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Abstract

This paper considers a Principal–Agent model with hidden action in which the
Principal can monitor the Agent by acquiring independent signals conditional on effort
at a constant marginal cost. The Principal aims to implement a target effort level at
minimal cost. The main result of the paper is that the optimal information-acquisition
strategy is a two-threshold policy and, consequently, the equilibrium contract specifies
two possible wages for the Agent. This result provides a rationale for the frequently
observed single-bonus wage contracts.

1 Introduction

A general lesson from contract theory is that in order to induce a worker to exert effort, she
should be rewarded for those output realizations that indicate high effort. Designing such an
incentive scheme in practice can be more challenging for various reasons. For example, if a
firm has many employees, profit reflects aggregate performance and it is hard to disentangle
an individual worker’s contribution from that of her coworkers. Moreover, some aspects of
performance (e.g., quality of customer service) are difficult to quantify and measure. In
such cases, firms can still monitor the workers by identifying variables that are informative
about their effort. Then, by constructing performance measures based on these variables
and offering wage plans contingent on these measures, firms can reduce agency costs. Indeed,
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firms devote significant resources to searching for effective ways to evaluate their employees;
see, for example, Mauboussin (2012), WorldatWork and Deloitte Consulting (2014), and
Buckingham and Goodall (2015). The goal of this paper is a theoretical investigation of the
optimal monitoring structure in the absence of freely available information about the Agent’s
effort.

In our specific setup, there is a single Agent who exerts one of continuum many efforts.
The Principal can acquire arbitrarily many signals that are independent from one another
conditional on the Agent’s effort at a constant marginal cost. This is modeled by assuming
that the Principal can observe a diffusion process with the drift being the Agent’s effort at a
cost proportional to the time at which the Principal stops observing this process. A contract
specifies a stopping time and a wage scheme that is contingent on the Principal’s observation.
The Agent is risk-averse and has limited liability. Our goal is to characterize the contract
that induces the Agent to choose a target effort level at minimal cost while respecting limited
liability.

Our main result shows that, under certain conditions on the Agent’s utility function, the
optimal contract features a binary wage scheme; i.e., the Agent is paid a base wage, plus a
fixed bonus if his performance is deemed sufficiently good. This provides a new rationale
for single-bonus contracts, which abound in practice (Holmström, 2016). This result also
addresses the criticism that canonical Principal–Agent models generate optimal contracts
that are sensitive to minutiae of the Principal’s exogenously given information (often assumed
to be the output). Indeed, in these models, the Agent’s wages depend on the likelihood ratios,
so the optimal scheme is fine-tuned to the Principal’s signal structure. Only very particular
distributions yield wage contracts that have any resemblance to the contracts observed in
practice (Hart and Holmström, 1986). For example, in the canonical model, single-bonus
contracts are optimal only if there are exactly two possible values of the likelihood ratio,
which is an unlikely feature of a typical output distribution. In contrast, we show that the
optimal signal structure has this property if it is endogenously determined by the Principal’s
information-acquisition strategy.

Our analysis has two main building blocks. First, through a sequence of steps, we
reformulate the problem of identifying an optimal contract to a flexible information design
problem. In this new problem, the Principal’s choice set is a set of distributions instead of
a set of stopping rules. Second, we show that finding a solution to the information design
problem is equivalent to characterizing an equilibrium in a zero-sum game played by the
Principal and Nature. At the end, our main result is stated as an equilibrium characterization
of this game. Below, we explain both of these ideas in detail.

Information Design. The Principal’s problem can be decomposed into two parts: a
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stopping rule defining the information-acquisition strategy and a wage-function mapping from
the Principal’s observations to the Agent’s monetary compensations. This wage can depend
on the whole path of the diffusion. However, we argue that the optimal wage depends only on
a one-dimensional real variable, henceforth referred to as the score. More precisely, we show
that, for any given stopping rule, the cost-minimizing wage only depends on the value and the
time of the Principal’s last observation.1 Since the optimal contract is incentive compatible
and the drift of the diffusion is the target effort level, we show that the optimal wage can be
expressed as the function of the (driftless) Brownian motion part of the stochastic process.
Each stopping rule generates a distribution over the scores with zero mean. Using results from
Skorokhod Embedding Theory, we show that the converse is also true: for any zero-mean
distribution over the scores, there is a stopping time that generates this distribution. Recall
that the Principal’s information-acquisition cost is the expectation of the stopping time. It
turns out that the expectation of the stopping time generating a certain distribution is the
variance of the distribution. Therefore, the Principal’s contracting problem can be rewritten
as an information-design problem where she chooses a distribution over scores at a cost equal
to its variance (instead of a stopping time) and a wage function defined on scores.

The Zero-Sum Game. For any given distribution over scores F , the standard approach
to solve for the optimal wage is to pointwise minimize the corresponding Lagrangian function;
see, for example, Bolton and Dewatripont (2005). Let λ denote the Lagrange multiplier
corresponding to the incentive constraint and L (λ, F ) denote the value of the Lagrangian
function evaluated at the cost-minimizing wage function. We show that strong duality holds,
that is, the Principal’s value for a given F is supλ L (λ, F ). Since the Principal chooses F
to minimize her overall cost, her problem can be written as infF supλ L (λ, F ). Instead of
solving this inf sup problem, we characterize the solution of the corresponding sup inf problem.
The key to this characterization is to observe that for each dual multiplier λ, the problem
infF L (λ, F ) is an unconstrained information design problem. Using the concavification
arguments developed in Aumann and Perles (1965) and Kamenica and Gentzkow (2011), we
show that there exists a solution among the binary distributions; i.e., a distribution supported
only on two points.

It remains to argue that the inf sup and sup inf problems are equivalent. This follows from
von Neumann’s Minimax Theorem (see von Neumann, 1928), if the following zero-sum game
has a Nash equilibrium. The game is played by Nature, who chooses the dual multiplier to
maximize the Lagrange function, L, and the Principal, who chooses a probability distribution

1The score is the counterpart of the derivative of the log-density function with respect to the Agent’s effort
in the canonical Principal–Agent model of Holmström (1979), which is a sufficient statistic for the optimal
wage scheme.
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over scores to minimize L. We prove that, under some conditions on the Agent’s utility
function, this game indeed has a unique equilibrium.2 The aforementioned concavification
argument implies that the Principal always has a best response that is binary. We argue
that the Principal’s equilibrium distribution also has this feature, that is, there are only two
values of the score that arise with positive probability. Consequently, the Agent’s wage is also
binary, and hence, a single-bonus wage scheme is optimal.

We believe that considering such a zero-sum game might turn out to be useful to analyze
a class of problems where the Principal not only designs the information structure but also
determines other policy variables subject to certain constraints. In our model, this policy
variable is the wage, and the constraint requires incentive compatibility. In such environments,
it is unclear how one can use the concavification arguments developed to solve unconstrained
problems. However, analyzing the Principal’s best responses in the zero-sum game is just an
unconstrained information design problem. These best responses might have some robust
features, as demonstrated in this paper, which then will be the features of the equilibrium as
well as the solution for the original optimization problem.

We establish an additional result, which holds under different conditions on the Agent’s
utility function. We show that there exists a sequence of binary distributions and single-
bonus wage schemes, which approximates the first-best outcome arbitrarily closely. In other
words, the Principal’s payoff in the limit is the same as it would be if effort was contractible.
A contract in the sequence pays the Agent a base wage, plus a large bonus with a small
probability. Intuitively, the condition on the Agent’s utility function is satisfied if the Agent
is not too risk-averse, and so it is not too expensive to motivate him with a large wage that
he receives with a small probability. As an example, this condition is satisfied if the Agent’s
utility exhibits constant relative risk aversion with coefficient less than one-half.

How general is our main result regarding single-bonus contracts? As mentioned above,
our assumption that the marginal cost of information is constant enables us to transform
the Principal’s problem to an information design problem where the cost of a distribution
is its variance. Alternatively, we could have started with the information design problem
where the Principal chooses a distribution over scores. We argue that as long as the cost of a
distribution is a general convex moment of the distribution,3 our main theorem holds, that is,
the optimal wage scheme is binary. From this viewpoint, modeling the Principal’s information
acquisition with a diffusion can be considered as a micro-foundation for specifying the cost of
a distribution as a moment.

2These conditions are satisfied if, for example, the Agent’s utility exhibits constant absolute risk aversion
or constant relative risk aversion with coefficient greater than one-half.

3That is, the cost is the expectation of a convex moment function.
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We emphasize that our main result regarding single-bonus contracts is, at least partially,
due to the Principal’s ability to design the monitoring structure in a flexible way. In our
setup, this is achieved by allowing the stopping time to depend on the already observed path.
If instead, one considers a less flexible, parametric class of monitoring structures, the optimal
contract is unlikely to feature a binary wage scheme. For example, assume that the Principal
can observe a normal signal around the Agent’s effort at a cost of the variance. This would be
the case in our model if the stopping rule was restricted to be deterministic. Then no matter
what variance the Principal chooses, the range of her signal will be a continuum and each
signal will determine a different wage.

Related Literature

First and foremost, this paper is related to the literature on Principal–Agent problems
under moral hazard. In the seminal work of Mirrlees (1976) and Holmström (1979), a
Principal contracts with a risk-averse Agent. The Principal has access to a contractible signal
that is informative about the Agent’s effort. The authors characterize the wage contract
that maximizes the Principal’s profit subject to the Agent’s incentive compatibility and
participation constraints. Extensions of this model include settings in which the performance
measure is not contractible, the Agent’s effort is multidimensional and some tasks are easier
to measure than others, or the Principal and the Agent interact repeatedly—see Bolton and
Dewatripont (2005) for a comprehensive treatment. This literature almost always treats the
Principal’s signal as exogenously given. In reality, good performance measures are not readily
available—they must be designed and optimized, and doing so is costly.

Dye (1986) analyzes a Principal–Agent model in which, after observing a (costless) signal
that is informative of the Agent’s effort, the Principal can acquire an additional costly signal.
Just like in our model, the Principal’s information acquisition strategy is contractible and
the Agent’s wage is contingent on all the observed signals. It is shown that, under certain
conditions, the Principal acquires the additional signal only if the value of the first signal is
sufficiently low.4 Feltham and Xie (1994) and Datar, Kulp, and Lambert (2001) examine how
a set of available performance measures should be weighed in an optimal linear wage scheme.
It is shown, for example, that it may be optimal to ignore informative signals of effort.5

Hoffman, Inderst, and Opp (2017) and Li and Yang (2017) also analyze contracting problems
with endogenous monitoring. The former work considers a model in which the Principal

4See also Townsend (1979), Baiman and Demski (1980), Young (1986), and Kim and Suh (1992) for related
studies.

5Note that Holmström’s informativeness principle, which asserts that any signal that is informative of the
Agent’s action should be incorporated into the optimal contract, does not apply if the Principal is restricted
to linear contracts.
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observes signals that are informative of the Agent’s one-shot effort over time, and designs
the optimal deferred compensation scheme. Deferring compensation enables the Principal to
obtain more accurate information and thus reduce agency costs, but because the Agent is less
patient than the Principal, doing so also entails a cost. It is shown that with a risk-neutral
and cash constrained Agent, the optimal compensation scheme pays out at either one, or two
dates. Li and Yang (2017) studies a game in which the Agent’s hidden action generates a
signal, and the Principal chooses a partition of the state–space (at a cost that increases in the
fineness of the partition) and a wage scheme that specifies the Agent’s wage conditional on
the cell of the partition in which the signal lies. Their main result shows that the optimal
partition comprises convex cells in the space of likelihood ratios.

