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Abstract

Regression modelling involving heavy-tailed response distributions, which have heavier tails than
the exponential distribution, has become increasingly popular in many insurance settings including
non-life insurance. Mixed Exponential models can be considered as a natural choice for the dis-
tribution of heavy-tailed claim sizes since their tails are not exponentially bounded. This paper is
concerned with introducing a general family of mixed Exponential regression models with varying
dispersion which can e¢ ciently capture the tail behaviour of losses. Our main achievement is that we
present an Expectation-Maximization (EM) type algorithm which can facilitate maximum likelihood
(ML) estimation for our class of mixed Exponential models which allows for regression speci�ca-
tions for both the mean and dispersion parameters. Finally, a real data application based on motor
insurance data is given to illustrate the versatility of the proposed EM type algorithm.
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1 Introduction

Over the last few decades, it has become increasingly clear that insurance losses are often characterized
by asymmetry and thick tails. In particular, the claim size distribution is often non-negative, right
skewed and leptokurtic, i.e. it has a heavy tail. As far as the modelling of heavy-tailed insurance loss
data in non-life insurance, which is the main focus of this study, is concerned, a few large size claims
hitting a portfolio usually represent the greatest part of the indemnities paid by the company. Therefore,
quantifying the risk posed by those extreme losses has often been an imperative task for actuaries. The
continuous probability distributions which have been traditionally employed in the actuarial literature
for heavy tail analyses, include, for instance, the Generalized Inverse Gaussian distribution (GIG) and
many members of the Generalized Beta Type II (GB2) family of distributions. The GB2 family includes,
for instance, the Burr distribution, the Pareto distribution, its generalization, namely the Generalized
Pareto distribution (GP), which has been used in the context of Extreme Value Theory (EVT), see,
for example, Embrechts et al. (1997), and also limiting distributions, such as the Generalized Gamma
(GG) distribution. Furthermore, modelling the aforementioned heavy-tailed distributions in regression
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analysis has recently become a popular statistical tool for analyzing insurance data based on important
explanatory variables for claim severities. In particular, the list of possible parametric candidates for
modelling heavy-tailed data for the case with and the case without covariate information is not exhaustive.
References include, for example, Beirlant et al. (1998), Kleiber and Kotz (2003, Section 4.11 ), Wills
et al. (2006), Rosenberg et al. (2007), Frees and Valdez (2008), Frees et al. (2014a, Chapter 10 and
2014b, Chapter 9). Additionally, Ahn et al. (2012) considered log phase-type (LogPH) distributions,
Ramirez-Cobo et al. (2010) and Hürlimann (2014), Calderín-Ojeda et al. (2017) employed the Double-
Pareto-Lognormal (DPLN) distribution for approximating large claim amounts for the case with and
the case without covariate information respectively and Bladt and Rojas-Nandayapa (2018) used scale
mixtures of phase-type distributions for modelling heavy-tailed data.
The aim of the present work is to introduce a general family of mixed Exponential regression models

with varying dispersion for approximating heavy-tailed losses in non-life insurance. This class is based on
a mixing between the Exponential distribution and a unit mean continuous prior, or mixing, distribution
which belongs to a general distribution family. The proposed class of mixed Exponential distributions
is de�ned so that its mean is an explicit parameter of the distribution. This allows easier interpretation
when both the mean and dispersion parameters are modelled using explanatory variables and provides
a more orthogonal parameterization to ease model �tting. Moreover, there is a wide range of practical
applications in many non-life insurance settings for this type of models. In particular, the proposed
modelling framework results in an improved risk evaluation as it can enable the actuary to �t more
representative distributions for the data that can capture all their important stylized characteristics
and thus more e¢ ciently determine the appropriate level of premiums, reserves and reinsurance. Three
members of this family are examined in depth, the Pareto, or Exponential-Inverse Gamma, Exponential-
Inverse Gaussian (EIG) and Exponential-Lognormal (ELN) distributions with regression structures on
both their mean and dispersion parameters.
In what follows, we discuss in detail our contributions and comment on how our approach can extend

the current actuarial applications concerning positively skewed non-life insurance data with a larger
upper tail.
Firstly, by introducing this general class of mixed Exponential distributions, we uni�ed two mixed

Exponential distributions which have been studied separately in the literature, namely the Pareto and
the EIG distributions. The Pareto distribution has been excessively overused in the actuarial literature,
see for instance, among many others, Klugman et al. (2012) for the case without covariate information,
Frangos and Vrontos (2001) and Tzougas et al. (2014 and 2018) who considered the case with covariate
information. However, more limited literature exists for the EIG distribution. In fact, only Bhattacharya
and Kumar (1986) and Hesselager et al. (1998) considered the EIG distribution and Frangos and Karlis
(2004) added a regression component to the model. The advantage of the Pareto and EIG models is the
conjugacy, in a Bayesian sense, between the Inverse Gamma and Inverse Gaussian prior distributions
respectively and the Exponential distribution, which facilitates ML estimation. However, apart from
the two aforementioned cases, this family of models has not been studied in depth since. The main
reason is because most of the members of the mixed Exponential family of models do not have their
densities in closed form, and hence special numerical methods are needed for their ML estimation. Such
an example is the ELN model with a regression component which was recently proposed by Tzougas
et al. (2019) for deriving a priori and a posteriori ratemaking mechanisms for the costs of claims. In
particular, compared to the two classical mixed Exponential models, there is no analytical form for the
distribution of the cost of claims if the random e¤ect term, which follows the Lognormal distribution, is
marginalized out. The main contribution of this study is that it illustrates that ML estimation of mixed
Exponential regression models with varying dispersion can be accomplished relatively easily via a novel
Expectation-Maximization (EM) type algorithm which is computationally parsimonious and can remedy
the computational issues which may occur by alternative estimation procedures, since ML estimation of
mixed Exponential distributions is far from straightforward if regression speci�cations are allowed for
both mean and the dispersion parameters and the computational complexity increases even further if the
choice of the mixing density leads to algebraically intractable members of the mixed Exponential family.
At this point, we would like to call attention to the fact that the development of ML estimation algorithms
for modelling jointly all the parameters of discrete and continuous response distributions in terms of
covariates remains a largely uncharted research �eld. Notable exceptions are the articles by Rigby and
Stasinopoulos (2005) and Barreto-Souza and Simas (2015). Rigby and Stasinopoulos (2005) introduced
the generalized additive models for location, scale and shape (GAMLSS) which allow modelling of every
parameter of the distribution of the response, not only as parametric but also as additive nonparametric
functions of covariates and/or random-e¤ects terms. The general class of univariate regression models
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which they developed extends the setup of many well known distributions including the Pareto but not
other members of the mixed Exponential family. The model �tting of a GAMLSS model can be achieved
by either the RS algorithmic procedure which is based on the algorithm that was used for the �tting
of the mean and dispersion additive models of Rigby and Stasinopoulos (1996a and 1996b) or the CG
algorithm which is based on the algorithm by Cole and Green (1992). Barreto-Souza and Simas (2015)
also proposed the use of the EM algorithm for estimating the parameters of the general class of mixed
Poisson regression models with varying dispersion which they developed, extending the setup of Karlis
(2001) who considered the case when only the mean is modelled in terms of explanatory variables. In
their numerical illustration they gave special emphasis on the estimation of the Negative Binomial and
Poisson-Inverse Gaussian regression models with regression structures on both their mean and dispersion
parameters. However, this is the �rst time that the EM algorithm is used, in a statistical or actuarial
setting, for estimating mixed Exponential regression models with varying dispersion.
Secondly, as is well known, in the majority of insurance applications regarding two parameter contin-

