
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. DISCRETE MATH. © 2020 Society for Industrial and Applied Mathematics
Vol. 34, No. 2, pp. 1460–1471

PARTITIONING EDGE-COLORED HYPERGRAPHS INTO FEW
MONOCHROMATIC TIGHT CYCLES∗
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POKROVSKIY¶, AND JOZEF SKOKAN‖

Abstract. Confirming a conjecture of Gyárfás, we prove that, for all natural numbers k and
r, the vertices of every r-edge-colored complete k-uniform hypergraph can be partitioned into a
bounded number (independent of the size of the hypergraph) of monochromatic tight cycles. We
further prove that, for all natural numbers p and r, the vertices of every r-edge-colored complete
graph can be partitioned into a bounded number of pth powers of cycles, settling a problem of Elekes,
Soukup, Soukup, and Szentmiklóssy [Discrete Math., 340 (2017), pp. 2053–2069]. In fact we prove a
common generalization of both theorems which further extends these results to all host hypergraphs
of bounded independence number.
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1. Introduction and main results. A conjecture of Lehel states that the ver-
tices of any 2-edge-colored complete graph on n vertices can be partitioned into two
monochromatic cycles of different colors. Here single vertices and edges are consid-
ered cycles. This conjecture first appeared in [2], where it was also proved for some
special types of colorings of Kn.  Luczak, Rödl, and Szemerédi [14] proved Lehel’s
conjecture for all sufficiently large n using the regularity method. In [1], Allen gave
an alternative proof, which gave a better bound on n. Finally, Bessy and Thomassé
[3] proved Lehel’s conjecture for all integers n ≥ 1.

For colorings with more than two colors (all colorings in this paper are edge-
colorings), Erdős, Gyárfás, and Pyber [7] proved that the vertices of every r-colored
complete graph can be partitioned into O(r2 log r) monochromatic cycles and
conjectured that r cycles should always suffice. Their conjecture was refuted by
Pokrovskiy [15], who showed that, for every r ≥ 3, there exist infinitely many r-
colored complete graphs which cannot be vertex-partitioned into r monochromatic
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CYCLE PARTITIONING IN HYPERGRAPHS 1461

cycles. Pokrovskiy also proposed the following alternative version of Erdős, Gyárfás,
and Pyber conjecture, which is still widely open.

Conjecture 1.1 (Pokrovskiy [15]). In every r-edge-colored complete graph, there
are r vertex-disjoint monochromatic cycles covering all but cr vertices, where cr is a
constant depending only on r.

The best-known result for general r is due to Gyárfás et al. [10], who showed
that the vertices of every large enough r-colored complete graph can be partitioned
into at most 100r log r monochromatic cycles.

Similar partitioning problems have been considered for other graphs, for example,
powers of cycles. Given a graph H and a natural number p, the pth power of H is the
graph obtained from H by putting an edge between any two vertices whose distance
is at most p in H. Grinshpun and Sárközy [8] proved that the vertices of every two-
colored complete graph can be partitioned into at most 2cp log p monochromatic pth
powers of cycles, where c is an absolute constant. They conjectured that a much
smaller number of pieces should suffice, which was confirmed by Sárközy [20]. For
more than two colors not much is known. Elekes et al. [6] proved an analogue of
the result of Grinshpun and Sárközy for infinite graphs and multiple colors and asked
whether it is true for finite graphs.

Problem 1.2 (Elekes et al. [6, Problem 6.4]1). Prove that for every r, p ∈ N,
there is some c = c(r, p) such that the vertices of every r-edge-colored complete graph
can be partitioned into at most c monochromatic pth powers of cycles.

We shall prove a substantial generalization of this problem; see Corollary 1.5.
Another possible generalization is to study questions about monochromatic par-

titions for hypergraphs. A k-uniform hypergraph (k-graph) consists of a vertex-set
V and a set of k-element subsets of V . The loose k-uniform cycle of length m is
the k-graph consisting of m(k− 1) cyclically ordered vertices and m edges, each edge
formed of k consecutive vertices, so that consecutive edges intersect in exactly one
vertex. The tight k-uniform cycle of length m is the k-graph with m cyclically ordered
vertices in which any k consecutive vertices form an edge. Loose and tight paths are
defined in a similar way. For technical reasons we consider single vertices as both
tight and loose cycles and paths.

Questions about monochromatic partitions for hypergraphs were first studied by
Gyárfás and Sárközy [11], who showed that for every k, r ∈ N, there is some c = c(k, r)
so that the vertices of every r-edge-colored complete k-graph can be partitioned into
at most c loose cycles. Later, Sárközy [19] showed that c(k, r) can be be chosen to
be 50rk log(rk). Gyárfás conjectured that a similar result can be obtained for tight
cycles.

Conjecture 1.3 (Gyárfás [9]). For every k, r ∈ N, there is some c = c(k, r) so
that the vertices of every r-edge-colored complete k-graph can be partitioned into at
most c monochromatic tight cycles.

