Research Article

Open Access

Amol Sasane*

An analogue of Serre's conjecture for a ring of distributions

https://doi.org/10.1515/taa-2020-0100 Received May 7, 2020; accepted May 16, 2020

Abstract: The set $\mathcal{A} := \mathbb{C}\delta_0 + \mathcal{D}'_+$, obtained by attaching the identity δ_0 to the set \mathcal{D}'_+ of all distributions on \mathbb{R} with support contained in $(0, \infty)$, forms an algebra with the operations of addition, convolution, multiplication by complex scalars. It is shown that \mathcal{A} is a Hermite ring, that is, every finitely generated stably free \mathcal{A} -module is free, or equivalently, every tall left-invertible matrix with entries from \mathcal{A} can be completed to a square matrix with entries from \mathcal{A} , which is invertible.

Keywords: Hermite ring, Serre's conjecture, algebraic K-theory, Schwartz distribution theory

MSC: Primary 46F10; Secondary 19B10, 19K99, 46H05

1 Introduction

The aim of this note is to show that the the ring A is a Hermite ring. The relevant definitions are recalled below. For preliminaries on the distribution theory of L. Schwartz, we refer the reader to [1] and [2]. For the commutative algebraic terminology used below, we refer to [3] and [4].

Let \mathcal{D}'_+ denote the set of all distributions $T \in \mathcal{D}'(\mathbb{R})$ having their distributional support contained in the half line $(0, \infty)$. Then \mathcal{D}'_+ is an algebra with pointwise addition, pointwise multiplication by scalars, and with convolution taken as multiplication in the algebra. However, \mathcal{D}'_+ lacks the identity element with respect to multiplication. We can adjoin the identity element to the algebra \mathcal{D}'_+ , hence obtaining the larger algebra

$$\mathcal{A} := \mathbb{C}\delta_0 + \mathcal{D}'_+,$$

whose elements are of the form $\alpha \delta_0 + T$, where $\alpha \in \mathbb{C}$ and $T \in \mathcal{D}'_+$. \mathcal{A} is also an algebra with the same operations. We will denote the convolution operation henceforth by *.

Serre's question from 1955 was if, for the ring $R = \mathbb{F}[x_1, \dots, x_d]$ (\mathbb{F} a field), every finitely generated projective *R*-module is free. This was eventually settled in 1976, independently, by Quillen and by Suslin, and the considerations over this question gave rise to the subject of algebraic *K*-theory. In light of the Hilbert-Serre theorem, Serre's question for $R = \mathbb{F}[x_1, \dots, x_d]$ can be reduced to the question of whether every finitely generated stably free *R*-module is free. A commutative unital ring *R* having the property that every finitely generated stably free *R*-module is free is called a *Hermite ring*. In terms of matrices over the ring *R*, one has the following characterisation of Hermite rings, see for example [3, p.VIII], [5, p.1029], [6, Lemma 8.1.20, p.290].

Let *R* be a commutative unital ring with multiplicative identity denoted by 1. For $m, n \in \mathbb{N} = \{1, 2, 3, \dots\}$, we denote by $R^{m \times n}$ the matrices with *m* rows and *n* columns having entries from *R*. The identity element in $R^{k \times k}$ having 1s on the diagonal and zeroes elsewhere will be denoted by I_k . A tall matrix $f \in R^{K \times k}$ is said to be *left-invertible* if there exists a $g \in R^{k \times K}$ such that $gf = I_k$. The ring *R* is Hermite if and only if

^{*}Corresponding Author: Amol Sasane: Department of Mathematics, London School of Economics, Houghton Street, London WC2A 2AE, United Kingdom, E-mail: A.J.Sasane@lse.ac.uk

OOpen Access. 🕑 💌 🔲 © 2020 A. Sasane, published by De Gruyter. This work is licensed under the Creative Commons Attribution alone 4.0 License.

for all k and $K \in \mathbb{N}$ such that k < K, and for all $f \in R^{K \times k}$ such that there exists a $g \in R^{k \times K}$ so that $gf = I_k$, there exists an $f_c \in R^{K \times (K-k)}$ and there exists a $G \in R^{K \times K}$ such that $G \begin{bmatrix} f & f_c \end{bmatrix} = I_K$.

In other words, the ring *R* is Hermite if every left invertible matrix over *R* can be extended to an invertible one.

