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1. Introduction.
We are concerned here with regular variation, RV for short (for back-

ground on which we refer to the standard work [7], BGT below). This occurs
�rst in the classical Karamata setting

limx!1 f(tx)=f(x) = K(t) (locally uniformly in t (8t > 0)) (K)

(see e.g. BGT Ch. 1), and then in the Bojanic-Karamata/de Haan setting
(see e.g. BGT Ch. 3),

[f(x+ t)� f(x)]=h(x)! K(t) (locally uniformly in t). (BKdH)

The basic result in the theory of regular variation is the Uniform Convergence
Theorem, UCT (BGT, Th. 1.2.1): with f and h above Baire (i.e. having
the Baire property, BP) or measurable, convergence is necessarily locally
uniform, hence our general assumption both here and in the contexts below.
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Next, we need the Beurling setting (see e.g. BGT § 2.11 and [12, 17]),
using an auxiliary function '; best implemented algebraically (see § 3 below)
via the Popa binary operation

x �' t := x+ t'(x):

This leads to the Beurling theory of regular variation [17], below.
The auxiliary ' above is to satisfy

�x(t) := '(x+t'(x))='(x) = '(x�'t)='(x)! �(t) (locally uniformly in t).

When '(x) = O(x); these are the self-equivarying functions, ' 2 SE; of
[51]; when specialized to the case '(x) = o(x) and � � 1 these reduce to
the classical self-neglecting functions [BGT, § 2.11]. Here again, it is known
that, for ' Baire/measurable, the convergence is necessarily locally uniform,
provided ' satis�es one of a series of four possible additional properties,
including continuity or monotonicity: see [51, Th. 4]. We will need

Theorem O [51, Th. 0]. If '(x) = O(x) and �x(t) ! �(t) = �'(t); locally
uniformly in t, for t > 0, then � satis�es the Go÷¾ab-Schinzel functional
equation

�(s �� t) = �(s)�(t): (GS)

Notational convention. In Theorem O above �x contains the x which tends
to in�nity. After this passage to the limit, attention focuses on the limit
function �(t) which will depend on a parameter �, below. We allow ourselves
to denote this limit by ��(t) and let context speak for itself here.

For ' Baire/measurable, �' is Baire/measurable and so is continuous
(below), as are the positive solutions of (GS), the only ones of interest here,
which take the form �(t) = ��(t) := 1 + �t; for t > �

� := �1=� with � � 0
(and 0 to the left of ��; though here we work initially in R+) �see the surveys
[18] and [36]; cf. [51]. So � = �0 � 1 yields the desired limit of �x(t) for the
self-neglecting case.
Finally, we need the setting of general regular variation, recently devel-

oped in [17]:

[f(x �' t)� f(x)]=h(x)! K(t) (locally uniformly in t); (GRV )

with the domain of t naturally extending to t > ��. Here f is the function of
primary interest; h and ' are auxiliary functions; the limit function on the
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right we call the kernel function. The instance here h(x) � 1 pre-dating this,
developed in [12], is termed Beurling RV; f then is said to be '-RV: again
see § 3.
These (limit) kernel functions K satisfy functional equations. The clas-

sical Karamata setting yields the multiplicative Cauchy functional equation,
(CFE) for short below. In addition to theGo÷¾ab-Schinzel functional equation
above, there are: the Chudziak-Jab÷ónska functional equation

K(u �� v) = K(v)K(u); (CJ)

the Beurling-Goldie functional equation of the general setting

K(u �� v) = K(u) �� K(v); (BG)

and the original Goldie functional equation [52] of the ' � 1 setting, which
it extends,

K(u+ v) = K(u) �� K(v): (G)

See § 9.6 for their continuous solutions, and a discussion of how discontinuous
solutions are excluded by the �blanket assumption of non-triviality�, stated
in § 3 ahead of Theorem 4 (after the necessary preliminaries in § 2).
All four of the limiting settings above involve continuous limits. However,

sequential limits (see e.g. BGT § 1.9) are also important, both in theory (see
the theorems below) and in applications (particularly to probability � see
e.g. § 9.3 �which as it happens originally motivated the theory).
The prototypical sequential result here is due to Croft [22] in 1957. The

role of the Baire Category Theorem, and the relevance to probability theory,
are due to Kingman [41, 42] in 1963 and 1964, and Kendall [40] in 1968.
The Baire Category Theorem is sequential, and so its role in the sequential

results here is thematic. All the �Baire�results below need only the Axiom of
Dependent Choice(s), DC. We comment brie�y on the set-theoretic axiomatic
background here in § 9.1.
For the interplay between category and measure in settings such as this,

we refer to a number of our previous studies, for instance [12, 13, 14] and [50,
51]; it is category rather than measure that is primary here. For background
on the axiomatics underpinning results in this area, we refer to our recent
survey [16]; see again § 9.1.
We will rely on the following combinatorial tool. Below, B is �negligible�,

B 2 N , will mean B is meagre or null according to context, �quasi all�
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will mean �o¤ a negligible set�, while �non-negligible�will implicitly mean
Baire/measurable (and non-meagre/non-null).

Proposition 1 (A¢ ne Two-sets Lemma [12, Lemma 2]). For cn ! c > 0
and zn ! 0; if cB � A for A;B non-negligible, then for quasi all b 2 B
there exists an in�nite set M =Mb � N such that

fcmb+ zm : m 2Mg � A:

In § 2 below we review (Theorems K, K1, K2) the results we need, and
prove our main result, Theorem 1, extending Kendall�s Theorem to the Kara-
mata setting, and Theorem 2, the Characterisation Theorem for �quasi regu-
lar variation�, where limits are taken avoiding a negligible exceptional set (cf.
BGT § 2.9). In § 3, we turn to �Beurling regular variation�[51], in its Baire
version, proving the UCT in this setting (Th. 3) and the relevant version of
Kendall�s Theorem (Th. 4), involving the functional equation (CJ). We give
the results we need on in�nite combinatorics in § 4 (Prop. 3). In § 5 we deal
with general regular variation (Beurling setting, Baire versions). Here, the
relevant version of Kendall�s Theorem (Th. 5) involves the functional equa-
tion (BG). Measure versions (Th. 1M, Th. 4M, Th. 5M) follow in § 6. Then
in § 7 we turn to the regular variation of the various sequences appearing
in Kendall�s Theorem (Theorems 6I or 6M depending on context �hereafter
Theorem 6 for brevity). Character degradation (Theorem 7) resulting from
ess-lim follows in § 8 (cf. that from limsup and liminf in [9]). Complements
are presented in § 9 which we close with an Appendix on the relevant as-
pects of coding (i.e. the links between classical and e¤ective descriptive set
theory).

2. Characterization theorems: the Karamata setting.
Below R+ := (0;1); and functions are Baire if they have the Baire

property, BP. We recall from [8] that a divergent sequence cn (i.e. with
lim supn!1 cn =1 ) is said to be additively admissible, resp. multiplicatively
admissible, if

lim sup
n!1

cn+1 � cn = 0; resp. lim sup
n!1

cn+1=cn = 1:

In view of the results below, especially Theorem K2 and Corollary, it is
appropriate to comment that Kingman�s more restrictive condition:

lim
n!1

cn+1 � cn = 0; resp. lim
n!1

cn+1=cn = 1; (KC)
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is necessary and su¢ cient for the continuous and sequential forms of regular
variation to combine well (su¢ ciency as here and in BGT §1.9, necessity as in
Weissman�s lemma BGT Lemma 1.9.6). Without it, �anything can happen�.
For precise formulations of such results, see [3]. These hinge on the Doeblin
universal laws [26, XVII.9].
As usual, we pass between multiplicative and additive versions at will by

using the exp/log isomorphisms between the additive group R (Haar measure
= Lebesgue measure dx) and the multiplicative group R+ (Haar measure
dx=x); cf. [BGT, Ch. 1] and [17].

Theorem K (Characterization theorem of Karamata regular varia-
tion, cf. [BGT, 1.4.1]). If f : R+ ! R+ is Baire/measurable and regularly
varying, that is for some function g

limx!1 f(tx)=f(x) = g(t) (8t > 0);

then g is Baire/measurable and multiplicative:

g(st) = g(s)g(t) (8s; t > 0); (CFE)

and so for some  2 R
g(t) = t:

Theorem K1 (Kingman�s Croftian Theorem [41, 42], cf. [BGT, 1.9.1]).
Take fcng additively admissible, I an open interval of R:
(i) If G � R open and unbounded from above, then

cn + x 2 G in�nitely often

for some x 2 I.
(ii) If f : R! R continuous and

limn!1 f(cn + x) exists for all x 2 I;

then
limx!1 f(x) exists.