We shall prove this conjecture and a generalization in which we allow the host-
hypergraph to be any k-graph with bounded independence number (i.e., without a
large set of vertices containing no edges).

Theorem 1.4. For every k, r, α ∈ N, there is some c = c(k, r, α) such that the
vertices of every r-edge-colored k-graph G with independence number α(G) ≤ α can
be partitioned into at most c monochromatic tight cycles.

1The problem is phrased differently in [6] but this version is stronger, as Elekes et al. explain
below the problem.
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1462 BUSTAMANTE ET AL.

We note that a similar result for graphs was obtained by Sárközy [18] and for
loose cycles in hypergraphs by Gyárfás and Sárközy [12].

As a corollary we obtain the following extension of Theorem 1.4 to pth powers of
tight cycles. Here the pth power of a k-uniform tight cycle is the k-graph obtained by
replacing every edge of the (k + p − 1)-uniform tight cycle by the complete k-graph
on k + p− 1 vertices.

Corollary 1.5. For every k, r, p, α ∈ N, there is some c = c(k, r, p, α) such that
the vertices of every r-edge-colored k-graph G with α(G) ≤ α can be partitioned into
at most c monochromatic pth powers of tight cycles.

Since Corollary 1.5 follows from Theorem 1.4 easily, we present its short proof
here.

Proof of Corollary 1.5. For positive integers k, r, s1, . . . , sr, let R
(k)
r (s1, . . . , sr)

denote the r-color Ramsey number for k-graphs, that is, the smallest positive integer
n, so that in every r-coloring of the complete k-graph on n vertices, there is some
i ∈ [r] and si distinct vertices which induce a monochromatic clique in color i.

Let f(k, r, α) be the smallest c for which Theorem 1.4 is true and let g(k, r, p, α)
be the smallest c for which Corollary 1.5 is true. We will show that g(k, r, p, α) ≤
f(k + p− 1, r, α̃), where α̃ = R

(k)
r+1 (k + p− 1, . . . , k + p− 1, α+ 1)− 1. Suppose now

we are given an r-edge-colored k-graph G with α(G) ≤ α. Define a (k+ p− 1)-graph
H on the same vertex-set whose edges are the monochromatic cliques of size k+p−1
in G. By construction we have α(H) ≤ α̃ and thus, by Theorem 1.4, there are at
most f(k + p − 1, r, α̃) monochromatic tight cycles partitioning V (H). To conclude,
note that a tight cycle in H corresponds to a pth power of a tight cycle in G.

In the next section, we shall prove Theorem 1.4.

2. The proof of Theorem 1.4. The proof of Theorem 1.4 combines the
absorption method introduced in [7] and the regularity method. For the complete
host k-graph G, the proof of Theorem 1.4 can be summarized as follows.

First, we find a monochromatic k-graph H0 ⊂ G with the following special prop-
erty: There is some B ⊂ V (H0), so that for every B′ ⊂ B there is a tight cycle in H0

with vertices V (H0) \ B′. This is explained in section 2.3. We then greedily remove
vertex-disjoint monochromatic tight cycles from V (G)\V (H0) until the set of leftover
vertices R is very small in comparison to B. Finally, in section 2.4, we show that
the leftover vertices can be absorbed by H0. More precisely, we show that there are
constantly many vertex-disjoint tight cycles with vertices in R ∪B which cover all of
R. This is the crucial part of the paper and also the place where we use tools from
the hypergraph regularity method (introduced in section 2.2).

In order to prove the main theorem for host k-graphs with bounded independence
number, we need to iterate the above process a few times. Here the main difficulty
is to show that the iteration process stops after constantly many steps. This will be
shown in section 2.5. We start with some basic notation about hypergraphs.

2.1. Notation. For a set of vertices V and a natural number k ≥ 2, let ( Vk )
denote the set of all k-element subsets of V . Given a subset E ⊂ ( Vk ), H = (V,E)
is called a k-uniform hypergraph (k-graph). We sometimes use the notation H =
(V (H), E(H)). The density of a k-graph H with n vertices is given by d(H) =
|E(H)|/( nk ).
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Let H be a k-graph. Given some e ⊂ V (H) with 1 ≤ |e| ≤ k, we define its degree
of e by deg(e) := |f ∈ E(H) : e ⊂ f |. If |e| = 1 for some v ∈ V (H) we simply write
deg(v) for deg({v}) and if |e| = k − 1, we call deg(e) co-degree. Given a partition
P = {V1, . . . , Vt} of V , we say that H is P-partite if |e ∩ Vi| ≤ 1 for every e ∈ E(H)
and every i ∈ [t]. The k-graph H is s-partite if it is P-partite for some partition P of
V with s parts. We denote by K(k)(P) the complete P-partite k-graph. Furthermore,
given some 2 ≤ j ≤ k − 1 and a j-graph H, we define K(k)(H) to be the set of all
k-cliques in H(j), seen as a k-graph on V .

