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Abstract

The techniques proposed in Papp and Reiter (2020) allow the use of cross-sectional and

aggregate data observed at different frequencies in the estimation of dynamic stochastic

macroeconomic models. However, the question is whether technique is getting ahead of what

is sensible in terms of currently available empirical strategies to estimate macroeconomic

models which are – without exception – misspecified.
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1. Introduction1

During the nineties, the first algorithms were developed to solve models with heteroge-2

neous agents and aggregate uncertainty. There are now several algorithms.1 The method3

proposed in Reiter (2009) stands out in being much faster than other algorithms. As dis-4

cussed below, the “Reiter approach” is not suitable for all models, but if it is then it comes5

with a massive computational advantage. Papp and Reiter (2020) extend the Reiter approach6

to make it suitable for estimation when cross-sectional information is not available at the7

same frequency as aggregate data, a situation that is quite typical.8

In section 2, I describe the Reiter method in the most straightforward way. This may9

be of some educational value, since the Reiter method is often combined with additional10

?Den Haan: Centre for Macroeconomics, London School of Economics and Political Science, Houghton
Street, London WC2A 2AE, UK and CEPR, London, UK. E-mail: wjdenhaan@gmail.com. I would like
to thank Miguel Faria-e-Castro, Michael Reiter, and other participants at the 2019 JEDC conference in
Gerzenzee. This research is supported by the Economic and Social Research Council (ESRC).

1See Algan et al. (2014) for an overview.
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bells and whistles which obscure its intrinsic ability to obtain a numerical solution at low11

computational cost. This detailed discussion will make it easy to illustrate a weakness of the12

Reiter method and that is dealing with occasionally binding constraints. In the presence of13

occasionally binding constraints, it is important for the Reiter method – and more so than14

for other perturbation methods – that the fluctuations in aggregate uncertainty are really15

small. This weakness can be easily overcome by using penalty functions instead of inequality16

constraints, which often are actually more realistic than inequality constraints.17

In section 3, I discuss Papp and Reiter (2020) in detail and I will refer to my discussion18

in section 2 and reiterate that the complexity can be reduced if penalty functions are used19

instead of inequality constraints.20

The last section touches upon a more fundamental issue. Maximum Likelihood (ML), a21

full-information estimation method, is used by Papp and Reiter (2020) to estimate the model.22

ML and especially its Bayesian version are by far the most popular estimation procedure for23

stochastic dynamic macroeconomic models. Are these methods the right ones when we know24

that macroeconomic models are misspecified in at least some nontrivial dimensions? And the25

question should be asked whether the sophisticated extensions proposed in Papp and Reiter26

(2020) alleviate this fundamental problem or make it worse? That is, are computational27

technique to solve models perhaps ahead of available empirical methodologies?28

2. The Reiter method29

In models with heterogeneous agents, the policy rules depend on the cross-sectional dis-30

tribution of agents’ characteristics, a high-dimensional and typically complex object. It does31

so through a limited set of prices such as the wage rate and the rental rate of capital. With-32

out aggregate uncertainty these prices are constant. At a given set of prices, simple solution33

techniques can be used to obtain approximations to the individual policy rules. Given those34

policy rules one can then check whether equilibrium conditions hold. Iteration procedures or35

an equation solver can be used to find equilibrium prices.36

The situation is quite different in the presence of aggregate uncertainty. The cross-37
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sectional distribution is then time-varying and its role no longer characterized by a finite set38

of constant prices. Thus, the true solutions of the model are functions of this high-dimensional39

object with an unknown functional form. Since the functional forms of the policy functions40

are also unknown, we are faced with a challenging numerical problem.41

Reiter (2009) proposes a procedure which is computationally much faster than alterna-42

tives. Recall from the discussion above, that solving the model without aggregate uncertainty43

is not that challenging even if one uses accurate global projection methods. The starting point44

of the Reiter approach is the assumption that aggregate uncertainty is relatively small and45

its impact on the economic outcomes relatively minor. This means that economies with46

aggregate uncertainty display relatively minor fluctuations around the economy without ag-47

gregate uncertainty. It is obviously true that aggregate uncertainty is much smaller than48

idiosyncratic uncertainty. And aggregate uncertainty does have only a limited impact in49

many existing models.2 Reiter (2009) points out that the consequence of this observation is50

that one can use a fast numerical technique, namely perturbation, to deal with that part of51

the solution problem that changes the dimensionality of the problem so drastically, that is,52

aggregate uncertainty.53

The underlying principles of the Reiter method are straightforward and very sensible.54