The next result is Kendall�s sequential characterization theorem of regular
variation.
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Theorem K2 (Kendall�s Theorem [40, Th. 16], cf. [BGT, 1.9.2]). For
fxngn2N multiplicatively admissible and f : R+ ! R+ continuous: if, as
n!1,

anf(�xn)! g(�) (� 2 I)
for some interval I � (0;1); positive sequence fangn2N and continuous func-
tion g : I ! R+, then f is regularly varying: for each t > 0;

K(t) := limx!1 f(tx)=f(x)

exists, is �nite, multiplicative, and both Baire and measurable. So K(t) = t�

for some �:

The interval I here may be arbitrarily small: a smidgen�s worth of se-
quential regular variation implies true regular variation of f; and fangn2N:

Corollary (cf. Theorem 6I or 6M, § 7). In Kendall�s Theorem, fangn2N is
regularly varying relative to fxngn2N with index �� : if f(x) � x�`(x); with
` slowly varying, then for some constant c

an � cx��n =`(xn):

Intervals as such are not needed here: the same is true for arbitrarily
small non-negligible (Baire/measurable) sets (see § 7). Notice that, given
the hypotheses above, the limit function K(t) is in fact the sequential limit
limn!1 f(nt)=f(n) (of Baire/measurable functions in the former case, and
continuous functions in the latter), so is Baire/measurable. The �nal asser-
tions, characterizing the relevant limit function, follow from theorems con-
cerning Baire/measurable solutions of (CFE), the Cauchy functional equa-
tion (see e.g. [10]).
Variants on the characterization theorem above are possible. First, one

may drop any condition of �topological good behaviour�(BP, or measurabil-
ity, which is BP under a change from the Euclidean to the density topology;
see e.g. [13]), and weaken the quanti�er on t above, at the cost of impos-
ing a side-condition (the classical prototype is the Heiberg-Seneta condition:
BGT, 1.4.3) � see [15, § 7]. By contrast, here we take the passage to the
limit sequentially as in Kendall�s Theorem, through a suitable (admissible)
sequence fxng, with our function f again appearing once, rather than twice,
but allow exceptions on a meagre set. Our conclusion is of regular variation
o¤ an exceptional set � �quasi regular variation�, as we shall call it. This
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reduces to ordinary regular variation if we require also �topological good be-
haviour�of the �essential limit�(below). As in [9], [12, § 11], the passage to
the essential limit results in character degradation (§ 7). Examination of this
requires us to specify the set-theoretic axioms we use (cf. [9, 16]).
Our �rst de�nition covers both category and measure needs, again by

passage to the density topology.

De�nition 1. For Lf �nite, say that f(x) has essential limit Lf as x!1
and write f(x) !ess Lf , or ess-limx!1 f(x) = Lf ; if for each " > 0 there is
Xf
" 2 R and meagre M f

" such that

jf(x)� Lf j < " for all x > Xf
" o¤ the set M

f
" : (�)

De�nition 2. Say that a Baire function f : R+ ! R+ is quasi regularly
varying weakly (resp. strongly) if g(t) := ess-limx!1 f(tx)=f(x) exists and
is �nite (and resp. g is Baire).

Our new results here are variants on or additions to Kendall�s Theorem,
particularly Theorems 1 and 6 below.

Theorem 1. For fxngn2N multiplicatively admissible and f : R+ ! R+
Baire, if

anf(�xn)! g(�) (� 2 B)
for some non-meagre Baire set B � (0;1); positive sequence fangn2N and
function g : B ! R+, then f is (strongly) quasi regularly varying: for each
s > 0;

K(s) := ess- lim�!1 f(s�)=f(�)

exists and is �nite, and multiplicative. As g is Baire on B, K is locally
bounded near s = 1, and so K(s) = s� for some � 2 R:

Some such result was suggested by [5, footnote p. 162] in a discussion
of Kendall�s Theorem. The question arises of strengthening Theorem 1 by
�thinning�: requiring convergence for a smaller �-set. Such �quanti�er weak-
ening� is possible, and involves results of Steinhaus-Weil type; see [14, 15]
and § 9.5. We delay the proof of Theorem 1 to establish some preparatory
results.

Lemma 1. (i) Essential limits preserve sums: if f(x)!ess Lf and g(x)!ess

Lg; then (f + g)(x)!ess Lf + Lg; likewise for products.
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(ii) If h(x+ u)� h(x)!ess Lu and h(x+ v)� h(x)!ess Lv; then

h(x+ u+ v)� h(x)!ess Lu + Lv:

Proof. (i) For " > 0 choose Xf
" 2 R and meagre M f

" and likewise X
g
" 2 R

and meagre M g
" so that (�) above holds for f and g respectively. Then (�)

for (f + g) holds (with 2" in lieu of ") for all x > maxfXf
" ; X

g
" g o¤ the

meagre setM f
" [M g

" : Logarithmic transformation yields the analogous result
for products.
(ii) With f(x) := h(x+u)�h(x) and g(x) := h(x+v)�h(x); since f(x)!ess

Lu and g(x)!ess Lv,

[h(x+ u+ v)� h(x+ v)] + [h(x+ v)� h(x)]!ess Lu + Lv;

that is
[h(x+ u+ v)� h(x)]!ess Lu + Lv: �

Corollary. For h : R ! R Baire and k : R ! R arbitrary, Gess := fu :
h(x+ u)� h(x)!ess k(u)g is a subgroup, and

k(u+ v) = k(u) + k(v) (u; v 2 Gess):

So if Gess contains a non-meagre Baire set, then Gess = R and, if k is Baire,
then k is linear: k(u) = cu.

Proof. That Gess = R follows here from the Subgroup Theorem for category
[BGT, Cor. 1.1.4]; evidently 0 2 Gess; so it su¢ ces to note that �u 2 Gess
for u 2 Gess: indeed with y = x� u

h(x� u)� h(x) = �[h(y + u)� h(y)]!ess �k(u): �

Theorem 2 (Characterization of quasi regular variation). If f :
R+ ! R+ is Baire/measurable and weakly quasi regularly varying with es-
sential limit function g;

ess- limx!1 f(tx)=f(x) = g(t) (8t > 0);

then g is multiplicative. Furthermore, if g is Baire (i.e. f is strongly quasi
regularly varying), then for some 

g(t) = t:
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This follows from Lemma 1(ii) and its Corollary. As to the assumption
that g is Baire, Theorem 7 (in § 8) clari�es the topological character of g.
We turn now to a stronger form of Theorem K1(ii), which is based on our
generalizations of Theorem K1(i) in [8].

Proposition 2. For f Baire and fcngn2N additively admissible, if limn f(cn+
x) exists for each x in a Baire non-meagre set C, then ess-limx!1 f(x) ex-
ists, and, for quasi all x 2 C; equals limn f(cn + x).

Proof. This follows [BGT, Th. 1.9.1(ii)]. W.l.o.g. C := InM with I an
open interval and M meagre. The function f̂(x) := limn f(cn + x) is Baire
on C. By the Baire-Kuratowski Continuity Theorem (see e.g. [54, Th. 8.1])
w.l.o.g. (expanding M as necessary) f̂ j(InM) is continuous. Fix x0 2 InM ;
then, for any " > 0; the set

J" := fx 2 C : jf̂(x)� f̂(x0)j < "g

is open relative to InM: So w.l.o.g. J" � I and jf̂(x) � f̂(x0)j < " holds on
quasi all of J":
We show that f(x)!ess f̂(x0): Otherwise, for some " > 0 the Baire set

H := fx : jf(x)� f̂(x0)j � "g

is essentially unbounded. Hence, by a generalization of Theorem K1 [8, Th.
3.6C], for quasi all x 2 J" there are in�nitely many n with cn + x 2 H; i.e.
jf(cn + x) � f̂(x0)j � " for in�nitely many n . For any such �xed x 2 J";
passing to the limit yields jf̂(x)� f̂(x0)j � "; and so this holds on quasi all
of J": This contradicts the reverse inequality, which holds on almost all of J".
�

