
Mathematical Programming
https://doi.org/10.1007/s10107-020-01499-w

FULL LENGTH PAPER

Series B

An efficient characterization of submodular spanning tree
games

Zhuan Khye Koh1 · Laura Sanità2,3

Received: 31 May 2019 / Accepted: 24 March 2020
© The Author(s) 2020

Abstract
Cooperative games form an important class of problems in game theory, where a key
goal is to distribute a value among a set of players who are allowed to cooperate
by forming coalitions. An outcome of the game is given by an allocation vector that
assigns a value share to each player. A crucial aspect of such games is submodularity
(or convexity). Indeed, convex instances of cooperative games exhibit several nice
properties, e.g. regarding the existence and computation of allocations realizing some
of the most important solution concepts proposed in the literature. For this reason,
a relevant question is whether one can give a polynomial-time characterization of
submodular instances, for prominent cooperative games that are in general non-convex.
In this paper, we focus on a fundamental and widely studied cooperative game, namely
the spanning tree game. An efficient recognition of submodular instances of this game
was not known so far, and explicitly mentioned as an open question in the literature.
We here settle this open problem by giving a polynomial-time characterization of
submodular spanning tree games.

Z. K. Koh: This work was done while the author was at the University of Waterloo.

A preliminary version of this paper appeared in Proceedings of the 20th Conference on Integer
Programming and Combinatorial Optimization, IPCO 2019
This work was supported by the NSERC Discovery Grant Program and an Early Researcher Award by the
Province of Ontario.

B Zhuan Khye Koh
z.koh3@lse.ac.uk

Laura Sanità
lsanita@uwaterloo.ca

1 Department of Mathematics, London School of Economics and Political Science, London, UK

2 Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada

3 Department of Mathematics and Computer Science, Eindhoven University of Technology,
Eindhoven, Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-020-01499-w&domain=pdf

Z. K. Koh, L. Sanità

Mathematics Subject Classification 05C05 Trees · 05C57 Games on graphs
(graph-theoretic aspects) · 91A12 Cooperative games

1 Introduction

Cooperative games are among the most studied classes of problems in game theory,
with plenty of applications in economics, mathematics, and computer science. In
such games, a central question is how to distribute cost (or revenue) among a set of
participants, usually called players, who are allowed to cooperate. Formally, we are
given a set N of players, and a characteristic function ν : 2N → R, with ν(∅) = 0.
Here, ν(S) represents the cost paid (revenue received) by the subset S of players if they
choose to form a coalition. An outcome of the game is given by an allocation y ∈ R

N

such that
∑

v∈N yv = ν(N), which assigns a cost (revenue) share to each player. Of
course, there are a number of criteria for evaluating how “good” an allocation is, such
as stability, fairness, and so on.

Probably the most popular solution concept for cooperative games is the core. It
is the set of stable outcomes where no subset of players has an incentive to form a
coalition to deviate. In a cooperative cost game, this translates naturally to the following
constraint:

∑
v∈S yv ≤ ν(S), for all S ⊆ N . Intuitively, if this constraint is violated

for some set S, the total cost currently paid by the players in S is more than the total
cost ν(S) they would have to pay if they form a coalition—this incentivizes these
players to deviate from the current allocation. Besides the core, there are several other
crucial solution concepts which have been defined in the literature, e.g. the Shapley
value, the nucleolus, the kernel, the bargaining set, and the von Neumann-Morgenstern
solution sets (we refer to [2] for details). Many fundamental questions involving such
solution concepts have been investigated in the past few decades: Which cooperative
game instances admit an allocation realizing a particular solution concept? Can we
efficiently compute it? Can we test whether a given allocation belongs to such sets?

Submodularity (or convexity) is a crucial property which yields interesting answers
to some of the questions above. An instance of a cooperative cost game is called
submodular if the characteristic function ν is submodular, meaning that

∀A, B ⊆ N , ν(A) + ν(B) ≥ ν(A ∪ B) + ν(A ∩ B). (∗)

Submodular games exhibit a large number of desirable properties. In particular, (1)
the core is always non-empty and an allocation in the core can be computed in poly-
nomial time [13]; (2) testing whether an allocation belongs to the core is equivalent
to separating over the extended polymatroid of ν, which can be performed efficiently
[8]; (3) computing the nucleolus can be done efficiently [10]; (4) there is a nice “snow-
balling” effect that arises when the game is played cooperatively, meaning that joining
a coalition becomes more attractive as the coalition grows, and so the value of the
so-called grand coalition ν(N) is always reached [13]. We refer to [11,13] for other
interesting properties of submodular games involving other crucial solution concepts.
Given these observations, it is not surprising that some researchers have investigated
whether it is possible to give an efficient characterization of submodular instances, for

123

An efficient characterization of submodular spanning tree games

prominent cooperative games that are in general non-convex. Such characterizations
are known, for example, for the minimum coloring game and the minimum vertex
cover game [12], as well as for some communication games [15].

This paper focuses on one of the most fundamental cooperative games, namely the
spanning tree game. This game was introduced more than 40 years ago [1,3], and
since then it has been widely studied in the literature. To get an intuition about the
problem, consider the following setting. A set N of clients would like to be connected
to a central source r which can provide a service to them. The clients wish to build a
network connecting them to the source r , at minimum cost. An obvious way to solve
this problem is to compute a minimum spanning tree connecting N ∪ {r}. But how
should the clients fairly split the cost of the tree among them? Formally, an instance of
the spanning tree game is described by an edge-weighted complete graph G = (V , E)

where V = N ∪ {r}. The set of players is given by N , and the value ν(S) of the
characteristic function is equal to the cost of a minimum spanning tree in the subgraph
induced by S ∪ {r}.