Nevertheless, I struggled to find a way to explain to my students what programming of the55

Reiter method actually entails. Without understanding the structure of the program to be56

written, students will also not understand how powerful the Reiter method is.57

In this section, I present what I have found to be a useful way to teach the Reiter method.58

In addition, I will use the exposition to make one fundamental point regarding the way59

borrowing restrictions are incorporated into our models. Reiter (2009) and Papp and Reiter60

(2020) follow the literature and capture such restrictions by limiting the maximum amount on61

can borrow with an inequality constraint. At interesting parameter values, this means that62

agents are at times not constrained (and the consumption/savings decisions is determined63

2It is not true in all models. In the model of Den Haan et al. (2017), aggregate risk has an important
quantitative impact on individual behavior and the economy with aggregate risk cannot be considered as a
perturbation of the corresponding economy without aggregate risk.
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by the usual Euler equation and the budget constraint) and are at times constrained (and64

the borrowing constraint and the budget constraint are the relevant equations).65

2.1. The Model66

The economy used to explain the algorithm is a Krusell-Smith type economy modified

to make the exposition easier. The firm problem is identical to the one of the standard

neoclassical growth model. That is, firms hire Nt effective units of labor at wage rate wt and

hire Kt capital units at rental rate rt. Specifically, the firm problem is given by

max
Kt,Nt

Kα
t N

1−α
t

s.t. (1)

Ktrt +Ntwt = ztK
α
t +N

(1−α)
t ,

where zt is a productivity shock. The law of motion for zt is given by67

ln zt = ρ ln zt−1 + ez,t, (2)

with Et[ez,t+1] = 0. The Reiter method uses first-order perturbation to deal with the fluc-68

tuations due to ez,t which means that we do not need to make any additional distributional69

assumptions regarding ez,t to derive the policy functions.370

The first-order conditions are given by

rt = αztK
1−α
t N1−α

t , and (3)

wt = (1− α)ztK
α
t N

−α
t . (4)

Firm size is not determined with constant returns to scale. Thus, we can work with a71

3If second-order perturbation would be used, then we need to know the standard deviation to derive the
policy functions. Of course, one would need to make distributional assumptions if one wants to generate
simulated time paths.
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representative firm.72

There is a unit mass of workers whose behavior is characterized by the following opti-

mization problem

max
ci,t,ki,t

ln ci,t −G(ki,t)

s.t. (5)

ci,t + ki,t = rtki,t−1 + wtei,t + (1− δ)ki,t−1,

where ci,t is the consumption of worker i, ki,t is the capital level chosen in period t available for73

production in period t+1, and ei,t is an idiosyncratic worker-specific productivity disturbance.74

Instead of the popular inequality constraint to limit how much on can go short in capital

(borrowing), i.e. ki,t ≥ k with k ≤ 0, there is a penalty function, G(ki,t), with the following

properties

∂G(k)

∂k
≤ 0, (6)

∂2G(k)

∂k2
≥ 0, (7)

that is, the penalty gets smaller (or remains the same) as capital increases and the shape is

convex. A simple example would be4

G(k) = k2 if k < 0

and (8)

G(k) = 0 if k ≥ 0. (9)

Below, I will discuss the relationship between penalty functions and occasionally binding75

borrowing constraints in more detail and also highlight how the choice between these two76

4An alternative is G(k) = (k−k)−φ with k < 0 which converges to the inequality constraint specification,
k ≥ k, as φ goes to infinity.
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options affect the suitability of the Reiter method.77

Workers’ first-order conditions are given by

ci,t + ki,t = rtki,t−1 + wtei,t + (1− δ)ki,t−1, (10a)