Proof of Theorem 1. We work in the multiplicative positive reals, and
begin by recalling a Kemperman-type Displacements Lemma ([8, Cor. p.
157] �there in additive notation) asserting that for B Baire non-meagre, B\
sB is non-meagre for all s close enough to 1 � for s 2 J" := ((1+")�1; 1+");
say, for some " > 0, cf. Theorem 6 below. (This may also be deduced from
the Pettis-Piccard Theorem, [55, 56], [BinGT, Th. 1.1.1], [10, Th. P].) Since
scaling preserves category, this implies that C(s) := B \ s�1B is non-meagre
for any s 2 J":
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Now, for the most part, we follow Kendall�s proof [40, Th. 16, p. 192]:
if � 2 B and s� 2 B (i.e. � 2 C(s)), then

f(s�xn)=f(�xn) = anf(s�xn)=anf(�xn)! g(s�)=g(�):

Put ks(�) := f(s�)=f(�); then for any �xed s 2 J", for � in the Baire non-
meagre set C(s);

ks(�xn)! g(s�)=g(�); as n!1:

By Prop. 2, K(s) := ess-limx!1 ks(x) exists for this arbitrary s 2 J"; fur-
thermore, for each such s and quasi all � 2 C(s);

K(s) = limn f(s�xn)=f(�xn) = g(s�)=g(�):

As in the Corollary above, G := fs : K(s) is well de�nedg is a multiplica-
tive subgroup, since, for �xed s; t 2 G,

K(st) = ess- lim
x!1

kst(x) = ess- lim
x!1

[f(stx)=f(tx)] � ess- lim
x!1

[f(tx)=f(x)]

= K(s)K(t):

Moreover, G contains the interval J"; so, by the Steinhaus Subgroup Theorem
(see e.g. [9, Th. 6.2]), G = R+. So ess-limx!1 ks(x) exists for all s and is
multiplicative, as in Lemma 1(ii).
For the last part, being a sequential limit g is (positive and) Baire. By

passing to a smaller non-meagre subset of B; we may w.l.o.g. assume that g
is bounded on B; so that, for some 0 < a < b; say:

a < g(�) < b (� 2 B):

Likewise, by passage to a corresponding smaller " > 0; if necessary, we again
conclude (as above) that, for s 2 J" and quasi all � 2 C(s);

K(s) = g(s�)=g(�) > 0:

For s 2 J" choose �s 2 C(s) to witness the preceding equation. Then

K(s) = g(s�s)=g(�s) 2 (a=b; b=a):

So K is locally bounded on J": Hence, by the Darboux Theorem ([23, 24],
[46, §14.4]) or the Banach-Mehdi Theorem (see e.g. [10, Th. BM]), K is
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continuous, and so a power function: K(s) = s� for all s > 0; since K > 0:
�

Remarks. 1 (�Nice�versions of Baire functions). The proof above centers
on k(s; t) := g(st)=g(t) as a function of two variables, with g Baire. It
is instructive to take note why the composite function k may be assumed
Baire.
In order for f : Rd! R to be a Baire function it is necessary and su¢ cient

that the restriction f j(RdnM) be continuous for some meagre setM [54, Th.
8.1]. Above we opted to neglect behaviour on meagre sets, so M may as
well be expanded to a union of closed nwd (nowhere dense) sets, and so for
f Baire, the restriction f jHf is continuous for some dense G� set Hf : With
this in mind, note why the map (s; t) 7! f(st) may be taken Baire: for each
q 2 Q, the level set L(q) := f(s; t) : f(st) < qg is the projection of the set

f(s; t; u) : u = stg \ f(s; t; u) : (s; t; u) 2 H3
f & f(u) < qg;

as the second term here is a G�; the projection L(q) is analytic, and so by
Nikodym�s Theorem [59, Cor. 2.9.4], [39, 29.14] is again Baire. As Q is
countable, all the rational level sets are G� sets modulo one single union of
closed nwd (nowhere dense) sets.
The moral is: we may pass to a �version�of k which is �nice�: all its rational

level sets are G�. Of course, the actual function k can be as �nasty�as the
meagre set one�s set-theory admits, and that depends on one�s selection of a
(perhaps weak) form of the axiom of choice. See e.g. the Appendix below
and [16].
2. In the last part of our proof, where we deduce the form ofK, we necessarily
parted company with Kendall�s proof which at that point refers to Theorem
K to identify K. For, Theorem 1 refers to essential, rather than ordinary,
limits; nor could we apply the Corollary above to k = logK, as we did not
then know the topological character of K:

3. Beurling regular variation: Baire versions.
Beurling slow variation [BGT, § 2.11], relative to a function '; was used

by Beurling to prove a Tauberian theorem for Borel summability, which is
not of convolution form but �convolution-like� (see e.g. [4]; for links with
Riesz means, see [6]). For Beurling�s Tauberian theorem, extending Wiener�s
Tauberian Theorem, see e.g. [43, IV.11], [17, § 6.1] (there, the �convolution-
like� operation is shown to be an �asymptotic convolution�). This has led

11



recently to a generalization [12, 17] of RV to '-RV, shortly to be recalled.
Below, Kendall�s Theorem is �rst extended to this context. It has emerged
recently that the most convenient way to de�ne Beurling�s idea is to use
some simple algebraic tools. Key here is notation introduced by Popa [57]
(and later independently by Javor [37]) to study the equation (GS) above,
whose central role for RV was established only quite recently. For arbitrary
h : R! R de�ne �h; the (Popa) circle operation [13] on R, as in §1 by

s �h t = s+ th(s):

When h(t) = �1(t) � 1 + t this reduces to the circle operation s � t =
s+ t+ st of ring theory (for background see [13, § 3], [52, § 2]). In the case
of R the operation endows it with a group structure conjugate to ordinary
multiplication in view of the identity

s � t = s+ t+ st = (1 + s)(1 + t)� 1:

For � satisfying (GS); we denote the resulting Popa (circle) group by G� :=
fx : �(x) > 0g; writing its inverse operation as x�1� (the Popa inverse).
In this notation, as above, a function ' : R+ ! R+ is said to be self-

equivarying, ' 2 SE; if it is O(x) as x!1 and

�x(t) := '(x �' t)='(x)! �(t) (locally uniformly in t).

By Theorem O the limit function satis�es the Go÷¾ab-Schinzel equation of
§ 1. So �� is commutative and associative. We recall that positive solutions,
relevant here, are of the form �(t) = ��(t) := 1 + �t; for t > �� = �1=�
with � � 0; and that the case � = 0 when � � 1 with ' an o(x) function
corresponds to Beurling�s original notion of a self-neglecting function.

De�nition 3. For ' 2 SE a function f : R+ ! R+ is '-regularly varying
if, for some g and all t > 0;

f(x+ t'(x))=f(x)! K(t) (locally uniformly in t);

that is, f(x �' t)=f(x)! K(t):

Here again, as in the Karamata setting of regular variation of § 1 the
Uniform Convergence Theorem holds [51, Th.1]: if ' 2 SE; f;K are all
Baire/measurable, then convergence is necessarily locally uniform. Our next
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result extends the UCT to our present Kendall setting, and justi�es below the
assumption of local uniformity throughout. Here and below g; as a sequential
limit, is Baire/measurable, and f is viewed as de�ned on G�; i.e. on (��;1)
for the appropriate �:

Theorem 3 (UCT, cf. [51, Th.1] and [12, Th. 2B/M]). Take B non-
negligible, ' 2 SE; f (and so g : B ! R+) all Baire or all measurable.
If

anf(xn �' t)! g(t) (t 2 B);
then

anf(xn �' t)! g(t) (t 2 B) (locally uniformly in t):

Proof. This follows from Prop. 1 (A¢ ne Two-sets Lemma, above) as in the
proof of [51, Th. 1] (cf. [12, Th. 2B/M]) with the following changes. First,
replace hN(x �' t) by log f(x �' t) (�N for numerator�). Next, replace hD(xn)
(�D for denominator�) by log(1=an): Finally, replace R by B: �

Blanket Assumption of non-triviality on g. We will call a function
g : B ! R+, as above, trivial if it takes values only in f0; 1g:

In the corresponding functional equations in K that arise below, this in
turn excludes trivial solutions (note that the multiplicative Cauchy functional
equation has trivial solutions identically 0 or 1, the �rst excluded in Theorem
1): see § 9.6.