Given a k-graph H and ` ≤ k distinct vertices v1, . . . , v` ∈ V (H), we define the
link graph LkH(v1, . . . , v`) as the (k − `)-graph on V (H) \ {v1, . . . , v`} with edges

{e ∈ ( V (H)
k−` ) : e ∪ {v1, . . . , vl} ∈ E(H)}. If, in addition, disjoint sets V1, . . . , Vk−` ⊂

V (H) \ {v1, . . . , v`} are given, we denote by LkH(v1, . . . , v`;V1, . . . , Vk−`) the (k− `)-
partite (k − `)-graph with parts V1, . . . , Vk−` and edges {e ∈ K(k−`)(V1, . . . , Vk−`) :
e∪{v1, . . . , v`} ∈ E(H)}. If there is no danger of confusion, we drop the subscript H.

2.2. Finding short paths. The goal of this section is to prove the following
lemma, which allows us to find in any dense k-graph G a dense subgraph H ⊂ G
in which any two nonisolated (k − 1)-sets are connected by a short path of a given
prescribed length. For this, we need to use basic tools from hypergraph regularity,
but the reader may use Lemma 2.1 as a black box if she would like to avoid it.

Before stating the lemma, we need to introduce some notation. Fix some k ≥ 2
and a partition P = {V1, . . . , Vk}. We call a tight path in K(k)(P) positively oriented
if its vertex sequence (u1, . . . , um) travels through P in cyclic order, i.e., there is some
j ∈ [k] such that ui ∈ Vi+j for every i ∈ [m], where we identify k + 1 ≡ 1. In
this subsection, we will only consider positively oriented tight cycles. In particular,
given some e ∈ K(k−1)(P), the ordering of e in a tight path starting at e is uniquely
determined.

Lemma 2.1. For every d > 0, there are constants δ = δ(d) > 0 and γ = γ(d) > 0,
such that the following is true for every partition P = {V1, . . . , Vk} and every P-partite
k-graph G of density at least d. There is a P-partite sub-k-graph H ⊂ G of density at
least δ such that for every set S = S1 ∪ · · · ∪Sk with Si ⊂ Vi and |Si| ≤ γ|Vi| and any
two e, f ∈ K(k−1)(P) which are disjoint from S and have positive co-degree, there is
a positively oriented tight path of length ` ∈ {k + 2, . . . , 2k + 1} in H which starts at
e, ends at f , and avoids S.

Note that the length of the cycle in Lemma 2.1 is uniquely determined by the
types of e and f . The type of e ∈ K(k−1)(P), denoted by tp (e), is the unique index
i ∈ [k] such that e ∩ Vi = ∅. Given two (k − 1)-sets e, f ∈ K(k−1)(P), the type of
(e, f) is given by tp (e, f) := tp (f)− tp (e) (mod k). It is easy to see that every tight
path in K(k)(P) which starts at e and ends at f has length `k + tp (e, f) for some
` ≥ 0. In particular, in Lemma 2.1, we have ` = k + tp (e, f) if tp (e, f) ≥ 2 and
` = 2k + tp (e, f) otherwise.

2.2.1. Hypergraph regularity. We will now introduce the basic concepts of
hypergraph regularity in order to state a simple consequence of the strong hypergraph
regularity lemma which guarantees a dense regular complex in every large enough k-
graph.

For technical reasons, we want to see a 1-graph on some vertex-set V as a partition
of V in what follows. We call H(k) = (H(1), . . . ,H(k)) a k-complex if H(j) is a j-graph
for every j ∈ [k] and H(j) underlies H(j+1), i.e., H(j+1) ⊂ K(j+1)(H(j)) for every
j ∈ [k − 1]. Note that, in particular, H(j) is H(1)-partite for every j ∈ [k]. We call
H(k) s-partite if H(1) consists of s parts.
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Now, given some j-graph H(j) and some underlying (j − 1)-graph H(j−1), we
define the density of H(j) w.r.t. H(j−1) by

d
(
H(j)|H(j−1)

)
=

∣∣H(j) ∩K(j)(H(j−1))
∣∣∣∣K(j)(H(j−1))

∣∣ .

We are now ready to define regularity.

Definition 2.2.
• Let r, j ∈ N with j ≥ 2, ε, dj > 0, and H(j) be a j-partite j-graph and H(j−1)

be an underlying (j-partite) (j−1)-graph. We call H(j) (ε, dj , r)-regular w.r.t.