1

ci,t
+
∂G(ki,t)

∂ki,t
= βEt

[
1

ci,t+1

(rt+1 + 1− δ)
]
. (10b)

An increase in ki,t has the usual cost of giving up a unit of consumption, but has the benefit78

of reducing the penalty unless ki,t is such that ∂G(ki,t)/∂ki,t = 0.79

Assumptions to help the exposition. To shorten the equations, and for this reason80

only, I assume that81

δ = 1. (11)

Furthermore, I assume that the idiosyncratic shock, ei,t, is not only i.i.d. across individuals82

but also across time. This means that the only cross-sectional distribution one has to keep83

track of is the cross-sectional distribution of individual capital, ki,t−1. By contrast, if ei,t is84

a first-order Markov process, as is usually the case, then one would need to keep track of85

the cross-sectional joint distribution of ki,t−1 and ei,t. This is not problematic for the Reiter86

method, but would introduce more notation, variables, and equations.87

Finally, I assume that ei,t can take on two values, εL and εH with equal probability,88

εL < εH , and E[ei,t] = 1. This means that expectations over ei,t+1 can be replaced by a89

simple sum. The Reiter method can easily deal with continuous support of ei,t by using90

Gaussian quadrature which also boils down to representing the conditional expectation with91

a finite sum, but this would introduce additional notation.92

Equilibrium. Let ft−1 denote the cross-sectional distribution of end-of-period t−1 capital93

holdings, which is equal to the beginning-of-period t distribution. We use period t − 194

subscripts because what matters for period t are the capital stocks chosen in period t − 195
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and carried over into period t.5 Since there are a continuum of workers, this is fully pinned96

down by ft−2 and the value of zt−1. The set of aggregate state variables consists of ft−1 and97

zt and will be denoted by st. The set of state variables relevant for the individual are st as98

well as ki,t−1 and ei,t.
6

99

The equilibrium is given by

1
rtki,t−1+wtei,t−ki,t +

∂G(ki,t)

∂ki,t

=

βEt
[∑2

j̃=1
1
2

rt+1

rt+1ki,t+wt+1εj̃−ki,t+1

] (12a)

rt = αztK
1−α
t N1−α

t , (12b)

wt = (1− α)ztK
α
t N

−α
t , (12c)

Nt = 1, (12d)

Kt =

∫
k

kft−1(k)dk, (12e)

ft = Γ(ft−1, zt). (12f)

Note that the expectations operator in equation (12) is only over ez,t+1. The summation100

takes care of the idiosyncratic shock.101

2.2. Numerical approximation102

Before we start with a description of the Reiter method, let’s recall what we would do103

if we approximate an individual policy function using projection methods. We would use a104

flexible functional form such as a polynomial or a spline to approximate individual behavior105

and the inputs are the state variables. That is,106

ki,t+1 = P (ei,t, ki,t−1, zt, ft−1; η), (13)

5That is, we use notation consistent with Dynare convention.
6If ei,t is an i.i.d. variable, then a sufficient state variable to characterize the individual is their cash-on-

hand level, i.e., rtki,t−1 + wtei,t. This could be used in the solution method, but is not done here since it
makes the equations less transparent.
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where the vector η contains the coefficients of the approximating function. Since ei,t can take

on only two values, we can solve for two separate policy functions. That is,

ki,t+1 = P (ki,t−1, zt, ft−1; ηL) if ei,t = εL, (14)

ki,t+1 = P (ki,t−1, zt, ft−1; ηH) if ei,t = εH . (15)

To implement the Reiter method we will write this as

ki,t+1 = P (ki,t−1; ηL(zt, ft−1)) if ei,t = εL, (16)

ki,t+1 = P (ki,t−1; ηH(zt, ft−1)) if ei,t = εH . (17)

For example, if P (·) is a second-order polynomial in ki,t−1, then its three coefficients are the107

elements of η and each coefficient is a function of the aggregate state variables.108