Example 1.1. $R = \mathbb{C}$ is a Hermite ring. Indeed, suppose that $f \in \mathbb{C}^{K \times k}$ is left-invertible, and that $gf = I_k$ for some $g \in \mathbb{C}^{k \times K}$. Then if $v \in \mathbb{C}^k$ is such that fv = 0, it follows that $v = I_k v = gfv = g0 = 0$. So the columns v_1, \dots, v_k of f are linearly \mathbb{C}^K , and hence we can find $v_{k+1}, \dots, v_K \in \mathbb{C}^K$ such that $\{v_1, \dots, v_k, v_{k+1}, \dots, v_K\}$ forms a basis for \mathbb{C}^K . Defining $f_c = \begin{bmatrix} v_{k+1} & \cdots & v_K \end{bmatrix} \in \mathbb{C}^{K \times (K-k)}$, we have that $\begin{bmatrix} f \mid f_c \end{bmatrix} \in \mathbb{C}^{K \times K}$ is invertible in $\mathbb{C}^{K \times K}$.

The following example is well-known, see e.g. [6, Example 8.1.27, p.292].

Non-example 1.2. Let $\mathbb{S}^2 \subset \mathbb{R}^3$ be the unit sphere, and let $C(\mathbb{S}^2, \mathbb{R})$ be the ring of *real*-valued continuous functions on \mathbb{S}^2 , with pointwise operations. Then $C(\mathbb{S}^2, \mathbb{R})$ is *not* a Hermite ring. Indeed, taking $f \in (C(\mathbb{S}^2, \mathbb{R}))^{3\times 1}$ as the map sending the point *x* to the normal vector at *x* to the manifold \mathbb{S}^2 , that is, $x \stackrel{f}{\to} \hat{n}(x) = x : \mathbb{S}^2 \to \mathbb{R}^3$, we see that *f* is left invertible, thanks to the fact that $\langle x, x \rangle = 1$ in \mathbb{R}^3 for each $x \in \mathbb{S}^2$. But if $C(\mathbb{S}^2, \mathbb{R})$ were a Hermite ring, then *f* could be extended to an invertible matrix $\begin{bmatrix} f & g & h \end{bmatrix} \in (C(\mathbb{S}^2, \mathbb{R}))^{3\times 3}$. This results in continuous maps $v_1, v_2 : \mathbb{S}^2 \to \mathbb{R}^3$ so that $\{f(x) = n(x), v_1(x), v_2(x)\}$ forms an orthonormal basis for \mathbb{R}^3 : indeed, we take $v_1(x), v_2(x)$ to the the projections of g(x), h(x) onto the tangent space $T\mathbb{S}^2_x$ to \mathbb{S}^2 at *x*. In particular, $v_1 : \mathbb{S}^2 \to \mathbb{R}^3$ would be a continuous tangent vector field on \mathbb{S}^2 which is nowhere vanishing, contradicting the Hairy Ball Theorem [7].

Our result is the following:

Theorem 1.3. $(\mathbb{C}\delta_0 + \mathcal{D}'_+, +, \star)$ is a Hermite ring.

Proof. Let \mathcal{A} be the ring $\mathbb{C}\delta_0 + \mathcal{D}'_+$. Let $f \in \mathcal{A}^{K \times k}$ be left invertible, with $gf = I_k \delta_0$ for some $g \in \mathcal{A}^{k \times K}$. Write

$$f = \delta_0 f_0 + f_+,$$

$$g = \delta_0 g_0 + g_+,$$

where $f_+ \in (\mathcal{D}'_+)^{K \times k}$, $f_0 \in \mathbb{C}^{K \times k}$, and $g_+ \in (\mathcal{D}'_+)^{k \times K}$, $g_0 \in \mathbb{C}^{k \times K}$. From $gf = I_k \delta_0$, we obtain that
 $g_0 f_0 \delta_0 + (g_0 f_+ + g_+ f_0 + g_+ f_+) = \delta_0 I_k.$

As the entries of f_+ , g_+ belong to \mathcal{D}'_+ , it follows that there exists an $\epsilon > 0$ such that each of the entries of $g_0f_+ + g_+f_0 + g_+f_+$ has its support in (ϵ, ∞) . So if we act both sides (entry-wise) on a test function $\varphi \in \mathcal{D}(\mathbb{R})$ such that supp $(\varphi) \subset (-\infty, \epsilon)$, then we obtain

 $g_0 f_0 \varphi(0) = I_k \varphi(0).$

Choosing
$$\varphi(0) \neq 0$$
, this now shows that $g_0 f_0 = I_k$. But as \mathbb{C} is Hermite, we can now find a $f_c \in \mathbb{C}^{K \times (K-k)}$ and a $G_0 \in \mathbb{C}^{K \times K}$ such that $G_0 \begin{bmatrix} f_0 & f_c \end{bmatrix} = I_K$,

$$(G_0\delta_0)\left[\begin{array}{c}f_0\delta_0+f_+ \mid f_c\delta_0\end{array}\right] = I_K\delta_0 - \underbrace{(G_0\delta_0)\left[\begin{array}{c}-f_+ \mid 0\delta_0\end{array}\right]}_{-:T}.$$