As mentioned above, a criticism of standard Principal–Agent models is that they are of
limited use for predicting the structure of incentive contracts observed in reality (Hart and
Holmström, 1986, and Holmström, 2016). Motivated by the fact that, in practice, contracts
tend to be simple (e.g., linear, single-bonus contracts, options, etc), many studies attempt to
rationalize these simple contracts. For example, Holmström and Milgrom (1987) shows that
in a dynamic setting in which the Agent chooses his effort repeatedly and his utility function
exhibits constant absolute risk aversion, linear contracts are optimal. Carroll (2015) shows
that linear contracts are also optimal with a risk-neutral Agent if the Principal is uncertain
about the actions available to the Agent and has robust (i.e., min–max) preferences. Barron,
Georgiadis, and Swinkels (2017) considers the case in which the Agent can game his contract
by manipulating the distribution of output (e.g., by taking on risk), and they show that with
a risk-neutral and cash-constrained Agent, a linear contract is optimal. While this literature
has focused largely on the optimality of linear contracts, single-bonus contracts are also very
common. Single-bonus contracts are shown to be optimal in Levin (2003) and Palomino and
Prat (2003). The former studies a relational contracting model, while the latter considers a
delegated portfolio-management problem in which the Agent chooses both expected output
and the riskiness of the portfolio (in the sense of second-order stochastic dominance) from a
parametric family of distributions. In both settings, the optimality of single-bonus contracts
relies on the Agent being risk-neutral.

Finally, our work is related to the information design literature, see, for example Rayo and
Segal (2010) and Kamenica and Gentzkow (2011). The latter considers a game between a
sender who wishes to persuade a receiver to take a state-dependent action and can do so by
designing the receiver’s signal. Using techniques developed in Aumann and Perles (1965), they
provide a tractable framework for characterizing the optimal information structure. Together
with Barron, Georgiadis, and Swinkels (2017) and Boleslavsky and Kim (2017), this is one of
the first papers to analyze an information design problem under moral hazard. Similarly to
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us, Boleslavsky and Kim (2017) considers a Principal–Agent model under moral hazard in
which the Principal can design the information structure, but state-contingent payoffs (i.e.,
wages) are exogenous. They show that the optimal distribution over posteriors contains either
two or three posteriors in its support.

2 Model

There is a Principal (she) and an Agent (he). The Agent exerts effort a ∈ R+ at cost c (a).
The Agent’s choice of effort is unobservable, but it generates a diffusion Xt with drift a, that is,
dXt = adt+ dBt, where Bt is a standard Brownian motion with the corresponding canonical
probability space (Ω, B, P ) and B0 = 0.6 The Principal acquires information about the
Agent’s effort by observing this process. Information acquisition is costly and the Principal’s
cost is t if she chooses to observe this process until time t. The Agent’s payoff is u (w)− c (a),
and the Principal’s cost is w + t if she pays the Agent wage w. The function u is strictly
increasing, strictly concave, and limw→∞ u

′ (w) = 0. The function c is strictly increasing and
strictly convex. Both u and c are twice differentiable.

The Principal can commit to a path-contingent stopping rule and a path-contingent wage
scheme. To be more precise, a contract is a pair (τ,W ), where τ is a stopping time and W is
a mapping from paths to wages. Formally, τ : Ω → R+ is a stopping time of the filtration
generated by Bt, and W : Ω × R+ → R is a measurable function. If the Principal stops
information acquisition at time t and observes the path ωt = {ωi}i≤t, then the Agent receives
wage W (ωt).7 We assume that the Agent has limited liability, that is, the Principal faces a
minimum wage constraint, W ≥ w, where w > −∞ and u′(w) <∞.8

The game played by the Principal and the Agent proceeds as follows. First, the Principal
offers a contract. After observing this contract, the Agent chooses an effort level.9 Then
the Principal acquires information and pays the wage according to the offered contract. The
Principal’s objective is to induce the Agent to exert a target level of effort, a∗. Our goal
is to characterize the optimal contract that achieves this goal at the lowest expected cost.

6In particular, Ω = C ([0,∞)).
7Note that ωt is a realization of the path of X until t.
8This assumption rules out the possibility that the Principal can approximate the first-best outcome by

observing the process Xt for an arbitrarily short duration and offering a Mirrlees “shoot the Agent” contract
(Bolton and Dewatripont, 2005).

9All results continue to hold if the contract must also satisfy a participation constraint. We omit it for
simplicity.
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Formally, we analyze the following constrained optimization problem:

inf
τ,W

Ea∗ [W (ωτ ) + τ ] (1)

s.t. a∗ ∈ arg max
a

Ea [u (W (ωτ ))]− c (a) (2)

W (ωτ ) ≥ w. (3)

If a∗ = 0 then τ ≡ 0 and W ≡ w solve this problem. In what follows, we assume that a∗ > 0.
Notice that if the value of this problem is finite then the optimal stopping rule has finite
expectation. Therefore, in what follows we restrict attention to stopping rules, τ , such that
Ea∗ [τ ] <∞.

3 Reformulating the Principal’s Problem

This section accomplishes the following three goals:
First, we consider a relaxed version of the Principal’s problem in which we replace the

incentive constraint with the first-order condition corresponding to the Agent’s optimal choice
of effort. Then we show that the only determinant of the wage, the so-called score, is the value
of the Brownian motion at the stopping time of the Principal. In other words, if the Principal
stops acquiring information at time τ and observes the function ωτ , then she pays a wage
that only depends on ωτ − a∗τ . Note that, since the Agent exerts effort a∗ in equilibrium,
this quantity is just the realization of Bτ (= Xτ − a∗τ).

Each stopping rule of the Principal results in a different distribution of the score with
mean zero. Our second objective is to argue that the reverse is also true: the Principal can
induce any zero-mean distribution over the scores by appropriately choosing her stopping rule.
In addition, the Principal’s expected cost is the variance of the distribution. This observation
allows us to rewrite the Principal’s problem as a flexible information design problem, where
the Principal can choose any distribution over scores (instead of determining the stopping
rule).

Finally, we consider the optimal wage scheme for any distribution over scores. In particular,
we consider the Lagrangian corresponding to the Principal’s information design problem,
characterize the optimal wage as a function of the dual multiplier, and show that strong
duality holds.
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3.1 The Score

Our first objective is to show that, despite the Principal observing the path of the diffusion,
the wage of the Agent depends only on the last value of the path. To this end, first observe
that the Principal’s problem can be decomposed into two parts: finding an optimal stopping
rule and determining the wage scheme given the stopping time. In other words, the optimal
wage structure minimizes the Principal’s cost (subject to incentive compatibility and limited
liability) for the optimal stopping rule. In this section, we take the Principal’s information
acquisition as given and describe some properties of the optimal wage.

In order to better explain the derivation of the score in our setting, let us briefly recall how
this object is derived in standard Principal–Agent models with continuous effort. Consider
a model where the Agent’s effort a generates an observable output distribution defined by
the cumulative distribution function (hereafter CDF) Ga and the corresponding probability
distribution function (hereafter pdf) ga. A standard approach in the literature (see, for
example, Bolton and Dewatripont, 2005) is to solve a relaxed problem where the incentive-
compatibility constraint is replaced by the weaker condition,∫

u (w (z))
∂ga (z)

∂a

⌋
a=a∗

dz ≥ c′ (a∗) .

This condition guarantees that the Agent prefers to exert a∗ to a local downward deviation.
The Principal’s Lagrangian with this weaker constraint becomes∫ [

w (z)− λu (w (z))
∂ga (z) /∂aca=a∗

ga∗ (z)

]
dGa∗ (z) + λc′ (a∗) .

Note that, in addition to the endogenously determined w (z), the integrand only depends on
(∂ga (z) /∂aca=a∗) /ga∗ (z). Therefore, pointwise maximization of the Lagrangian yields that
the optimal wage only depends on the derivative of the log-density. This quantity is often
referred to as the (Fisher) score.

To see, intuitively, why the score is the value of the Brownian motion at the stopping time
in our setting, assume for simplicity that the Principal observes the diffusion up to time t, that
is, τ ≡ t. If the Agent exerts effort a, then the density corresponding to the last observation,
z, is g (z|a) = e−(z−at)

2/2t/
√

2πt. Note that ∂g (z|a) /∂a = (z − at) g (z|a). So, if the Principal
is restricted to making the wage dependent only on the last observation, the score becomes
z − a∗t. Can the Principal benefit from additional observations? Suppose that the Principal
makes the wage dependent on the last observation, as well as the observation at t/2, x. Then
g (x, z|a) =

[
e−(x−at/2)

2/t/
√
πt
] [
e−(z−x−at/2)

2/t/
√
πt
]
and ∂g (x, z|a) /∂a = (z − at) g (x, z|a).

Therefore, the score is still z− a∗t. In other words, even if the Principal could choose to make
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the wage depend on her observation at t/2 in addition to her last observation, she chooses
not to do so.

In our model, given a stopping time, the Principal’s observation about the Agent’s effort
is not a finite-dimensional object and cannot be described by a pdf. Nevertheless, Girsanov’s
Theorem characterizes a Radon-Nikodym derivative of the measure generated by a∗ over the
Principal’s observations with respect to the measure generated by any other a. This enables
us to express the Agent’s deviation payoff for each effort a in terms of the measure generated
by a∗. More precisely, Girsanov’s Theorem implies that if the Agent exerts effort a, then her
payoff is

Ea∗
[
u (W (ωτ )) e

(a−a∗)Bτ− 1
2
(a−a∗)2τ

]
− c(a), (4)

where the expectation is taken according to the measure over Ω generated by a∗. Differentiating
this expression with respect to a, and evaluating it at a = a∗, we obtain the following relaxed
incentive-compatibility constraint:

Ea∗ [u (W (ωτ ))Bτ (ωτ )] ≥ c′(a∗). (5)

Using arguments similar to the ones explained in the previous paragraph, one can show that
for any stopping rule τ , it is without loss of generality to condition wages only on Bτ , or
equivalently, on the score sτ := Xτ − a∗τ .

Lemma 1. Fix an arbitrary stopping rule τ , and consider the relaxed constrained optimization
problem given by (1), (3), and (5). In an optimal contract, the Agent’s wage only depends on
sτ .

Proof. See the Appendix.
In what follows, we characterize the solution to the relaxed problem, where the incentive

compatibility constraint is replaced by (5). In Section 7, we provide conditions under which
the solution to the original problem coincides with this relaxed one.

3.2 Flexible Information Design

Each stopping rule generates a probability distribution over scores. We aim to rewrite the
Principal’s problem so that she directly chooses a distribution over scores. In other words,
in this new problem, the Principal’s choice set is a class of distributions instead of the set
of stopping rules. In what follows, we characterize the set of distributions which can be
generated by a stopping time.

Let Fτ denote the CDF over scores generated by the stopping time τ . The following
lemma shows that if the stopping time, τ , has finite expectation then Fτ has zero mean and
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finite variance.

Lemma 2. Let τ be a stopping rule such that Ea∗ [τ ] <∞. Then

Fτ ∈ F =
{
F ∈ ∆ (R) : EF [s] = 0, EF

[
s2
]
<∞

}
.

Proof. See the Appendix.
A question that arises now is which distributions can be generated by some stopping rule

and what is the corresponding cost. This is known as the Skorokhod embedding problem.
The following lemma asserts that the Principal can generate any distribution over scores in
F by choosing an appropriate stopping time. Furthermore, the Principal’s expected cost is
the variance of the distribution. The following lemma is due to Root (1969) (Theorem 2.1)
and Rost (1976) (Theorem 2).

Lemma 3. For all F ∈ F
(i) there exists a stopping time τ such that Fτ = F and Ea∗ [τ ] = EF [s2], and
(ii) if Fτ ′ = F for stopping time τ ′, then Ea∗ [τ ] ≤ Ea∗ [τ ′].

The previous two lemmas allow us to reformulate the Principal’s problem as an information
design problem. Formally,

inf
F∈F , W̃

EF
[
W̃ (s) + s2

]
(Obj)

s.t. EF
[
su
(
W̃ (s)

)]
≥ c′(a∗), (IC)

W̃ (s) ≥ w for all s ∈ R. (LL)

If W̃ was set to be the optimal wage scheme, then finding the optimal F in the previous
problem becomes a pure information design problem. Of course, the optimal distribution
must still satisfy the two constraints, (IC) and (LL). We intend to use standard techniques in
information design developed to analyze unconstrained optimization problems. Therefore,
our next goal is to eliminate the constraints by considering the corresponding Lagrangian
function.