H(j−1) if for all Q
(j−1)
1 , . . . , Q

(j−1)
r ⊂ E(H(j−1)), we have∣∣∣∣⋃i∈[r]

K(j)
(
Q

(j−1)
i

)∣∣∣∣ ≥ ε ∣∣∣K(j)
(
H(j−1)

)∣∣∣
=⇒

∣∣∣∣d(H(j)

∣∣∣∣⋃i∈[r]
Q

(j−1)
i

)
− dj

∣∣∣∣ ≤ ε.
We say (ε, ∗, r)-regular for (ε,d

(
H(j)|H(j−1)) , r)-regular and (e, d)-regular

for (ε, d, 1)-regular.
• Let j, s ∈ N with s ≥ j ≥ 2, ε, dj > 0, and H(j) be an s-partite j-graph and
H(j−1) be an underlying (s-partite) (j−1)-graph. We call H(j) (ε, dj)-regular
w.r.t. H(j−1) if H(j)[V1, . . . , Vj ] is (ε, dj)-regular w.r.t. H(j−1)[Vi1 , . . . , Vij ]
for all 1 ≤ i1 < · · · < ij ≤ s, where {V1, . . . , Vs} is the vertex partition of
V (H(j)).
• Let k, r ∈ N, ε, εk, d2, . . . , dk > 0, and H(k) = (H1, . . . ,Hk) be a k-partite
k-complex. We call H(k) (d2, . . . , dk, ε, εk, r)-regular if H(j) is (ε, dj)-regular
with respect to H(j−1) for every j = 2, . . . , k−1 and H(k) is (εk, dk, r)-regular
w.r.t. H(k−1).

The following theorem is a direct consequence of the strong hypergraph regularity
lemma as stated in [17] (with the exception that we allow for an initial partition of
not necessarily equal sizes).

Theorem 2.3. For all integers k ≥ 2, constants εk > 0, and functions ε : (0, 1)→
(0, 1) and r : (0, 1)→ N, there exists some δ = δ(k, ε, εk, r) > 0 such that the following
is true. For every partition P = {V1, . . . , Vk} of some set V and every P-partite k-
graph G(k), there are sets Ui ⊂ Vi with |Ui| ≥ δ|Vi| for every i ∈ [k] and constants
d2, . . . , dk ≥ δ for which there exists some (d2, . . . , dk, ε(d), εk, r(d))-regular k-complex
H(k), so that H(k) = G(k)[U1, . . . , Uk] and H(1) = {U1, . . . , Uk}.

We will use the following special case of the extension lemma in [5, Lemma 5]
to find short tight paths between almost any two (k − 1)-sets in a regular com-
plex. Fix a (d2, . . . , dk, ε, εk)-regular complex H(k) = (P, H(2), . . . ,H(k)), where

P = {V1, . . . , Vk}. Let H
(k−1)
i ⊂ H(k−1) denote the edges of type i and note that the

dense counting lemma for complexes [5, Lemma 6] implies that∣∣∣H(k−1)
i0

∣∣∣ = (1± ε)
k−1∏
j=2

d
(k−1

j )
j

∏
i∈[k]\i0

|Vi| .

Given some β > 0, we call a pair (e, f) ∈ H(k−1)
i1

×H(k−1)
i2

β-typical for H(k) if

the number of tight paths of length ` := k + tp (i1, i2) in H(k) which start at e and
end at f is
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(1± β)

k∏
j=2

d
`(k

j)−2(
k−1
j )

j

∏
i∈{i1,...,i2}

|Vi| ,

where {i1, . . . , i2} is understood in cyclic ordering.

Lemma 2.4. Let k, r, n0 ∈ N, β, d2, . . . , dk, ε, εk > 0 and suppose that

1/n0 � 1/r, ε� min{εk, d2, . . . , dk−1} ≤ εk � β, dk, 1/k.

Then the following is true for all integers n ≥ n0, for all indices i1, i2 ∈ [k] and
every (d2, . . . , dk, ε, εk, r)-regular complex H(k) = (H(1), . . . ,H(k)) with |Vi| ≥ n0 for

all i ∈ [k], where H(1) = {V1, . . . , Vk}. All but at most β|H(k−1)
i1

||H(k−1)
i2

| pairs
(e, f) ∈ H(k−1)

i1
×H(k−1)

i2
are β-typical for H(k).

Combining Theorem 2.3 and Lemma 2.4 gives Lemma 2.1.

Proof sketch of Lemma 2.1. Apply Theorem 2.3 with suitable constants and delete

all e ∈ H(k−1) of small co-degree. Let e ∈ H(k−1)
i1

and f ∈ H(k−1)
i2

for some i1, i2 ∈ [k]
and define

X =
{
g(k−1) ∈ H(k−1)

i1+1 : e ∪ g(k−1) ∈ H(k)
}

and

Y =
{
g(k−1) ∈ H(k−1)

i2−1 : f ∪ g(k−1) ∈ H(k)
}
.

Let X̃ ⊂ X and Ỹ ⊂ Y be the sets of all those edges in X and Y avoiding S. By
Lemma 2.4 at least one pair in X̃ × Ỹ must be typical and by a counting argument
not all of the promised paths can touch S.

2.3. Absorption method. The idea of the absorption method is to first cover
almost every vertex by vertex-disjoint monochromatic tight cycles and then absorb
the leftover using a suitable absorption lemma.

Lemma 2.5. For all k, r, α ∈ N and every γ > 0, there is some c = c(k, r, α, γ) so
that the following is true for every r-colored k-graph G on n vertices with α(G) ≤ α.
There is a collection of at most c vertex-disjoint monochromatic tight cycles whose
vertices cover all but at most γn vertices.