Despite being one of the most studied cooperative games, the existence of an
efficient characterization of submodularity for the spanning tree game has remained
elusive so far. Granot and Huberman [7] proved that spanning tree games are permuta-
tionally convex (which is a generalization of submodularity). Their result implies that
the core is always non-empty for such games, despite being non-convex in general (this
was first proven by the same authors in [6]). However, other nice properties of submod-
ular games donot generalize: for general spanning tree games, testing coremembership
is coNP-hard [4], and computing the nucleolus is NP-hard [5]. Trudeau [14] gave a
sufficient condition for an instance of the game to be submodular. An important step
forward was made by Kobayashi and Okamoto [9], who gave a characterization of
submodularity for instances of the spanning tree game where the edge weights are
restricted to take only two values. For general weights, they stated some necessary
(but not always sufficient) as well as some sufficient (but not always necessary) con-
ditions for an instance to be submodular. Whether a polynomial-time characterization
of submodularity exists for spanning tree games is left as an open question. In fact,
they stated twice in their paper:
“We feel that recognizing a submodular minimum-cost spanning tree game is coNP-
complete, but we are still far from proving such a result.”

Our results and techniques. In this paper, we finally settle this open question: we
give a polynomial-time characterization of submodular spanning tree games.

Our characterization uses combinatorial techniques and it is based on two main
ingredients. The first one, described in Sect. 3, is a generalization of Kobayashi and
Okamoto’s result [9]. When the edges can have only two distinct weights, they proved
that the only obstruction to submodularity comes from the presence of certain cycles
in the graph induced by the cheaper edges. When dealing with more weight values,
say w1 < w2 < · · · < wk , things become necessarily more complicated. We can still
prove that an obstruction to submodularity is given by certain cycles, which we call
violated, but (a) our definition of violated cycles is more involved than the one in [9],
and (b) we have to look for such cycles not just in one induced graph, but in each
graph induced by the edges of weight at most wi , for all i < k.

123

Z. K. Koh, L. Sanità

Furthermore, the presence of violated cycles is not anymore the only obstruction
to submodularity. Roughly speaking, violated cycles capture how the edges of a cer-
tain weight should relate to the cheaper ones, but we still need a condition that takes
into account the “magnitude” of distinct weight values, when k > 2. This leads to
the second main ingredient of our characterization, described in Sect. 4. We show
that, under the assumption of not having violated cycles, we can identify polynomi-
ally many subsets of vertices which could yield the highest possible violation to the
submodularity inequality (∗). We can then efficiently test the submodularity of our
instance by checking whether the inequality (∗) is satisfied on this family of subsets of
vertices. Combining these two ingredients yields a polynomial-time characterization
of submodularity for spanning tree games, as described in Sect. 5.

We conclude our paper with an additional result. As previously mentioned, the
authors of [9] gave a necessary condition for submodularity of the spanning tree
game. They also stated that they do not know whether their condition can be verified
in polynomial time. We answer this question affirmatively in Sect. 6.

2 Preliminaries and notation

For a subset S ⊆ V , denotemst(S) as the weight of a minimum spanning tree in G[S],
where G[S] is the subgraph of G induced by S. For a subset F ⊆ E , denote w(F) as
the sum of edge weights in F , i.e. w(F) := ∑

e∈F w(e). Let H be a subgraph of G.
For a vertex u ∈ V and an edge e ∈ E , the subgraphs H\u and H\e are defined as
H\u := H [V (H)\u] and H\e := (V (H), E(H)\e). Given a vertex u ∈ V , NH (u)

is the neighborhood of u in H , while δH (u) is the set of edges incident to u in H .
Note that u /∈ NH (u). For any positive integer k, [k] represents the set {1, 2, . . . , k}.
Given a pair of vertices u, v ∈ N , let Suv denote the family of vertex subsets which
contain r but not u or v, i.e. Suv := {S ⊆ V : r ∈ S and u, v /∈ S}. Define the function
fuv : Suv → R as

fuv(S) := mst(S ∪ u) + mst(S ∪ v) − mst(S) − mst(S ∪ {u, v}).

It is easy to see that the spanning tree gameonG is submodular if andonly if fuv(S) ≥ 0
for all u, v ∈ N and S ∈ Suv . Let w1 < w2 < · · · < wk be the edge weights of G.
For each i ∈ [k], define the graph Gi := (V , Ei) where Ei := {e ∈ E : w(e) ≤ wi }.
Note that Gk = G. For a vertex u ∈ V , denote Ni (u) as the neighborhood of u in Gi .
For an edge uv ∈ E , define the neighborhood of uv in Gi as

Ni (uv) := Ni (u) ∩ Ni (v).

It represents the set of vertices whose edges to u and v have weight at most wi . Notice
that u, v /∈ Ni (uv). We will also need the following graph theory terminology. A hole
is an induced cycle with at least four vertices. A diamond is the complete graph K4
minus one edge. We will refer to the vertices of degree 2 in a diamond as tips. Lastly,
the following property of minimum spanning trees will be useful to us.

123

An efficient characterization of submodular spanning tree games

r r r r

Fig. 1 The first two graphs are examples of bad holes, whereas the last two graphs are examples of bad
induced diamonds. The tips of the diamonds are shaded. Every edge here has the same weight

Lemma 1 Let T be a minimum spanning tree of G. For every subset S ⊆ V , there
exists a minimum spanning tree of G[S] which contains E(T [S]).
Proof Let TS be a minimum spanning tree of G[S]. We proceed by induction on
|E(T [S])\E(TS)|. For the base case, if |E(T [S])\E(TS)| = 0, then TS contains all the
edges in E(T [S]). For the inductive step, assume |E(T [S])\E(TS)| > 0. Then, there
exists an edge e ∈ E(T [S])where e /∈ E(TS). Adding e to TS creates a cycleC inG[S].
So there exists an edge f ∈ E(C)which is not an edge of T . Pick an appropriate f such
that when added to T creates a cycle containing e. Since T + f −e is a spanning tree of
G,wehavew(f) ≥ w(e).On theother hand, sinceTS+e− f is a spanning tree ofG[S],
we also have w(e) ≥ w(f). This implies w(e) = w(f), so TS + e − f is a minimum
spanning tree of G[S]. As |E(T [S])\E(TS + e − f)| = |E(T [S])\E(TS)| − 1, by
the induction hypothesis we are done. �

3 Violated cycles

In this section, we will prove that a submodular spanning tree game does not contain
violated cycles, which will be defined later. First, we need to introduce the concept of
well-covered cycles.