For the Reiter method, it is important that109

1. one characterizes the whole cross-sectional distribution and110

2. one can write down computer code to describe its law of motion given the policy function111

of the agent.112

Reiter (2009) and Papp and Reiter (2020) use a histogram, that is, a grid with a vector113

that contains the mass of agents at each grid point. Given the histogram of this period’s114

beginning-of-period capital holdings, ft−1, zt, and the individual policy rule one can calculate115

next period’s histogram.7 Here, I will use a version of the Reiter method as it is implemented116

in Winberry (2018) because it simplifies the equations and, thus, makes it easier to understand117

the structure of the Reiter method. Instead of a histogram, Winberry (2018) uses a flexible118

functional form from the class of functions proposed in Algan et al. (2008) to characterize119

the cross-sectional distribution. If one knows the parameters of the approximating density,120

then one knows everything there is to know about the distribution. An example of a second-121

7If a capital choice falls between grid points one has to allocate the associated mass over the two adjacent
grid points.
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order approximation would be the Normal density. For this application we will use as the122

parameters of the Normal, the mean, µk,t−1 and the un-centered second moment, Ωk,t−1.123

Knowing these two statistics, one can immediately calculate the standard deviation and use124

the standard expression of the Normal density.125

Now, let’s turn to the second requirement. Is it possible to write down exact equations

for the law of motion of this (approximate) distribution if one has this period’s distribution

and the policy function of the agent. Specifically, can we write down computer code that

relates µk,t and Ωk,t to µk,t−1 and Ωk,t−1? We know that

µk,t =

∫
k

 1
2
P (k; ηL(zt, µk,t−1,Ωk,t−1))+

1
2
P (k; ηH(zt, µk,t−1,Ωk,t−1))

 1

σk,t−1
√

2π
e
−

(k−µk,t−1)
2

2σ2
k,t−1 dk, (18)

Ωk,t =

∫
k

 1
2
P (k, ηL(zt, µk,t−1,Ωk,t−1)

2

+1
2
P (k, ηH(zt, µk,t−1,Ωk,t−1)

2

 1

σk,t−1
√

2π
e
−

(k−µk,t−1)
2

2σ2
k,t−1 dk, (19)

where σk,t−1 =
√

Ωk,t−1 − µ2
k,t−1. To turn this into computer code, we approximate the

integral using Gaussian-Hermite quadrature. That is,

µk,t =

J∗∑
j∗=1

 1
2
P (µk,t−1 +

√
2σk,t−1ζj∗ ; ηL(zt, µk,t−1,Ωk,t−1))+

1
2
P (µk,t−1 +

√
2σk,t−1ζj∗ ; ηH(zt, µk,t−1,Ωk,t−1))

 1√
π

Ωj∗ (20)

Ωk,t =

J∗∑
j∗=1

 1
2
P (µk,t−1 +

√
2σk,t−1ζj∗ ; ηL(zt, µk,t−1,Ωk,t−1))

2+

1
2
P (µk,t−1 +

√
2σk,t−1ζj∗ ; ηH(zt, µk,t−1,Ωk,t−1))

2

 1√
π

Ωj∗ , (21)

where ζj∗ and Ωj∗ are the Gauss-Hermite nodes and weights and J∗ the number of quadrature126

nodes.127

The actual algorithm. We are now all set to spell out the actual algorithm. To solve for128

the individual policy rule we are going to use a projection method. Thus, we need a grid129

for individual capital. Let κj with j ∈ {1, · · · , J} denote the J grid points for the worker’s130

capital holdings, where J equals the number of coefficients of the approximating function.131
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i.e., the number of elements of η. For example, if P (·; η) is a second-order polynomial, then132

J = 3. We want the Euler equation for the agents at the two productivity levels to hold at133

all 2× J grid points.134

We have done quite a bit of preparatory work, but we are now ready to write down a135

perturbation system that can be solved using a program like Dynare to generate both the136

nonlinear projection-based individual policy rule as well as the perturbation-based responses137

to aggregate disturbances.138

That system of equations is given by

1

rtκj + wtεL − kL,j
+G′(kL,j) = βEt

 2∑
j̃=1

1

2

rt+1

rt+1kL,j + wt+1εj̃ − P (kL,j; ηj̃(µk,t,Ωk,t)