Theorem 4. Take B Baire non-meagre, fxngn2N additively admissible, and
' 2 SE and f both Baire. If the Kendall condition

anf(xn �' t)! g(t) (t 2 B) (locally uniformly in t)

holds, then f is '-regularly varying and

f(x+ t'(x))=f(x)! K(t); for t > 0;

with K continuous, satisfying the Chudziak-Jab÷ónska equation:

K(u �� v) = K(v)K(u): (CJ)
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Proof. Put hn(s) := (xn �' �) �' s and note that

hn(s) = (xn + �'(xn)) + s'(xn + �'(xn))

= xn + '(xn)[�+ s�xn(�)] = xn �' [�+ s�xn(�)]:

Also, for �xed � and n; the function s 7! hn(s) is a homeomorphism of R
under the usual (Euclidean) topology; as '(x) is O(x);

(xn+1 �' �)� (xn �' �) = (xn+1 � xn) + �('(xn+1)� '(xn))! 0;

and so �since '(xn + �'(xn))='(xn) ! �(�) �the (bitopological) general-
ization of Theorem K1 [8, Th. 3.5] holds for the homeomorphisms fhngn2N:
Now put

ks(t) := f(t �' s)=f(t):
Then by the local uniformity in the Kendall condition of the theorem, because

�+ s�xn(�)! �+ s�(�) = � �� s;

with � Baire (so continuous), we get

anf(xn �' [�+ s�xn(�)])! g(� �� s):

As before, but now working in G�; the Popa group under ��; there is an
interval J" of values s for which C(s) := B \ (s�1� �� B) is non-meagre, and
so for quasi all � 2 C(s)

ks(xn �' �) = f((xn �' �) �' s)=f(xn �' �)
= f(xn + '(xn)[�+ s�x(�)])=f(xn �' �)
! g(� �� s)=g(�):

Then, as before, by Prop. 2, K(s) := ess-limx!1 ks(x) exists for this arbi-
trary s 2 J": Also, for each such s and quasi all � 2 C(s);

K(s) = limn ks(xn �' �) = g(� �� s)=g(�) > 0;

and
K(s) = limn f((xn �' �) �' s)=f(xn �' �) = g(� �� s)=g(�):

Since � = ��; for some � � 0; by the Steinhaus subgroup theorem, as in the
Corollary, K(s) exists for all s in the Popa group G� := fs : �(s) = 1+ �s >
0g; since K is a homomorphism. Indeed, since

~v(u; x) := v[�(u)=�x(u)]! v;

14



and

x �' (u �� v) = (x �� u) �' ~v(u; x) = (x+ '(x)u) + ~v(u; x)'(x+ '(x)u));

K(u �� v) = ess- lim
x!1

ku��v(x) = ess- lim
x!1

f(x �' (u �� v))=f(x)

= ess- lim
x!1

[f((x �� u) �' ~v(u; x))=f(x �� u)] � ess- lim
x!1

[f(x �� u)=f(x)]

= K(v)K(u);

giving (CJ). �

4. Croftian In�nite Combinatorics
A key ingredient in the multiplicative form of Kingman�s Theorem K1

is that, for fdngn2N multiplicatively admissible, the sequence of dilations
(homeomorphisms) hd : x 7! dx for d = d1; d2; ::: has the property that, for
any non-degenerate interval J = (a; b); the �tail union�

S
n�m hdn(J) contains

an in�nite half-line (cf. [8, Th. 3.2]). This property no longer holds when J
is replaced by a non-null (closed) set, as in the example due to Roy Davies
[8, Th. 4.6]. To circumvent this, one may replace the indexing set N with
its natural order by the (countable) set Q+ of positive rationals with their
natural order (induced from the reals) and employ the corresponding rational
dilations hq(x) = qx: Then, for any density-open set W (see below), the
corresponding tail union

S
q�r hq(W ) contains almost all of an in�nite half-

line [8, Th. 3.2]. Further [8, Th. 3.2, Remark 2], this continues to hold
with Q+ replaced by any set of dilations fhd(x) : d 2 Dg with D dense
in R+ (equivalently: translations on R). This may be read as saying that
for �xed x; the set fhd(x) : d 2 Dg is dense in R+. We will also need a
strengthening of this provided in the next result, which uses the Q+ analogue
of the homeomorphisms of Th. 4 above: for �xed positive q and �; put

hq(s) := (q �' �) �' s = q + �'(q) + s'(q + �'(q));

to be called the �'-dilations�; below we assume ' is continuous and again
rely on Prop. 1 (but cf. § 9.7).

We recall that a set is density-open if all its points are (Lebesgue) density
points. To maintain category-measure duality, for convenience we are content
to adopt the following
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De�nition 4. Call a set category-open if it takes the form of an open set
less a meagre set.

Whilst the correct duality stance would be to work bitopologically and
use the category and measure versions of Hashimoto topologies [14], all we
need below is that the intersection of two sets of one of these two types is
again of the same type.

Proposition 3. For A;B category/density open with B unbounded and '
continuous with ' = O(x), there are arbitrarily large rationals q and points
aq 2 A; bq 2 B with

hq(aq) = bq:

Hence the tail union
S
q�r hq(A) contains quasi all of an in�nite half-line.

Proof. We consider only the density-open case, as the category-open case is
similar but simpler. Our aim is to establish the relation

q + �'(q) + aq'(q + �'(q)) = bq;

as above, or equivalently

1 + aqm�(q) =
bq

q + �'(q)
for m�(x) :=

'(x+ �'(x))

x+ �'(x)
> 0:

As '(x) = O(x), m�(x) remains bounded as x!1; say byM(�): Fix a 2 A
arbitrarily, then choose b 2 B as large as desired with b > 1 + aM(�): Since
'(x) and m�(x) are continuous in x; and x+�'(x) = x(1+�'(x)=x)!1;
there exists x (which is as large as desired for b large enough) with

b

x+ �'(x)
= 1 + amx(�) : a =

b� (x+ �'(x))
m�(x)(x+ �'(x))

:

Fix such an x; and choose a rational sequence qn ! x: Again, by the conti-
nuity of both ' and m�,

cn :=
1

m�(qn)[qn + �'(qn)]
! c :=

1

m�(x)[x+ �'(x)]
> 0:

So

a=c =

�
b� 1

cm�(x)

�
: a=c 2 B0 := (A=c) \

�
B � 1

cm�(x)

�
:
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Here B0 is dense-open, since a=c is a density point both of A=c and of the
translate of B; furthermore, cB0 � A: Put

zn := cn

�
1

cm�(x)
� [qn + �'(qn)]

�
:

Then, since cmx(�) = 1=(x + �'(x)) and m�(qn)[qn + �'(qn)] = '(qn +
�'(qn));

zn =
1=m�(qn)

qn + �'(qn)
([x+ �'(x)]� [qn + �'(qn)])

=
1

'(qn + �'(qn))
([x� qn] + �['(x)� '(qn)])! 0:

By the A¢ ne Two Sets Lemma above (applied to A and B0, rather than
A and B); for almost all b00 2 B0 the sequence

cnb
0
0 + zn 2 A i.o.

In particular, as B0 � B � 1=cm�(x); there are a0 2 A; b00 2 B0; b0 2 B with
b00 = [b

0 � 1=cm�(x)]; and some n with

cn(b
0 � 1

cm�(x)
) + zn = a

0:

Substituting for zn gives

a0 = cn

�
b0 � 1

cm�(x)

�
+ cn

�
1

cm�(x)
� [qn + �'(qn)]

�
;

that is

a0 =
1=m�(qn)

qn + �'(qn)
(b0 � [qn + �'(qn)]) : 1 + a0m�(qn) =

b0

qn + �'(qn)
:

The �nal assertion follows verbatim as in [8, Th. 3.2]. �

5. General regular variation: Beurling-Baire versions.
An analysis similar to that in Theorem 4 may be performed for the general

setting of regular variation of § 1, i.e. with asymptotics de�ned by

[f(x+ t'(x))� f(x)]=h(x)! g(t) (locally uniformly in t).
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The third function here, h (assumed positive), must satisfy (see the Remark
below)

h(x �' t)=h(x)! r(t) (locally uniformly in t),

so that, by Theorem 4, r(t) satis�es (CJ).