Definition 1 Given a cycle C and a chord f = uv, let P1 and P2 denote the two u-v
paths in C . The cycles P1 + f and P2 + f are called the subcycles of C formed by f .
We say that f covers C if w(f) ≥ w(e) for all e ∈ E(P1) or for all e ∈ E(P2). If C
is covered by all of its chords, then it is well-covered.

Next, we define the following two simple structures (see Fig. 1 for some examples).
We then proceed to show that a submodular spanning tree game does not contain either
of them.

Definition 2 A hole is bad if at least one of its vertices is not adjacent to r . An induced
diamond is bad if its Hamiltonian cycle is well-covered but at least one of its tips is
not adjacent to r .

Lemma 2 If the spanning tree game on G is submodular, then there are no (a) bad
holes or (b) bad induced diamonds in Gi for any i < k.

The lemma will be proved via contrapositive separately for (a) and (b). Before
jumping into the details, it is instructive to have an overview of the arguments, as they
revolve around the same idea. The proof starts by assuming the existence of a bad

123

Z. K. Koh, L. Sanità

r
u

u

v

v

P

r

s
u

u

v

v

P

r

s
u

u

v

v

P

Fig. 2 An example of the subgraph Gi [S ∪{u, v}] in Case 1 and Subcases 2.1–2.2 respectively. The shaded
region represents the set S

hole or a bad induced diamond in Gi for some i < k. Then, from this bad structure,
a subset of vertices S � r and two additional vertices u, v will be identified such that
they violate the submodularity inequality, i.e. fuv(S) < 0.

Proof of Lemma 2(a) Let C be a bad hole in Gi for some i < k. Consider the following
two cases.

Case 1: C contains r . Let u, v be the vertices adjacent to r in C . Define the set
S := V (C)\ {u, v}. To prove that the instance is not submodular, it suffices to show
that fuv(S) < 0. Let P be the path obtained by deleting r , u, v from C . Let u′, v′ be
the endpoints of P where uu′, vv′ ∈ E(C) (see Fig. 2). Note that u′ = v′ if P is a
singleton. It is easy to see that

mst(S) ≥ w(P) + wi+1,

mst(S ∪ u) = w(P) + w(ru) + w(uu′),
mst(S ∪ v) = w(P) + w(rv) + w(vv′).

Next, deleting the most expensive edge from C creates a minimum spanning tree of
G[S ∪ {u, v}]. Since this edge has weight at most wi , we obtain

mst(S ∪ {u, v}) ≥ w(P) + w(ru) + w(uu′) + w(rv) + w(vv′) − wi .

Combining the equations and inequalities above yields

fuv(S) = mst(S ∪ u) + mst(S ∪ v) − mst(S) − mst(S ∪ {u, v}) ≤ wi − wi+1 < 0.

Case 2: C does not contain r . We first show that if r is adjacent in Gi to two non-
adjacent vertices ofC , thenweare done. SinceC is a badhole inGi , there exists a vertex
t ∈ V (C) such that r t /∈ Ei . Starting from t , traverse the hole C in both directions
until we encounter the first vertices p and q such that r p, rq ∈ Ei respectively. Since
r is adjacent to two non-adjacent vertices of C , we have p �= q and pq /∈ E(C). Let
Q be the p-q path in C which contains t . Then, by our choice of p and q, the cycle
Q + r p + rq is a bad hole in Gi which contains r . It follows that the instance is not
submodular by Case 1.

Thus, we may assume that r can only be adjacent to adjacent vertices of C . Pick a
vertex s ∈ V (C) with the cheapest edge to r , i.e. w(rs) ≤ w(r x) for all x ∈ V (C).

123

An efficient characterization of submodular spanning tree games

Let u, v be the vertices adjacent to s in C . Define the set S := (V (C) ∪ r)\ {u, v}. As
with the previous case, it suffices to show that fuv(S) < 0. Let P be the path obtained
by deleting s, u, v from C . Let u′, v′ be the endpoints of P where uu′, vv′ ∈ E(C)

(see Fig. 2). We are left with the following two subcases.

Subcase 2.1: r is adjacent to at most one vertex of C . Since s was chosen to be the
vertex in C with the cheapest edge to r , we have

mst(S) ≥ w(P) + w(rs) + wi+1,

mst(S ∪ u) = w(P) + w(rs) + w(su) + w(uu′),
mst(S ∪ v) = w(P) + w(rs) + w(sv) + w(vv′).

Next, deleting the most expensive edge from C and adding rs creates a minimum
spanning tree of G[S ∪ {u, v}]. Since the deleted edge has weight at most wi , we
obtain

mst(S ∪ {u, v}) ≥ w(P) + w(rs) + w(su) + w(uu′) + w(sv) + w(vv′) − wi .

Combining the equations and inequalities above yields

fuv(S) = mst(S ∪ u) + mst(S ∪ v) − mst(S) − mst(S ∪ {u, v}) ≤ wi − wi+1 < 0.

Subcase 2.2: r is adjacent to two vertices of C . Since we assumed that r can only be
adjacent to adjacent vertices of C , it follows that r is adjacent to s and either u or v

in Gi . Without loss of generality, suppose that rs, ru ∈ Ei . Since s was chosen to be
the vertex in C with the cheapest edge to r , we have

mst(S) ≥ w(P) + w(rs) + wi+1,

mst(S ∪ u) = w(P) + w(rs) + min {w(ru), w(su)} + w(uu′),
mst(S ∪ v) = w(P) + w(rs) + w(sv) + w(vv′).

Next, deleting themost expensive edge from the triangle {rs, ru, su} does not increase
the weight of a minimum spanning tree in G[S ∪{u, v}]. In fact, a minimum spanning
tree can be obtained by deleting one more edge from Gi [S ∪ {u, v}]. So,

mst(S ∪ {u, v}) ≥ w(P) + w(rs) + min {w(ru), w(su)} + w(uu′)
+w(sv) + w(vv′) − wi .