3.3 Optimal Wages and Strong Duality

As mentioned above, the Principal’s problem can be decomposed into two parts: finding an
optimal distribution over scores and determining the wage scheme given this distribution.
This section focuses on the second part: for each F we characterize the wage scheme that
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minimizes the Principal’s cost subject to (local) incentive compatibility. Formally, for each
F ∈ F , we consider

inf
W̃

EF
[
W̃ (s) + s2

]
(6)

s.t. (IC) and (LL).

Note that this is a standard Principal–Agent problem as in Holmström (1979), except that
above, we have a limited-liability constraint instead of an individual-rationality constraint,
and F is a probability distribution over scores instead of outputs. Let Π (F ) denote the value
of this problem.

The Lagrangian function corresponding to this problem can be written as

L(λ, F ) = inf
W̃ (·)≥w

∫ [
W̃ (s)− λsu(W̃ (s)) + s2

]
dF (s) + λc′(a∗) , (7)

where λ ≥ 0 is the dual multiplier associated with (IC). To solve this problem, note that
the first-order condition corresponding to the pointwise minimization of the integrand is
λsu′ (w) = 1. If the solution of this equation, w, is larger than w, then this w is going to be
the optimal wage at s. Otherwise, the optimal wage is w. To summarize, the wage scheme
that minimizes the value of the integral on the right-hand side of (7) is defined by the following
equation:

w(λ, s) =

w if s ≤ s∗(λ)

u′−1
(

1
λs

)
if s > s∗(λ) ,

(8)

where s∗(λ) is the critical score at which the solution of the first-order condition is exactly
w, that is, s∗(λ) = 1/ [λu′(w)]. The following lemma shows that strong duality always holds.
Moreover, if the incentive constraint, (IC), binds at w(λ, ·) for some λ ≥ 0, then this wage
scheme is uniquely optimal.

Lemma 4.
(i) Strong duality holds; i.e., supλ∈R+

L(λ, F ) = Π(F ).
(ii) The problem in (6) has a solution if and only if there exists a unique λ̂ ∈ R+ such that
L(λ̂, F ) = Π(F ). Furthermore, λ̂ satisfies∫

su(w(λ̂, s))dF (s) = c′(a∗) ,

where w(λ̂, s) is given in (8). This wage scheme uniquely solves (6).

Proof. See the Appendix.
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The proof of the uniqueness of the solution to (6) in part (ii) follows the logic of that
of Proposition 1 in Jewitt, Kadan, and Swinkels (2008). The difference is that wages are
specified as a function of output in their setting, whereas in our model, they depend on the
realized score.

Recall that throughout this section, we fixed the distribution over the scores, F , and
characterized the corresponding optimal wage scheme. Of course, the Principal also chooses
this distribution to minimize her cost, that is, she solves infF∈F Π (F ). Part (ii) of this lemma
enables us to rewrite this problem as

inf
F∈F

sup
λ∈R+

L (λ, F ) . (9)

It turns out to be difficult to characterize the F that solves this problem. The reason is that
there is a different λ corresponding to each possible F , and hence, it is hard to identify the
change in supλ∈R+

L (λ, F ) due to a change in F . In the next section, we show that solving
the corresponding sup inf problem is simpler, and we investigate the circumstances under
which the two problems are equivalent.

4 The Zero-Sum Game

Our next objective is to define a zero-sum game and show that, if there exists an equilibrium
in this game, then the inf sup problem in (9) is equivalent to

sup
λ∈R+

inf
F∈F

L (λ, F ) . (10)

We are able to characterize the solution to this sup inf problem. Indeed, for any λ, infF∈F L (λ, F )

is an information design problem akin to that in Kamenica and Gentzkow (2011). We show
that for any λ, if infF∈F L (λ, F ) has a solution, then there is an optimal F that is either a
two-point distribution (i.e., its support has two elements), or F is degenerate, specifying an
atom of size one at zero.

In what follows, we first formally define the zero-sum game. Then, using arguments from
the theory of zero-sum games, we prove that equilibrium existence implies the equivalence of
(9) and (10). Finally, we explain how two-point distributions arise as best-responses in this
game. This last observation is crucial to our main result according to which the optimal wage
scheme is binary.

The Game.— There are two players, the Principal and Nature. The action space of the
Principal is F , and the action space of Nature is R+. Furthermore, Nature’s payoff is L (λ, F ).
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That is, the Principal chooses a probability distribution F ∈ F to minimize L(λ, F ), whereas
Nature chooses the dual multiplier λ ∈ R+ to maximize L(λ, F ).

The following lemma, which is due to von Neumann (1928), shows that a Nash equilibrium
of this game corresponds to a solution to both (9) and (10).

Lemma 5. Suppose that {λ∗, F ∗} is a Nash equilibrium in the zero-sum game defined above.
Then

sup
λ≥0

inf
F∈F

L (λ, F ) = inf
F∈F

sup
λ≥0

L (λ, F ) ,

and w(λ∗, ·) and F ∗ solve the problem in (Obj).

Proof.
If {λ∗, F ∗} is an equilibrium in the zero-sum game defined above, then

inf
F∈F

sup
λ≥0

L (λ, F ) ≤ sup
λ≥0

L (λ, F ∗) = L (λ∗, F ∗) = inf
F∈F

L (λ∗, F ) ≤ sup
λ≥0

inf
F∈F

L (λ, F ) ,

where the two equalities hold because λ∗ and F ∗ are best responses to each others. Since
infF∈F supλ≥0 L (λ, F ) ≥ supλ≥0 infF∈F L (λ, F ) always holds, the two inequalities are equali-
ties in the previous chain. This proves the equation in the statement of the lemma.

Finally, by part (ii) of Lemma 4, supλ≥0 L (λ, F ∗) = L (λ∗, F ∗) implies that the wage
scheme w(λ∗, ·) solves the problem in (6) with F = F ∗. Therefore, since L (λ∗, F ∗) =

infF∈F supλ≥0 L (λ, F ), it follows that w(λ∗, ·) and F ∗ solve the problem in (Obj).

One may ponder if it is easier to establish the equivalence between (9) and (10) by
applying a minimax theorem such as von Neumann’s or Sion’s. This does not appear to be
case, because minimax theorems require that at least one of the choice sets satisfies some
notion of compactness (see, for example, Simons, 1995). In our setting, these choice sets are
R+ and F , violating compactness.

Two-Point Distribution.— Next, we argue that the Principal’s best-response is either
a two-point distribution or the degenerate distribution placing an atom of size one at zero.
Furthermore, we argue that the latter case cannot arise in equilibrium. To this end, recall
from (7) that the payoffs can be expressed as an expectation, that is,

L(λ, F ) = EF [Z(λ, s)] , where Z(λ, s) = w(λ, s)− λ [su(w(λ, s))− c′(a∗)] + s2, (11)

where w (λ, s) is defined by (8). Then the problem of finding the Principal’s best response
against λ can be written as

inf
F∈F

EF [Z(λ, s)] .
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The solution to this problem can be characterized as follows by using standard arguments
in information design (see Aumann and Perles, 1965, and Kamenica and Gentzkow, 2011).
First, let Zc (λ, ·) denote the convexification of Z (λ, ·) in s; i.e.,

Zc(λ, s) = inf
s,s∈R, α∈[0,1] s.t. αs+(1−α)s=s

{αZ(λ, s) + (1− α)Z(λ, s)} . (12)

Note that for any F ∈ F ,

EF [Z(λ, s)] ≥ EF [Zc(λ, s)] ≥ Zc(λ, 0),

where the first inequality follows because Z(λ, s) ≥ Zc(λ, s), and the second one follows from
Jensen’s inequality and EF [s]. This inequality implies that Zc(λ, 0) is a lower bound on the
Principal’s payoff. Next, we explain that the Principal can achieve this bound by considering
the following two cases.

If Z(λ, 0) > Zc(λ, 0), then the point (0, Zc (λ, 0)) lies on the line segment defining Zc on
the non-convex region around 0, as illustrated in Figure 1(a).10 The point (0, Zc (λ, 0)) is a
convex combination of (s, Z (λ, s)) and (s, Z (λ, s)) for some s < 0 < s, that is, there exists
α ∈ (0, 1) such that

α (s, Z (λ, s)) + (1− α) (s, Z (λ, s)) = (0, Zc (λ, 0)) . (13)

Consider now the probability distribution, F̂ , defined by the weights in this convex combination
over {s, s}; i.e., an atom of size α at s and an atom of size (1− α) at s. Equation (13) implies
that αs + (1− α) s = 0, which means that F̂ is feasible for the Principal, that is, F̂ ∈ F .
Equation (13) also implies that

αZ (λ, s) + (1− α)Z (λ, s) = EF̂ [Z(λ, s)] = Zc (λ, 0) ,

which means that the lower bound, Zc (λ, 0), is attained by the distribution F̂ . Therefore, F̂
is a best response of the Principal.

If Zc(λ, 0) = Z(λ, 0), then the lower bound can be trivially attained by the degenerate
distribution that places probability only on zero, as illustrated in Figure 1(b). However,
this latter case cannot arise in equilibrium. To see this, suppose that the distribution F

is degenerate and specifies an atom of size one at zero. Then, by (8), w (λ, 0) = w, and
hence, Nature’s payoff becomes w+ λc′ (a∗) by (11). Since c′ (a∗) > 0, this quantity is strictly
increasing in λ, and therefore, Nature does not have a best response. This, in turn, implies

10To be precise, the infimum need not be attained by any distribution. In this case, the Principal achieves
Zc (λ, 0) only as a limit of two-point distributions.
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Figure 1: Illustration of the Principal’s best response.

that the degenerate distribution cannot arise in an equilibrium.
The observation that the Principal has a two-point distribution best response against

Nature’s equilibrium multiplier is the key observation for our main result. Indeed, any
two-point distribution corresponds to an information-acquisition strategy of the Principal
that generates only two possible values of the score. As a consequence, the Agent receives
only two possible wages. Note, however, that the argument in the previous paragraphs by
no mean implies that the Principal does not have a best response that is supported on more
than two points. Of course, it is possible that the line connecting the points (s, Z (λ, s)) and
(s, Z (λ, s)) contains other points (s, Z (λ, s)). In such a scenario, the point (0, Z (λ, 0)) is also
a convex combination of (weakly) more than three such points on the line, and each of these
convex combinations defines a best response of the Principal.

To summarize, in order to show that the Principal’s optimal contract specifies two possible
wages, we need to prove that (i) both the Principal’s and Nature’s best responses are unique,
and (ii) an equilibrium in our zero-sum game exists.

5 The Main Theorem

Our main theorem provides sufficient conditions on the Agent’s utility function for the
existence of a unique equilibrium in the zero-sum game described in the previous section.
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Theorem 1. Suppose that the Agent’s utility function u satisfies the following two conditions:
(i) [u′]3/u′′ is strictly increasing and
(ii) limw→∞ [u′3 (w) /u′′ (w)] = 0.
Then there exists a unique equilibrium (λ∗, F ∗) ∈ R+ ×F in the zero-sum game, and F ∗

is a two-point distribution.