uous distributions employed for modelling positively skewed non-life insurance data with a larger upper
tail, the commonly used speci�cation is that only the mean claim severity is modelled as a function of risk
factors. In this respect, the skewness of the response variable, which in general depends on both the mean
and the dispersion parameters, is not modelled explicitly in terms of covariates but implicitly through
their dependence on the mean parameter. Consequently, in practical situations where the assumption of
constant dispersion is virtually never valid, modelling only the mean parameter in terms of covariates can
play a central role in the misclassi�cation of heavy-tailed risks. As a solution to the previously described
problems we allow for regressors on both the mean and the dispersion parameters of mixed Exponential
models. Moreover, with our general approach we can utilize all the available information for adequately
modelling the tail of the actual claim severity distribution since we are able to model risk heterogeneity
as the distribution of claim severity changes between various risk classes of policyholders by a function
of the level of all risk factors underlying the analyzed classes.
Finally, real non-life insurance data sets usually include a mix of moderate and large claim sizes.

However, as empirical evidence has shown, moderate observations are those which constitute the largest
proportion of the sample while large observations have very low frequencies. For instance, large claims
are usually not frequent to appear, while a bigger number of relatively small claims is common in motor
insurance, see Frees and Valdez (2008). In this respect, excessive losses can be either caused by a small
number of claims with large amounts or by a large number of moderate claim costs. Nevertheless, while
heavy-tailed models can be used to e¢ ciently capture the characteristics of larger loss data with lower
frequencies, moderate losses with higher frequencies are more e¤ectively approximated by classical models
such as, for instance, the Gamma, Inverse Gaussian and Lognormal models. For more details see, for
example, Klugman et al. (2012) who provided several classi�cation categories for the heaviness of claim
size models. On the other hand, light-tailed distributions cannot adequately model the risk posed by
heavy-tailed phenomena since they have an inherent tendency to underestimate the magnitude of large
claim amounts. Due to the reasons mentioned above, insurers tend to partition losses in their portfolios
because in view of the unique features of the body and the tail of the actual claim size distribution,
no standard parametric model seems to be able to provide an accurate �t for both moderate and large
size claims. Regarding the three mixed Exponential distributions presented herein, the EIG and ELN
distributions have just the appropriate level of generality for modelling non-life insurance data since they
have a more su¢ ciently �exible kind of geometry than the Pareto distribution. In particular, the EIG
and ELN distributions retain the heavy-tailed property, since the upper tail of the former is larger than
that of the Inverse Gaussian distribution and the latter shows a heavier tail relative to the Lognormal
density. Furthermore, the advantage that the EIG and ELN models enjoy over the Pareto is that they
both have a more promising shape for moderate claim costs. In order to formally compare the tails of
the Pareto, EIG and ELN models we follow the set up of Wang (1998) who proposed the use of the right
tail index for classifying claim severity distributions by their right tail behaviour.
The layout of the rest of the paper is as follows: Section 2 presents a detailed description of the

proposed family of mixed Exponential regression models with varying dispersion. Also, we consider the
Inverse Gamma, Inverse-Gaussian and Lognormal mixing distributions, and we derive the probability
density function (pdf) of the corresponding mixed Exponential regression models with varying dispersion.
Section 3 fully describes the ML estimation through the EM algorithm. Additionally, detailed EM
algorithms for the Pareto, EIG and ELN regression models with varying dispersion are provided. Section
4, contains an application to a data set concerning Motor Third Party Liability (MTPL) insurance claims
at fault. Furthermore, a Monte Carlo simulation study is conducted to investigate the performance of our
EM algorithm for estimating the parameters of the mixed Exponential model. In Section 5, we discuss
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some computational issues related to the implementation of the EM algorithm for the Pareto, EIG and
ELN regression models with varying dispersion. Finally, an extension of the proposed class of models is
discussed in Section 6 and concluding remarks can be found in Section 7.

2 The Mixed Exponential Regression Model with Varying Dis-
persion

The general class of mixed Exponential regression models with varying dispersion, which is considered in
this study, can be described as follows. Assume that Zi are independent and identically distributed (i.i.d.)
random variables and that the individual claim costs, YijZi, arising from a policyholder i; i = 1; :::; n;
are i.i.d. random variables according to an Exponential distribution with probability density function
(pdf) given by

f (yijzi) =
e
� yi
�izi

�izi
; (1)

where yi; �i; zi > 0 with E(Yijzi) = �izi and V ar(Yijzi) = (�izi)
2
:

Let us now assume that Zi are random variables from a continuous and at least twice di¤erentiable
mixing distribution with cumulative distribution function (cdf) G (zi;�i), where in order for the model to
be identi�able we assume that E(Zi) = 1 and where �i > 0 is the dispersion parameter. Considering the
previous assumptions, it is easy to see that the unconditional distribution of Yi is a mixed Exponential
distribution with pdf given by

f (yi) =

1Z
0

f (yijzi) g (zi;�i) dzi; (2)

where g (zi;�i) is the pdf of Z. To allow for the mean and dispersion parameters to be modelled as
functions of explanatory variables with parametric linear functional forms we assume that

�i = exp
�
xT1;i�1

�
and (3)

�i = exp
�
xT2;i�2

�
; (4)

where x1;i and x2;i are covariate vectors1 with dimensions p1 � 1 and p2 � 1 respectively, with �1 =�
�1;1; :::; �1;p1

�T
and �2 =

�
�2;1; :::; �2;p2

�T
the corresponding parameter vectors and where it is assumed

that the matrices X1 and X2; with rows given by x1;i and x2;i respectively, are of full rank.
Also, using the laws of total expectation and total variance and the moments of the Exponential

distribution one can easily �nd that the mean and the variance of Yi are given by

E (Yi) = EZi [E (YijZi = zi)] = �iEZi [Zi] = �i (5)

and

V ar (Yi) = EZi [V ar (YijZi = zi)] + V arZi [E (YijZi = zi)]
= �2i

�
EZi

�
Z2i
�
+ V arZi (Zi)

�
: (6)

In what follows, di¤erent mixed Exponential distributions with regression structures on their mean
and dispersion parameters are used to describe the behaviour of the costs of claims as a function of
the explanatory variables including the Pareto, Exponential-Inverse Gaussian (EIG) and Exponential-
Lognormal (ELN) distributions.