 (22a)

kL,j = P (κj; ηL(zt, µk,t−1,Ωk,t−1)) (22b)

1

rtκj + wtεL − kH,j
+G′(kH,j) = βEt

 2∑
j̃=1

1

2

rt+1

rt+1kH,j + wt+1εj̃ − P (kH,j; ηj̃(µk,t,Ωk,t)


(22c)

kH,j = P (κj; ηH(zt, µk,t−1,Ωk,t−1)) (22d)

rt = αztµ
1−α
k,t−1, (22e)

wt = (1− α)ztµ
α
k,t−1, (22f)

µk,t =

J∗∑
j∗=1

 1
2
P (µk,t−1 +

√
2
√

Ωk,t−1 − µ2
k,t−1ζj∗ ; ηL(zt, µk,t−1,Ωk,t−1))+

1
2
P (µk,t−1 +

√
2
√

Ωk,t−1 − µ2
k,t−1ζj∗ ; ηH(zt, µk,t−1,Ωk,t−1))

 1√
π

Ωj∗ (22g)

Ωk,t =

J∗∑
j∗=1

 1
2
P (µk,t−1 +

√
2
√

Ωk,t−1 − µ2
k,t−1ζj∗ ; ηL(zt, µk,t−1,Ωk,t−1))

2+

1
2
P (µk,t−1 +

√
2
√

Ωk,t−1 − µ2
k,t−1ζj∗ ; ηH(zt, µk,t−1,Ωk,t−1))

2

 1√
π

Ωj∗ ,

(22h)

where we have used Nt = 1. The two Euler equations hold for j = {1, · · · , J} and thus139

represent 2J equations.140
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For a choice of G(k) and numerical values for the parameter values, this is a system141

that can be solved with perturbation methods. How is it possible that Dynare can solve142

for a higher-order projection-based individual policy rule even when it uses first-order per-143

turbation? And how is it possible that this simple solution method can solve a model with144

heterogeneous agents in the presence of aggregate uncertainty? And – conditional on having145

reasonable initial values for its steady state – does so almost instantly.146

Finding the perturbation solution of this system consists of two steps.147

1. Find the steady state.148

2. Determine how this steady-state solution changes if the stochastic variable changes. In149

this system, the only stochastic variable is zt. The realizations for ei,t are parameters150

in the perturbation system.151

At the steady state, zt is constant. Solving for the steady state means solving for the152

constant values of the J constant values of η, the constant values of µk and Ωk, and the153

constant implied values of r and w. The steady state version of the system in equation (22)154

gives the system of equations to solve for these values. The solution for µk implies values for155

r and w which imply a partial-equilibrium solution to the nonlinear policy function of the156

individual characterized by the η coefficients. In equilibrium, µk is such that given the value157

of Ωk and the distributional form assumption, the distribution remains constant. Solving for158

the steady state is typically the hardest part of deriving a perturbation solution. And one159

may need good initial conditions.8 Note that this “steady state” solution takes into account160

precautionary savings, since the 2J Euler equations take into account the nonlinearities of161

the original problem are are not an approximation around the steady-state solution in which162

ei,t is also constant.163

The perturbation solution of this system tells us how this steady state solution consisting164

8This system is actually well-behaved and not hard to solve. Specifically, given the monotonicity proper-
ties an iteration procedure that adjusts the value of r depending on whether there is excess demand or excess
supply works very well. This can be used to solve the system for some parameter values and these can be
used as initial conditions in a program like Dynare if the system needs to be solved for several parameter
values as is the case when one estimates the model.
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of a nonlinear individual policy rule and a cross-sectional distribution responds to aggregate165

uncertainty. To fully understand this, we should know what is known and what is not166

known in the system. The state variables in the system above are zt, µk,t−1, and Ωk,t−1 and167

a perturbation solution consists of functions of these three variables. Now consider the 2J168

equations of the Euler equation at the 2J grid points. Imagine we substitute out this period’s169

and next period’s interest rate and the wage rate on both sides of the Euler equation. Then170

we are left with 2J + 2 equations in the 2J + 2 unknowns. The perturbation approach will171

tell us what these functions are as a function of zt, µk,t−1, and Ωk,t−1.
9

172

Occasionally binding constraints, the penalty function, and the Reiter method.173