Combining the equations and inequalities above yields

fuv(S) = mst(S ∪ u) + mst(S ∪ v) − mst(S) − mst(S ∪ {u, v}) ≤ wi − wi+1 < 0.

�

123

Z. K. Koh, L. Sanità

r

u v

s

s

r

u v

t

s

r

u v

t

s

r

u v

t

Fig. 3 An example of the subgraph Gi [S ∪{u, v}] in Case 1 and Subcases 2.1–2.3 respectively. The shaded
region represents the set S. For Subcase 2.1, the picture assumes that w(rs) < w(ru)

Proof of Lemma 2(b) Let D be a bad induced diamond in Gi for some i < k. Consider
the following two cases.

Case 1: D contains r . Observe that r is a tip of D. Let s be the other tip and u, v be
the non-tip vertices of D. Define the set S := {r , s} (see Fig. 3). To prove that the
instance is not submodular, it suffices to show that fuv(S) < 0. It is easy to see that

mst(S) ≥ wi+1,

mst(S ∪ u) = w(ru) + w(su),

mst(S ∪ v) = w(rv) + w(sv).

Since the Hamiltonian cycle of D is well-covered, its chord uv can be deleted without
increasing the weight of a minimum spanning tree in G[S ∪ {u, v}]. We are now left
with the Hamiltonian cycle of D, so a minimum spanning tree can be obtained by
removing the most expensive edge. This gives

mst(S ∪ {u, v}) ≥ w(ru) + w(su) + w(rv) + w(sv) − wi .

Then, combining the equations and inequalities above yields

fuv(S) = mst(S ∪ u) + mst(S ∪ v) − mst(S) − mst(S ∪ {u, v}) ≤ wi − wi+1 < 0.

Case 2: D does not contain r . Let s and t be the tips of D where w(rs) ≤ w(r t). Note
that r t /∈ Ei because D is a bad induced diamond in Gi . Let u and v be the non-tip
vertices of D wherew(ru) ≤ w(rv). Define the set S := {r , s, t} (see Fig. 3). As with
the previous case, it suffices to show that fuv(S) < 0. Consider the following three
subcases.

Subcase 2.1: r is adjacent to at most one vertex of D. Note that rv /∈ Ei . It is also
easy to see that

mst(S) ≥ w(rs) + wi+1,

mst(S ∪ u) = min {w(rs), w(ru)} + w(su) + w(tu),

mst(S ∪ v) = min {w(rs), w(rv)} + w(sv) + w(tv).

123

An efficient characterization of submodular spanning tree games

Next, observe that we can delete uv and the most expensive edge in the Hamiltonian
cycle of D without increasing the weight of a minimum spanning tree in G[S∪{u, v}].
Therefore,

mst(S ∪ {u, v}) ≥ min {w(rs), w(ru)} + w(su) + w(tu) + w(sv) + w(tv) − wi .

Then, combining the equations and inequalities above yields

fuv(S) = mst(S ∪ u) + mst(S ∪ v) − mst(S) − mst(S ∪ {u, v}) ≤ wi − wi+1 < 0.

Subcase 2.2: r is adjacent to two vertices of D. We claim that if ru, rv ∈
Ei , then we are done. Note that this implies rs, r t /∈ Ei . So, if w(uv) ≥
max {w(su), w(sv)}, then G[{r , s, u, v}] is a bad induced diamond in Gi . Otherwise,
w(uv) ≥ max {w(tu), w(tv)} because D\uv is a well-covered cycle in Gi . Hence,
G[{r , t, u, v}] is a bad induced diamond in Gi . Since both diamonds contain r , the
instance is not submodular by Case 1. Thus, we may assume that rs, ru ∈ Ei . Addi-
tionally,wemay assume thatw(su) < max {w(rs), w(ru)}. Otherwise,G[{r , s, u, v}]
is a bad induced diamond in Gi , and we are done again by Case 1. With these two
assumptions, it is then easy to see that

mst(S) ≥ w(rs) + wi+1,

mst(S ∪ u) = min {w(rs), w(ru)} + w(su) + w(tu),

mst(S ∪ v) = w(rs) + w(sv) + w(tv).

Since argmax {w(rs), w(ru)} is the most expensive edge in the cycle {rs, ru, su} by
our assumption, it can be deletedwithout increasing theweight of aminimum spanning
tree in G[S ∪ {u, v}]. By a similar reasoning, uv and the most expensive edge in the
Hamiltonian cycle of D can also be deleted. Therefore,

mst(S ∪ {u, v}) ≥ min {w(rs), w(ru)} + w(su) + w(tu) + w(sv) + w(tv) − wi .

Finally, combining the equations and inequalities above yields

fuv(S) = mst(S ∪ u) + mst(S ∪ v) − mst(S) − mst(S ∪ {u, v}) ≤ wi − wi+1 < 0.

Subcase 2.3: r is adjacent to three vertices of D. Let w(rv) = w j for some
j ≤ i , and consider the induced diamond G[{r , t, u, v}]. If its Hamiltonian cycle
is well-covered, then we are done by Case 1 because r t /∈ Ei . So we may assume
that max {w(su), w(sv)} ≤ w(uv) < w(rv). Additionally, we may assume that
w(su) < max {w(rs), w(ru)}. Otherwise, from the previous assumption, the five
edges {rs, ru, su, sv, uv} have strictly smaller weights than w(rv) = w j . Thus,
G[{r , s, u, v}] is a bad induced diamond in G j−1, and we are done again by Case
1. With these two assumptions, it is then easy to see that

123

Z. K. Koh, L. Sanità

mst(S) ≥ w(rs) + wi+1,

mst(S ∪ u) = min {w(rs), w(ru)} + w(su) + w(tu),

mst(S ∪ v) = min {w(rs), w(rv)} + w(sv) + w(tv).

Since rv is the most expensive edge in the cycle {ru, rv, su, sv} by our assumption,
it can be deleted without increasing the weight of a minimum spanning tree in G[S ∪
{u, v}]. By a similar reasoning, argmax {rs, ru}, uv and the most expensive edge in
the Hamiltonian cycle of D can also be deleted. Hence,

mst(S ∪ {u, v}) ≥ min {w(rs), w(ru)} + w(su) + w(tu) + w(sv) + w(tv) − wi .