Definition 2.6. Let G be a hypergraph, χ be a coloring of E(G), and A,B ⊂
V (G) be disjoint subsets. A is called an absorber for B if there is a monochromatic
tight cycle with vertices A ∪B′ for every B′ ⊂ B.

Lemma 2.7. For every k, r, α ∈ N, there is some β = β(k, r, α) > 0 such that the
following is true for every k-graph G with α(G) ≤ α. In every r-coloring of E(G)
there are disjoint sets A,B ⊂ V (G) with |B| ≥ β|V (G)| such that A absorbs B.

The following hypergraph will function as our absorber. A very similar hyper-
graph was used by Gyárfás and Sárközy to absorb loose cycles [11, 12]. See Figure 1
for an example.

Definition 2.8. The (k-uniform) crown of order t, T
(k)
t , is a tight cycle with

n = t(k − 1) vertices v0, . . . , vn−1 (the base) and additional vertices u0, . . . , ut−1 (the
rim). Furthermore, for each i = 0, . . . , t − 1, we add the k edges {ui, v(k−1)i+j , . . . ,
v(k−1)i+j+k−2}, j = 0, . . . , k − 1.

It is easy to see that the base of a crown is an absorber for the rim. To prove
Lemma 2.7, we therefore only need to show that we can always find monochromatic
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Fig. 1. A 3-uniform crown of order 4. The edges of the tight cycle are red and the remaining
edges are blue. (Available in color online.)

crowns of linear size. Both this and Lemma 2.5 are consequences of the following
theorem of Cooley et al. [5] (see also [13] and [4]).

Theorem 2.9. For every r, k,∆ ∈ N, there is some C = C(r, k,∆) > 0 so that the
following is true for all k-graphs H1, . . . ,Hr with at most n vertices and maximum

degree at most ∆, and every N ≥ Cn. In every edge-coloring of K
(k)
N with colors

c1, . . . , cr, there is some i ∈ [r] for which there is a ci-monochromatic copy of Hi.

Proof of Lemma 2.7. Suppose k, r, α, and G are given as in the theorem and
that E(G) is colored with r colors. Let N = |V (G)|, ∆ := max{2k, ( α

k−1 )}, and
c = 1/((k−1)C), where C = C(r+1, k,∆) is given by Theorem 2.9. Furthermore, let

n = |V (TcN )| = N/C. Consider now the (r + 1)-coloring of E(K
(k)
N ) in which every

edge in E(G) receives the same color as in G and every other edge receives color r+1.

Let Hr+1 = K
(k)
α+1 and Hi = T

(k)
cN for all i ∈ [t], and note that ∆(Hi) ≤ ∆ for all

i ∈ [r+ 1]. By choice of ∆, there is no monochromatic Hr+1 in color r+ 1 and hence,
since N ≥ Cn, there is a monochromatic copy of Hi for some i ∈ [r]. Therefore, there
is a monochromatic crown of size c|V (G)| and its base is an absorber for its rim.

Proof of Lemma 2.5. Applying Theorem 2.9 with r+ 1 colors, uniformity k, ∆ =
max{k, α}, and H1 = · · · = Hr being tight cycles on n/(CThm 2.9(r+1, k,∆)) vertices

and Hr+1 = K
(k)
α+1 gives the following. There exist some ε = ε(r, k, α) so that in every

r-colored k-graph G on n vertices with α(G) ≤ α, there is a monochromatic tight cycle
on at least εn vertices.2 By iterating this process i times, we find i vertex-disjoint
monochromatic tight cycles covering all but (1−ε)in vertices. This finishes the proof,
since (1− ε)i → 0 as i→∞.

2Here, we treat nonedges as color r + 1 again.
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2.4. Absorption lemma. In this section we prove a suitable absorption lemma
for our approach.

Lemma 2.10. For every ε > 0 and k, r ∈ N, there is some γ = γ(k, r, ε) > 0 and
some c = c(k, r, ε) such that the following is true. Let H be a k-partite k-graph with
parts B1, . . . , Bk such that |B1| ≥ · · · ≥ |Bk−1| ≥ |Bk|/γ and |Lk(v;B1, . . . , Bk−1)| ≥
ε|B1| · · · · |Bk−1| for every v ∈ Bk. Then, in every r-coloring of E(H), there are c
vertex-disjoint monochromatic tight cycles covering Bk.

Note that it is enough to cover all but a bounded number of vertices, since we allow
single vertices as tight cycles. We will make use of this in the proof and frequently
remove a few vertices.

We will use the following theorem of Pósa [16].

Theorem 2.11 (Pósa). In every graph G, there is a collection of at most α(G)
cycles whose vertices partition V (G).

We further need the following simple but quite technical lemma, which states
that, given a ground set X and a collection F of subsets of X of linear size, we can
group almost all of these subsets into groups of size 4 which have a large common
intersection. We will apply this lemma when X is the edge-set of a hypergraph G and
F is a collection of subgraphs of G.

