



(a) Using CV-OPT heuristic

(b) Using CV-AX heuristic

Fig. 3: Colored tours generated for 4 UAVs using CV
heuristics.optimal matching we use an algorithm from [27] which ap-
proximates the optimal matching with a factor log(n) of the
optimal solution. We refer the reader to the aforementioned
paper for details on the algorithm. The CV-AX will execute
in the same fashion as described in Alg. 1 except: (1) when
calculating tour(Tk) an approximate perfect matching will
be used instead and, (2) only when |Tk∪{(i, j)}| ≤ B(k)

1+log(n)

we will allow (i, j) to enter Tk, otherwise we recompute the
tour(Tk) and check that |tour(Tk)| ≤ B(k) (see Appendix
A).

To visualise the algorithm’s execution, we consider the
following setup:
• 400-node grid graph with horizontal and vertical dis-

tance dij = 100m
• Fleet size equals to K = 4 and v = 10m/s
• Mean flight time equal to 25 minutes
Figure 3 plots the tours generated by CV-OPT and CV-AX

based on the above setup.

B. Greedy Best (GB) Heuristic

An alternative heuristic approach is proposed in this sec-
tion. As before, a fleet of K UAVs is considered originating
at the source node s. At first, the K nearest nodes to s are
added to each corresponding Sk and the corresponding arcs
are added to paths Pk. An iterative process follows, where
paths are created in parallel by adding a new node to each
path based on the lowest cost in a round robin fashion. The

Fig. 4: Colored tours generated for 4 UAVs using GB
heuristic.process continues for each UAV until there is no available
flight time remaining except to return to node s or when
all the nodes of the graph have been visited. Feasibility is
ensured by adding a node to a path only if the remaining
flight time is enough to reach s from the next candidate node.
We use the notation l(Sk) to denote the last node added to
the set Sk. The pseudocode is depicted in Alg. 2.

Algorithm 2 Greedy Best (GB) Heuristic

Step 0:
Sk = {s}; S = ∪Kk=1Sk; Pk = ∅, R = {1, . . . ,K}.
Step 1:
for k ∈ R do

Find minimum cost arc (i, j) with i ∈ Sk, j ∈ N \ S.
if |Pk ∪ {(i, j)}|+ cjs ≤ B(k) then

Pk ← Pk ∪ {(i, j)}, Sk ← Sk ∪ {j}, Update S.
else

Remove k from R.
end if

end for
Step 2:
If R not empty repeat Step 1, else go to Step 3.
Step 3:
The tours are Pk ∪ {(l(Sk), s)} for each k.

Figure 4 demonstrates an instance of the algorithm execu-
tion assuming the same setup as in Fig. 3.

As can be seen from the figure, the expansion of each path
stops whenever the remaining flight capacity is not enough to
visit any additional nodes in the graph. At that point the arc
directly connecting the final node of the path to the source
node is used for the return of the UAV and thus a feasible
tour is created.

C. Dual Path (DP) Heuristic

Contrary to the GB heuristic where one path is created
and then directly connected to s to create a tour, the DP
heuristic constructs forward and return paths concurrently
and then connects them.

Two paths are constructed for each UAV where nodes
are added to each path only if the corresponding UAV has
enough flight time to cover the arc needed to connect the



Fig. 5: Colored tours generated for 4 UAVs using DP
heuristic.two paths assigned to it. As before the algorithm terminates
when all nodes are visited or when there is no more available
capacity of the paths to expand. In either case, the two paths
of each UAV are joined to form a tour and the heuristic
terminates. Algorithm 3 details the steps followed. We denote
by P 1

k and P 2
k the outbound and return paths that are

developed by the heuristic.

Algorithm 3 Dual Paths Algorithm

Step 0:
S1
k, S

2
k = {s}; P 1

k , P
2
k = ∅; R = {1, . . . ,K};

S = ∪Kk=1S
1
k ∪ S2

k.
Step 1:
for k ∈ R do

Find minimum cost arc (i, j) with i ∈ S1
k , j ∈ N \ S.

if |P 1
k |+ cij + |P 2

k |+ c
(
j, l(S2

k)
)
≤ B(k) then

P 1
k ← P 1

k ∪ {(i, j)}, S1
k ← S1

k ∪ {j}, Update S.
Find minimum cost arc (p, q) with p ∈ S2

k , q ∈ N \S.
if |P 1

k |+ |P 2
k |+ cpq + c

(
l(S1

k), q
)
≤ B(k) then

P 2
k ← P 2

k ∪ {(p, q)}, S2
k ← S2

k ∪ {q}, Update S.
else

Remove k from R.
end if

else
Remove k from R.

end if
end for
Step 2:
If R not empty repeat Step 1, else go to Step 3.
Step 3:
The tours are P 1

k ∪ P 2
k ∪ {

(
l(S1

k), l(S
2
k)
)
}.