Finally, combining the equations and inequalities above yields

fuv(S) = mst(S ∪ u) + mst(S ∪ v) − mst(S) − mst(S ∪ {u, v}) ≤ wi − wi+1 < 0.

�

We are now ready to define the main object of study in this section.

Definition 3 A violated cycle is a well-covered cycle which contains at least one pair
of non-adjacent vertices u, v ∈ V and at least one vertex w ∈ N not adjacent to r .

In the definition above, w can be equal to u or v. For example, if r ∈ V (C), then
the pair {r , w} already certifies that C is a violated cycle because it can be used to
satisfy both conditions. Observe that bad holes and Hamiltonian cycles of bad induced
diamonds are examples of violated cycles (we consider a hole to be well-covered). The
next lemma extends the scope of Lemma 2 to include violated cycles. When k = 2,
this coincides with the condition given by Kobayashi and Okamoto [9] because every
cycle in G1 is well-covered.

Lemma 3 If the spanning tree game on G is submodular, then there are no violated
cycles in Gi for any i < k.

Proof We will prove the contrapositive. Let j be the smallest integer such that G j

contains a violated cycle. By our choice of j , there are no violated cycles in Gi for
all i < j . Let C be a smallest violated cycle in G j . Then, maxe∈E(C) w(e) = w j . We
first prove the following claim.

Claim 1 For any chord f , the subcycles of C formed by f are well-covered.

Proof Let C1 and C2 denote the subcycles of C formed by f . For the purpose of
contradiction, suppose that C2 is not well-covered. Let g = uv be the cheapest chord
in C2 such that w(g) < w(f) and w(g) < w(h) for some edge h ∈ E(C2), where f
and h lie in different subcycles of C2 formed by g (see Fig. 4 for an example). This
chord exists because C is well-covered but C2 is not. Consider the subcycles C3 and
C4 of C formed by g, where f is a chord of the former. Observe that any chord of
C3 covers C3 because C is well-covered and w(g) < w(h). So, the subcycle C3 is

123

An efficient characterization of submodular spanning tree games

Fig. 4 The ellipse represents the
violated cycle C in Claim 1. The
shaded region highlights the
smaller violated cycle D. The
dashed edge indicates rs /∈ E j r s

u

v

h

f g

well-covered. In addition, the subcycle C4 is well-covered because g was chosen to
be the cheapest chord preventing C2 from being well-covered.

Let w(g) = w� for some � < j . We claim that the subcycle C3 is present in G�.
To see this, recall that C is well-covered and w(g) < w(h). Hence, it follows that
w(g) ≥ w(e) for all e ∈ E(C3), which proves the claim. On the other hand, notice that
the chord f is absent from G� because w(f) > w(g). Since the subcycle C3 is well-
covered, its vertices are adjacent to r in G� because there are no violated cycles in G�.
Next, recall that C is a violated cycle in G j , so there exists a vertex s ∈ V (C4)\V (C3)

such that rs /∈ E j . Since the subcycle C4 is well-covered, its vertices are pairwise
adjacent in G j , as otherwise it is a smaller violated cycle than C . Note that this also
implies r /∈ V (C4). Thus, we have ru, rv ∈ E� and su, sv ∈ E j .

Now, consider the 4-cycle D defined by E(D) := {ru, rv, su, sv}. It is well-
covered because w(g) = w� and ru, rv ∈ E�. Since rs /∈ E j , it is also a violated
cycle in G j . However, it is smaller than C . Indeed, C has at least 5 vertices because
f is a chord in C3 while g is a chord in C2. We have arrived at a contradiction. �

Our goal is to show the existence of a bad hole or a bad induced diamond in G j .

Then, we can invoke Lemma 2 to conclude that the game is not submodular. We may
assume that C has a chord, otherwise it is trivially a bad hole. First, consider the case
when r ∈ V (C). Let s ∈ V (C) where rs /∈ E j . For any chord f in C , observe that
r and s lie in different subcycles of C formed by f . This is because the subcycles
are well-covered by the previous claim, so the one which contains both r and s will
contradict the minimality of C . Now, let g be a chord of C . Let Cr and Cs denote
the subcycles of C formed by g where r ∈ V (Cr) and s ∈ V (Cs). Observe that the
vertices of Cr are adjacent to r due to the minimality of C . Thus, Cr is a triangle.
Otherwise, there is a chord in Cr incident to r , and it forms a subcycle of C which
contains both r and s. On the other hand, the vertices of Cs are pairwise adjacent due
to the minimality of C . Hence, Cs is also a triangle. Otherwise, there exists a chord in
Cs incident to s, and it forms a subcycle of C which contains both r and s. Therefore,
C is a bad induced diamond in G j .

Next, consider the case when r /∈ V (C). From this point forward, we may assume
that every smallest violated cycle in G j does not contain r . Otherwise, we are back in
the first case again. With this additional assumption, non-adjacency within C implies
non-adjacency with r , as shown by the following claim.

Claim 2 For any pair of vertices u, v ∈ V (C) such that uv /∈ E j , we have ru /∈ E j

or rv /∈ E j .