Lemma 2.12. For every ε > 0 there is some δ = δ(ε) > 0 and some C = C(ε) > 0
such that the following is true for every m ∈ N. Let X be set of size m and F ⊂ 2X

be a family of subsets such that |F | ≥ εm for every F ∈ F . Then there is some G ⊂ F
of size |G| ≤ C and a partition P of F \G into sets of size 4 such that |

⋂4
i=1Bi| ≥ δm

for every {B1, B2, B3, B4} ∈ P.
We will prove the lemma with δ(ε) = e4/26 and C(ε) = 8/ε2 + 2/ε.

Proof. Define a graph G on F by {F1, F2} ∈ E(G) if and only if |F1 ∩ F2| ≥
(ε/2)2m. We claim that α(G) ≤ 2/ε. Suppose for contradiction that there is an
independent set I of size 2/ε+ 1. Then we have |F0 \

⋃
F∈I\{F0} F | ≥ εm/2 for every

F0 ∈ I and hence |
⋃
F∈I F | > m, a contradiction.

Since every graph has a matching of size at least v(G)−α(G), we find a matching
P1 in G of all but at most 2/ε vertices of G (i.e., F ∈ F). Let G1 = F\V (P1) and note
that P1 is a partition of F \G1 into sets of size 2. Let F1 = {F1 ∩F2 : {F1, F2} ∈ P1}
and iterate the process once more.

Proof of Lemma 2.10. It suffices to prove the lemma for r = 1. Indeed, for each
v ∈ Bk, delete all edges containing v which are not in its majority color and apply
the one-color result (with ε′ = ε/r) for each “color class.”

Fix ε > 0, k ≥ 2, and a k-partite k-graph H with parts B1, . . . , Bk as in the
statement of the lemma. Choose constants γ, δ1, δ2, δ3 > 0 so that 0 < γ � δ3 �
δ2 � δ1 � ε, 1/k. We begin with a simple but important observation.

Observation 2.13. Let v1, . . . , vt ∈ Bk be distinct vertices and C be a tight cycle
in K(k−1)(B1, . . . , Bk−1) with vertex sequence (u1,1, . . . , u1,k−1, . . . , ut,1, . . . , ut,k−1).
Denote by es,i the edge in C starting at us,i and suppose that

(i) es,i ∈ Lk(vs;B1, . . . , Bk−1) for every s ∈ [t] and every i ∈ [k − 1] and
(ii) es,1 ∈ Lk(vs−1;B1, . . . , Bk−1) for every s ∈ [t] (here v0 := vt).

Then, (u1,1, . . . , u1,k−1, v1, . . . , ut,1, . . . , ut,k−1, vt) is the vertex sequence of a tight
cycle in H.
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Fig. 2. A sketch of Observation 2.13 for k = t = 3. Figure (a) shows the link graphs of v1
(blue), v2 (red), and v3 (green). The colors are for demonstration purposes only and are not related
to the given edge-coloring. Figure (b) shows the resulting tight cycle. In both figures, we identify
the ends (u1,1 and u1,2) to simplify the drawing. (Available in color online.)

The proof of Observation 2.13 follows readily from the definition of the link graphs.
See Figure 2 for an overview. We will now proceed in three steps. For simplicity, we
write Hv := LkH(v;B1, . . . , Bk−1) for v ∈ Bk.

Step 1 (divide into blocks). By Lemma 2.12, there is some C = C(ε) ∈ N and
a partition P of all but C graphs from {Hv : v ∈ Bk} into blocks H of size 4 with
e(H) := |

⋂
H∈HE(H)| ≥ δ1|B1| · · · |Bk−1| for every H ∈ P. Remove the C leftover

vertices from Bk.
Think of every block H now as a (k− 1)-graph with edges E(H) :=

⋂
H∈HE(H).

By applying Lemma 2.1 (with k−1 instead of k), for each H ∈ P, we find a subgraph
H′ ⊂ H such that e(H′) ≥ δ2|B1| · · · |Bk−1| with the same property as in Lemma 2.1.
By deleting all the edges of H \H′ we may assume that H itself has this property.

Step 2 (cover blocks by paths). Define an auxiliary graph G with V (G) = P and
{H1,H2} ∈ E(G) if and only if e(H1 ∩ H2) ≥ δ3|B1| · · · |Bk−1|. Similarly as in the
proof of Lemma 2.12, we conclude that α(G) ≤ 2/δ2, and hence V (G) can be covered
by 2/δ2 vertex-disjoint paths using Theorem 2.11.

Step 3 (lift to tight cycles). This step is the crucial part of the argument. To
make it easier to follow the proof, Figure 3 provides an example for k = t = 4.