Let us explain the implication of this theorem to the original contracting problem. By
Lemma 5, the equilibrium (λ∗, F ∗) defines the solution for the constrained information design
problem in (Obj). That is, the optimal distribution over scores is F ∗, and the wage scheme is
{w (λ∗, s)}s. By Lemma 3, this wage scheme and the optimal stopping rule generating F ∗

over the scores solves the Principal’s relaxed problem (1) subject to (3) and (5). According to
this theorem, F ∗ is a two-point distribution. Let {s, s} denote its support such that s < 0 < s.
Then the Principal’s optimal information-acquisition strategy can be defined by the stopping
rule in which she observes the diffusion process Xt = at+Bt until the first time it hits a∗t+ s

or a∗t+ s. If the Agent exerts a∗, the value of the Brownian motion is either s or s at the
stopping time, so the Principal observes two possible scores. Finally, the Principal pays the
Agent w if she observes s, and pays him w (λ∗, s) if she observes s. In other words, the Agent
receives a base wage of w and bonus of w (λ∗, s)− w if the information gathered is favorable,
which is just a single-bonus contract.

Condition (i) is familiar from the literature on moral hazard problems with continuous
effort. Indeed, one of the sufficient conditions guaranteeing that the first-order approach
is valid (i.e., that the global incentive constraint can be replaced by a local one) is that
the function ρ(z) = u (u′−1 (1/z)) is concave (see Jewitt, 1988). It is not hard to show that
condition (i) is equivalent to ρ being strictly concave.11 Condition (ii) requires the derivative
of ρ to vanish at infinity.

We prove this theorem in Section 5.1. In what follows, we discuss how restrictive the two
conditions of the theorem are by examining whether they are satisfied by familiar parametric
families of utility functions. Then we provide a sketch of the proof of the theorem.

Commonly Used Utility Function.—Consider first utility functions exhibiting constant
absolute risk aversion (CARA), that is,

u (w) = −e−αw, (14)

where α (> 0) is the coefficient of absolute risk aversion. In this case, [u′ (w)]3/u′′ (w) =

−αe−αw, so conditions (i) and (ii) are satisfied for all α.

11To see this, note that, denoting u′−1 (1/z) by f (z), ρ′ (z) can be expressed as − [u′ (f (z))]
3
/u′′ (f (z)).

Since f is strictly increasing, ρ′ is strictly decreasing if and only if condition (i) holds.
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Suppose now that the Agent’s utility function exhibits constant relative risk aversion
(CRRA), that is,

u (w) =
w1−γ

1− γ
, (15)

where γ ∈ (0, 1) is the coefficient of relative risk aversion. In this case, [u′ (w)]3/u′′ (w) =

− [w1−2γ] /γ. Therefore, conditions (i) and (ii) of the theorem are satisfied if and only if
γ > 1/2. What happens if γ < 1/2? Observe that the Principal’s cost is bounded from below
by w. In Section 6, we show that the Principal can induce the Agent to exert (any) a∗ at the
minimum cost of w. To be more precise, for each ε > 0, we construct an incentive-compatible
single-bonus contract such that the Principal’s payoff from this contract is less than w + ε.

If the Agent has a logarithmic utility function, u (w) = logw, then [u′ (w)]3/u′′ (w) = −1/w,
so the conditions of the theorem are satisfied.

More generally, if the Agent’s utility function exhibits hyperbolic absolute risk aversion
(HARA), and so is of the form

u(w) =
γ

1− γ

(
αw

γ
+ β

)1−γ

, (HARA)

then conditions (i) and (ii) are satisfied if α > 0, γ > 1/2, and β > −αw/γ.

Proof-Sketch.—Let us first explain the last statement of the theorem; i.e., provided that
an equilibrium exists, the Principal’s equilibrium distribution is a two-point distribution.
Applying the convexification argument described in the previous section, we show that the
Principal’s best response is either a two-point distribution or the degenerate one. This is
the part of the proof where we use assumptions (i) and (ii) of the hypothesis of the theorem.
As we will show, a consequence of these assumptions is that the function Z looks like either
the one depicted in Figure 1(a) or the one in Figure 1(b). More precisely, if λ is large, then
the function Z (λ, ·) is convex-concave-convex, whereas for small λ, this function is convex.
This observation implies that the Principal’s best response is essentially unique, and there are
no best-response distributions of the Principal that are supported on at least three points.
Since the equilibrium distribution cannot be degenerate, this implies that the Principal’s
equilibrium distribution is a two-point distribution.

Let us now explain the two main steps of the equilibrium-existence result in Theorem 1.
The first step is to characterize some properties of Nature’s best responses. Using standard
arguments from Lagrangian optimization, we show that, unless F is the degenerate distribution,
the best-response λ against F is defined by the incentive constraint (IC), that is, Nature
chooses the multiplier so that the incentive constraint binds. The second step is to show that
if λ is small, then the incentive constraint (IC) evaluated at the Principal’s best response
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is violated. In contrast, if λ is large, then the incentive constraint (IC) evaluated at the
Principal’s best response is slack. Then we use the Intermediate Value Theorem to conclude
that there exists a unique λ∗ at which the incentive constraint at the Principal’s best response,
say F ∗, binds. As mentioned above, Nature’s best response is characterized precisely by this
binding incentive constraint. Therefore, λ∗ is also the best response against F ∗.

5.1 Proof of Theorem 1

Towards proving Theorem 1, we establish a series of lemmas, which enable us to construct a
unique equilibrium in the zero-sum game described in Section 4.

5.1.1 Nature’s Best Response

First, we show that Nature best-responds to a distribution F by choosing λ so that the
Agent’s incentive constraint (IC) binds, that is,∫

su (w (λ, s)) dF (s) = c′(a∗). (16)

Formally, we state the following:

Lemma 6.
(i) If (16) has a solution, then it is unique and defines Nature’s best response, λF .
(ii) If (16) does not have a solution, then Nature does not have a best response.

Regarding part (ii), we point out that Nature has no best response if her objective function
is strictly increasing in λ, so she can improve on any λ by choosing a larger one. This is the
case, for example, if the Principal’s distribution is degenerate; i.e., F (s) = I{s≥0}. It can be
shown that if limw→∞ u (w) =∞, then (16) always has a solution unless F is the degenerate
distribution.
Proof.

Recall that if the Principal chooses F , then Nature’s problem is

sup
λ≥0

EF [Z(λ, s)] , (17)

where Z(λ, s) is defined in (11). Since the wage scheme w (λ, ·) is optimally chosen for λ (see
(8)), the Envelope Condition implies that

∂EF [Z(λ, s)]

∂λ
= −

∫
su (w (λ, s)) dF (s) + c′(a∗) . (18)
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Note that the first-order condition corresponding to this derivative is just (16).
The second-order condition corresponding to (17) is

∂2EF [Z(λ, s)]

∂λ2
=

∫ ∞
s∗(λ)

s2
[u′(w(λ, s))]3

u′′(w(λ, s))
dF (s) ≤ 0 ,

where the inequality follows from u being strictly increasing and strictly concave. Notice that
the inequality is strict whenever F (s∗(λ)) < 1, that is, s > s∗(λ) with positive probability.

The previous displayed inequality implies that Nature’s objective function, EF [Z(λ, s)], is
concave in λ. Therefore, if (17) has an interior solution, then it is defined by the first-order
condition (16). This completes the proof of part (i).

To see part (ii), note that

lim
λ→0

∂EF [Z(λ, s)]

∂λ
= − lim

λ→0

∫
su (w (λ, s)) dF (s) + c′(a∗) = u (w)

∫
sdF (s) + c′(a∗) = c′(a∗),

where the second equality follows from the fact that w (λ, s) is decreasing in λ and converging
to w for all s and from Lebesgue’s Monotone Convergence Theorem. The last equality follows
from F ∈ F , that is, F has zero expectation. The previous equation implies that Nature’s
objective function, EF [Z(λ, s)], is strictly increasing in λ at zero. This means that if (16)
does not have a solution, Nature’s objective function is strictly increasing for all λ ≥ 0, and
hence, Nature has no best response.

5.1.2 The Principal’s Best Response

This section is devoted to the characterization of the Principal’s best response. Recall that
for a given λ, the Principal’s problem is infF∈F EF [Z(λ, s)]. As mentioned above, this is an
information design problem, and we solve it by using standard convexification arguments. Of
course, the solution depends on the shape of the function Z (λ, ·). The next lemma shows that
if the two conditions of Theorem 1 are satisfied, then this function is strictly convex for small
values of λ, whereas it is convex-concave-convex for larger values of λ. Then we show that, in
the former case, the Principal’s best response is degenerate, placing all the probability mass
at zero, and in the latter case, the best response is a binary distribution.

Throughout this section we maintain assumptions (i) and (ii) in the statement of Theorem
1.

Lemma 7. There exists a λc > 0 such that
(i) if λ ≤ λc, then Z (λ, s) is strictly convex in s, and
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(ii) if λ > λc, then there exists a s̃ > s∗ (λ) such that12

Z22(λ, s) =


> 0 if s < s∗(λ) ,

< 0 if s∗(λ) < s < s̃ , and

> 0 if s > s̃ .

(19)

Proof.
Suppose first that s < s∗ (λ). Then Z2 (λ, s) = −λu (w) + 2s, and

Z22 (λ, s) = 2 > 0,

yielding the convexity of Z (λ, s) for s ≤ s∗(λ) and, in particular, the first line of (19). If
s ≥ s∗(λ) then Z2 (λ, s) = −λu (w (λ, s)) + 2s and

Z22 (λ, s) = λ2
[u′ (w (λ, s))]3

u′′ (w (λ, s))
+ 2.

Note that Z22 (λ, s) is strictly increasing in s because w (λ, s) is strictly increasing in s and
[u′ (w)]3 /u′′ (w) is strictly increasing in w by assumption. Note that at s = s∗(λ), this second
derivative is

Z22 (λ, s∗) = λ2
[u′ (w)]3

u′′ (w)
+ 2.

Let us define λc by

λc =

√
−2u′′ (w)

[u′ (w)]3
,

and note that Z22 (λc, s∗ (λc)) = 0.
If λ ≤ λc, then Z22 (λ, s∗ (λ)) ≥ 0. Since Z22 (λ, s) is increasing in s, the statement of the

lemma follows.
If λ > λc, then Z22 (λ, s∗ (λ)) < 0. As we mentioned before, the derivative Z22 (λ, s) is

strictly increasing. Furthermore, by assumption, this derivative becomes positive because
w (λ, s) goes to infinity as s goes to infinity. Since Z22 (λ, s) is continuous at s > s∗ (λ), there
exists a unique s̃ at which Z22 (λ, s̃) = 0.

We will argue that the value of the Principal’s problem, infF∈F EF [Z(λ, s)], is just the
convexified Z (λ, ·) evaluated at s = 0 (see Figure 1). Recall that this convexification, Zc (λ, ·),
is defined by (12). Lemma 7 enables us to describe Zc (λ, ·). If λ ≤ λc, then, by part (i) of
Lemma 7, Z (λ, ·) is convex, so Zc(λ, s) = Z(λ, s) for all s. If λ > λc, then, by part (ii) of

12We use Zi(λ, s) and Zii(λ, s) to denote the first and second derivative of Z(λ, s) with respect to its ith
argument, respectively.
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Lemma 7, Z is convex-concave-convex. The convexification then only affects Z (λ, ·) around
the concave region. The function Zc (λ, ·) is linear on an interval around the concave region
of Z (λ, ·), and otherwise, it coincides with Z (λ, ·) (see the left panel on Figure 1). Formally,
there exist s(λ) and s(λ) ≥ s(λ) such that

Zc(λ, s) =

Z (λ, s) if s /∈ [s (λ) , s (λ)]

Z (λ, s (λ)) + (s− s (λ))Z2 (λ, s (λ)) if s ∈ [s (λ) , s (λ)] .
(20)

Next, we show that the Principal’s best response is degenerate if either λ ≤ λc or if Z is not
affected by the convexification around zero; i.e., 0 /∈ [s(λ), s(λ)]. Otherwise, the Principal’s
best response is a binary distribution.

Lemma 8. For any λ (≥ 0), minF∈F EF [Z(λ, s)] = Zc(λ, 0). In addition, the Principal’s best
response, Fλ, is unique, and:

(i) If Zc(λ, 0) = Z(λ, 0), then Fλ(s) = I{s≥0}.
(ii) If Zc(λ, 0) < Z(λ, 0), then supp (Fλ) = {s(λ), s(λ)}.