2.1 Pareto Regression Model with Varying Dispersion

As previously mentioned, the Pareto distribution is the most well known mixed Exponential distribution
that has been traditionally used for modelling large size claims. Thus, a natural choice for the mixing

1For instance, in MTPL insurance x1;i and x2;i contain the characteristics of the policyholders and their cars.
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distribution is to assume that the random e¤ect term zi is distributed according to an Inverse Gamma
mixing distribution with pdf

g (zi;�i) =

1
(�i�1)

exp
�
� (�i�1)

zi

�
�

zi
�i�1

��i+1
� (�i)

; (7)

where zi > 0 and �i > 2; with mean E(Zi) = 1 and variance V ar(Zi) =
1

�i�2
; for i = 1; ::::; n.

Then, based on Eqs (1 and 7) it is easy to see that the unconditional distribution is the Pareto
distribution with pdf

f (yi) =
�i [(�i � 1)�i]

�i

[yi + (�i � 1)�i]
�i+1

; (8)

where �i > 0 and �i > 2;with mean and variance given by

E (Yi) = �i and (9)

V ar (Yi) =
[(�i � 1)�i]

2

�i � 1

�
2

�i � 2
� 1

�i � 1

�
: (10)

2.2 Exponential-Inverse Gaussian Regression Model with Varying Disper-

sion

The Exponential-Inverse Gaussian (EIG) is based on the Inverse Gaussian mixing distribution with pdf
given by

g (zi;�i) =
�ip
2�
exp

�
�2i
�
z
� 3
2

i exp

�
�1
2

�
�2i
zi
+ �2i zi

��
; (11)

where zi > 0 and �i > 0; with mean E(Zi) = 1 and variance V ar(Zi) =
1
�2i
; for i = 1; :::; n. Note that,

the overdispersion relative to the simple Exponential distribution is 1
�2i
. Thus, if �i tends to in�nity, this

distribution can be reduced to the Exponential distribution. More details about the Inverse Gaussian
distribution can be found in Jørgensen (1982). Note also that there are several di¤erent parameterizations
of the Inverse Gaussian distribution (see, Seshadri, 2012).
Considering the assumptions of the model, i.e. Eqs (1 and 11), it can be veri�ed that the unconditional

distribution of yi is an EIG distribution with pdf

f (yi) =
�i exp

h
��i

�q
�2i +

2yi
�i
� �i

�i�
�i

q
�2i +

2yi
�i
+ 1
�

�i

�
�2i +

2yi
�i

� 3
2

; (12)

where �i > 0 and �i > 0;with mean and variance given by

E (Yi) = �i and (13)

V ar (Yi) = �2i

�
2

�2i
+ 1

�
: (14)

2.3 Exponential-Lognormal Regression Model with Varying Dispersion

Let us now consider another plausible mixing distribution for constructing a heavy-tailed mixed Expo-
nential model, namely the Lognormal distribution with pdf

g (zi;�i) =
1p
2��izi

exp

264�
�
log (zi) +

�2i
2

�2
2�2i

375 ; (15)

where zi > 0 and �i > 0; with mean E(Zi) = 1 and variance V ar(Zi) = exp
�
�2i
�
� 1; for i = 1; ::::; n.

Then, based on Eqs (1 and 15) it is easy to see that the resulting distribution of yi is the Exponential-
Lognormal (ELN) distribution with pdf
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f (yi) =

1Z
0

e
� yi
�izi

�izi

exp

24�
�
log(zi)+

�2i
2

�2
2�2i

35
p
2��izi

dzi; (16)

where �i > 0 and �i > 0. Unfortunately, the last integral cannot be simpli�ed but it can be computed
via numerical integration. Also, using Eqs (5 and 6) we have that

E (Yi) = �i and (17)

V ar(Yi) = �2i
�
2 exp

�
�2i
�
� 1
�
: (18)

3 The EM Algorithm for ML Estimation of Mixed Exponential
Models with Varying Dispersion

Let (yi;x1;i;x2;i), i = 1; :::; n; be a sample of independent observations, where yi is the response variable
and x1;i and x2;i are the vectors of covariate information with dimensions p1�1 and p2�1 respectively.
Also, consider that the data are produced according to the mixed Exponential model. Then, the log-
likelihood of the model can be written as

l (�) =
nX
i=1

log (f (yi)) ; (19)

where � =
�
�T1 ;�

T
2

�T
is the vector of the parameters and where f (yi) is the pdf of the mixed Exponential

model, which is given by Eq. (2).
Direct maximization of the above function with respect to the vector of parameters � is not easy due

to the complexity of the log-likelihood of the mixed Exponential model, which is not usually tractable.
Moreover, when regression structures are allowed for both the mean and dispersion parameters this raises
additional computational challenges.
Fortunately, ML estimation can be accomplished relatively easily via an EM type algorithm2 (see,

Dempster et al., 1977, and McLachlan and Krishnan, 2007). In particular, if one augments the unobserved
data zi to the observed data (yi;x1;i;x2;i), for i = 1; :::; n, then the complete data log-likelihood factorizes
into two parts

lc (�) =
nX
i=1

�
� yi
�izi

� log (�i)� log (zi)
�
+

nX
i=1

log (g (zi;�i)) ; (20)

where g (zi;�i) is the pdf of the mixing distribution and where �i and �i are given by Eqs (3 and 4)
respectively. The EM type algorithm for the mixed Exponential regression model with varying dispersion
can be described as follows:

� E-Step: The Q�function, which is the conditional expectation of the complete data log-likelihood
in Eq. (20), is given by

Q
�
�;�(r)

�
� Ezi

�
lc (�) jY;�(r)

�
/

nX
i=1

24�yiEzi
h
1
zi
jyi;�(r)

i
�
(r)
i

� log
�
�
(r)
i

�35+
nX
i=1

Ezi

h
log
�
g
�
zi;�

(r)
i

��i
; (21)

where �(r) is the estimate of � at the rth iteration in the E-step of our EM algorithm. Then, using

the estimates �(r) calculate the pseudo-values wi = EZi
h
1
Zi
jyi;�(r)

i
and !k;i = EZi

h
sk (Zi) jyi;�(r)

i
,

2The code for Section 3 is available online as supplementary material.
Please note that a toy data set is used in the code because we couldn�t make the data set which we used in the paper

publicly available due to data use agreement with the company which provided the data.
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for i = 1; ::; n and k = 1; ::::; �, where sk (:) are certain functions3 which are involved in the terms
needed for maximizing the part of the Q�function which corresponds to the conditional expectation
of the log-likelihood of the mixing distribution g (zi;�i).

� M-Step: Using the pseudo-values wi and !k;i from the E-Step and the Newton-Raphson algorithm
twice4 , �nd the maximum global point �(r+1) of the Q�function, i.e. obtain the updated estimates
�
(r+1)
1 and �(r+1)2 .