We will find in each path of blocks an auxiliary tight cycle inK(k−1)(B1, . . . , Bk−1)
of the desired form to apply Observation 2.13. Let P = (H1, . . . ,Ht) be one of the

paths. Choose disjoint edges e0 ={x(0)1 , . . . , x
(0)
k−1} ∈ E(H1) and et={x(t)1 , . . . , x

(t)
k−1} ∈

E(Ht). For each s ∈ [t − 1], further choose two edges es = {x(s)1 , . . . , x
(s)
k−1} ∈

E(Hs) ∩ E(Hs+1) and e′s = {y(s)1 , . . . , y
(s)
k−1} ∈ E(Hs) ∩ E(Hs+1) so that all cho-

sen edges are pairwise disjoint. We identify x
(0)
i = y

(0)
i and x

(s)
i = y

(s)
i for every

i ∈ [k− 1], and e0 = e′0 and et = e′t. Assume without loss of generality that x
(s)
i ∈ Bi

for every i ∈ [k − 1] and all s = 0, . . . , t.
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Fig. 3. Finding a tight cycle in a path of blocks when k = t = 4. In (c), ∗ represents an internal
vertex of a some path Pi or Qi. (Available in color online.)

By construction, every blockH has the property guaranteed in Lemma 2.1. There-
fore, for every s ∈ [t], there is a tight path Ps ⊂ Hs of length 2k − 3 which starts

at (x
(s−1)
2 , . . . , x

(s−1)
k−1 ), ends at (x

(s)
1 , . . . , x

(s)
k−2), and (internally) avoids all previously

used vertices.3 Similarly, there is for every s ∈ [t] a tight path Qs ⊂ Hs of length

2k−3 which starts at and (y
(s)
1 , . . . , y

(s)
k−2), ends at (y

(s−1)
2 , . . . , y

(s−1)
k−1 ), and (internally)

avoids all previously used vertices.
Let U ⊂ Bk be the set of vertices v for which Hv ∈ Hi for some i ∈ [t]. To finish

the proof, we want to apply Observation 2.13 to cover U . Label U = {v1, . . . , v4t} so
that Hv2i+1

, Hv2i+2
, Hv4t−2i

, Hv4t−2i−1
∈ Hi for all i = 0, . . . , t − 1. Consider now the

tight cycle C in Kk−1(B1, . . . , Bk−1) with edge sequence

e′0 = e0, P1, e1, P2, e2, . . . , Pt, et = e′t, Qt, . . . , e1, Q1, e
′
0 = e0(2.1)

and relabel V (C) so that its vertex sequence is (u1,1, . . . , u1,k−1, . . . , ut,1, . . . , u4t,k−1)

(i.e., u1,i = x
(0)
i for i ∈ [k − 1], u2,1, . . . , u2,k−1 are the internal vertices of P1,4

u3,i = x
(1)
i for all i ∈ [3], and so on). By construction, C has the desired properties to

apply Observation 2.13, finishing the proof. Note that it is important here that every
block Hi has size 4 since we cover 2 vertices of every block “going forward” and 2
vertices “going backward.”

3Note that the number of previously used vertices in Vj is at most γ|Vj | for every j ∈ [k − 1]
since every tight cycle in G uses the same number of vertices from each part.

4Note that all Pi and Qi have 3k − 5 vertices and hence k − 1 internal vertices.
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2.5. The main proof. Fix α, r, n ∈ N and a k-graph G with α(G) ≤ α. Choose
constants 0 < β, γ, ε� max{α, r, k}−1 so that γ = γ(r, ε) works for Lemma 2.10 and
β = β(α, r) works for Lemma 2.7. The proof proceeds in α steps (the initial k − 1
steps are done at the same time). No effort is made to calculate the exact number of
cycles we use; we only care that it is bounded (i.e., independent of n).

Step 1, . . . , k-1. By Lemma 2.7, there is some B ⊂ [n] of size βn with an

absorber Ak−1 ⊂ [n]. Partition B into k − 1 sets B
(k−1)
1 , . . . , B

(k−1)
k−1 of equal sizes.

By Lemma 2.5, there is a bounded number of vertex-disjoint monochromatic tight
cycles in [n] \ (B ∪ Ak−1) so that the set Rk−1 of uncovered vertices in [n] \ (B ∪
Ak−1) satisfies |Rk−1| ≤ γ|B(k−1)

1 |. Let R′k−1 ⊂ Rk−1 be the set of vertices v with

| Lk(v;B
(k−1)
1 , . . . , B

(k−1)
k−1 )| < ε|B(k−1)

1 | · · · |B(k−1)
k−1 | and let R′′k−1 = Rk−1 \ R′k−1. By

Lemma 2.10 we can find a bounded number of vertex-disjoint cycles in B
(k−1)
1 ∪ · · · ∪

B
(k−1)
k−1 ∪ R′′k−1 covering R′′k−1. Remove them and let B

(k)
i ⊂ B

(k−1)
i be the set of

leftover vertices for every i ∈ [k − 1].