Observe that in part (ii), the Principal’s best response can be explicitly expressed in terms
of its support by the following equation:

Fλ(s) =


0 if s < s(λ)

s(λ)
s(λ)−s(λ) if s ∈ [s(λ), s(λ))

1 if s ≥ s(λ).

(21)

This CDF has two jumps, at s(λ) and at s(λ), so only these two points occur with positive
probability. The size of each jump is determined by the requirement that Fλ has zero
expectation. Observe that since Zc(λ, 0) < Z(λ, 0) in this case, it must be that s(λ) < 0 <

s(λ).
Proof.

Fix some λ ≥ 0. By construction, Z(λ, s) ≥ Zc(λ, s), so for all F ∈ F , we have
EF [Z(λ, s)] ≥ EF [Zc(λ, s)] ≥ Zc(λ,EF [s]) = Zc(λ, 0), where the last inequality follows from
the fact that Zc(λ, ·) is convex and from Jensen’s inequality. Therefore, Zc(λ, 0) poses a lower
bound on EF [Z(λ, s)] for any F ∈ F .

Part (i) follows trivially by noting that if Zc(λ, 0) = Z(λ, 0), then EF [Z(λ, s)] = Zc(λ, 0)

for F (s) = I{s≥0}. If Zc(λ, 0) < Z(λ, 0), then it follows from Lemma 7 and the definition of
Zc(λ, ·) that there exist sL, sH and p ∈ (0, 1) such that (1− p)sL + psH = 0 and Zc(λ, 0) =

(1 − p)Z(λ, sL) + pZ(λ, sH) = EFλ [Z(λ, s)], where Fλ is of the form given in (21) with
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s(λ) = sH and s(λ) = sL. Thus, we have shown that minF∈F EF [Z(λ, s)] = Zc(λ, 0) and
established part (ii).

The following lemma shows that s (λ) and s (λ) are continuous in λ, and both s (λ) and
s (λ) converge to s∗(λc) as λ goes to λc. These results will be useful for establishing the
existence of an equilibrium.

Lemma 9. Assume that λ > λc. Then:
(i) The functions s (λ) , s (λ) are continuous in λ.
(ii) Consider a sequence {λn}n∈N > λc such that limn→∞ λn = λc. Then limn→∞ s (λn) =

limn→∞ s (λn) = s∗ (λc).

Proof. See the Appendix.

5.1.3 Equilibrium Existence and Uniqueness

This section proves Theorem 1. First, we show that if λ is large enough, then the Principal
best-responds by choosing a distribution, Fλ, such that the Agent’s incentive constraint
is slack at (λ, Fλ). Then we consider the infimum of such λ’s, λ∗, and we show that the
incentive constraint binds at (λ∗, Fλ∗). Therefore, we can use Lemma 6 to conclude that λ∗

is a best response to Fλ∗ . Since Fλ∗ is a best response to λ∗, the action profile (λ∗, Fλ∗) is
an equilibrium. To prove uniqueness, we show that the incentive constraint cannot bind at
(λ, Fλ) unless λ = λ∗. Then uniqueness follows from Lemma 6.

The following lemma shows that (IC) is slack at the Principal’s best response if λ is
sufficiently large.

Lemma 10. There exists a Λ > 0 such that (IC) evaluated at (λ, Fλ) is slack whenever
λ > Λ.

Proof. See the Appendix.
Next, let

λ∗ = inf {λ : (IC) evaluated at (λ, Fλ) is slack } . (22)

The following lemma shows that (IC’) binds at λ∗.

Lemma 11. If Nature chooses λ∗, then (IC) binds at (λ∗, Fλ∗).

Before proving this lemma, we rewrite the incentive constraint, (IC), when it is evaluated
at (λ, Fλ). Recall from Lemma 8 that whenever Zc(λ, 0) < Z(λ, 0), the Principal’s best
response, Fλ, is binary and is supported on {s (λ) , s (λ)}. So, we can rewrite the incentive
constraint, (IC), as

p (λ) s (λ)u (w) + p (λ) s(λ)u (w (λ, s (λ))) ≥ c′ (a∗) , (IC’)
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where p (λ) and p(λ) denote the probability that s(λ) and s(λ) are realized, respectively,
according to Fλ. By, (21), p (λ) = s(λ)/ (s (λ)− s (λ)) and p (λ) = 1−p (λ). Again by Lemma
8, if Zc(λ, 0) = Z(λ, 0), then Fλ is degenerate and the left-hand side of (IC) is zero. So, by
setting p(λ) = p(λ) = 0, (IC’) coincides with (IC).
Proof.

Suppose, by contradiction, that (IC’) is slack at λ∗. It follows from Lemma 7 that λ∗ > λc,
for otherwise the Principal would choose the degenerate distribution and (IC’) would be
violated. By part (i) of Lemma 9 and continuity, there exists λ < λ∗ such that (IC’) is also
slack at λ, that is,

p (λ) s (λ)u (w) + p (λ) s (λ)u (w (λ, s (λ))) > c′ (a∗) .

This contradicts the definition of λ∗ given in (22).
Suppose now that (IC’) is violated. First, we argue that λ∗ > λc, and hence, the function

Z (λ∗, s) is non-convex. To see this, first observe that by continuity and the definition of λ∗,
there exists a sequence {λn}n∈N > λ∗ such that limn→∞ λn = λ∗, and for all n ∈ N,

p (λn) s (λn)u (w) + p (λn) s (λn)u (w (λn, s (λn))) > c′ (a∗) . (23)

It must be the case that
s (λn) < 0 < s (λn) , (24)

for otherwise, Zc(λn, 0) = Z(λn, 0), so the Principal would choose the degenerate distribution
and (IC’) would be violated. Suppose, by contradiction, that Z (λ∗, s) is convex in s. By
Lemma 7, this implies that λ∗ = λc, and the convexity of Z (λ∗, s) in s together with the fact
that s∗(λ) > 0 for all λ imply that

Z2 (λ∗, 0) < Z2 (λ∗, s∗ (λ∗)) .

By continuity and part (ii) of Lemma 9,

lim
n→∞

Z2 (λn, 0) = Z2 (λ∗, 0) and lim
n→∞

Z2 (λn, s (λn)) = Z2 (λ∗, s∗ (λ∗)) .

The convexity of Z (λ∗, s) in s and the previous two displayed equations imply that 0 < s (λn)

for sufficiently large n. This contradicts (24), and we conclude that λ∗ > λc and Z (λ∗, s) is
non-convex in s.

If (IC’) is violated at λ∗(> λc), then by continuity and Lemma 9(i), there exists an ε > 0

such that (IC’) is violated for all λ ∈ [λ∗, λ∗ + ε]. This, again, contradicts the definition of λ∗
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in (22).
Finally, we are in a position to prove Theorem 1.

Proof of Theorem 1.
If Nature chooses λ∗, then by Lemmas 7 and 8, the Principal’s unique best response Fλ∗ is

the two-point distribution as given in (21). It remains to show that Nature’s best response to
Fλ∗ (or equivalently {s (λ∗) , s (λ∗)}) is to choose λ∗. If the Principal chooses {s (λ∗) , s (λ∗)},
then Nature’s problem is

max
λ∈R+

{
p (λ∗)Z (λ, s (λ∗)) + p (λ∗)Z (λ, s (λ∗))

}
.

This problem is concave in λ, and the corresponding first-order condition is

p (λ∗) s (λ∗)u (w (λ, s (λ∗))) + p (λ∗) s (λ∗)u (w) = c′ (a∗) ,

which is satisfied at λ = λ∗ by Lemma 11. Therefore, {λ∗, Fλ∗} is an equilibrium for the
zero-sum game described in Section 4, where λ∗ is given in (22) and Fλ is given in (21).

Towards showing that this equilibrium is unique, first, recall that by Lemma 8, for any λ,
the Principal’s best response Fλ is unique. Therefore, in any equilibrium, say {λ′, Fλ′}, (IC’)
must bind. Moreover, by the definition of λ∗ in (22), it must be the case that λ′ < λ∗. We
will show that there does not exist any λ′ < λ∗ such that (IC’) binds.

First, we show that the Principal’s payoff is strictly increasing in λ on [λc, λ
∗]. Pick any λ

and λ′ such that λc < λ < λ′ ≤ λ∗. Then

p (λ)
[
w (λ, s (λ))− λ [su (w (λ, s (λ)))− c′ (a∗)] + s2 (λ)

]
(25)

+p (λ)
[
w − λ [su (w)− c′ (a∗)] + s2 (λ)

]
< p (λ′)

[
w (λ′, s (λ′))− λ [su (w (λ′, s (λ′)))− c′ (a∗)] + s2 (λ′)

]
+p (λ′)

[
w − λ [su (w)− c′ (a∗)] + s2 (λ′)

]
≤ p (λ′)

[
w (λ′, s (λ′))− λ′ [su (w (λ′, s (λ′)))− c′ (a∗)] + s2 (λ′)

]
+p (λ′)

[
w − λ′ [su (w)− c′ (a∗)] + s2 (λ′)

]
,

where the first inequality follows from the fact that the second expression corresponds to
the Principal’s payoff if Nature chooses λ but the Principal uses the suboptimal information-
acquisition policy {s (λ′) , s (λ′)} instead of {(s (λ) , s (λ))} and pays the suboptimal wage
w (λ′, s (λ′)) instead of w (λ, s (λ)). This inequality is strict because w (λ′, s (λ′)) 6= w (λ, s (λ)).
The second inequality follows from λ < λ′ and the fact that (IC’) is not slack if λ′ ≤ λ∗ (see
22).
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Suppose, by contradiction, that there exists a λ < λ∗ such that (IC’) binds at λ, and let
λ′ ∈ (λ, λ∗]. It must be that λ > λc, for otherwise (IC’) would have been violated. Then

p (λ′)
[
w (λ′, s (λ′))− λ′ [su (w (λ′, s (λ′)))− c′ (a∗)] + s2 (λ′)

]
+p (λ′)

[
w − λ′ [su (w)− c′ (a∗)] + s2 (λ′)

]
≤ p (λ)

[
w (λ, s (λ))− λ′ [su (w (λ, s (λ)))− c′ (a∗)] + s2 (λ)

]
+p (λ)

[
w − λ′ [su (w)− c′ (a∗)] + s2 (λ)

]
= p (λ)

[
w (λ, s (λ))− λ [su (w (λ, s (λ)))− c′ (a∗)] + s2 (λ)

]
+p (λ)

[
w − λ′ [su (w)− c′ (a∗)] + s2 (λ)

]
,

where the inequality follows from the fact that the second expression corresponds to the
Principal’s payoff if Nature chooses λ′ but the Principal uses the suboptimal information-
acquisition policy {s (λ) , s (λ)} instead of {(s (λ′) , s (λ′))} and pays the suboptimal wage
w (λ, s (λ)) instead of w (λ′, s (λ′)) and the equality follows from the hypothesis that (IC’)
binds at λ. Finally, note that this inequality chain contradicts (25). Therefore, we conclude
that there does not exist any λ′ < λ∗ such that (IC’) binds, which completes the proof.

6 A First-Best Result

If effort was contractible, then the optimal contract would require the Agent to exert effort a∗

in exchange for a wage w. Of course, the Agent exerts a∗ and the Principal does not acquire
any information. The Principal’s cost and the Agent’s payoff would be w and u (w)− c (a∗),
respectively. We refer to this outcome as first-best.

The following theorem describes a condition on the Agent’s utility function under which a
single-bonus contract can approximate the first-best outcome arbitrarily well.

Theorem 2. Suppose that there exists a ζ > 1 such that

lim
w→∞

[u′(w)]3

u′′(w)
[u(w)]−

ζ−1
ζ = −∞. (26)

Then for every ε > 0, there exists a single-bonus wage scheme and a two-point distribution
that satisfy (IC) and (LL), and the Principal’s expected cost is no greater than w + ε.