123

Z. K. Koh, L. Sanità

Fig. 5 The ellipse represents the
violated cycle C in Claim 2. The
shaded region highlights the
violated cycle D. The dashed
edges indicate non-adjacency in
G j . In this example, u = u′ and
v = v′

r s

u = u

v = v

h

g

Proof For the purpose of contradiction, suppose that ru, rv ∈ E j . Let s ∈ V (C)

such that rs /∈ E j . Let Psu and Psv denote the edge-disjoint s-u and s-v paths in
C respectively. Let u′ and v′ be the closest vertex to s on Psu and Psv respectively
such that ru′, rv′ ∈ E j (see Fig. 5 for an example). Without loss of generality, let
w(ru′) ≥ w(rv′). Denote Psu′ and Psv′ as the s-u′ and s-v′ subpaths of Psu and Psv

respectively. Now, consider the cycle D := Psu′ + Psv′ + ru′ + rv′. Observe that it
contains r and is no bigger than C . Furthermore, it does not contain a chord incident
to r by our choice of u′ and v′. To arrive at a contradiction, it is left to show that D is
well-covered, as this would imply D is violated. Suppose for a contradiction, that D
is not well-covered. Then, there exists a chord g in D such that w(g) < w(ru′) and
w(g) < w(h) for some h ∈ E(D), where ru′ and h lie in different subcycles of D
formed by g. This chord exists because C is well-covered but D is not. Let C1 and
C2 denote the subcycles of C formed by g, where h ∈ E(C2). Note that any chord
of C1 covers C1 because C is well-covered and w(g) < w(h). Hence, the subcycle
C1 is well-covered. Moreover, we also have w(g) ≥ w(e) for all e ∈ E(C1) because
C is well-covered and w(g) < w(h). Let w(g) = w� for some � < j . Then, C1 is
still present in G� but ru′ is not. Since C1 also contains u and v but uv /∈ E� because
uv /∈ E j , it is a violated cycle in G�. However, this is a contradiction because there
are no violated cycles in G�. �

The remaining proof proceeds in a similar fashion to the first case. Let u, v ∈ V (C)

be such that uv /∈ E j . By the claim above, we know that ru /∈ E j or rv /∈ E j . For
any chord f in C , observe that u and v lie in different subcycles of C formed by f .
This is because the subcycles are well-covered by Claim 1, so the one which contains
both u and v will contradict the minimality of C . Now, let g be a chord of C . Let Cu

and Cv denote the subcycles of C formed by g where u ∈ V (Cu) and v ∈ V (Cv). The
vertices of Cu are pairwise adjacent due to the minimality of C . Thus, Cu is a triangle.
Otherwise, there exists a chord in Cu incident to u, and it forms a subcycle of C which
contains both u and v. By an analogous argument, Cv is also a triangle. Therefore, C
is a bad induced diamond in G j . �

Notice that we have proven something stronger. Namely, if G j contains a violated
cycle, then there exists an index i ≤ j such that Gi contains a bad hole or a bad
induced diamond. Moreover, as mentioned earlier, bad holes and Hamiltonian cycles
of bad induced diamonds are violated cycles themselves. Thus,we obtain the following
corollary.

Corollary 1 There are no bad holes or bad induced diamonds in Gi for any i < k if
and only if there are no violated cycles in Gi for any i < k.

123

An efficient characterization of submodular spanning tree games

4 Candidate edges and expensive neighborhood

In the previous section, we showed that violated cycles are an obstruction to submod-
ularity. In light of this fact, we now focus on graphs G whose subgraphs Gi do not
contain violated cycles. The goal of this section is to study the behaviour of fuv on
these graphs. As a first step, the following lemma sheds light on how a minimum
spanning tree changes under vertex removal.

Lemma 4 Assume that there are no violated cycles in Gi for any i < k. Let T be a
minimum spanning tree of G[S] where r ∈ S ⊆ V . For any s �= r , there exists a
minimum spanning tree of G[S\s] which contains E(T \s) and additionally, only uses
edges from G[NT (s) ∪ r].
Proof Pick a vertex s ∈ S\r . By Lemma 1, there exists a minimum spanning tree of
G[S\s]which contains E(T \s). Let T ′ be such a tree which uses the most edges from
G[NT (s)∪r].Wewill show that T ′ is our desired tree. For the purpose of contradiction,
suppose T ′ has an edge uv such that uv /∈ E(T) and u /∈ NT (s) ∪ r . Note that u and
v lie in different components of T \s. Let Psu and Psv denote the unique s-u and s-v
paths in T respectively. We claim that C := Psu + Psv + uv is a well-covered cycle in
Gi , wherewi = w(uv). First, observe that uv is the most expensive edge inC because
Psu + Psv is part of the minimum spanning tree T . Hence, the cycle C is present in
Gi . Let f = xy be any chord of C in Gi , and denote Pxy as the unique x-y path in
T . Then, Pxy + f is a subcycle of C formed by f . Moreover, we have w(f) ≥ w(e)
for all e ∈ E(Pxy) because Pxy is part of the minimum spanning tree T . Hence, the
chord f covers C , which proves the claim.

Let u′ and v′ be the vertices adjacent to s in Psu and Psv respectively. By our choice
of T ′, we have w(u′v′) > w(uv) = wi , which implies that u′ and v′ are not adjacent
in Gi . Since there are no violated cycles in Gi , it follows that the vertices of C are
adjacent to r in Gi . However, note that adding ru′ or rv′ to T ′ creates a fundamental
cycle which uses the edge uv. Swapping it with uv creates another minimum spanning
tree of G[S\s] which contains E(T \s) and uses more edges from G[NT (s) ∪ r]. We
have arrived at a contradiction. �

Given a pair of vertices u, v ∈ N where w(uv) = wi , the following definition
distinguishes the neighbours of u, v in G from the neighbours of u, v in Gi .

Definition 4 For an edge uv ∈ E , if w(uv) = wi , the expensive neighborhood of uv

is defined as

N̂ (uv) := Nk(uv)\Ni (uv).

In other words, the expensive neighborhood of an edge uv is the set of vertices
s /∈ {u, v} such that max {w(su), w(sv)} > w(uv). It turns out that the function fuv

always returns zerowhen evaluated on a set which does not lie entirely in the expensive
neighborhood of uv.

Lemma 5 Assume that there are no violated cycles in Gi for any i < k. Let u, v ∈ N
and S ∈ Suv . If S � N̂ (uv), then fuv(S) = 0.

123

Z. K. Koh, L. Sanità

v

p

u

r
v

p

r

Fig. 6 The left image depicts an example of the minimum spanning tree T in G[S ∪{u, v}]. The right image
depicts an example of the minimum spanning tree T ′ in G[S ∪ v]. The solid edges belong to the trees while
dashed edges belong to the edge set F

Proof Let T be a minimum spanning tree of G[S ∪ {u, v}]. First, we show that we
can assume uv /∈ E(T). Since S � N̂ (uv), there exists a vertex s ∈ S such that
max {w(su), w(sv)} ≤ w(uv). If uv ∈ E(T), then by rooting T at s, u is either a
child or a parent of v. Adding su to T in the former and sv in the latter creates a
fundamental cycle which contains uv. Thus, we can replace uv with this new edge to
obtain the desired tree.