With the specifics of the Reiter method spelled out, I can make a fundamental point about174

the use of occasionally binding constraints as used in Reiter (2009) and in Papp and Reiter175

(2020). The Reiter method can deal with occasionally binding constraints. But it has one176

practical and one fundamental problem. With an inequality constraint, optimal behavior is177

characterized by the two-part Kuhn-Tucker conditions. That is, an agent’s capital choice178

may be determined by the Euler equation (when the agent is not constrained) or by the179

constraint. In terms of the perturbation system given in equation (22), this means that for180

some js, i.e., for some grid points, the Euler equations remains the right equation, but for181

others it has to be replaced with the borrowing constraint. The practical problem is that182

one has to find out at which grid points the constraint is binding and at which grid points it183

is not binding. One has to do this before one obtains the perturbation solution. This would184

not be problematic if one solves the model for one set of parameter values, but would be185

problematic if one has to solve it many times at different parameter values, which would be186

the case if one estimates the model.187

There is a more fundamental problem. Implicit in the perturbation approach is that188

the equations do not change if there are changes in the aggregate disturbance, zt. That189

9A first-order perturbation solution will give a first-order approximation for the laws of motion for µk,t
and Ωk,t. Since we actually have analytical (nonlinear) expressions for these state variables for given policy
functions, we could use these instead of the first-order approximations when generating model data.
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is, if an agent is at the constraint at the steady state value of zt, then the perturbation190

solution assumes that this remains the case if zt changes. This may be plausible if one191

has just a few grid points with large gaps in between them. The cut-off level of capital at192

which the constraint becomes binding may then always be in between the same two grid193

points. However, with nontrivial idiosyncratic risk one may very well need a fine grid to194

get an accurate individual policy rule. Then this property is unlikely to remain true unless195

fluctuations in zt are really small.196

These problems are not present if penalty functions are used instead of borrowing con-197

straint. Moreover, in many cases penalty functions actually make more economic sense than198

inequality constraints.10 Note that an inequality constraint is also a penalty function and199

a very peculiar one. That is, the penalty is equal to 0 as long as ki,t ≥ k and infinite if200

ki,t < k. It seems more sensible that it becomes gradually more difficult to borrow and only201

as one borrows more and more it will be met with prohibitive cost increases.11 In the model202

above, I put the penalty function in the utility function, but that was mainly because such203

a penalty function only enters the model equations through the Euler equation. A more204

realistic implementation would consist of letting a penalty function affect the interest rate205

paid on short positions with the penalty increasing in the amount borrowed.206

3. The contributions of Papp and Reiter (2020)207

The motivation of Papp and Reiter (2020) is the recent surge in the use of micro-level208

data to estimate macroeconomic models. Estimation will require evaluation of an objective209

function such as the Likelihood or the posterior at many parameter values. Consequently,210

one would need a very fast solution algorithm. The Reiter approach has the potential to211

do exactly this. If the cross-sectional information used is part of the perturbation system,212

10The natural borrowing limit is a theoretical justification for an inequality constraint. In practice, how-
ever, natural borrowing constraints are not used because they turn out to be so weak that they do not
constrain agents.

11Den Haan and De Wind (2012) show that models with smooth penalty functions can generate behavior
that is very similar to that obtained in models with occasionally binding inequality constraints.
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such as µk,t or Ωk,t in the system above, then one can use the Reiter approach without any213

modification. However, cross-sectional information is usually only available at an annual214

frequency whereas economic aggregates such as GDP are typically available at a quarterly215

frequency.216

One cannot derive the law of motion of annual dispersion by using only the law of motion217

of quarterly dispersion. One would also have to use the individual laws of motion. This218

means we will need some type of panel simulation. The idea of Papp and Reiter (2020) is to219

use the idea underlying the Reiter approach to do this.220

Specifically, suppose one wants to derive a perturbation-based law of motion for the annual221

dispersion of capital holdings when the other data is quarterly. It involves the following steps.222