In the proof of this theorem, we show that the binary distribution in the contract that
approximates the first-best outcome is defined by a score close to zero, s and a very large score,
s. This implies that the Agent is paid the minimum wage w with near certainty, whereas
with a small probability, the Agent is generously rewarded. Such a contact can be incentive
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compatible as long as the Agent is not too risk-averse, so it is not too expensive to motivate
him with a large wage that he receives with a small probability. In a sense, this contract is the
reverse of the “Mirrlees shoot the agent” contract which prescribes a harsh punishment with a
small probability and provides the Agent with a small reward with probability close to one.

The condition of the theorem, (26), is satisfied if the Agent’s utility function is of the form
of (HARA) with parameters α > 0, γ < 1/2, and β > −αw/γ. In particular, it is satisfied if
the Agent has CRRA utility with coefficient less than 1/2; i.e., u(w) = w1−γ/(1− γ) with
γ < 1/2.
Proof.

To establish the result, we construct a sequence of binary distributions and corresponding
wages that satisfy (IC) and (LL) so that the Principal’s expected cost converges to w. To
this end, for each n ∈ N, let us define Fn ∈ F as follows

Fn(s) =


0 if s < −n−ζ

n
n+n−ζ

if s ∈ [−n−ζ , n)

1 if s ≥ n .

(27)

Note that the support of Fn is {sn, sn} =
{
−n−ζ , n

}
. Furthermore, Pr (sn) = sn/ (sn − sn)

and Pr(sn) = −sn/(sn − sn). Next, we define a wage scheme for each n, so that the Agent’s
incentive constraint, (IC), binds. That is, w(s) = w and w(sn) satisfies(

1 +
sn

sn − sn

)
snu(w)− sn

sn − sn
snu(w(sn)) = c′(a∗),

or equivalently,

w(sn) = u−1
(
u(w)− sn − sn

snsn
c′(a∗)

)
. (28)

Since w(sn) > w, the Agent’s limited liability constraint, (LL), is satisfied.
The Principal’s expected cost is

sn
sn − sn

[
w + s2n

]
− sn
sn − sn

[
w(sn) + s2n

]
=

sn
sn − sn

w − sn
sn − sn

w(sn) +
sns

2
n − sns2n
sn − sn

. (29)

Next, we show that this cost converges to w as n goes to infinity. First, note that the last
term, corresponding to the Principal’s cost of information acquisition, tends to zero because

lim
n→∞

sns
2
n − sns2n
sn − sn

= lim
n→∞

n1−2ζ + n2−ζ

n+ n−ζ
≤ lim

n→∞

n1−2ζ + n2−ζ

n
= lim

n→∞

(
n−2ζ + n1−ζ) = 0 , (30)
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where the last equality follows from ζ > 1.
It remains to show that the expected wage cost of the Principal converges to w. First, we

show that the first term on the right-hand side of (29) goes to w. Note that

lim
n→∞

sn
sn − sn

w = lim
n→∞

n

n+ n−ζ
w = w.

In what follows, we show that the second term of the right-hand side of (29) converges to
zero. We do this by sandwiching this term between two sequences and showing that both of
these sequences go to zero. To this end, note that

− sn
sn − sn

w ≤ − sn
sn − sn

w(sn) =
n−ζ

n+ n−ζ
u−1

(
u(w) +

n+ n−ζ

n1−ζ c′(a∗)

)
≤ n−ζ

n+ n−ζ
u−1

(
u(w) +

(
1 + nζ

)
c′(a∗)

)
,

where the first inequality follows from w ≤ w(sn), the equality follows from (28) and the second
inequality from 1/n ≤ 1. Since, limn→∞ [−sn/(sn − sn)] = limn→∞

[
n−ζ/(n+ nζ)

]
= 0, it is

enough to show that the right-hand side also converges to zero. That is, by letting v denote
u(w) + c′(a∗), we have to show that

lim
n→∞

u−1
(
v + nζc′(a∗)

)
nζ+1 + 1

= 0.

Observe that the denominator goes to infinity, hence, if u is bounded and the numerator does
not go to infinity, this result follows. If u is unbounded, then the numerator also goes to
infinity and, applying L’Hospital’s rule, we have that

lim
n→∞

u−1
(
v + nζc′(a∗)

)
nζ+1 + 1

= lim
n→∞

ζnζ−1c′(a∗)

u′(u−1(v+nζc′(a∗)))

(ζ + 1)nζ
≤ c′(a) lim

n→∞

1

u′(u−1(v+nζc′(a∗)))

n
,

where the inequality follows from ζ/ [n (ζ + 1)] < 1. Since limn→∞ u
−1 (v + nζc′(a∗)

)
=∞ by

supposition and limw→∞ u
′(w) = 0 by assumption, both the numerator and the denominator

of the right-hand side term above go to infinity. Applying L’Hospital’s rule again, we have
that

c′(a) lim
n→∞

1

u′(u−1(v+nζc′(a∗)))

n
= ζ[c′(a∗)]2 lim

n→∞

−u′′
(
u−1

(
v + nζc′(a∗)

))
[u′ (u−1 (v + nζc′(a∗)))]3

nζ−1 .
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Letting w = u−1
(
v + nζc′(a∗)

)
, the last expression can be rewritten as

ζ[c′(a∗)]2 lim
w→∞

−u′′ (w)

[u′ (w)]3

[
u(w)− v
c′(a∗)

] ζ−1
ζ

≤ ζ[c′(a∗)]
ζ+1
ζ lim

w→∞

−u′′ (w)

[u′ (w)]3
[u(w)]

ζ−1
ζ = 0,

where the inequality follows because u(w) > v and ζ > 1 and the equality follows from
(26).

7 Validating the First-Order Approach

Throughout the analysis, we have considered a relaxed problem, in which the Principal
restricts attention to discouraging local downward deviations from the target effort a∗. In
this section, we consider an arbitrary binary distribution over scores and a wage scheme that
satisfies the relaxed incentive-compatibility constraint given in (5), and we provide sufficient
conditions such that this contract also satisfies the global incentive-compatibility constraint
given in (2).13

In what follows, we fix a binary distribution over scores, F , and a wage scheme
{
W̃ (s)

}
s
.

First, we compute the probability of each score conditional on any deviation, a ( 6= a∗). Second,
we use these conditional probabilities to express the Agent’s global incentive constraint.
Finally, we provide conditions under which the first-order condition at a∗ implies that this
global incentive constraint is satisfied. To this end, let {s, s} be the support of the distribution,
where s < s. This distribution is implemented by the stopping time τ = inf {t : st /∈ (s, s)},
where dst = (a − a∗)dt + dBt. Let p(a) denote the probability that s is realized given the
Agent’s effort a. Using Ito’s Lemma, it is not hard to show that14

p(a) =
e−2(a−a

∗)s − 1

e−2(a−a∗)s − e−2(a−a∗)s
. (31)

13In the canonical Principal–Agent model (e.g., Holmström (1979)), to ensure that the first-order approach
is valid, it is typically assumed that either the transition probability function that maps each effort level into
contractible output is convex in effort, or conditions are imposed on that transition probability function and
the Agent’s utility function; see Bolton and Dewatripont (2005) and Jewitt (1988) for details. In our setting,
this distribution is endogenous, and hence we impose conditions on the Agent’s effort-cost function.

14To derive (31), fix an effort level a 6= a∗, and let p(s) denote the probability that sτ = s given the current
score s. Applying Ito’s lemma on dst = (a− a∗)dt+ dBt, it follows that p satisfies 0 = 2(a− a∗)p′(s) + p′′(s)
subject to the boundary conditions p(s) = 1 and p(s) = 0. This boundary value problem can be solved
analytically, and evaluating its solution at s0 = 0 yields (31). Moreover, it follows from L’Hospital’s rule that(
1− e−2(a−a∗)s

)
/
(
e−2(a−a

∗)s − e−2(a−a∗)s
)
→ s/(s − s) as a → a∗, and so (31) corresponds to (21) when

a = a∗.
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Then the Agent’s problem is

max
a
u
(
W̃ (s)

)
+ p (a)

[
u
(
W̃ (s)

)
− u

(
W̃ (s)

)]
− c (a) . (32)

The first-order condition at a∗ is

p′ (a∗)
[
u(W̃ (s))− u(W̃ (s))

]
= c′(a∗),

that is, wages must satisfy u(W̃ (s))− u(W̃ (s)) = c′(a∗)/p′(a∗). Plugging this into (32), the
Agent’s global incentive-compatibility constraint can be expressed as

a∗ ∈ arg max
a≥0

{
u(W̃ (s)) + p(a)

c′(a∗)

p′(a∗)
− c(a)

}
.

This constraint is satisfied if the maximand is single-peaked at a∗. Note that the maximand’s
derivative is p′ (a) [c′ (a∗) /p′ (a∗)]− c′ (a). So, the first-order approach is valid if

p′(a)

p′(a∗)
≥ c′(a)

c′(a∗)
if and only if a ≤ a∗ . (33)

The following proposition gives sufficient conditions for this to be the case.

Proposition 1. Consider a sequence of effort-cost functions {ck}k∈N such that c′k (a∗) = d

for all k, where d > 0 is some constant. In addition,
(i) for all a < a∗, c′k (a) is decreasing in k and limk→∞ c

′
k (a) = 0,

(ii) for all a > a∗, c′k (a) is increasing in k and limk→∞ c
′
k (a) =∞,

(iii) and c′′k (a∗) is increasing in k, and limk→∞ c
′′
k (a∗) =∞.

Then there exists a K ∈ N such that the first-order approach is valid if c (a) = ck (a) whenever
k > K.

The first-order approach is valid as long as the Agent’s effort-cost function is sufficiently
convex at the target effort level a∗, sufficiently flat at effort levels below a∗, and sufficiently
steep at effort levels above a∗. For example, it is valid if c′(a) = ak and a∗ = 1 for a sufficiently
large k.
Proof.

First, fix an effort level a < a∗. By condition (i), there exists Ka ∈ N such that

p′(a)

p′(a∗)
≥
c′Ka(a)

d
.

Furthermore, by continuity, there exists εa (< a∗ − a) such that the previous inequality is
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satisfied for all ã ∈ (max {0, a− εa} , a+ εa) = Na. Since c′k (ã) is decreasing in k by condition
(i), it follows that for all ã ∈ Na and k ≥ Ka,

p′(ã)

p′(a∗)
≥ c′k(ã)

d
. (34)

Second, fix an effort level a > a∗. By conditions (ii), there exists K ′a ∈ N such that

p′(a)

p′(a∗)
≤
c′K′a(a)

d
.

Furthermore, by continuity, there exists εa (< a− a∗) such that the previous inequality is
satisfied for all ã ∈ (a− εa, a+ εa) = Na. Since c′k (ã) is increasing in k by condition (ii), it
follows that for all ã ∈ Na and k ≥ K ′a,

p′(ã)

p′(a∗)
≤ c′k(ã)

d
. (35)

Now, consider a = a∗. By condition (iii) and noting that p′′(a∗)/p′(a∗) = (2/3)(s+ s) is
finite, there exists Ka∗ such that the local second-order condition is satisfied, that is,

p′′(a∗)

p′(a∗)
d < c′′Ka∗ (a

∗) .

Therefore, there exists εa∗ > 0 such that if ã ∈ (a− εa∗ , a+ εa∗) = Na∗ , then (33) is satisfied
with c = cKa∗ . By the monotonicity properties in conditions (i) and (ii), for all ã ∈ Na∗ and
k ≥ Ka∗ ,

p′(ã)

p′(a∗)
>

c′k (ã)

d
if ã < a∗, (36)

p′(ã)

p′(a∗)
<

c′k (ã)

d
if ã > a∗.