�Firstly, taking the necessary derivatives of the Q�function with respect to �1 we obtain the
following results:

h1 (�1) =
@Q
�
�;�(r)

�
@�1;j

=
nX
i=1

 
yi

�
(r)
i

wi � 1
!
x1;ij ; (22)

and

H1 (�1) =
@2Q

�
�;�(r)

�
@�1;j@�

T
1;j

=
nX
i=1

 
� yi

�
(r)
i

wi

!
x1;ijx

T
1;ij = X

T
1W1X1; (23)

for i = 1; :::; n and j = 1; :::; p1 and whereW1 = diagf� yi

�
(r)
i

wig:

Then, the iterative procedure for the Newton-Raphson algorithm for �1 goes as follows:

�
(r+1)
1 � �(r)1 �

h
H1

�
�
(r)
1

�i�1
h1

�
�
(r)
1

�
: (24)

� Secondly, di¤erentiating the Q�function with respect to �2 gives

h2 (�2) =
@Q
�
�;�(r)

�
@�2;j

=
@Ezi

h
log
�
g
�
zi;�

(r)
i

��i
@�2;j

(25)

and

H2 (�2) =
@2Q

�
�;�(r)

�
@�2;j@�

T
2;j

=
@Ezi

h
log
�
g
�
zi;�

(r)
i

��i
@�2;j@�

T
2;j

; (26)

where for calculating h1 (�2) and H2 (�2) one needs to use the pseudo-values !k;i for i =
1; ::; n and k = 1; ::::; �; since in this case the maximization of the Q�function reduces to the
maximization of the conditional expectation of the log-likelihood of the mixing distribution
g (zi;�i).
Then, the Newton-Raphson iterative algorithm for �2 is as follows:

�
(r+1)
2 � �(r)2 �

h
H2

�
�
(r)
2

�i�1
h2

�
�
(r)
2

�
; (27)

for i = 1; :::; n and j = 1; :::; p2:

� Finally, iterate between the E-step and the M-step until some convergence criterion is satis�ed,
for example the relative change in log-likelihood between two successive iterations is smaller than
10�12.

In what follows, we describe in detail the E-Step and the M-Step of our EM type algorithm for the
Pareto, EIG and ELN regression models with varying dispersion.

3Note that, as it will be demonstrated in what follows, if sk (zi) is a linear function then the conditional posterior
expectations can be easily and accurately obtained. Regarding more complicated functions, for which an exact solution
is not available, one can resort to Taylor approximations, or numerical approximations, including numerical integration,
and/or simulation based approximations.

4Note also that this procedure can be used for every continuous and at least twice di¤erentiable mixing distribution,
i.e. similar to those we considered in this study. This approach works well in practice and hence we provide a complete
estimation tool for our general class of mixed Exponential regression models with varying dispersion. However, for some
other mixing distributions a special iterative scheme may be appropriate and perhaps another EM algorithm inside the
M-Step.
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3.1 Pareto Regression Model with Varying Dispersion

In the case of the Inverse Gamma mixing distribution with pdf given by Eq. (7) we have that the posterior
distribution of zijyi;� is an Inverse Gamma with parameters �i+1 and �i�1+ yi

�i
, for i = 1; :::; n. Then,

the EM algorithm goes as follows:

� E-Step:
Calculate for all i = 1; :::; n,

wi = EZi

�
1

Zi
jyi;�(r)

�
=

�
(r)
i + 1

�
(r)
i � 1 + yi

�
(r)
i

(28)

and

!i = EZi

h
log (Zi) jyi;�(r)

i
= log

 
�
(r)
i � 1 + yi

�
(r)
i

!
�	

�
�
(r)
i + 1

�
; (29)

where 	(:) is the digamma function and where �(r)i = exp
�
xT1;i�

(r)
1

�
and �(r)i = exp

�
xT2;i�

(r)
2

�
are the estimates obtained after r � th iteration.

� M-Step:

�Update the regression parameters �1using the pseudo-values wi, which are given by Eq. (28),
and the Newton-Raphson algorithm in Eqs (22, 23 and 24).

�Update the regression parameters �2 using the pseudo-values wi and !i, which are given by
Eqs (28 and 29) respectively, and the Newton-Raphson algorithm which, in the case of the
Inverse Gamma mixing distribution, is as follows

h2 (�2) = �
(r)
i

"
�
(r)
i

�
(r)
i � 1

+ log
�
�
(r)
i � 1

�
� wi � !i �	

�
�
(r)
i

�#
x2;ij ; (30)

H2 (�2) =

nX
i=1

�
(r)
i

"
3�

(r)
i

�
(r)
i � 1

+ log
�
�
(r)
i � 1

�
� wi � !i

�	
�
�
(r)
i

�
�
 

�
(r)
i

�
(r)
i � 1

!2
� �(r)i 	3

�
�
(r)
i

�35x2;ijxT2;ij
= XT

2W2X2; (31)

for i = 1; :::; n and j = 1; :::; p2, where 	3 (:) is the trigamma function and where W2 =

diagf 2(�
2
i )

(r)

�
(r)
i �1

+ 1 + �
(r)
i log

�
�
(r)
i � 1

�
� �(r)i wi � �

(r)
i !i � �

(r)
i 	

�
�
(r)
i

�
�
�
�2i
�(r)

	3

�
�
(r)
i

�
g:

Then, we can obtain the updated estimates of �(r)2 using Eq. (27).

3.2 Exponential-Inverse Gaussian Regression Model with Varying Disper-
sion

In the case of the Inverse Gaussian mixing distribution with pdf given by Eq. (11) we have that the

posterior distribution of zijyi;� is a GIG
�
�3=2; �i;

q
�2i +

2yi
�i

�
for i = 1; :::; n. Then, the EM algorithm

is as follows:

� E-Step:
Calculate for all i = 1; :::; n,

wi = EZi

�
1

Zi
jyi;�(r)

�
=

3�
�2i
�(r)

+ 2yi

�
(r)
i

+

�
�2i
�(r)

�
(r)
i

r�
�2i
�(r)

+ 2yi

�
(r)
i

+ 1

(32)
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and

!i = Ezi

h
Zijyi;�(r)

i
=

�
�2i
�(r)

+ 2yi

�
(r)
i

�
(r)
i

r�
�2i
�(r)

+ 2yi

�
(r)
i

+ 1

; (33)

where �(r)i = exp
�
xT1;i�

(r)
1

�
and �(r)i = exp

�
xT2;i�

(r)
2

�
:

� M-Step:

�Update the regression parameters �1using the pseudo-values wi, which are given by Eq. (32),
and the Newton-Raphson algorithm in Eqs (22, 23 and 24).

�Update the regression parameters �2 using the pseudo-values wi and !i, which are given by
Eqs (32 and 33) respectively, and the Newton-Raphson algorithm which, in the case of the
Inverse Gaussian mixing distribution, goes as follows

h2 (�2) =
h
1 + 2

�
�2i
�(r) � ��2i �(r) wi � ��2i �(r) !iix2;ij ; (34)

and

H2 (�2) =
nX
i=1

h
4
�
�2i
�(r) � 2 ��2i �(r) wi � 2 ��2i �(r) !iix2;ijxT2;ij = XT

2W2X2; (35)

for i = 1; :::; n and j = 1; :::; p2 and whereW2 = diagf4
�
�
(r)
i

�2
�2
�
�
(r)
i

�2
wi�2

�
�
(r)
i

�2
!ig:

Then, we can obtain the updated estimates of �(r)2 using Eq. (27).