1. Start with a large number of workers, N , with capital holdings and productivity levels223

distributed consistent with the distribution of the economy without aggregate uncer-224

tainty and with idiosyncratic uncertainty.12225

2. Write down the equations that describe the choices of each agent for the first four226

periods. Exactly as one would in an actual simulation, the idiosyncratic productivity227

level changes over time according to its law of motion.228

3. Write down the expression for the cross-sectional dispersion of annual capital holdings.229

This is a perturbation system in which the object of interest, the cross-sectional dispersion230

of annual capital holdings will be a function of the aggregate state variables over the last231

four periods.232

Why use a panel simulation of a finite number of individuals and not integrate over233

all possible outcomes for each agent? With only two possible realizations for ei,t and four234

periods, there are sixteen possible outcomes to consider and this alternative might still be235

doable. But is unlikely to be feasible if more periods are involved and/or more realizations.236

12As shown in Algan et al. (2014), simulating an economy with a histogram is more accurate than sim-
ulating with a large number of agents, since it completely eliminates sampling variation. But a quarterly
time series of histograms does not allow us to construct a time series for the dispersion of individual annual
capital holdings. The latter requires keeping track of individual workers and the cross-sectional histograms
do not do that.
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Papp and Reiter (2020) implement this idea in a model with discrete choice, namely the237

agent has to choose beteen working and not working. This leads to an additional complica-238

tion. With a discrete choice decision, there is a cut-off level which will depend not only on239

the worker’s idiosyncratic productivity level, but also on the aggregate state variables. This240

creates a problem for the Papp-Reiter perturbation approach if a finite number of individuals241

is considered. The reason is that the perturbation approach is based on partial derivatives242

and these will not induce changes in the discrete choice employment decisions of the workers243

included in the panel.13 Papp and Reiter (2020) propose a smoothing technique to deal with244

this problem.245

If penalty functions are used instead of inequality constraints, then there is an alterna-246

tive solution which would also be able to deal with discrete choice. This would consist of247

simulating the economy with N agents for T periods with a realistic volatility for zt. When248

using a realistic volatility for zt, then one would capture changes in the cut-off level. To249

obtain the (linearized) law of motion for the cross-sectional statistic of interest, one simply250

runs a regression. T would have to be sufficiently large to avoid sampling variation. As ex-251

plained above, this doesn’t work with inequality constraints since the individual policy rules252

are derived under the assumption that the area where the inequality constraint binds does253

not change if zt changes which is only guaranteed for arbitrarily small changes in zt.254

The paper documents that the proposed procedure is feasible. Specifically, it estimates255

second moments of the shock processes and it documents that the estimate of the variance256

of the idiosyncratic shock is substantially smaller if cross-sectional information is used.257

4. Evaluation: Technique ahead of empirical methodology258

The Papp-Reiter implementation of the Reiter approach is a clever one and may very well259

stimulate the use of cross-sectional information in the estimation of business cycle models.260

I wonder, however, whether it makes sense to increase the sophistication of our estima-261

13The probability that a worker is exactly at the cut-off level happens with probability zero. At the cut-off
level the worker is indifferent. Thus even then, there is an original discrete choice which is the same as the
preferred one if zt changes.
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tion techniques without dealing with a much more fundamental problem. Prescott (1986)262

writes in his “Theory Ahead of Business cycle measurement paper,” that “The models con-263

structed within this theoretical framework are necessarily highly abstract. Consequently, they264

are necessarily false, and statistical hypothesis testing will reject them.” Prescott argued that265

economic variables are not always measured in conformity with economic theory. It is true266

that we now have more and better data. Moreover, our theories have become richer and267

including heterogeneity has been an important contributor in doing so. Nevertheless, I think268

that it is still the case that all macroeconomic models are wrong and that we should take269

this into account when we estimate them.270

Empirical estimation of structural macroeconomic models is difficult. Over time, the pro-271

fession has used quite different strategies that were disgarded after criticism or disappoint-272

ing performance. In the tradition of Tinbergen, the first approach consisted of estimating273

time-invariant relationships between macroeconomic aggregates without taking into account274

cross-equation restrictions. The Lucas critique revealed the flaws of this approach. In the275

eighties, the Generalized Methods of Moments (GMM) approach of Hansen (1982) became276

popular. The advantage of GMM is that one can estimate model parameters without writing277

down the full model. Consequently, one can focus the estimation on only those parts of the278

model that one is more confident about. Unfortunately, the small-sample properties of the279