Using L’Hospital’s rule, one can show that for any a∗, lima→∞ p
′(a) = 0. Therefore, there

exists some B such that p′(a)/p′(a∗) < B for all a ≥ 0, and hence for any A > a∗, there exists
some KA such that

p′(a)

p′(a∗)
≤ c′k(a)

c′k(a
∗)

for all a > A and k ≥ KA .

Fix some A > a∗, and note that
[0, A] = ∪a∈[0,A]Na.
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Since [0, A] is compact and Na is open for all a ∈ [0, A], there exists a1, ..., am such that

[0, A] = ∪j∈{1,...,m}Naj . (37)

Now, let us define
K = max {Ka1 , ..., Kam , KA} , (38)

and let us consider ck such that k > K. We show that the first-order approach is valid if the
Agent’s effort cost is given by ck. To be more specific, we show that ck satisfies (33). To this
end, suppose first that a < a∗. By (37), there is j ∈ {1, ...,m} such that a ∈ Nj. Note that
either aj < a∗ or aj = a∗. If aj < a∗ then a satisfies (34) because k > K > Kaj by (38). If
aj = a∗ then a satisfies the first line of (36) because k > K > Kaj . Suppose now that a > a∗.
Again, by (37), there is j ∈ {1, ...,m} such that a ∈ Nj. Note that either aj > a∗ or aj = a∗.
If aj > a∗, then a satisfies (35) because k > K > Kaj by (38). If aj = a∗ then a satisfies
the second line of (36) because k > K > Kaj . Finally, (33) is satisfied for all a > A since
K ≥ KA, and the proof is complete.

8 Comparative Statics

In this section, we use simulations to investigate how the optimal contract depends on the
parameters of the problem.

Figure 2 provides comparative statics when the Agent’s utility function exhibits CRRA,
and so it is of the form

u (w) =
w1−γ

1− γ
,

and we vary the coefficient of relative risk aversion γ from 1/2 to 1, while setting w = 0.1 and
c′(a∗) = 1. The left panel illustrates the scores in the support of the equilibrium distribution, s
and s, while the right panels illustrate the size of the bonus (w (λ∗, s)−w) and the probability
that it is paid (p (λ∗)) as a function of γ. As this figure illustrates, if γ is close to one-half
so the Agent is moderately risk-averse, then the optimal specifies an s close to zero and a
large s. This implies that the Agent only receives the bonus if the acquired information is
overwhelmingly favorable. Of course, this event occurs with only a small probability as shown
on the top-right panel of Figure 2. Therefore, in order to motivate the Agent, the size of
the bonus must be large, confirmed by the right-bottom panel. Note that the equilibrium
contract in this case is similar to the ones used in the proof of Theorem 2: the Agent receives
a large bonus with a small probability if she exerts the target effort. Recall that this theorem
implies that if γ < 1/2, then it is possible to approximate the first-best outcome arbitrarily
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Figure 2: Comparative statics of the optimal contract as the (constant) coefficient of relative
risk aversion γ varies.

closely using such single-bonus wage schemes.
In contrast, if γ is close to one so the Agent is very risk-averse, then both s and s are

relatively small (see the left panel of Figure 2). This implies that the Agent receives a bonus
with high probability, as shown on the top-right panel. Since the Agent receives the bonus
frequently, its size is small. The fact that the optimal contract specifies small rewards with
large probability if γ is large is not surprising given that a very risk-averse Agent values
income-smoothing more. Note that between the two extreme values of γ, all the functions
are monotone: s, s, and the bonus are decreasing, and the probability of the bonus increases.
Simulations indicate that these comparative statics are similar when the Agent’s utility
function exhibits CARA, and we vary the coefficient of absolute risk aversion.

Figure 3 illustrates how the scores in the support of the equilibrium distribution, s and
s, the size of the bonus, and the probability that it is paid vary with the minimum wage w,
when the Agent’s utility exhibits CRRA or CARA. In the former case, we set γ = 0.9 and
c′(a∗) = 1, and vary w from 0 to 5. In the latter case, we set the coefficient of absolute risk
aversion to 1 and c′(a∗) = 1, and vary w from −5 to 0. In both cases, the size of the bonus
increases in the minimum wage. The reason is that, as w increases, the marginal utility of
the Agent for a given bonus decreases. Therefore, in order to incentivize the Agent to exert
the target effort, the Principal must increase the size of the bonus. The comparative statics
pertaining to the optimal information-acquisition strategies appear to be quite different in the
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Figure 3: Comparative statics of the optimal contract as the minimum wage w varies. The
left (right) panel illustrates the case in which the Agent’s utility exhibits CRRA (CARA).

two cases examined. In particular, if the Agent’s utility exhibits CRRA then the probability
of paying the bonus is decreasing in w, whereas this probability is increasing in the case of
CARA utility. The reason is that in the former case, as w increases, the Agent becomes less
and less risk-averse regarding gambles involving transfers above w. As a consequence, the
optimal contract specifies the familiar small-probability, large-bonus wage scheme. In the case
of CARA, such an effect is not present.

9 Discussion

We analyze a contracting problem under moral hazard in which the Principal designs both the
Agent’s wage scheme and the underlying performance measure. In our model, a performance
measure is a strategy for sequentially acquiring signals that are informative of the Agent’s
costly effort, and a wage scheme specifies the Agent’s remuneration conditional on the acquired
signals. Under a pair of conditions on the Agent’s utility function, and provided that the
first-order approach is valid, we show that a single-bonus contract is optimal; i.e., the Principal
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chooses a two-point distribution over scores and a binary wage scheme. These conditions are
satisfied if, for example, the Agent’s utility exhibits CARA or CRRA with coefficient greater
than one-half. Under an alternative condition on the Agent’s utility, which is satisfied if, for
instance, it exhibits CRRA with coefficient less than one-half, we show that the Principal can
approximate the first-best outcome arbitrarily closely with a single-bonus contract.

Throughout the paper, we assumed that the Agent has limited liability but does not make
a participation decision. It is not hard to incorporate a participation constraint into the
Principal’s optimization problem and show that the optimal contract still involves binary
wages. We chose not to do so because this additional constraint has little to do with the
main argument of our analysis and involves heavy notational burden. Our results are also
valid if the Agent’s effort is binary. In this case, there is only a single incentive constraint
and one does not need to consider a relaxed problem. As a consequence, the optimality of a
single-bonus contract does not require those conditions on the Agent’s effort cost that we
imposed to validate the first-order approach.

We have considered a particular information-acquisition mechanism, which is equivalent to
the Principal choosing any zero-mean distribution over scores at a cost equal to its variance.
Alternatively, we could have started with an information design problem in which the Principal
chooses a distribution over scores F ∈ F at some cost. Our main theorem holds as long
as this cost is a general convex moment, that is, it can be expressed as EF [ϕ(s)] for some
function ϕ with ϕ′′ > 0 and ϕ′′′ ≥ 0.15 Recall that in our model, by choosing a distribution
corresponding to the target effort level, the Principal is implicitly choosing a distribution
corresponding to every other effort level. A drawback of this alternative approach is that it is
ambiguous how the distributions corresponding to different effort levels ought to be linked,
and so absent additional assumptions, it is impossible to validate the first-order approach.

In our model, prior to acquiring costly information, the Principal is completely oblivious
to the Agent’s effort. Our results can be generalized for the case where, prior to acquiring
information, the Principal observes a costless signal about the Agent’s effort. For example,
public firms are obligated to report various accounting measures such as revenue and operating
profits, which are likely to be informative of some employees’ actions and not acquired during
a monitoring process. Provided that the first-order approach is valid, the Principal’s problem
can be expressed as choosing a family of distributions over scores, one for each realization of
the (costless) signal, and a wage scheme conditional on the realized score. Using techniques
similar to those in Sections 3-4, one can show that an optimal contract corresponds to an
equilibrium of a zero-sum game played by Nature and the Principal. Under the conditions of

15In our model, ϕ(s) = s2. The shape of ϕ is only used in the proof of Lemma 7, which requires that ϕ be
strictly convex and ϕ′′′ ≥ 0, so that the threshold λc is unique and well-defined.
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Theorem 1, if an equilibrium exists, the optimal contract is characterized by an interval. If the
value of the costless signal is in this interval, the Principal chooses a two-point distribution
over scores, and pays the Agent according to the realization of the score.16 If the value of the
costless signal is outside of this interval, the Principal does not acquire further information,
that is, she chooses a degenerate distribution over scores. In this case, the Agent’s wage is
based on the costless signal. Interestingly, this wage scheme resembles what Murphy (1999)
(Figure 5) and Jensen (2001) argue is a typical executive incentive plan.
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Proof of Lemma 1.
Fix an arbitrary stopping rule τ , and assume that the wage scheme W (ωτ ) solves (1)

subject to (3) and (5). In what follows, we define a new wage scheme, Ŵ , which only depends
on the score. According to this scheme, after a realized path ωτ , the Agent’s wage is the
average wage according to W conditional on the score being Bτ (ωτ ). We will argue that
Ŵ is feasible (i.e., it satisfies (3) and (5)) and has the same expectation as W . Finally, we
show that if W does not only depend on the score with positive probability then the relaxed
incentive constraint, (5), is slack at Ŵ and hence, this wage scheme can be further modified
to strictly reduce the Principal’s expected cost.

Formally, we define the new wage scheme by

Ŵ (s) = Ea∗ [W |Bτ = s] .

By construction, this wage scheme bears the same expected cost to the Principal. In addition,
since W ≥ w, this new scheme also satisfies (3). Next, we show that Ŵ also satisfies (5).
Notice that

Ea∗
[
u(Ŵ (sτ ))sτ

]
= Ea∗,sτ [u(Ea∗ [W |Bτ = sτ ])sτ ]

≥ Ea∗,sτ [Ea∗ [u(W )|Bτ = sτ ] sτ ]

= Ea∗ [u(W )Bτ ] ≥ c′(a∗) ,

where the first equality follows the definition of Ŵ , the first inequality is implied by Jensen’s
Inequality, the second equality follows from sτ = Bτ and the last inequality follows from
the assumption that W satisfies (5). This inequality chain implies that Ŵ also solves (5).
Furthermore, if the probability of s for which Ŵ (s) 6= Ea∗ [W |Bτ ) = s] is positive, the first
inequality is strict and hence, the incentive constraint at Ŵ is slack. Therefore, Ŵ can be
modified by reducing it at those values at which Ŵ (s) 6= w so that this modified wage scheme
still satisfies (3) and (5). This wage scheme then would be strictly less costly for the Principal
than W . This would contradict to the hypothesis that W solves (1) subject to (3) and (5).

Proof of Lemma 2.
Let τ be a stopping time with finite expectation. For each n ∈ N, define τn := min {τ, n},

and note that τn is bounded and converges to τ pointwise as n → ∞. Recall that st = Bt

if a = a∗. Since {st}t≥0 and {s2t − t}t≥0 are martingales and τn is bounded, it follows from
Doob’s Optional Sampling Theorem that for each n ∈ N,

Ea∗ [sτn ] = Ea∗ [s0] = 0 and Ea∗
[
s2τn − τn

]
= Ea∗

[
s20 − 0

]
= 0 . (39)
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The second inequality chain and Ea∗ [τn] ≤ n imply that Ea∗
[
s2τn
]
<∞. It remains to show

that these properties are preserved in the limit.
Observe that for any m < n,

Ea∗
[
(sτn − sτm)2

]
= Ea∗

[
s2τn − s

2
τm

]
= Ea∗ [τn − τm] ,

where the first equality follows from Ea∗ [sτnsτm ] = Ea∗ [sτmEa∗ [sτn|sτm ]] = Ea∗
[
s2τm
]
and the

second equality follows from (39). Since τn, τm converges to τ and Ea∗ [τ ] <∞, the right-hand
side vanishes as n,m go to infinity. Therefore, {sτn}n∈N is an L2-Cauchy sequence, and sτn
converges to sτ as n goes to infinity in L2. Hence, sτn also converges to sτ in L1, and so
limn→∞ Ea∗ [sτn ] = Ea∗ [sτ ]. Since Ea∗ [sτn ] = 0 by the first equality chain in (39), Ea∗ [sτ ] = 0

also follows.
Next, note that

Ea∗
[
s2τ
]

= Ea∗ [ lim
n→∞

inf s2τn ] ≤ lim
n→∞

inf Ea∗
[
s2τn
]

= lim
n→∞

Ea∗ [τn] = Ea∗ [τ ] <∞ ,

where the first equality follows from limn→∞ s
2
τn = s2τ almost surely, the first inequality follows

from Fatou’s Lemma, the second equality is implied by the second equality chain in (39), the
third equality follows from Lebesgue’s Dominated Convergence Theorem because τn ≤ τ for
every n, and the last inequality follows by assumption.