3.3 Exponential-Lognormal Regression Model with Varying Dispersion

The EM algorithm can also be employed to �nd the ML estimates of the ELN model which was de�ned
in Eq. (16). In this case, the complete data log-likelihood takes the form:

lc (�) =
nX
i=1

�
� yi
�izi

� log (�i)� log (zi)
�
+

nX
i=1

264�1
2
log (2�)� log (�i)� log (zi)�

�
log (zi) +

�2i
2

�2
2�2i

375 ; (36)

for i = 1; :::; n. Thus,the expectations needed for the M-step are are Ezi
h
1
zi

i
and Ezi

h
(log (zi))

2
i
:

Hence the algorithm can be written as follows:

� E-Step:
Calculate for all i = 1; :::; n,

wi = EZi

�
1

Zi
jyi;�(r)

�

=

1Z
0

1
zi
e

� yi

�
(r)
i

zi

�
(r)
i zi

exp

2666664�
0B@log(zi)+ (�2i )

(r)

2

1CA
2

2(�2i )
(r)

3777775
p
2��

(r)
i zi

dzi

1Z
0

e

� yi

�
(r)
i

zi

�
(r)
i zi

exp

26664�
0@log(zi)+ (�2i )(r)2

1A2
2(�2i )

(r)

37775
p
2��

(r)
i zi

dzi

(37)
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and

!i = EZi

h
(log (Zi))

2 jyi;�(r)
i

=

1Z
0

(log (zi))
2 e

� yi

�
(r)
i

zi

�
(r)
i zi

exp

2666664�
0B@log(zi)+ (�2i )

(r)

2

1CA
2

2(�2i )
(r)

3777775
p
2��

(r)
i zi

dzi

1Z
0

e

� yi

�
(r)
i

zi

�
(r)
i zi

exp

26664�
0@log(zi)+ (�2i )(r)2

1A2
2(�2i )

(r)

37775
p
2��

(r)
i zi

dzi

; (38)

where �(r)i = exp
�
xT1;i�

(r)
1

�
and �(r)i = exp

�
xT2;i�

(r)
2

�
.

Clearly the expectations involved in the E-step of the algorithm do not have closed form expressions
and thus numerical approximations are needed. Speci�cally, Eqs (37 and 38) can be evaluated
numerically. Alternatively, a Monte Carlo approach is also possible using a rejection algorithm.
The latter case leads to variants of the EM algorithm such as the Monte Carlo EM (MCEM)
algorithm (see, for instance, Booth and Hobert, 1999 and Booth et al., 2001 and Karlis, 2001 and
2005) which do not require knowledge of the pdf f (yijzi) but it su¢ ces to be able to simulate from
the posterior density g (zijyi;x1;i;x2;i) :

� M-Step:

�Update the regression parameters �1using the pseudo-values wi, which are given by Eq. (37),
and the Newton-Raphson algorithm in Eqs (22, 23 and 24).

�Update the regression parameters �2 using the pseudo-values wi and !i, which are given by
Eqs (37 and 38) respectively, and the Newton-Raphson algorithm which, in the case of the
Lognormal mixing distribution, is as follows

h2 (�2) =

24 !i�
�2i
�(r) �

�
�2i
�(r)
4

� 1

35x2;ij ; (39)

and

H2 (�2) =
nX
i=1

24 �2!i�
�2i
�(r) �

�
�2i
�(r)
2

35x2;ijxT2;ij = XT
2W2X2; (40)

for i = 1; :::; n and j = 1; :::; p2 and whereW2 = diagf
�2!

2;i

(�2i )
(r) �

(�2i )
(r)

2 g:

Then, we can obtain the updated estimates of �(r)2 using Eq. (27).

4 Numerical Illustration

The data were kindly provided by a major insurance company operating in Greece and concern a MTPL
insurance portfolio which was observed during the year 2017. Our interest lies in identifying factors that
a¤ect the amount paid for each claim and speci�cally the factors that correspond to the insured person
and their characteristics, including the characteristics of their car. Only policyholders with complete
records, i.e. with availability of all the explanatory variables under consideration were included in the
sample. Also, only policyholders with at least one reported accident were used for our analyses. There
were 6993 observations that met our criteria. Additionally, an exploratory analysis was carried out in
order to adequately select a subset of explanatory variables with the highest predictive power for claim
sizes. The response variable is the costs of claims at fault registered for each insured vehicle in the data
set and the a priori rating variables we employ are: the size of the city (CS) where the policyholders
live, the age of their car (AC) and the horsepower (HP) of their car. Furthermore, in light of the
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heterogeneity which exists within the portfolio, consideration was given to grouping the levels of each
explanatory variable with respect to risk pro�les with similar claim amounts. This was done in order to
achieve ratemaking accuracy and to balance homogeneity and su¢ ciency of the volume of data in each
cell in order to provide credible patterns.

� The variable CS consists of three categories of policyholders, those who live in a: C1 = "small
city", C2 = "middle sized city" and C3= "large city".

� The variable AC consists of three categories of cars, those of age: C1 = "between 0 to 8 years",
C2 = "between 8 to 16 years" and C3 = "greater than 16 years".

� The variable HP consists of three categories of cars, those with a HP: C1 ="0-1400 cc" , C2 =
"1400-1800 cc" and C3 = "greater than 1800 cc".

Table 1 contains some standard descriptive statistics for claim severities along with the number of
observations in each category of the three explanatory variables.

Table 1: Descriptive statistics of claim severities - size of the di¤erent categories of the explanatory
variables.

statistic
Claim

Severities
Size of the
city (CS)

Age of the
Car (AC)

Horsepower of
the car (HP)

Minimum 45 C1: 1755 C1: 1972 C1: 2586
Median 2289:4 C2: 1769 C2: 4090 C2: 2989
Mean 5578:8 C3: 3469 C3: 931 C3: 1418

Maximum 150024 � � �

In what follows, in our real data application, we will compare the Pareto, EIG and ELN regression
models with varying dispersion with the traditional two parameter claims severity distributions Gamma
(GA), Inverse Gaussian (IG) and Lognormal (LN) with regression components in their mean and dis-
persion parameters. Note that the GA, IG and LN regression models with regression structures on their
mean and dispersion parameters can be �tted using the GAMLSS package. For more details on the
GAMLSS package, see Stasinopoulos et al. (2008). Furthermore, we will perform a brief study based
on Monte Carlo simulations to asses the accuracy of the EM algorithm for the proposed class of mixed
Exponential models.
Because we will be comparing the proposed mixed Exponential models with the GA, IG and LN

models, we provide below expressions for the pdf, the mean and the variance of the latter three models.