Theorem 5. Take B � (0;1) Baire non-meagre, fxngn2N additively ad-
missible, and ' 2 SE; f (and so g : B ! R+) all Baire. If the Kendall
condition

an[f(xn + t'(xn)� f(xn))=h(xn)! g(t) (locally uniformly in t).

holds, then

[f(x+ t'(x))� f(x)]=h(x)! K(t) (locally uniformly in t),

with K continuous, satisfying the Beurling-Goldie equation

K(u �� v) = K(u) �� K(v); (BG)

and with the � in the �� above satisfying

�(K(u)) = r(u) : �(t) = r(K�1(t)):

Proof. Here one takes

ks(t) := [f(t �' s)� f(t)]=h(t):

The analysis is unchanged (with ~v(u; x)! v in the same notation), but the
kernel function K now satis�es

K(u �� v) = ess- lim
x!1

ku��v(x) = ess- lim
x!1

[f(x �' (u �� v))� f(x)]=h(x)

= ess- lim
x!1

f[f((x �� u) �� ~v(u; x))� f(x �� u)]=h(x �� u)g � ess- lim
x!1

h(x �� u)
h(x)

+ess- lim
x!1

[f(x �� u)� f(x)]=h(x)

= K(v)r(u) +K(u):

Here K is a homomorphism between the two Popa groups G� and G�. �

Remark. Notice that the preceding equation holds if and only if h has the
asymptotic behaviour speci�ed above. We also note that a non-zero K will
necessarily be monotone �see [52].
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6. Measure versions.
The aim is to read o¤ measure analogues of Theorems K2, 1, 4 and 5 by

replacing the Euclidean topology by the density topology. Mutatis mutandis,
the �density open�version of Prop. 3 allows precisely this.

Proposition 2M (cf. [8, Th. 4.1]). For f measurable, if limq2Q;q!1 f(qx)
exists for each x in a non-null measurable set B, then ess-limx!1 f(x) exists,
and, for almost all x 2 B; equals limq2Q;q!1 f(qx).

Proof. The same proof as in Prop. 2 works with f̂(x) := limq2Q;q!1 f(qx);
which is measurable on B. By the Luzin Continuity Theorem (see e.g. [54,
Th. 8.2]) we may assume that f̂ jB is continuous (otherwise pass to a non-
null subset B0 of B on which this holds, removing a part of measure as small
as desired). From here the proof is the same save that �for in�nitely many
n 2 N�is replaced by �on some unbounded sequence of q 2 Q+�. �

This allows for the following measure versions. The �rst needs only ordi-
nary dilations fhq : q 2 Q+g; the second needs the '-dilations of § 4.

Theorem 1M. For f : R+ ! R+ measurable, if

aqf(q�)! g(�) (� 2 B) (q !1 through Q+)

for some non-null measurable set B � (0;1) and function g : B ! R+,
then f is weakly almost regularly varying: for each s > 0;

K(s) := ess- lim�!1 f(s�)=f(�)

exists and is �nite, and multiplicative. As g is measurable on B, K is locally
bounded near s = 1, and so K(s) = s� for some �:

Theorem 4M. Take ' 2 SE continuous, B � (0;1) measurable non-null
and f (and so g : B ! R+) measurable. If the Kendall condition

aqf(q �' t)! g(t) (t 2 B; q !1; q 2 Q) (locally uniformly in t)

holds, then f is '-regularly varying and

f(x+ t'(x))=f(x)! K(t); for t > 0;
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with K continuous, satisfying the equation:

K(u �� v) = K(v)K(u): (CJ)

Proof. Put hq(s) := (q�'�)�' s and apply the density-open variant of Prop.
3. So the (bitopological) generalization of Theorem K1 [8, Th. 3.5M] holds
for the homeomorphisms fhqgq2Q+ : �

The measure analogue Theorem 5M of Theorem 5 follows similarly.

7. Regular variation: sequences.
Theorem 6I below (�I for interval�) brings out a property of regular varia-

tion in the sequence fangn2N of Kendall�s Theorem. This (which is actually
left implicit in [40]) is important in various contexts, particularly in proba-
bility theory; see e.g. [5] and § 9.3 and 9.4 below. The reduction below to
a power function brings the Kendall condition into alignment with one due
to Seneta, cf. BGT § 1.9.3. Below, without loss of generality we assume
that g is continuous on B (by the Baire-Kuratowski or the Luzin Continuity
theorems �passing to a smaller set, as necessary).
We �rst need to isolate from the proof of Kendall�s Theorem all the avail-

able information about the g function occurring in that theorem. As usual
�negligible�below refers to meagre/null sets.

De�nition. For B non-negligible, say that the continuous function g : B !
R+ satis�es the Restricted Cauchy functional equation, (ResCFE) on B; if

g(s�) = s�g(�) (8� 2 (B\Bs�1)nM(s) with M(s) 2 N , 8s with B\Bs�1 =2 N ):
(ResCFEB)

This is novel here; for (conditional) functional equations, i.e. with re-
stricted domains, see [1, Ch. 6, 7, 16], [45], [46, §13.6], and for further
background literature [58]. Our result below applies to both senses of negli-
gibility.

Theorem 6I. (i) For I an interval, M negligible and B = InM with g
satisfying (ResCFE) on B; there is �0 2 B; such that with c := g(�0)=��0 ;

g(�) = c�� (� 2 B);
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(ii) With g and B as above, f; fxngn2N; fangn2N as in Kendall�s Theorem,
i.e.

anf(�xn)! g(�) (� 2 B);
f is regularly varying with index �:

f(x) � x�`(x)

with ` slowly varying.
(iii) In (ii), the sequence fangn2N is regularly varying relative to fxngn2N with
index �� :

an � cx��n =`(xn):

Proof. (i) We denote by M(s) the exceptional negligible �-set appearing in
(ResCFE)B: W.l.o.g. these are meagre F� in the category case.
We begin in (a) below by proving a local version of (i).
(a) Here we take I := (a; b) with 0 < a < b (and B = InM; with M

negligible). By assumption g is continuous on B: Fix " with

0 < " <
�p

b=a
�
� 1:

Then a(1 + ") < b=(1 + "); and so the interval

I" := (a(1 + "); b=(1 + ")) =
T
s2J"(I \ s

�1I) for J" := (1=(1 + "); (1 + "))

is non-degenerate. So, for s 2 J": I" � I \ s�1I; in particular, if �0 2 I";
then �0 2 s�1I. But (adapting the notation used earlier for C(s))

B \ s�1B = (InM) \ s�1(InM) = (InM) \ (s�1Ins�1M)
� C(s) := I"n(M [ s�1M):

By (ResCFE)B, for " > 0 small enough and all s 2 J", for quasi all
� 2 C(s)

s� = g(s�)=g(�) = K(s); (y)
the notation K following Theorem 1. Let D = fdngn2N enumerate a count-
able set dense in J": The sets d�1m M;d

�1
m M(dm) being negligible (meagre F�,

in the category case), the set

H :=
\

m
I"n[d�1m M [ d�1m M(dm)] � I
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is non-negligible and so non-empty (in the category case: a dense G� in I",
so the Baire Category Theorem applies). Take �0 2 H:
As above, �0 2 d�1m I; since �0 2 I", i.e. �0dm 2 I: Also �0dm =2 M;

i.e. �0dm 2 InM: So g is continuous at each �0dm: Furthermore, �0dm 2
InM(dm), so by (y)

d�m = g(�0dm)=g(�0) : g(�0dm) = d
�
mg(�0):

But fdmgm is dense in the interval J"; and also, as we have seen, �0dm 2 InM:
So, by continuity of g on B; passage to the limit gives, for all �0t in �0J"\B;
i.e. for quasi all t in ��10 J"; that

g(�0t) = t
�g(�0):

Writing � = �0t; for quasi all � 2 �0J" \B;

g(�) = ��g(�0)�
��
0 = c��:

(b) The argument in (a) above may be repeated, mutatis mutandis, in any
subinterval of I; and this now allows us to prove (i). We put h(x) := g(x)x��

and
J := fx 2 B : (9kx)(9� > 0) hj(xJ�) = kxg:

Then J is open in B, and by the earlier argument everywhere dense in I:
Consider any maximal interval J 0 := (a0; b0) with J 0 \ B contained in J
and let k = hj(J 0 \ B). Suppose that b0 is interior to I: For s with s < 1
the interval s�1J 0 contains b0(1; s�1) and so meets all the maximal intervals
(c; d) of J su¢ ciently close on the right of b0: Fix any such interval (c; d):
So s�1B \ B � s�1J \ J � s�1(J 0 \ B) \ (c; d): Select s� 2 J 0 \ B with
� = s�1(s�) 2 (c; d) \ BnM(s). Let k0 be the constant value of hj(c; d) \ B:
Then, as � 2 (B \ s�1B)nM(s);

g(s�) = s�g(�) : k = h(s�) = h(�) = k0:

Thus, on any maximal interval su¢ ciently close to b0; h = k; this contradicts
the maximality of (a0; b0) unless b0 is not an interior point of I: So b0 = b;
the right end-point of I. Likewise, a0 = a; the left end-point of I: So h(x) is
constant on B: �(i):
(ii) In the proof of Theorem 1 in §2 we showed that for some � the function

g satis�es (ResCFE) on B and that f is regularly varying with index that
�: �(ii):
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(iii) By (ii) write f(x) � x�`(x); for some ` 2 SV , and by (i) g(�) = c�k
for � 2 B: So, for any �xed � 2 B;

an � g(�)=f(�xn) � c��=[��x�n`(�xn)] = cx��n =`(xn): �

Corollary. For B Baire and g satisfying (ResCFE) on B; there is a discrete
family of intervals I each with a corresponding point �I 2 I; such that with
cI := g(�I)=�

�
I ;

g(�) = cI�
� (� 2 I):

Proof. By Theorem 6I, the quasi-interior Bq of B may be represented as
a union of open intervals on each of which h(x) := g(x)x�� is constant.
Consider the family of maximal open intervals in Bq on which h is constant.
Then, as in the proof of (i), both end points of such a maximal interval are
not limits of other maximal intervals. �

So far we have considered the general Baire and the interval-minus-null
cases. We turn now to the general measure variant: this addresses the mea-
sure case, and identi�es a scenario of h-constancy on certain �rational skele-
tons�, dependent on the points of B: See [8, Th. 4.2] for the constancy of
rationally invariant functions (i.e. when h(qx) = h(x) for all q 2 Q): Here
di¤erences arise between Theorem 6M below and 6I because Theorem 6M re-
quires quantitative measure theory (rather than qualitative measure theory,
which is closely aligned with the Baire case). The breakdown of the usual
category-duality occurs here since a measurable set need not be �locally co-
null�at any point (i.e. never meets almost all of some interval); the analogous
qualitative argument delivers less information.
In the Corollary above, one has multiple constancy. Theorem 6M below

in the case when B is non-null and nowhere dense opens a similar possibility.

Theorem 6M. Take B non-null closed and g satisfying (ResCFE) on B:
(a) If B is nowhere dense, then for almost all b 2 B there exists in Q a
sequence qn = qn(b)! 1 with qnb 2 B and

g(qnb) = q
�
ng(b) : g(bqn(b))=(bqn(b))

� = g(b)=b�;

i.e. h(x) := g(x)=x� remains constant on a rational sequence of dilations
qn(b). The sequence can be selected so that q2n�1(b) # 1 and q2n(b) =
1=q2n�1(b) " 1:
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(b) If B is somewhere dense, then B = B1[B0 with B1 open and B0 nowhere
dense; then Theorem 6I(i)-(iii) applies mutatis mutandis to B1; and (a) above
applies to B0 if B0 is non-null.

Proof. We follow the notation of Th. 6I, in particular, we write J� :=
[(1 + �)�1; (1 + �)]:
(a) W.l.o.g. B is (closed and) of �nite measure and g is continuous on B:

Now notice that the set

S(B) := f� 2 B : (9fsng " 1)[g(sn�) = s�ng(�)&(� 2 s�1n B)]g

is analytic, hence measurable. We will show that S(B) is non-empty, and
hence is almost all of B: indeed, suppose otherwise, then BnS(B) is non-null.
Then passing to a non-null closed subset, F say, it follows that ; 6= S(F ) �
F \ S(B); contradicting that F is disjoint from S(B):
Notice that density-open subsets meet in a density-open subset (empty

or otherwise).
Fix p with 1=2 < p < 1 (e.g. p = 3=4): We now de�ne an operator � on

non-empty density-open sets A � B: Choose a density point b 2 A: There is
� = �(A) > 0 such that

jA \ bJ�j > pjbJ�j:

So taking q = 1� p
jbJ�nAj < qjbJ�j:

For s > 1 with s 2 J� one has s�1 < � ; and 0 < 1�s�1 < 1�1=(1+�) =
�=(1+�): Take L(�) := 1+� = maxf(1+�);�=(1+�)g; so that L(�)! 1
as �! 0: Now for s 2 J�

jbJ�nbJ�s�1j � j1� sjbL(�):

So for s 2 J�,

jAs�1 \ A \ (bJ�nA)j > (p� q)jbJ�j � j1� sjbL(�):

So in the nhd bJ� of b; for any s close enough to 1; and on either side
of 1; the set C(A) := (As�1 \ A \ bJ�) is density-open, qua intersection of
density-open sets. As it has non-null measure it is non-empty, so contains a
density point, c(A) say.
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We work inductively. Base step: taking C0 to be the density-open interior
of B (with b 2 C0), put �1 := �(C0); with � the operator above. Take
s1 2 J�(1) small enough, as above, so that C1 := C(C0) is density-open and
contains b:
Continue selecting s1; s2; :::! 1; with s2i increasing and s2i+1 decreasing

and rational, and non-empty density open sets Ci � B with distinguished
member bi = c(Ci); so that with �(i) := �(Ci) :
i) Ci+1 := C(Ci) = (Cis�1i \ Ci \ biJ�(i)) is non-empty and density-open

so contains a density point bi+1;
ii) �(si) 2 Cin

S
j�iM(sj).

Then �(si) 2 (Cis�1i \ Ci \ biJ�(i)) � (Cjs�1j \ Cj \ bJ�(i)) � B and so
�(si)sj 2 Cj � B: Thus �(si) 2 B \ Bs�1j : To apply (ResCFE)B; note that
also �(si) =2M(sj); so

g(sj�(si)) = s
�
j g(�(si)):

But �(si) 2 B; so �0 = limn �(sn); and �0sj = limn �(sn)sj 2 B, as B is
closed. By continuity of g

g(sj�0) = s
�
j g(�0):

(b) If B is (closed and) somewhere dense, take B1 the union of maximal
open intervals contained in B: Then B0 := BnB1 is closed and nowhere
dense (otherwise, it would contain an open interval disjoint from B1): The
remaining assertions are clear. �

The results above extend to general regular variation. The proof is much
as above, via the Popa circle groups, with s� = g(�s)=g(�) and (B \ s�1B)
above replaced by K(s) = g(� �� s)=g(�) and (B \ s�1� �� B); respectively;
we omit the details.

Remark. The key idea of Theorem 6 is the embedding of a speci�c countable
set, one that is dense in itself, into an open set �punctured�by the removal
of a small or negligible part. Embeddings of countable sets by translation go
back to Marczewski [47]; see [49] for recent developments.

8. Character degradation from ess-lim.
8.1 In what follows, we will need to distinguish between (general) sets of

reals, and sets which can be de�ned by suitable coding. For background here,
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see e.g. the monograph Kechris [39, Ch.V] on the analytical hierarchy (note
[39, V.40B] on classical v. e¤ective descriptive set theory), and our recent
survey [16]. For a deeper analysis of coding see [63, II.1.1, 25-33]; a minimal
amount is in [27, § 2, p. 93]. We defer further discussion of these matters
(including the ambiguous analytical class �1

2) to the Appendix below, and
to the proof of Theorem 7 below.
To say that L =ess-limx!1 f(x) requires the assertion that there exists a

(meagre, exceptional) set o¤ which for all x real (large enough) f(x) is as
close to L as desired. In brief this has an 98 quanti�er block in regard to the
�analytical objects�: sets and reals.
It is also true that its negation L 6=ess-limx!1 f(x), the assertion that

there exists a (non-meagre) set on which for all x real (large enough) f(x)
avoids being su¢ ciently close to L; also has an 98 structure in regard to
analytical objects.
These two observations have a rigorous formulation below, which adds

to earlier considerations of the character of limits in Karamata and Beurling
RV noted already in [9, 12]. Though our proof is largely self-contained, we
refer for background and for the notation of the analytical hierarchy needed
here to [39, Ch. V], [16], and to the Appendix below.