Thus, letting Fτ denote the distribution of sτ when the agent chooses a = a∗, we have
shown that for any stopping time such that Ea∗ [τ ] <∞, we have EFτ [s] = 0 and EFτ [s2] <∞
as desired.

Proof of Lemma 4.
To prove part (i), note that

L(λ, F ) =

∫ [
w(λ, s) + γs2

]
+ λ [c′(a∗)− su(w(λ, s))] dF (s)

because the wage scheme w (λ, ·) (defined by 8) minimizes the integrand in (7) pointwise.
Hence, the dual problem is

sup
λ≥0

∫ [
w(λ, s) + s2

]
+ λ [c′(a∗)− su(w(λ, s))] dF (s) . (40)

It is easy to show that the objective function is concave in λ, so the first-order condition is
necessary and sufficient for an optimal solution. The Envelope Condition implies that

L1(λ, F ) = c′(a∗)−
∫
su(w(λ, s)) dF (s) . (41)
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Note that L1(0, F ) = c′(a∗) > 0, so there are two cases to be considered.
Case 1: there exists a λ̂ > 0 such that L1(λ̂, F ) = 0. Then, by (40) and (41),

L(λ̂, F ) =

∫ [
w(λ̂, s) + s2

]
dF (s). (42)

Observe that w(λ̂, ·) is a feasible wage scheme because it satisfies the limited liability constraint,
(LL), by construction and it also satisfies the relaxed incentive constraint, (IC), by (41) and
L1(λ̂, F ) = 0. Therefore, (42) implies that Π(F ) ≤

∫ [
w(λ̂, s) + s2

]
dF (s). On the other

hand, weak duality implies that Π(F ) ≥ L(λ̂, F ), and thus we have L(λ̂, F ) = Π(F ).
Case 2: L1(λ, F ) > 0 for all λ ≥ 0. Then, by (40) and (41),

sup
λ≥0

L(λ, F ) ≥ sup
λ≥0

∫ [
w(λ, s) + s2

]
dF (s). (43)

Since w(λ, s) converges to infinity if s > 0 and to w if s ≤ 0 as λ goes to infinity, the
right-hand side of (43) is infinity unless F is the degenerate distribution, F = I{s≥0}. Hence,
supλ≥0 L(λ, F ) =∞. If F = I{s≥0} then, by w(λ, 0) = w and (40), L(λ, F ) ≥ w + λc′(a∗), so
supλ≥0 L(λ, F ) =∞. Again, weak duality implies that Π (F ) =∞. Finally, notice that this
equality implies that, in this case, the problem in (6) does not have a solution.

To prove part (ii), first observe from the proof of part (i) it follows that if there exists a
λ̂ > 0 such that L1(λ̂, F ) = 0 then the problem in (6) has a solution (see Case 1). In particular,
(42) implies that the wage scheme w(λ̂, ·) solves (6). Moreover, by (41) and L1(λ̂, F ) = 0,
the incentive constraint, (IC), indeed binds at w(λ̂, ·). Furthermore, since w(λ̂, s) is strictly
increasing in λ if s > s∗ (λ) and s∗ (λ) is strictly decreasing, the right-hand side of (42) is
strictly increasing in λ. This implies the uniqueness of λ̂. Also notice that if L1(λ, F ) > 0

for all λ ≥ 0 then Π (F ) = ∞ (see Case 2), and hence, the problem in (6) does not have a
solution.

It remains to show that the wage scheme w(λ̂, s) uniquely solves (6) subject to (IC)
and (LL). Towards a contradiction, suppose that there exists a wage scheme w̃(·) which
differs from w(λ̂, ·) on a set of positive measure, it satisfies the constraints (IC) and (LL),
and bears a weakly lower expected cost to the Principal than the scheme w(λ̂, ·), that is,
EF
(
w(λ̂, s)

)
≥ EF (w̃(s)). For each ε ∈ [0, 1], define the wage scheme, wε, by

u(wε(s)) = (1− ε)u(w(λ̂, s)) + εu(w̃(s))

for all s. This is the certainty equivalent of a (1− ε, ε) lottery between w(λ̂, s) and w̃(s). To
obtain a contradiction, we show that EF

(
w(λ̂, s)

)
≥ EF (w̃(s)) implies that ∂EF (wε)/∂ε < 0
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at ε = 0. On the other hand, we argue that ∂EF (wε)/∂ε ≥ 0 at ε = 0 follows from w(λ̂, ·)
satisfying the incentive constraint, (IC), with equality.

To this end, note that

∂wε(s)

∂ε
=

1

u′(wε(s))

[
u(w̃(s))− u(w(λ̂, s))

]
and (44)

∂2wε(s)

∂ε2
= − u′′(wε(s))

[u′(wε(s))]3

[
u(w̃(s))− u(w(λ̂, s))

]2
≥ 0 ,

where the inequality is strict if w(λ̂, s) 6= w̃(s). Since w̃(·) and w(λ̂, ·) differ on a set of positive
measure, the Principal’s expected cost associated with the wage scheme wε, EF (wε), is strictly
convex in ε. Therefore, since w0(s) = w(λ̂, s), w1(s) = w̃(s) and EF

(
w(λ̂, s)

)
≥ EF (w̃(s)),

it must be that
∂EF (wε)

∂ε

∣∣∣∣
ε=0

< 0 . (45)

Next, we show that

1

u′(w(λ̂, s))

[
u(w̃(s))− u(w(λ̂, s))

]
≥ λ̂s

[
u(w̃(s))− u(w(λ̂, s))

]
(46)

for all s. This inequality holds with equality for all s > s∗(λ̂) since 1/u′(w(λ̂, s)) = λ̂s for
such s (see 8). If s ≤ s∗(λ̂), then w(λ̂, s) = w, and the desired inequality follows from the
facts that u(w̃(s))− u(w(λ̂, s)) ≥ 0 (as w̃(·) satisfies (LL)) and

1

u′(w(λ̂, s))
=

1

u′(w)
≥ λ̂s .

Therefore,

∂EF (wε)

∂ε

∣∣∣∣
ε=0

=

∫
1

u′(wε(s))

[
u(w̃(s))− u(w(λ̂, s))

]
dF (s)

≥ λ̂

∫
s
[
u(w̃(s))− u(w(λ̂, s))

]
dF (s)

≥ λ̂

[∫
s u(w̃(s))dF (s)− c′(a∗)

]
≥ 0 ,

where the equality follows from (44), the first inequality follows from (46), the second inequality
holds because w(λ̂, ·) satisfies (IC) with equality and the last inequality follows because w̃
satisfies (IC). Notice that this inequality chain contradicts (45), so we conclude that w(λ̂, ·) is
uniquely optimal.

Finally, by the proof of part (i) of lemma, a solution to (6) exists if
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Proof of Lemma 9.
Note that s (λ) and s (λ) are defined by the following equations

Z2 (λ, s)− Z2 (λ, s) = 0,

Z (λ, s) + (s− s)Z2 (λ, s)− Z (λ, s) = 0.

The first equation requires that the derivatives of Z(λ, s) with respect to s are the same
at s = s and at s = s. The second equation requires the point (s, Z (λ, s)) lies on the line
crossing (s, Z (λ, s)) with slope Z2 (λ, s). The Jacobian matrix corresponding to this mapping
is ∣∣∣∣∣ Z22 (λ, s) −Z22 (λ, s)

−sZ22 (λ, s) 0

∣∣∣∣∣ .
Since Z22 (λ, s) > 0, the determinant of this matrix is non-zero. Then, by the Implicit Function
Theorem, part (i) of the lemma follows.

To prove part (ii), first, noting that s∗ (λn) converges to s∗ (λc) as n→∞ and s (λn) <

s∗ (λn) < s (λn), it is enough to show that s (λn)− s (λn) tends to zero as n→∞. Suppose,
by contradiction, that there is a subsequence (λnk)nk ⊂ (λn)n and an ε > 0 such that

s (λnk)− s (λnk) > ε.

Therefore, since s∗ (λnk)→ s∗ (λc) and s (λnk) < s∗ (λn) < s (λnk), there must exist s1, s2 ∈
(s∗ (λc)− ε, s∗ (λc) + ε) and a subsequence (λnl)nl ⊂ (λnk)nk such that s2 − s1 > ε/2 and

s (λnl) ≤ s1 and s2 ≤ s (λnl) .

Then

lim
nl→∞

supZ2 (λnl , s (λnl)) ≤ lim
nl→∞

supZ2 (λnl , s1) = Z2 (λc, s1)

< Z2 (λc, s2) = lim
nl→∞

inf Z2 (λnl , s2) ≤ lim
nl→∞

inf Z2 (λnl , s (λnl)) ,

where the first and last inequalities follow from Z (λnl , s) being convex in s on (−∞, s (λnl)]∪
[s (λnl) ,∞), the two equalities follow from continuity, and the strict inequality follows
from Z (λc, s) being strictly convex (see Lemma 7). Note, however, that Z2 (λnl , s (λnl)) =

Z2 (λnl , s (λnl)) and hence

lim
nl→∞

supZ2 (λnl , s (λnl)) ≥ lim
nl→∞

inf Z2 (λnl , s (λnl)) ,
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which contradicts the previous displayed inequality chain.

Proof of Lemma 10.
First note that if the IC is not slack for a given λ then the Principal’s payoff is bounded

from below by w. Indeed, even if the Principal does not acquire any information, he has to
pay at least w to the Agent. Therefore, in order to prove the lemma, it is enough to show
that if λ is large enough then the Principal’s payoff is smaller than w.

Let u denote limw→∞ u (w) and fix an s̃ > 0 such that

s̃ >
2c′ (a∗)

u− u (w)
. (47)

(If u =∞ then this inequality imposes no restriction on s̃ in addition to requiring it to be
positive.) Consider the binary distribution, F̃ , which specifies probability half on s̃ and −s̃.17

Recall that

∂EF̃ [Z(λ, s)]

∂λ
= −

∫
su (w (λ, s)) dF̃ (s) + c′(a∗)

=
1

2
s̃u (w)− s̃1

2
u (w (λ, s̃)) + c′(a∗).

Since limλ→∞w (λ, s̃) =∞, limλ→∞ u (w (λ, s̃)) = u. Therefore,

lim
λ→∞

∂EF̃ [Z(λ, s)]

∂λ
= − s̃ [u− u (w)]

2
+ c′(a∗) < 0,

where the inequality follows from (47). (If u = ∞ then this limit is minus infinity.) Since
w (λ, s̃) is strictly increasing in λ it follows that there exists a λ such that for all λ > λ,

∂EF̃ [Z(λ, s)]

∂λ
< 0.

Since ∂EF̃ [Z(λ, s)] /∂λ is strictly decreasing in λ (because u (w (λ, s̃)) is strictly increasing in
λ), it follows that there exists a Λ such that the Principal’s payoff is smaller than w whenever
λ > Λ and the Principal chooses F̃ . Of course, the Principal’s payoff is even smaller if she
best-responds to λ.

17F̃ (s) =


0 if s < −s̃
1
2 if s ∈ [−s̃, s̃)
1 if s ≥ s̃.
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