Since there are no violated cycles in Gi for any i < k, by Lemma 4, there exists a
minimum spanning tree T ′ of G[S ∪v]which contains E(T \u) and additionally, only
uses edges from G[NT (u) ∪ r]. Recall that we assumed uv /∈ E(T), or equivalently,
v /∈ NT (u). Therefore, the neighborhood of v is identical in both trees, i.e. NT (v) =
NT ′(v).

Consider the forest T \v. Let p ∈ NT (v) such that p and r lie in the same component
of T \v (see Fig. 6 for an example). Note that p = r if r ∈ NT (v). We claim that p
and r also lie in the same component of the forest T ′\v. We may assume that p �= r ,
as otherwise the claim is trivially true. Moreover, we may assume that u lies on the
unique p-r path in T . Otherwise, we are done because the same path is present in
T ′\v. Let Cr denote the component of T \v which contains p, r and u. By Lemma 4,
the endpoints of every edge in E(T ′)\E(T \u) lie in Cr . This proves the claim.

Using Lemma 4, we can construct a minimum spanning tree of G[S∪u] by deleting
v from T and adding a set F of edges from G[NT (v) ∪ r]. Note that pr /∈ F as p and
r lie in the same component of T \v. Since p and r also lie in the same component of
T ′\v and NT (v) = NT ′(v), deleting v from T ′ and adding the same set F of edges
produces a minimum spanning tree of G[S]. Thus, we get

fuv(S) = mst(S ∪ u) + mst(S ∪ v) − mst(S) − mst(S ∪ {u, v})
=

(
mst(S ∪ u) − w(E(T))

)
−

(
mst(S) − w(E(T ′))

)

=
(
w(F) − w(δT (v))

)
−

(
w(F) − w(δT ′(v))

)
= 0

as desired. �

We can now focus solely on vertex sets which lie entirely in the expensive neigh-

borhood of uv. Observe that if r /∈ N̂ (uv), then S � N̂ (uv) for all S ∈ Suv . Thus, we

123

An efficient characterization of submodular spanning tree games

do not have to check these edges uv as fuv(S) = 0 for all S ∈ Suv by the previous
lemma. This motivates the following definition.

Definition 5 An edge uv ∈ E is called a candidate edge if r ∈ N̂ (uv).

With a mild assumption, we can show that the function fuv is inclusion-wise non-
increasing in the expensive neighborhood of uv.

Lemma 6 Assume that there are no violated cycles in Gi for any i < k. Let uv be
a candidate edge and S ∈ Suv such that S ⊆ N̂ (uv). If fxy(N̂ (xy)) ≥ 0 for every
candidate edge xy, then fuv(S) ≤ fuv(S\s) for any s �= r .

Proof Pick a vertex s ∈ S\r . Without loss of generality, assume w(su) ≥ w(sv).
Then, w(su) > w(uv) because s ∈ N̂ (uv). However, these two inequalities also
imply that v /∈ N̂ (su). It follows that the set (S\s)∪v is not contained in the expensive
neighborhood of su. By Lemma 5,

0 = fsu((S\s) ∪ v) = mst(S ∪ v) + mst((S\s) ∪ {u, v})
−mst((S\s) ∪ v) − mst(S ∪ {u, v}).

Rearranging yields

mst(S ∪ v) − mst(S ∪ {u, v}) = mst((S\s) ∪ v) − mst((S\s) ∪ {u, v}). (1)

Since uv is a candidate edge, let w(uv) = wi for some i < k. We will proceed by
induction on i . For the base case i = k − 1, we have wk−1 = w(uv) < w(su) = wk .
Since N̂ (su) = ∅, the set S\s is not contained in the expensive neighborhood of su
because r ∈ S\s. By Lemma 5,

0 = fsu(S\s) = mst(S) + mst((S\s) ∪ u) − mst(S\s) − mst(S ∪ u).

Rearranging yields

mst(S ∪ u) − mst(S) = mst((S\s) ∪ u) − mst(S\s). (2)

Adding (1) and (2) gives fuv(S) = fuv(S\s). Now, suppose the lemma is true for all
i ≥ j for some j < k. For the inductive step, let w(uv) = w j−1. We may assume
that S\s ⊆ N̂ (su), as otherwise we obtain equality again. This implies that su is a
candidate edge because r ∈ S\s. Since w(su) > w(uv) = w j−1, we get

0 ≤ fsu(N̂ (su)) ≤ fsu(S\s)

= mst(S) + mst((S\s) ∪ u) − mst(S\s) − mst(S ∪ u)

where the first inequality is due to our assumption while the second inequality is due
to the induction hypothesis. Then, rearranging and adding it to (1) yields fuv(S) ≤
fuv(S\s) as desired. �

123

Z. K. Koh, L. Sanità

5 Characterization of submodularity

We are finally ready to give an efficient characterization of submodular spanning tree
games.

Theorem 1 The spanning tree game on G is submodular if and only if the following
two conditions are satisfied.

(i) There are no violated cycles in Gi for any i < k.
(ii) For every candidate edge uv, fuv(N̂ (uv)) ≥ 0.

Furthermore, these conditions can be verified in polynomial time.

Proof For necessity, assume the game is submodular. Then,Condition (i) is satisfiedby
Lemma 3 while Condition (i i) is satisfied trivially. For sufficiency, assume Conditions
(i) and (i i) hold. Let u, v ∈ N and S ∈ Suv . If S � N̂ (uv), then fuv(S) = 0 by
Lemma 5. On the other hand, if S ⊆ N̂ (uv), then uv is a candidate edge. By Lemma 6,

fuv(S) ≥ fuv(N̂ (uv)) ≥ 0.