Step j (j = k, . . . , α). In each step j, we will define disjoint sets B
(j+1)
1 , . . . ,

B
(j+1)
j , R′j+1, Aj . Fix some j ∈ {k, . . . , α} now and suppose we have built disjoint

sets B
(j)
1 , . . . , B

(j)
j−1, R

′
j and absorbers A2, . . . , Aj−1. By Lemma 2.7 there is some

B
(j)
j ⊂ R′j of size β|R′j | with an absorber Aj ⊂ R′j . By Lemma 2.5, there is a bounded

number of monochromatic tight cycles in R′j \ (Aj ∪ B(j)
j ) so that the set Rj+1 of

uncovered vertices in R′j \ (Aj ∪B(j)
j ) satisfies |Rj+1| ≤ γ|B(j)

j |. Let R′j+1 ⊂ Rj+1 be

the set of vertices v with | Lk(v;B
(j)
t1 , . . . , B

(j)
tk−1

)| < ε|B(j)
t1 | · · · |B

(j)
tk−1
| for all 1 ≤ t1 <

· · · < tk−1 ≤ j and let R′′j+1 = Rj+1 \R′j+1. By (( j
k

) applications of) Lemma 2.10 we

can find a bounded number of vertex-disjoint cycles in B
(j)
1 ∪ · · · ∪B

(j)
j ∪R′′j covering

R′′j . Remove them and let B
(j+1)
i ⊂ B(j)

i be the set of leftover vertices for every i ∈ [j].

In the end we are left with disjoint sets B1 := B
(α+1)
1 , . . . , Bα := B

(α+1)
α , Bα+1 :=

R′α+1 and corresponding absorbers Ak−1, . . . , Aα (Ak−1 absorbs B
(α+1)
1 , . . . , B

(α+1)
k−1 ).

All other vertices are covered by a bounded number of cycles.
We will show now that R′α+1 = ∅, which finishes the proof. In order to do so,

we assume the contrary and find an independent set of size α + 1. Note that every

vertex in B
(j)
j \ Bj must be part of a tight cycle of our disjoint collection of tight

cycles with one part in Rj+1 and hence |B(j)
j \Bj | ≤ |Rj+1| ≤ γ|B(j)

j |. It follows that

|Bj | ≥ (1− γ)|B(i)
j | for every 1 ≤ j ≤ i ≤ α and we conclude

Lk
(
v;Bi1 , . . . , Bik−1

)
≤ Lk

(
v;B

(i−1)
i1

, . . . , B
(i−1)
ik−1

)
≤ ε

∣∣∣B(i−1)
i1

∣∣∣ · · · ∣∣∣B(i−1)
ik−1

∣∣∣
≤ ε(1− γ)−(k−1) |Bi1 | · · ·

∣∣Bik−1

∣∣
≤ 2ε |Bi1 | · · ·

∣∣Bik−1

∣∣
for every i ∈ {k, . . . , α + 1}, 1 ≤ i1 < · · · < ik−1 < i, and v ∈ Bi. By the following
lemma, there is an independent set of size α+ 1, a contradiction.

Lemma 2.14. For all k,m ∈ N there is some ε = ε(k,m) > 0 such that the follow-
ing is true for every k-graph H and all nonempty, disjoint sets B1, . . . , Bm ⊂ V (H).
If | Lk(v;Bi1 , . . . , Bik−1

)| ≤ ε|Bi1 | · · · |Bik−1
| for all i ∈ {k, . . . ,m}, 1 ≤ i1 < · · · <

ik−1 < i and v ∈ Bi, then there is an independent transversal, i.e., an independent
set {v1, . . . , vm} with vi ∈ Bi for all i ∈ [m].
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We will prove the lemma for ε(k,m) = m−(k−1)
2

.

Proof. Let δ = m−(k−1) and ε = δk−1. Choose vm ∈ Bm arbitrarily and assume
now that vm, . . . , vj+1 are chosen for some j ∈ [m− 1]. Given s ∈ {2, . . . , k − 1} and
i = (i1, . . . , ik) with 1 ≤ i1 < · · · < is−1 < is = j < is+1 < · · · < ik ≤ m, define
Bj(s, i) := {u ∈ Bj : | Lk(vik , . . . , vis+1

, u;Bis−1
, . . . , Bi1)| ≥ ε/δk−s|Bi1 | · · ·

∣∣Bis−1

∣∣}.
Furthermore, given i = (i1, . . . , ik) with j = i1 < i2 < · · · < ik ≤ m, define

Bj(1, i) := N (vik , . . . , vi2 ;Bi1) ,

the neighborhood of {vi2 , . . . , vik} in Bi1 . Note that, by choice of vm, . . . , vj+1, we
have |Bj(s, i)| < δ |Bj | for every s ∈ {2, . . . , k − 1} and |Bj(1, i)| < ε/δk−2 |Bj | =
δ |Bj |. Since there are at most (m−1k−1 ) < 1/δ choices for (s, i), we can choose some

vj ∈ Bj \
⋃
s,iBj(s, i). Clearly, at the end of this process, {v1, . . . , vm} will be

independent.
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[8] A. Grinshpun and G. N. Sárközy, Monochromatic bounded degree subgraph partitions, Dis-
crete Math., 339 (2016), pp. 46–53.
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