As $f_+ \in (\mathcal{D}'_+)^{K \times k}$, it follows that $T \in (\mathcal{D}'_+)^{K \times K}$. Suppose that $\epsilon' > 0$ is such that each entry of T has its support contained in (ϵ', ∞) . We claim that $I_K \delta_0 - T$ is invertible in $(\mathcal{A})^{K \times K}$. Define the "geometric series"

$$S = I_K \delta_0 + T + T^2 + T^3 + \cdots$$

We will now show that *S* is well-defined. We recall the theorem on supports for convolution of distributions [1, Theorem 8,p.120], namely that

$$\operatorname{supp}(T_1 \star T_2) \subset \operatorname{supp}(T_1) + \operatorname{supp}(T_2)$$

for any two distributions $T_1, T_2 \in \mathcal{D}'(\mathbb{R})$ whose supports satisfy the convolution condition. It follows that in our case, each entry T^n has its support contained in $n \cdot \text{supp}(T) = n[\epsilon', \infty) = [n\epsilon', \infty)$. So it follows that the series for *S* converges. Indeed, given any test function $\varphi \in \mathcal{D}(\mathbb{R})$, the series (with the action $\langle T^n, \varphi \rangle$ understood to be entry-wise)

$$\sum_{n=1}^{\infty} \langle T^n, \varphi \rangle$$

contains only finitely many nonzero terms. Now if S_n denotes the *n*th partial sum of the series $I_K \delta_0 + T + T^2 + T^3 + \cdots$, we have

$$(I_K \delta_0 - T)S = (I_K \delta_0 - T) \lim_{n \to \infty} S_n$$

=
$$\lim_{n \to \infty} (I_K \delta_0 - T)S_n$$

=
$$\lim_{n \to \infty} (I_K \delta_0 - T^{n+1})$$

=
$$I_K \delta_0.$$

The second equality above follows from the continuity of convolution in \mathcal{D}'_+ ; see [1, Theorem 7 p.120]. Now, setting

$$G = S(G_0\delta_0) = (I_K\delta_0 - T)^{-1}(G_0\delta_0) \in \mathcal{A}^{K \times K},$$

we have

$$G\left[\begin{array}{c}f \mid f_c \delta_0\end{array}\right] = (I_K \delta_0 - T)^{-1} (G_0 \delta_0) \left[\begin{array}{c}f_0 \delta_0 + f_+ \mid f_c \delta_0\end{array}\right]$$
$$= (I_K \delta_0 - T)^{-1} (I_K \delta_0 - T)$$
$$= I_K \delta_0.$$

This completes the proof.

2 Remarks

2.1 A conjecture

Another natural convolution algebra is the algebra $\mathcal{E}'(\mathbb{R})$ of all compactly supported distributions, again the usual pointwise addition and convolution taken as multiplication. We have the following:

Conjecture 2.1. $(\mathcal{E}'(\mathbb{R}), +, *)$ is a Hermite ring.

2.2 A corona-type condition for left invertibility

The famous Carleson corona theorem [8] answered Kakutani's 1942 question of whether the 'corona' $M(H^{\infty})\setminus \overline{\mathbb{D}}$ is empty. Here H^{∞} denotes the Banach algebra of bounded holomorphic functions in the unit disc $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$, with pointwise operations and the supremum norm $||f||_{\infty} := \sup\{|f(z)| : z \in \mathbb{D}\}$. Also, $M(H^{\infty})$ denotes the maximal ideal space of H^{∞} (the set of all multiplicative linear functionals $\varphi : H^{\infty} \to \mathbb{C}$, endowed with the Gelfand topology, that is the topology induced from the dual space $\mathcal{L}(H^{\infty}, \mathbb{C})$ equipped with the weak-* topology). From the elementary theory of Banach algebras (see e.g. [9, Lemma 9.2.6]), the answer to this question in the affirmative is equivalent to the following result (the matricial version given below is attributed to [10], and is a consequence of [8]).

Theorem 2.2. Let $f \in (H^{\infty})^{K \times k}$, where $K \ge k$. Then the following are equivalent:

- 1. There exists a $g \in (H^{\infty})^{k \times K}$ such that $gf = I_k$.
- 2. There exists an $\epsilon > 0$ such that for all $z \in \mathbb{D}$, $f(z)^* f(z) \ge \epsilon^2 I_k$.