� The pdf of the Gamma (GA) distribution is given by

f (yi) =
1�

�2i�i
� 1

�2
i

y
1

�2
i

�1

i exp
�
� yi
�2i�i

�
�
�
1
�2i

� ; (41)

where yi > 0; �i > 0 and �i > 0 for i = 1; :::; n; with mean and variance given by

E(Yi) = �i (42)

and
V ar(Yi) = �

2
i�

2
i : (43)

� The pdf of the Inverse Gaussian (IG) distribution is given by

f (yi) =
1q

2��2i y
3
i

e

�
� (yi��i)

2

2�2
i
�2
i
yi

�
; (44)

where yi > 0; �i > 0 and �i > 0 for i = 1; :::; n; with mean and variance given by

E(Yi) = �i (45)

and
V ar(Yi) = �

2
i�

3
i : (46)
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� The pdf of the Lognormal (LN) distribution is given by

f (yi) =
1

yi
p
2��i

e

�
� [log(yi)��i]

2

2�2
i

�
; (47)

where yi > 0; �i > 0 and �i > 0 for i = 1; :::; n; with mean and variance given by

E(Yi) =
p
e�

2
i e�i (48)

and
V ar(Yi) = e

�2i

�
e�

2
i � 1

�
e2�i : (49)

Finally, we assume that the mean and dispersion parameters of the GA, IG and LN distributions are
modelled in terms of covariates

�i = exp
�
xT1;i�1

�
and (50)

�i = exp
�
xT2;i�2

�
; (51)

where x1;i and x2;i are covariate vectors with dimensions p1 � 1 and p2 � 1 respectively, with �1 =�
�1;1; :::; �1;p1

�T
and �2 =

�
�2;1; :::; �2;p2

�T
the corresponding parameter vectors and where it is assumed

that the matrices X1 and X2; with rows given by x1;i and x2;i respectively, are of full rank.

4.1 Modelling Results

This subsection describes the modelling results of the Pareto, EIG, ELN, GA, IG and LN models with
regression speci�cations on their mean and dispersion parameters. For illustrative purposes we consid-
ered that the location and the dispersion parameters of the aforementioned claim severity models are
modelled using all three available explanatory variables. The ML estimates of the parameters and the
corresponding standard errors in parentheses for the aforementioned claim severity models are presented
in Table 2. However, it should be noted that for larger data sets variable selection can start with the
examination of the mean parameter of the claim severity model. This can be achieved by adding all
available covariates and testing whether the exclusion of each one lowers the Global Deviance (DEV),
Akaike information criterion (AIC) and the Schwartz Bayesian criterion (SBC) values. Then, after hav-
ing selected the best predictor for the mean parameter, one can continue in determining the remaining
predictors by testing which rating variable between those used in the mean parameter would lead to a
further decrease of the DEV, AIC and SBC values when inserted in the dispersion parameter of the claim
severity model. Additionally, if between the same claim severity distribution with di¤erent parameter
speci�cations several models have similar DEV, AIC and SBC values, the simpler model can be used in
order to avoid over�tting. Therefore, in such cases, it should be expected that the dispersion parameters
of the claim severity models will have fewer predictors than the mean parameters.

Table 2: Results of the �tted Pareto, EIG, ELN, GA, IG and LN models.
Pareto EIG ELN GA IG LN

Coe¤. �1 Coe¤. �1 Coe¤. �1 Coe¤. �1 Coe¤. �1 Coe¤. �1
Intercept 8:684 (0:093) Intercept 8:603(0:059) Intercept 8:574(0:048) Intercept 8:643 (0:041) Intercept 8:642 (0:075) Intercept 7:706 (0:044)

CS CS CS CS CS CS
C2 0:062 (0:088) C2 0:064(0:061) C2 0:064(0:056) C2 0:072 (0:043) C2 0:073 (0:077) C2 0:060 (0:047)
C3 0:013 (0:076) C3 0:010(0:051) C3 0:015(0:024) C3 0:005 (0:036) C3 0:005 (0:065) C3 �0:010 (0:040)
AC AC AC AC AC AC
C2 �0:082 (0:074) C2 �0:054(0:049) C2 �0:044(0:042) C2 �0:067 (0:033) C2 �0:067 (0:062) C2 �0:013 (0:037)
C3 �0:034 (0:115) C3 �0:038(0:071) C3 �0:031(0:043) C3 �0:057 (0:049) C3 �0:051 (0:089) C3 �0:030 (0:054)
HP HP HP HP HP HP
C2 0:064 (0:072) C2 0:047(0:047) C2 0:050(0:037) C2 0:036 (0:033) C2 0:036 (0:061) C2 0:033 (0:037)
C3 �0:052 (0:082) C3 �0:030(0:059) C3 �0:023(0:049) C3 �0:037 (0:042) C3 �0:037 (0:075) C3 0:008 (0:047)

Coe¤. �2 Coe¤. �2 Coe¤. �2 Coe¤. �2 Coe¤. �2 Coe¤. �2
Intercept 0:702 (0:098) Intercept �0:074(0:015) Intercept �0:138(0:014) Intercept 0:213 (0:019) Intercept�3:541 (0:023) Intercept 0:283 (0:023)

CS CS CS CS CS CS
C2 �0:006 (0:097) C2 �0:009(0:076) C2 0:008(0:059) C2 0:006 (0:021) C2 �0:019 (0:025) C2 0:004 (0:025)
C3 �0:004 (0:083) C3 �0:009(0:064) C3 0:015(0:047) C3 0:008 (0:017) C3 0:054 (0:021) C3 0:030 (0:021)
AC AC AC AC AC AC
C2 0:101 (0:078) C2 0:081(0:059) C2 �0:053(0:052) C2 �0:026 (0:016) C2 0:025 (0:019) C2 �0:002 (0:019)
C3 0:017 (0:118) C3 0:021(0:086) C3 �0:010(0:060) C3 �0:012 (0:023) C3 0:024 (0:028) C3 0:007 (0:028)
HP HP HP HP HP HP
C2 �0:031 (0:078) C2 �0:018(0:058) C2 0:016(0:032) C2 0:001 (0:016) C2 �0:006 (0:019) C2 0:013 (0:019)
C3 0:087 (0:099) C3 0:065(0:077) C3 �0:045(0:050) C3 �0:022 (0:021) C3 �0:041 (0:024) C3 �0:017 (0:024)

12



As we can see from Table 2, the same explanatory variables do not always have the same e¤ect
(positive and/or negative) on the parameters �i and �i, i = 1; :::; n, across all claim severity models.
Furthermore, with the exception of the LN model, we observe that, as expected, the values of the
estimated regression coe¢ cients of explanatory variables are almost identical for �i but di¤erent for
�i in the case of Pareto, EIG, ELN, GA and IG models which, unlike the case of the LN model,
are de�ned so that the mean, �i; is an explicit parameter of each model. Hence, the traditional risk
classi�cation approach, which assumes that only the parameter �i of these models can be modelled in
terms of covariates, would lead to mean claim severity values which will not di¤er much under di¤erent
distributional assumptions. On the contrary, allowing both �i and �i to be modelled as functions of a
priori rating variables breaks the nexus between the mean and variance implied by the standard procedure
using claim severity regression models, leading to a more complete comparison of all the claim severity
models through their variance values, see Eqs (10, 14, 18, 43 and 49).
Finally, we rely on normalized quantile residuals (see, Dunn and Smyth, 1996) as an exploratory