An instance of the Dual Path algorithm is demonstrated
in Fig. 5 using the same setup as in Fig. 3.

As can be seen, tours created by DP do not resemble
either the behavior of the CV or GB tours and a balance
is maintained between the forward and reverse legs of the
tour.

V. SIMULATION SETUP AND RESULTS

As emphasized above, the derived mathematical program-
ming formulations are hard to solve in practical settings
under real-time constrains and thus the performance eval-
uation conducted hereafter focuses only on the solutions

provided by the 4 heuristics derived in the previous section.
All 4 heuristics aim at computing flight tours with the least
travelling cost (flight time) while maximizing the search
space covered (number of nodes visited).

A. Simulation Scenario Setup

All simulations were conducted in Matlab on a standalone
tower pc hosting an i5 processor and 8GB of RAM. We
used a complete graph consisting of 600 nodes that models
a field of 6 square kilometers in size. Two shapes of networks
were considered: (1) a grid network of 20x30 nodes spread
evenly over a rectangular area of 6 square kms; (2) a random
network where the location of 600 nodes where randomly
generated inside the same area. The source node s in both
of the above networks was the bottom left corner point of the
rectangular area. The size of the selected area was chosen in
such a way to allow various levels of coverage (percentage
of nodes visited) for each heuristic. Each UAVs speed was
set to v = 10m/s and fleet size was varied to 4, 5 or 6
UAVs. Note that the maximum flight time for numerous
consumer fix-wing and multi-rotor UAVs is approximately
45 minutes. In our experiments we randomly generated initial
remaining flying time B(k) for each UAV: we used 100
Monte Carlo simulations, where in each simulation we drew
B(k) uniformly from the interval [20, 30] minutes thus giving
an average flight time of 25 minutes.

B. Coverage Comparison and Computational Times

Figure 6 depicts in boxplots the percentage of nodes
visited (coverage percentage) by the 4 heuristics both for
the 20x30 grid network and the randomly generated network
for 4, 5 and 6 UAVs. The variation in the boxplots shown
below is from the randomly generated B(k)’s (see section V-
A). The GB approach clearly outperforms both CV-OPT and
CV-AX and slightly outperforms the Dual Path algorithm.
Indicatively, for a fleet of 5 UAVs in the grid network,
GB achieves 100% coverage, while CV-OPT achieves only
86%, CV-AX 84%, and DP 97%. The difference is even
more apparent in the random network with GB giving full
coverage with 5 UAVs whereas the CV-OPT, CV-AX and
DP giving 63%, 63%, 95%, respectively. Even though the
two CV heuristics use a higher level of sophistication than
the greedy fashion of GB, in terms of coverage GB clearly
outperforms them. DP is comparable to GB and as we will
see later it has some other advantages.

The average computational times are shown in Fig. 7(a);
they were performed on a 20x30 Grid Network and the
averages are shown (in log scale) over 100 realisations of
UAV flight times drawn uniformly from [20,30] minutes.
As expected, the greedy heuristics GB and DP have much
lower computational times; with GB having the lowest
execution times. Hence, GB outperforms all the heuristics
with respect to coverage and running time. Low running
times are important for this kind of application since it is
likely that the tours might need to be recalculated in real
time if the underlying conditions change. The difference in
coverage between CV-OPT and CV-AX is not very high



and thus using an approximation algorithm to compute the
perfect matching in CV-AX reduces the computational time
tremendously without significantly affecting coverage. The
computational times of GB and DP are comparable with GB
performing slightly better.

C. Algorithm Depended Hardware Safety

In this section we evaluate the quality of the flying tours
computed by the 4 proposed algorithms. One important
aspect to consider in the quality of the tours, is how safe
computed tours are when the mission needs to be aborted.
For instance, in case of a change in the environmental
conditions or aircraft faults or sudden drops in battery levels,
the UAVs might need to abort their mission and thus it would
be preferable that the UAVs are not too far from the source
for too long. To evaluate the tours computed by the different
algorithms against such a metric, the following measures are
derived: (1) the average distance from each node on the tour
to the source node (see figure 7(b)); (2) the distance from s
of the first node where the battery level has dropped below
x% of the initial battery (for x = 30% see fig. 7(c); for
x = 25% see fig. 7(d)). When looking at Fig. 7(b), we
can see that all the heuristics average to about the same
distance from s. However, when looking at Figs. 7(c) and
7(d) we can see that when the battery is low, the GB tours
place the UAVs far from the source; with CV-AX and CV-
OPT performing slightly better, whereas DP computed tours
having approximately half the distance. This is also apparent
in Figs. 3(a), 3(b), 4, 5 where example tours are shown for
each of the heuristics: the GB tours get further and further
away from s and then comes back to s in one long arc,
whereas the DP tours are already on their way back when
the battery runs low. In this respect, the DP algorithm strikes
a good performance tradeoff between coverage, running time
and robustness of the computed tours. Importantly, using
the proposed DP algorithms, would ensure that during the
critically low battery regions, the UAVs would be closer to
the source hence their return to the source is more likely to
be successful.