(Here $f(z)^* f(z) \ge \epsilon^2 I_k$ means that $||f(z)\mathbf{v}||_{\mathbb{C}^k} \ge \epsilon^2 ||\mathbf{v}||_{\mathbb{C}^k}^2$ for all $\mathbf{v} \in \mathbb{C}^k$, and $||\cdot||_{\mathbb{C}^k}$ denotes the usual Euclidean norm on \mathbb{C}^k .)

Theorem 2.3. Let \mathcal{A} be the ring $(\mathbb{C}\delta_0 + \mathcal{D}'_+, +, \star)$. Then the following are equivalent for $f = f_0\delta_0 + f_+ \in \mathcal{A}^{K \times k}$, where $f_0 \in \mathbb{C}^{K \times k}$ and $f_+ \in (\mathcal{D}'_+)^{K \times k}$, $K, k \in \mathbb{N}$ with $K \ge k$:

- 1. There exists a $g \in A^{k \times K}$ such that $gf = I_k \delta_0$.
- 2. There exists an $\epsilon > 0$ such that $f_0^* f_0 \ge \epsilon^2 I_k$.

Proof. (1) \Rightarrow (2): Write $g = g_0 \delta_0 + g_+$, where $g_0 \in \mathbb{C}^{k \times K}$ and $g_+ \in (\mathcal{D}'_+)^{k \times K}$. Then

$$I_k \delta_0 = gf = g_0 f_0 \delta_0 + (g_0 f_+ + g_+ f_0 + g_+ f_+),$$

and since the bracketed expression has support in $(0, \infty)$, it follows that $I_k = g_0 f_0$. Then with $\epsilon := ||g_0^*||^{-2}$, where $||g_0^*||$ denotes the induced operator norm of the multiplication map $v \mapsto g_0^* v : \mathbb{C}^k \to \mathbb{C}^K$, and $\mathbb{C}^k, \mathbb{C}^K$ are equipped with the usual Euclidean 2-norms.

(2) \Rightarrow (1): If (2) holds, then ker $(f_0^*f_0) = \{0\}$, and so $f_0^*f_0$ is invertible. Taking $g_0 := (f_0^*f_0)^{-1}f_0^*$, we then have $g_0f_0 = (f_0^*f_0)^{-1}f_0^*f_0 = I_k$. We have

$$g_0f=I_k\delta_0+g_0f_+,$$

and since the support of $T := g_0 f_+$ is contained in $(0, \infty)$, it follows that $I_k \delta_0 + T$ is invertible as an element of $\mathcal{A}^{k \times k}$, with the inverse

$$(I_k\delta_0 + g_0f_+)^{-1} = (I_k\delta_0 + T)^{-1} = I_k\delta_0 - T + T^2 - T^3 + \cdots$$

So $g := (I_k \delta_0 + g_0 f_+)^{-1} g_0 \in \mathcal{A}^{k \times K}$ and

$$gf = (I_k\delta_0 + g_0f_+)^{-1}g_0 = (I_k\delta_0 + g_0f_+)^{-1}(I_k\delta_0 + g_0f_+) = I_k\delta_0$$

This completes the proof.

References

- [1] L. Schwartz, *Mathematics for the physical sciences*. Addison-Wesley, 1966.
- [2] L. Schwartz, *Théorie des Distributions*. Hermann, Paris, 1966.
- [3] T.Y. Lam, *Serre's conjecture*, Lecture Notes in Mathematics, 635. Springer, 1978.
- [4] T.Y. Lam, Serre's problem on projective modules, Monographs in Mathematics. Springer, 2006.
- [5] V. Tolokonnikov, Extension problem to an invertible matrix, *Proceedings of the American Mathematical Society*, **117** (1993), no.4, 1023-1030.
- [6] M. Vidyasagar, Control System Synthesis. A Factorization Approach, Series in Signal Processing, Optimization, and Control, 7. MIT Press, 1985.
- [7] E. Curtin, Another short proof of the hairy ball theorem, American Mathematical Monthly, 125 (2018), no. 5, 462-463.
- [8] L. Carleson, Interpolations by bounded analytic functions and the corona problem, *Annals of Mathematics*, **76** (1962), 547-559.
- [9] N.K. Nikolski, *Operators, functions, and systems: an easy reading. Vol. 1*, Mathematical Surveys and Monographs, 92. American Mathematical Society, 2002.
- [10] P.A. Fuhrmann, On the corona theorem and its applications to spectral problems in Hilbert space, *Transactions of the American Mathematical Society*, **132** (1968), 55-56.