graphical device for investigating the adequacy of the �t of the competing mixed Exponential regres-
sion models with varying dispersion. Also, for comparison purposes, we �tted the simple Exponential
regression model, which obviously has a thinner tail than the three mixed Exponential models. For
these continuous response distributions, the normalized (randomized) quantile residuals are de�ned as
r̂i = ��1 (ui) ; where ��1 is the inverse cumulative distribution function of a standard Normal distri-
bution and ui = Fi(yij�(r+1)); where Fi is the cumulative distribution function estimated for the ith
individual, �(r+1) contains all estimated model parameters after the EM algorithm has reached the global
maximum and yi is the corresponding observation. The model �t can be evaluated by means of usual
quantile-quantile plots. Speci�cally, if the data indeed follow the assumed distribution, then the residual
on the quantile-quantile plot will fall approximately on a straight line. Figure 1 shows the normalized
(random) quantiles for the Exponential, Pareto, EIG and ELN claim severity regression models with
varying dispersion. From Figure 1 we observe that the residuals indicate that the Pareto, EIG and ELN
models are better assumptions than the Exponential model since the residuals of the former three are
close to the diagonal and indicate an adequately good �t to the distribution of the claim severity. Fur-
thermore, it can be seen that the Pareto model yields a slightly better performance than the EIG and
ELN models close to the tail of the claim size distribution. Overall, based on these plots, it is reasonable
to suggest the employment of the Pareto, EIG and ELN models over the Exponential model for modelling
claim severities in our data set.

Figure 1. Normalized quantiles for the Pareto, EIG and ELN models.

4.1.1 Models Comparison

In this subsection we compare the �t of the Pareto, EIG, ELN, GA, IG and LN regression models with
varying dispersion for the observed claim sizes in the MTPL insurance portfolio we analyzed earlier
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employing the DEV, AIC and SBC. The DEV is de�ned as

DEV = �2l̂
�
�̂
�
; (52)

where l̂ is the maximum of the log-likelihood and �̂ is the estimated parameter vector of the model.
Furthermore, the AIC is given by

AIC = DEV + 2� df (53)

and the SBC is given by

SBC = DEV + log (n)� df ; (54)

where df are the degrees of freedom, that is, the number of �tted parameters in the model and n is the
number of observations in the sample.
The resulting DEV, AIC and SBC are given in Table 3 for the di¤erent claim severity �tted models.

Table 3: Pareto, EIG, ELN, GA, IG and LN models comparison.
Model df DEV AIC SBC
Pareto 14 132295 132323 132419
EIG 14 132353 132381 132477
ELN 14 132389 132417 132512
GA 14 134057 134085 134181
IG 14 133490 133518 133614
LN 14 133029 133057 133153

As is well known, according to a commonly used rule of thumb, two models can be considered to be
signi�cantly di¤erent if the di¤erence in the log-likelihoods exceeds �ve, corresponding to a di¤erence in
their respective AIC values of more than ten and to a di¤erence in their SBC values of more than �ve,
see Burnham and Anderson (2002) and Raftery (1995) respectively. Thus, in this case we observe that
overall, with respect to the Global Deviance, AIC and SBC indices, the best �tting performances are
provided by the mixed Exponential models. In particular, the Pareto model has the lowest DEV, AIC
and SBC values followed by the EIG and ELN models respectively.

4.1.2 Estimation of the Right Tail Index

Let us now present a ranking of the Pareto, EIG and ELN models by the right tail index5 which is a risk
measure for right tail deviation that was suggested by Wang (1998). The right tail index is de�ned as

d (Y ) =

1Z
0

p
SY (t)dt

E (Y )
� 1; (55)

where SY (t) = P (Y � t) ; is the survival function, or the decumulative distribution function (ddf),
of Y:
Figure 2 displays three plots of the right tail index, d (Y ), as a function of the variance for the

Pareto, ELN and EIG models respectively. The parameters were chosen so that the Pareto, ELN and
EIG models have a unit mean, i.e. E (Y ) = 1, and varying variance, V ar (Y ), taking on the same values
for all densities. From Figure 2, we see that the right tail index ranks the Pareto distribution as having
a fatter tail than the ELN distribution, which in turn has a fatter tail than the EIG distribution.

5Note that the residuals and the right tail index for the ELN model which does not have a pdf in closed form can be
e¢ ciently computed using numerical integration methods.
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Figure 2. Plot of the right tail index as a function of the variance for the Pareto, ELN and EIG

models with unit mean.

Finally, we will investigate the tail adequacy of the Pareto, EIG and ELN models for our data set.
The empirical estimator of the right tail index, d̂ (Y ), which was considered by Jones & Zitikis (2003)
and can be calculated as

d̂ (Y ) =

nX
i=1

ci
Y(i)
�Y
; (56)

where Y(i) is the i� th ordered observation of the sample Y1; :::; Yn and where the coe¢ cients ci are
given by

ci =

s�
n� i
n

�
+

s�
n� i+ 1

n

�
� 1

n
; (57)

for i = 1; :::; n.
The value which we obtained for the empirical estimator of the right tail index is d̂ (Y ) = 2:245

while the Pareto, EIG and ELN distributions have right tail indices d1 (Y ) = 2:784; d2 (Y ) = 2:373 and
d3 (Y ) = 2:492 which are relatively close the empirical result. However, since for smaller data sets the
empirical approach can lead to an underestimation of d (Y ) it makes sense to build a parametric bootstrap
two-sided con�dence interval (CI) for d̂ (Y ) : Given our data, we generated B = 100000 bootstrap samples
of size 6993 and we calculated the 95% bootstrap-based CI for d̂ (Y ) to be (2:058; 2:838). Thus, since
the values of d1 (Y ) ; d2 (Y ) and d3 (Y ) are included in this CI we can conclude that the Pareto, EIG and
ELN distributions are able to e¤ectively model the right tail of the data.

4.2 Simulation Results

In this subsection a small Monte Carlo simulation study will be carried out to investigate the accuracy
of the proposed EM type algorithm for the class of mixed Exponential regression models with varying
dispersion.
In particular, the EM based ML estimators of the Pareto6 regression model with varying dispersion

will be compared against the ML estimators of the same model obtained via the GAMLSS �tting al-

6Note that the reason why the Pareto model was chosen is because, as was previously mentioned, with the exception
of this model, which is implemented into the GAMLSS package, ML estimation procedures for other mixed Exponential
models have not been explored in the applied statistical literature so far in the case when regression speci�cations are
allowed for both their mean and dispersion parameters.
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gorithm of Rigby and Stasinopoulos (2005), henceforth called the Pareto GAMLSS, by conducting the
following experiment.
We generate 5000 data sets of sizes n = 100; 150; 250; 500 for the Pareto model based on the estimates�

�1;0; �1;1; �1;2
�
= (8:684;�0:082; 0:064) and

�
�2;0; �2;1; �2;2

�
= (0:702; 0:101;�0:031) of the intercept,

AC category 2 and HP category 2 for the mean and dispersion parameters, �i and �i respectively, given
in Table 2 and the corresponding vectors of covariates x1;i and x2;i; for i = 1; ::; n. Then, we compute the
mean of the Pareto �rstly based on the EM algorithm and secondly by using the GAMLSS algorithm.
The results are shown in Table 4, where it is evident that the EM and GAMLSS approaches provide

equally good estimates of the regression coe¢ cients for �i. Furthermore, we observe that, especially for
small and moderate sample sizes, the EM algorithm provides better estimates of the regression coe¢ cients
for �i than the GAMLSS algorithm in terms of bias.