VI. EMPIRICAL EVALUATION

To demonstrate the applicability of the proposed solution,
a hardware implementation has been conducted using the
following system architecture. As shown in fig. 8(a) the
system consists of two main hardware components, namely
the command and control (C2) workstation and the UAV-
side remote controller. ROS (Robotic Operating System)
acts as the middleware responsible for the exchange of data
between the two sides [28]. On top, the C2 workstation uses
a web interface for monitoring the fleet and calls the python
code that executes the searching algorithm to periodically
recompute search paths for the available UAVs. On the
drone side, API (Application Programming Interface) calls
are made from a mobile terminal connected to the remote
controller and the UAV to retrieve data and set waypoints.
APIs calls are made to the flight controller onboard the UAV
that take on the task to adjust lower-level control decisions.

In our implementation, UAVs manufactured by DJI have
been used and thus the developer APIs from DJI have been
employed (https://developer.dji.com/).

Figure 8(b) illustrates the web interface including, on the
left-hand side, data received from 2 UAVs connected on
the system, and on the right-hand side, the search paths
computed for the two UAVs. For clarity, the underlying map
has been removed. In the instance shown, one UAV managed
to complete its path and returns to the source while the
second UAV is approaching its last waypoint (graph node)
before starting its journey back to the source node. In any
case, search path resemble those depicted in fig. 4.

Figure 9 depicts the experimental results of executing the
paths computed using the GB and DP heuristic algorithms
for a scenario of 2 UAVs covering a 100x100m square area
consisting of 50 nodes. The two plots in the figures 9(a)
and 9(b) are average values of the results obtained from the
two UAVs for each algorithm, respectively for the number
of waypoints visited and the total battery depleted.

In the figures, there is a constant rate for both the
waypoints visited as well as for the battery depletion over
time. Interestingly, for this small network, using the DP
heuristic the UAVs manage to visit all nodes faster and, more
importantly, with less battery consumption.

VII. CONCLUSIONS AND FUTURE WORK

We consider the problem of searching to achieve fast
situational awareness in an emergency response mission
using a UAV swarm. Four heuristic algorithms were derived
and compared with respect to coverage, running times,
and robustness considerations. The proposed GB algorithm
maximized coverage while the DP algorithm was shown to
strike the best performance with respect to the mean distance
from the source.

Future work aims first at advancing the system model by
incorporating flight dynamics so as to better estimate battery
levels, consider heterogeneous agents with different battery
depletion characteristics and consider the effect of searching
with possibly conflicting objectives such as tracking after
a target has been detected. Furthermore, future work will
incorporate weather conditions such as wind, gusts and
precipitation to increase the effectiveness and applicability
of the algorithms in real-life situations.
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Fig. 8: The figures depict the implemented architecture and
an instance of the user interface.
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Fig. 9: Empirical evaluation of the GB and DP heuristics.
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APPENDIX A

Let T be a spanning tree and let M be the cost of the
minimum cost perfect matching on the odd degree nodes of
T ; let |T | and |M | denote the costs of the corresponding
objects, and let |H| be the cost of the optimal hamiltonian
cycle. We know from the proof that Christofides algorithm is
a 3

2 approximation algorithm that: |T | ≤ |H|, |M | ≤ 1
2 |H|

(see [25]). Since |H| is the optimal cost we also have that:
|H| ≤ |T |+ |M |. Combining the above we get:

|H| ≤ |M |+|T | ≤ 1

2
|H|+|T | ⇒ 1

2
|H| ≤ |T | ⇒ |M | ≤ |T |.

Using notation from section IV-A we have |Mk| ≤ |Tk|.
If we also have |Tk| ≤ B(k)

2 , then this means |Mk|+ |Tk| ≤
2|Tk| ≤ B(k), which ensures that there is enough flying time
for the UAV to perform the tour and return to s. Thus, while
|Tk| ≤ B(k)

2 there is no need to check that the current tour
satisfies the flying time constraints but when |Tk| exceeds
B(k)
2 then we need to calculate the cost of the tour and check

that it remains feasible when adding the last arc.
In the CV-AX heuristic we use a log(n)-approximation

algorithm for the perfect matching (see [27]). Suppose this
approximate matching is M ′k. Then the resulting tour of UAV
k has cost less than or equal to:

|M ′k|+|Tk| ≤ log(n)|Mk|+|Tk| ≤ (1+log(n))|Tk| ≤ B(k),

where the last inequality holds only if |Tk| ≤ B(k)
1+log(n) . So

we know the UAV is within battery capacity when this last
inequality holds.