GMM estimator turned out to be quite bad.14 Calibration also has the advantage that pa-280

rameters are chosen using only the dimensions of the model in which one has confidence. The281

disadvantage of calibration is that one does not have a statistical measure of goodness of fit.282

That is, one has to eyeball the results and decide whether the predicted model properties are283

close to their sample counterparts. Simulated Method of Moments (SMM) is like calibration284

but with proper statistical inference.285

Although Simulated Method of Moments has sporadically been used in macroeconomics, it286

has now been completely taken over by full information methods such as Maximum Likelihood287

or the Bayesian version of Maximum Likelihood. Maximum Likelihood is rarely feasible unless288

14See, for example, the 1996 special issue of the Journal of Business and Economic Statistics, vol. 14(3).
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– as is the case in Papp and Reiter (2020) – one estimates just a few parameters. The reason is289

that finding the global maximum of the Likelihood function is extremely difficult given that it290

often has a highly erratic shape. By combining the Likelihood with an informative prior, the291

problem becomes much more tractable, especially with the help of Markov Chain Monte Carlo292

techniques to trace the posterior. And this has become the dominant empirical technique293

to estimate macroeconomic models. And if the Papp-Reiter approach is incorporated into a294

non-trivial empirical project, then this is most likely the empirical strategy that will be used.295

Whereas the small-sample properties of GMM were scrutinized extensively in the eighties296

and nineties, we do not have such knowledge of the properties of MCMC techniques for typ-297

ical macroeconomic applications. The Brooks-Gelman statistics are diagnostics to evaluate298

whether the generated sequence of parameter values resembles the posterior distribution one299

tries to recover. But there are no proper metrics to judge what are good and bad outcomes300

for these statistics. Not that it matters, because the profession does not expect authors to301

report these statistics and discuss whether the posterior is characterized accurately!302

An even more striking omission from the empirical literature is dealing with the problem303

that Prescott already pointed out in 1986 and that is that all macroeconomic models are304

wrong. Calibration, GMM, and SMM are attempts to deal with this although in a limited305

way. But the literature has moved away from these methods in favor of full-information306

methods. Papp and Reiter (2020) is just one example of many. There are some papers that307

do explicitly deal with misspecification when estimating structural models.15 But most do308

not. Unfortunately, even the consequences of minor misspecifications can be substantial as309

is documented in Den Haan and Drechsel (2019).310

This detour through the history of empirical macroeconomics was done for a reason. So311

let’s get back to the empirical excercise in Papp and Reiter (2020). Couldn’t one argue that312

the Papp-Reiter approach reduces the problems of misspecification and data limitations and313

is, thus, a step in the right direction? I am sure this will be true in some applications. But314

the increased complexity and sophistication of the procedure also makes it much harder to315

15See Den Haan and Drechsel (2019) and the discussion therein.
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understand what happens in the estimation procedure. How does the smoothing technique316

to deal with the discrete choice of the agent affect small sample properties? How does it317

interact with misspecification of the model? Are richer models necessarily closer to reality or318

do they make misspecification worse because they have to take a stand on more issues? Are319

the small-sample properties of larger models better or worse than those of smaller models.320

Do MCMC techniques work better for posteriors of complex models? We don’t know the321

answer to any of these questions.322

It is great to see numerical and estimation techniques evolve over time. But it has to323

go hand in hand with more research on the question how one should do empirical research324

on how these currently popular methods perform in samples of realistic length. Both when325

the empirical model is correctly specified and when it is not. Perhaps we should before we326

estimate our models using these methods.327
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