Table 4: Results of the simulation study involving 5000 simulations of data sets of size n.
Sample
Size

Pareto
EM Alg.

Pareto
GAMLSS

n = 100
�1;0 8:688 8:687
�1;1 �0:092 �0:094
�1;2 0:020 0:019
�2;0 1:663 1:818
�2;1 0:333 0:368
�2;2 �1:184 �1:366

n = 150
�1;0 8:661 8:661
�1;1 �0:069 �0:067
�1;2 0:069 0:070
�2;0 1:057 1:065
�2;1 0:253 0:264
�2;2 �0:441 �0:462

n = 250
�1;0 8:673 8:672
�1;1 �0:076 �0:073
�1;2 0:066 0:068
�2;0 0:793 0:807
�2;1 0:186 0:197
�2;2 �0:154 �0:166

n = 500
�1;0 8:676 8:675
�1;1 �0:077 �0:075
�1;2 0:065 0:067
�2;0 0:745 0:758
�2;1 0:121 0:138
�2;2 �0:077 �0:086

5 Computational Aspects

In this Section, we point out some computational issues related to the implementation of the EM algo-
rithm for the Pareto, EIG and ELN regression models with varying dispersion.
We should emphasize that for all three mixed Exponential models the choice of initial values for the

vectors of the regression coe¢ cients �1 and �2 needed special attention because the M-step involves
two Newton-Raphson iterations and hence one may obtain inadmissible values if the starting values
are bad. Good starting values for the regression parameters �1 were obtained by �tting the simple
Exponential regression. Alternatively, the initial values for �1 can be obtained based on the data as
follows: (i) calculate E(yi) for the 27 di¤erent risk classes, which can be formed by dividing the portfolio
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into clusters de�ned by the combinations of the characteristics of the policyholders and their cars based
on all observations i = 1; :::; n and (ii) assuming a log-link function for �i, see Eq. (3), solve Eq.(5) with
respect to �1;since the parameterization we adopted considers that the mean is an explicit parameter of
the Pareto, EIG and ELN models respectively. Furthermore, meaningful initial values for the regression
parameters �2 were obtained by: (i) calculating V ar(yi) for the 27 di¤erent risk classes based on all
observations i = 1; :::; n and (ii) calculating E (yi) for the 27 di¤erent risk classes (or alternatively
calculating �i based on the initial values for �1 and the log-link function given by Eq. (3)) and using
the log-link function for �i, see Eq.(4), so we solve the Eqs (10, 14 and 18) with respect to �2 for the
case of the Pareto, EIG and ELN models respectively.
Furthermore, the standard errors were obtained using the standard approach of Louis (1982) for

the standard errors for the EM algorithm. Finally, all computing was made using the programming
language R. The ELN model needed more time than the other two mixed Exponential models because
the numerical evaluation of the integrals is computationally time consuming when regression structures
are used for all the parameters of the model.

6 An Extended Version of the Mixed Exponential Model

Finally, since two of the three examples of the mixing distributions considered in this paper, namely
the Gamma and Inverse Gaussian distributions, are limiting and special cases respectively of the more
general family of Generalized Inverse Gaussian (GIG) distributions, see Jørgensen (1982), it is interesting
to explore how ML estimation of the Exponential-Generalized Inverse Gaussian (EGIG) model can be
achieved when regression speci�cations are allowed to all of its parameters.
The EGIG distribution, whose pdf is given by Eq.(58) below,see also, for instance, Frangos and Karlis

(2005), can be considered as a candidate model for large claim sizes.

f (yi) =
K�i�1

�
�i
p
�2i + 2yi

�
�i
�
�2i + 2yi

� �i�1
2

K�i (�i�i)�
�i
i

; (58)

where yi > 0; �i > 0; �i > 0 and �1 < �i <1: and where

K� (!) =

1Z
0

���1 exp

�
�1
2
!

�
�+

1

�

��
d�; (59)

is the modi�ed Bessel function of the third kind of order � with argument !.
Under our general approach, the following regression structures can be chosen to ensure a valid range

for the parameters of the EGIG distribution

�i = exp
�
xT1;i�1

�
; (60)

�i = exp
�
xT2;i�2

�
and (61)

�i = xT3;i�3 (62)

where x1;i, x2;i and x3;i are covariate vectors with dimensions p1�1, p2�1 and p3�1 respectively, with
�1 =

�
�1;1; :::; �1;p1

�T
, �2 =

�
�2;1; :::; �2;p2

�T
and �3 =

�
�3;1; :::; �3;p3

�T
the corresponding parameter

vectors and where it is considered that the matrices X1, X2 and X3 with rows given by x1;i, x2;i and
x3;i respectively, are of full rank, for i = 1; :::; n.
At this point, it should be noted that ML estimation of the EGIG model is complicated to calculate

when �i; �i and �i vary through covariates. One of the main reasons is because the vector of regression
coe¢ cients �3 is involved in the calculation of the order �i of the modi�ed Bessel function of the third
kind and, as is well known, it is not always possible to obtain numerically reliable direct derivatives of
this special function with respect to its order, see, for instance, Mencía and Sentana (2005).
Nevertheless, an extended version of the EM algorithm together with an accurate numerical approx-

imation of the derivatives of the modi�ed Bessel function of the third kind can reduce the computational
burden for ML estimation in the EGIG model. The two steps of the EM procedure for estimating the
parameters of the EGIG model can be brie�y described as follows. At the E-step one needs to calculate
the Q�function, which is the conditional expectation of the complete data log-likelihood of the EGIG
model, and then the M-Step involves using the Newton-Raphson procedure three times maximizing the
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Q�function with respect to �1, �2 and �3. Speci�cally, the Q�function should be updated by using
the current estimates of �1, �2 and �3 and then maximized again until some convergence criterion is
satis�ed.

7 Concluding Remarks

The main purpose of this paper was to introduce a general class of mixed Exponential regression models
with varying dispersion which can e¢ ciently capture the in�uence of tail risks. An EM scheme for
estimating the parameters of the mixed Exponential models was also presented. In order to emphasize
the utility and generality of our ML estimation framework a real data application provided a fresh look
into the process of modelling and estimation of three mixed Exponential regression models with varying
dispersion, namely the Pareto, EIG and ELN distributions with regression structures for both their mean
and dispersion parameters.
Finally, it is worth mentioning that the mixed Exponential models we considered in this study were

parametric and it would be interesting to explore a semiparametric approach when functional forms other
than the linear are included in the mean and the dispersion parameters of the models, proceeding along
similar lines as the generalized additive models for the location, scale and shape (GAMLSS) approach of
Rigby and Stasinopoulos (2005 and 2017). Also see, for instance, Heller et al. (2007) and De Jong and
Heller (2008) who used GAMLSS for the statistical analysis of the total amount of insurance paid out
on a policy. Finally, the data augmentation which was used in the paper to derive the EM algorithm can
be the basis for constructing Bayesian estimation methods as in the article by Klein et al. (2014) where
Bayesian generalized additive models for location, scale and shape were employed for nonlife ratemaking
and risk management.
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