Theorem 7 (Character degradation). For k Borel, the predicate

K(s) := ess- lim
x!1

k(s; x)

is of ambiguous analytical class �1
2:

Proof. For simplicity, we consider the equation L =ess-limx!1 f(x) with f
Baire, say. This is equivalent to the predicate

(9a 2 R)(8x 2 R)(8m;n 2 N)(9p 2 N)�(f; a; x;m; n; p);

where the matrix � is

[G(a(n)) is everywhere dense]&[x 2 G(a(n))&x > p) jf(x)� Lj < 1=m]:

Here � �says�that, on the dense G� set
T
nG(a(n)) and to the right of p;

the values f(x) are to within 1=m of L (with regard to the open sets G(:) see
the Appendix); here a(n) := a \ f1 � 2n; 3 � 2n; 5 � 2n; :::g; or equivalently the
binary indicator sequence (so a real number) coding that set. Apart from the
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arithmetic (= natural number) quanti�ers acting on � there are two quan-
ti�ers, the �rst existential, the second universal, ranging over the analytical
objects of type 1, the real numbers a and x; in view of the opening analytical
quanti�er block 98 of 2 quanti�ers over type 1 objects, the statement is said
to be �12(f) �the parentheses acknowledge use of f as an input. The (light-
faced, here) sigma symbol identi�es the �rst quanti�er as existential. Under
our simplifying assumption of § 2 (Remark 2) that a Baire f is replaced by
a �nice�Borel version with all its rational level sets being G�, we can think of
� as written not with the use of f but instead in terms of two codes (= real
numbers) b and c; with each b(m) and c(m) as above. For more details see
the Appendix. To indicate an implied need for some real parameters/codes,
we use a bold symbol, and say more simply that the statement is �12:
As noted earlier, the negation can also be expressed as a �12(f) statement:

the inequality L 6=ess-limx!1 f(x) is equivalent to a statement of the form

(9p 2 N)(9a; b 2 R)(8x 2 R)(8n 2 N)	(f; a; b; x; n; p);

where the matrix 	 is the conjunction of the two statements

[G(b) unbounded &[G(a(n)) everywhere dense on G(b)]]

and
[[x 2 G(a(n))&x 2 G(b)]) jf(x)� Lj � 1=p];

saying that jf(x) � Lj � 1=p for x in the G� set
T
mG(a(m)) which is un-

bounded and non-meagre on G(b):
We summarize the above by saying that ess-lim is of ambiguous analytical

class �1
2:

The analysis above extends with only a little extra complication to cover
the bivariate case L(s) =ess-limx!1 k(s; x): �

Remark. Character degradation under ess-lim here amounts (for f Borel)
to the Borel set

Hm(f) := fx : jk(x)� Lj < 1=mg
rising to the second level of the analytical hierarchy and becoming a more
complex set: a �1

2 set. (With regard to the set Hm(f) see the Appendix.)

8.2. Provably �1
2 sets. A subset A � R is said to be provably �1

2 if there
are two �12 predicates �(x; y) and 	(x; y) and a real number b such that, for
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all a 2 R; a 2 A i¤ �(a; b) and likewise a =2 A i¤ 	(a; b); with both these
equivalences provable in the axiom system ZF +DC; where DC stands for
the Axiom of Dependent Choices. Thus A is in �1

2 (bold-faced, because of
the parameter b).
Fenstad and Normann [27] noticed that a key step in [63] (in which Solo-

vay constructs a model of set theory wherein DC holds and all subsets of
R are Lebesgue measurable) may be re-read to show that all provably �1

2

subsets are measurable: see Remarks 1 and 3 in [27, p. 95]. Ultimately, the
argument relies on the notion of forcing provided by the partially ordered
set comprising all of the Borel sets lying in a �xed countable model of set
theory �see [16, § 6.1]. By using the category variant of this partial order,
much the same argument gives that all provably �1

2 subsets have the Baire
property: see [38, § 14.4, p.180].
In conclusion: we should not be surprised that �nice versions�of Baire

functions yield corresponding essential-limit functions that are Baire.

9. Complements.
9.1 Axiomatics: set-theoretic foundations for RV. We have stressed in the
Introduction the role of the Axiom of Dependent Choice(s), DC. Its great
strength, as Solovay [63, p. 25] points out, is that it is su¢ cient for the
establishment of Lebesgue measure, i.e. including its translation invariance
and countable additivity ("...positive results ... of measure theory..."), and
may be assumed consistently with such additional axioms as LM (all subsets
(of R) are Lebesgue measurable) and PB (all subsets have the Baire property,
BP). To generate non-measurable sets one needs the Axiom of Choice AC.
While the Zermelo-Fraenkel(-Skolem) axiom system ZF is common ground
in mathematics, AC is not, and alternatives to it are widely used, including
the two we have just mentioned. For a thorough discussion of alternatives
we refer to [16], especially §10 therein.
In the standard Karamata setting of RV, continuous limits of functions

may be replaced by sequential limits (as in § 2 above), so that starting with
continuous functions one remains within the class of Borel functions. In re-
placing limits by limsups character degradation occurs leading to functions
higher up the analytical (projective) hierarchy. In this connection we have
previously argued [9, § 5] that �1

2 is a most attractive class of sets within
which to carry out the analyses of RV. When drawing in the Beurling op-
eration �'; this argument needed ampli�cation �see [13, § 11]. Here, when
extending the argument to �essential limits�, we again point to the further
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attractions of the provably �1
2 class of § 8.2. Working with �nice versions�of

functions �removing a pathological set covered by a G� set, as in the Appen-
dix �via the Baire-Kuratowski or Luzin Continuity Theorems [54, Th. 8.1,
8.2], we remain in the realm of Baire/measurable sets, as though under the
sway of LM or PB. This is because the Baire Category Theorem, BC, su¢ ces
here. Indeed, BC is equivalent to DC; see [16] and the literature cited there.
9.2 Smallwood�s theorem. Essential (or approximate) limits go back to work of
Denjoy in 1916 on approximate continuity, and Khintchine in 1924 and 1927.
An early textbook treatment is in Saks [60, IX.10]. Smallwood�s Theorem
[62] reconciles the Denjoy and Khintchine approaches: for E � R Lebesgue-
measurable, f : R! R measurable, x0 2 R; f has approximate limit L at x0
(i.e. 9ess- limf(x0) = L) if and only if there exists a measurable set F � E
with density 1 at x0 and

limx2F;x!x0 f(x) = L:

Such matters are important in probability theory; see e.g. the survey of
Geman and Horowitz [28, Appendix: Metric density and approximate limits,
22-24], and the lecture notes of Adler [2, IV.4.6].
For essential (or approximate) semi-continuity, see Zink [65].

9.3 Croftian theory and admissible sequences. Croft�s theorem says that for a
continuous function f , the existence of all the sequential limits (as n!1)
of f(nh) for all h > 0 implies that of the continuous limit of f(x). Kingman
[41, 42] re-writes this additively, so working with f(log n+x), and generalizes
the Croft setting to ask for conditions on cn for a similar result to apply for
sequential limits of f(cn + x). Roughly speaking, the condition needed for a
croftian theorem to hold here is the Kingman condition (KC) of §2, namely

cn+1 � cn ! 0

(compare our admissible sequences, in additive and multiplicative notations).
As in the work of Kingman [41, 42] and Kendall [40], the key role of the Baire
category theorem is clear in the following further generalization of Vinokurov
[64]: for f as above and cn satisfying Kingman�s condition, the condition on
the set E needed for the implication from

f(cn + x)! L (x 2 E)

to
f(x)! L
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is that E be non-meagre. For further results of this type, see Fehér at al.
[25]; cf. [61].
9.4 Regularly varying measures. For random vectors X in Rd, a theory of
regularly varying measures can be based on the de�nition (suggested by
Kendall�s Theorem)

nP(X=an 2 :)! �(:) (n!1)

for an % 1, vague convergence, and suitably restricted �. Then regular
variation is present, as for some � > 0

�(tA) � t��(A)

as in Theorem 6 (and then an is regularly varying). See e.g. Hult and
Linskog [30], Hult et al. [31]. This approach is Kendall-like, as it is entirely
sequential. It can be extended to in�nite-dimensional settings, and is widely
used nowadays in probability (theory and applications).
9.5 Thinning: Steinhaus-Weil aspects. The two main ingredients in verifying
that the Kendall criterion yields regular variation are: the croftian property
of the set C in Prop. 2, and the Steinhaus-Weil property of the test set B �
that BB�1 contains an interval J around 1: Recall that the latter guarantees
that C(s) = B\ s�1B is non-empty for s 2 J , and so for s 2 J and � 2 C(s)

ks(�xn)! g(s�)=g(�); as n!1:

The Steinhaus-Weil property can hold for nowhere dense sets (cf. a mul-
tiplicative analogue of the classical Cantor excluded middle thirds); indeed
there is a rich family of such sets �see the SW property used in [15].
However, Prop. 2 relies both on the Baire function g having a point

of continuity in C; and on C having the property that, for an additively
admissible sequence cn; the tail union of its translates

S
n�m(cn+C) contains

quasi all of an in�nite half-ray. Just as in Vinokurov�s result (§ 9.3), C here
cannot be negligible.
That said, we note that, taken together, Theorem 1 and 1M already

imply (on taking an := 1=f(xn)) the Characterization Theorem K of § 2
with the global hypothesis of convergence f(tx)=f(t)! g(t) �for all t�much
weakened to �for all t on a non-negligible set�. On the other hand, it is known
[15] that a further thinning is possible: to sets having the SW property
locally. One is thus led to ask, given the convergence ess-limx!1ks(x) on
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an s-interval, whether the Theorem 1 can be further thinned, despite the
possible negligibility of C(s) itself.
9.6 Functional equations, FE. For an account of the literature of (GS) and
related equations see [1, Ch. 19] and the more recent [18], cf. the summary
in [51, § 1]. In our context it is natural to restrict solutions of (GS) and of
the related Chudziak-Jab÷ońska equation

H(x �� y) = H(x)H(y); (CJ)

with � continuous, to be non-negative and locally bounded. It then emerges
from [19] (cf. [53, § 9.5] for a more direct approach), [32, 33, 34, 35] and
especially [34], that, provided the function H is non-trivial (i.e. its range
is not a subset of f0; 1g), then local boundedness of the solution H implies
continuity. (Note the trivial counter-example: the Dirichlet function H = 1Q
for �(t) = 1 + t:) This observation includes the case of solutions of (GS)
which take the form �(t) = ��(t) for some � � 0 and t > �1=�: The case
� =1; corresponding to x �� y = xy; is just another instance of (CFE).
By Theorem 6, taking g non-trivial in Theorems 4 and 4M ensures the

corresponding K is likewise non-trivial and so continuous.
Matters are the same in the more general (BG) equation. The case for

�(t) = 1 + st, with s � 0 is typi�ed by s = 1 via scaling (save for the
case s = 0; reduced via logarithms to s = 1); then u �� v = u + v + uv =
(u+ 1)(v + 1)� 1 and here the (BG) equation reduces to

K(x �� y) + 1 = (K(x) + 1)(K(y) + 1);

so that H(x) := K(x) + 1 is locally bounded and so continuous provided
K (being non-negative) is non-zero �by Jab÷ońska�s theorems in [34]. But
here, again Theorem 6, since g is assumed non-zero in Theorems 5 and 5M,
ensures the corresponding K is again continuous.
The continuous solutions of (BG) are given in the table below. (The FE

literature also includes studies of the case where on the right �� is replaced
by a semigroup operation � as in [20, 21].)
In the table, the four corner-formulas correspond to classical variants of

the Cauchy functional equation (CFE): For completeness we include the
proof; this proceeds by a straightforward reduction to a classical variant of
(CFE) by an appropriate shift and rescaling, similar to the reduction from
K to H above. The notation �r etc. below refers to the Popa operation ��
with parameter r; i.e. the case � = �r:
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Proposition 3 ([52, Prop. A]; cf. [20]). For �� = �r; �� = �s; and K
Baire/measurable satisfying (BG); there is � 2 R so that K(t) is given by:

Popa parameter s = 0 s 2 (0;1) s =1
r = 0 �t (e�t � 1)=s e�t

r 2 (0;1) � log(1 + rt) [(1 + rt)� � 1]=s (1 + rt)�

r =1 � log t (t� � 1)=s t�

Proof. Each case reduces to (CFE) on R+, or a classical variant by an
appropriate shift and rescaling. For instance, given K; for r; s > 0 set

F (t) := 1 + sK((t� 1)=r) : f(�) = (K(1 + r�)� 1)=s:

Then with u = 1 + rx; v = 1 + ry; as (uv � 1)=r = x �r y;

F (uv) = 1 + sK(x �r y) = 1 + sK(x) + sK(y) + s2K(x)K(y) = F (u)F (v);

for u; v � 0: So, as F is Baire/measurable (see again [46, § 13]), F (t) = t

and so K(t) = [(1 + rt) � 1]=s: The remaining cases are similar. �

In the language of isomorphisms ��; exp; log, we can rephrase the above
more succinctly as follows:

Popa parameter � = 0 � 2 (0;1) � =1
� = 0 �t ��1� (e

�t) e�t

� 2 (0;1) log ��(t)
� ��1� (��(t)

�) ��(t)
�

� =1 log t� ��1� (t
�) t�

9.7 Open Question. In passing, motivated by the context of Prop. 3, we leave
open the question whether Prop. 1 (based on an a¢ ne action between two
sets A; B) has an analogue for more general continuous h(z; s) in the spirit
of the �Miller homotopies�[48], cf. [11]. (We have in mind something along
the lines: for convergent sequences zn ! z0; for almost all b near b0 there are
in�nitely many m with H(b; zm) 2 A �here with H the appropriate local
inverse at b0 = h(z0; a0).) See [29] as to a possible approach for replacing
di¤erentiability by �Radon-Nikodym di¤erentiability�as in the �Functionwise
Steinhaus-Weil Theorem�, wherein f(A�B) has an interior point (originating
with Marcin Kuczma [44]).
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Appendix: Relevant aspects of coding.
Theorem 7 above relied on the ability to refer to various subsets of the

real line, especially open sets, in terms of �codes�. Our canonical sources
there were [39, Ch.V] on the analytical hierarchy (and the note [39, V.40B]
on classical versus e¤ective descriptive set theory), and our recent survey
[16], and for coding the wide-ranging use in [63, II.1.1, 25-33] and the much
more minimal amount in [27, § 2, p. 93]. Here we give some examples to
help clarify the full e¤ect on the analytical quanti�er blocks in Theorem 7.
We begin with some notation.
Let fIngn2N enumerate (constructively) all the rational-ended intervals,

with In = (ln; rn). Write M for the odd natural numbers; for a � N we may
extract an nth canonical subset of a and also an open set naturally �coded�
by a by setting:

a(n) = a \ f2nm : m 2Mg; G(a) :=
[

n2a
In:

We identify a � N with the real number in f0; 1gN whose binary expansion
is the indicator function of a. Thus fa : m 2 ag is open (being the set of
reals with m-th binary digit =1).
The following are examples of Borel sets, using semi-formal predicates:

fa : G(a) is unboundedg =
fa : (8k 2 N)(9q 2 Q)(9m 2 N)[(q > k) & m 2 a & q 2 Im]g;
fa : G(a) is everywhere denseg =
fa : (8n 2 N)(9m 2 N)(9q 2 Q)[m 2 a & q 2 In & q 2 Im]g:

The de�ning statements here are said to be arithmetic since the quanti�ers
are �arithmetic�: they all range over the (countable) set of natural or rational
numbers, and the �matrix�(the expression in square brackets �not containing
quanti�ers) is built from elementary relations like ln < q < rn and m 2 a,
and these may be viewed as (codes for the very simple, basic) open sets
containing the real numbers a. The two examples above are Borel, as they
may be constructed using countable unions and intersections (corresponding
to the arithmetic quanti�ers) from basic open sets; for example, the second
set is G�, since it has the form\

n2N

[
m2N;q2Q

fa : m 2 a & q 2 Im & q 2 Ing:
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For f a Baire function and L �xed, the set

Hm(f) := fx : jf(x)� Lj < 1=mg

is Baire. If f happened to be continuous, this set would be open, and so
coded as G(am) with am := fn : In � Hm(f)g; i.e. by a set of natural
numbers, or, equivalently, by a single real number. For a general Baire f;
since we are prepared to neglect meagre sets, as suggested in § 2 Remark 2,
we can make a simplifying assumption: regard Hm as coded by some open
set, G(bm) say, less a union of closed nowhere dense sets �in essence use a
nice version of f ; passing to the sequence of the complements of the closed
nowhere dense sets, we view the removal of their union as an intersection of
open sets, the nth one coded by the subset cm(n) of cm, say. So, for example,
with our simplifying assumption, Hm(f) may be regarded as being the G� set

G(bm) \
\

n2N
G(cm(n)):
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