Therefore, the game is submodular.
Checking Condition (i i) can clearly be done in polynomial time. Using Corollary 1,

verifying Condition (i) reduces to searching for bad holes and bad induced diamonds
in each Gi , which can be done efficiently. To look for bad holes, one could check if
there exists a hole through a given vertex v for all v ∈ N where rv /∈ Ei . To look for
bad induced diamonds, a naive implementation would involve examining all vertex
subsets of size 4, which still runs in polynomial time. �

6 S-wide spanning trees

In this section, we answer another question posed in [9]. There the authors stated
a necessary condition for submodularity of the spanning tree game, and left open
whether their condition can be verified in polynomial time. We here show that this
is indeed the case. While this is not that relevant anymore in order to characterize
submodularity (since we have provided Theorem 1), it shows a nice connection with
matroid intersection that might still be of interest.

Theorem 2 (Theorem 1.2 in [9]). If the spanning tree game on G is submodular, then
every minimum spanning tree T of G possesses the following two properties.

(a) It holds that w(rv) ≥ w(ru) for every vertex v ∈ N and every vertex u ∈ N on
the (unique) path connecting r and v in T .

(b) For any pair of vertices u, v ∈ N where w(uv) < w(rv), the cycle obtained by
adding uv to T does not contain r .

We show that checking Conditions (a) and (b) can be reduced to computing S-wide
spanning trees, which are defined as follows. Let G = (V , E) be an undirected graph
with edge weights w : E → R and a designated root r1 ∈ V . Let S := {s1, . . . , sk} ⊆

123

An efficient characterization of submodular spanning tree games

r1 r2

s1 s2

r

s1 s2 s

r1 r2

Fig. 7 The graph G′ and multigraphs G′
1, G′

2 respectively for the input graph K5 with 2 terminals

V \r1 be a given set of terminals. We say that a spanning tree T of G is S-wide if every
component of T \r1 contains at most one terminal. Equivalently, T is S-wide if for
every i, j ∈ [k] where i �= j , the unique si -s j path on T contains the root r1. We are
interested in the following problem:

Given (G, w, r1, S), compute an S-wide spanning tree of minimum weight.

Before solving the problem above, let us explain how one can use it to efficiently
test Conditions (a) and (b) of Theorem 2. To check Condition (a), consider all pairs
of vertices u, v ∈ N with w(rv) < w(ru), and do the following. Set r1 := u and
S := {v, r}. Compute an S-wide spanning tree T ∗ of minimum weight in G. If the
weight of T ∗ is equal to the weight of a minimum spanning tree in G, then T ∗ is a
minimum spanning tree of G violating Condition (a), since u is on the unique path
from r to v in T ∗. It is not difficult to see that this procedure will eventually find a
minimum spanning tree violating Condition (a), if one exists.

Condition (b) can be checked in a similar way. Consider all ordered pairs of vertices
u, v ∈ N with w(uv) < w(rv), and do the following. Set r1 := r and S := {u, v}.
Compute an S-wide spanning tree T ∗ of minimum weight in G. If the weight of T ∗ is
equal to the weight of a minimum spanning tree in G, then T ∗ is a minimum spanning
tree of G violating Condition (b), since adding uv to T ∗ yields a cycle containing r .
Once again, it is not difficult to see that this procedure will eventually find a minimum
spanning tree violating Condition (b), if one exists.

We will now demonstrate how to compute an S-wide spanning tree of minimum
weight using matroid intersection. Let (G, w, r1, S) be a given instance. Without loss
of generality, we may assume that there are no edges between any pair of terminals,
as every S-wide tree does not use them. We also assume k ≥ 2, otherwise this reduces
trivially to computing an arbitrary minimum spanning tree.

First, construct an auxiliary graph G ′ = (V ′, E ′) from G as follows. Create k − 1
copies of the root vertex r2, . . . , rk , including its incident edges. Next, let G ′

1 denote
the multigraph obtained from G ′ by identifying r1, . . . , rk into a single vertex r . Note
that parallel edges are kept. In order to distinguish the k parallel edges between r
and some vertex v, they will be denoted riv for all i ∈ [k], just like in the graph G ′.
Similarly, let G ′

2 denote the multigraph obtained from G ′ by identifying s1, . . . , sk

into a single vertex s. See Fig. 7 for an example.

123

Z. K. Koh, L. Sanità

Now, consider the graphic matroids on G ′
1 and G ′

2, denoted M1 = (E ′, I1) and
M2 = (E ′, I2) respectively. Observe that the matroids M1 and M2 share the same
ground set E ′ due to our notation of the parallel edges, but their independent sets are
different. We would like to establish a correspondence between S-wide spanning trees
in G and common bases of M1 and M2. Let T be the set of S-wide spanning trees in
G. Moreover, let B1 and B2 be the set of bases of M1 and M2 respectively. Construct
the function g : 2E ′ → 2E defined by

g(J) := {h(e) : e ∈ J } ,

where h : E ′ → E is defined as

h(uv) :=

⎧
⎪⎨

⎪⎩

r1v, if u ∈ {r1, . . . , rk}
ur1, if v ∈ {r1, . . . , rk}
uv, otherwise.

Lemma 7 For every J ∈ B1 ∩ B2, g(J) induces an S-wide spanning tree in G.

Proof Let J ∈ B1 ∩ B2. Then, it induces a spanning tree in the multigraphs G ′
1 and

G ′
2. Note that g(J) also induces a spanning tree in the multigraph G ′

1. Since the input
graph G can be obtained from the multigraph G ′

1 by removing parallel edges, and
g(J) ⊆ E , it follows that g(J) induces a spanning tree T in G. It is left to show
that T is S-wide. For the purpose of contradiction, suppose there exist distinct indices
i, j ∈ [k] such that the unique si -s j path P in T does not contain the root r1. From
the definition of h, we know that E(P) ⊆ J . However, E(P) induces a non-simple
walk in G ′

2, which implies that J /∈ I2. We have reached a contradiction. �

Lemma 8 For every T ∈ T , there exists a set J ∈ B1 ∩ B2 such that g(J) = E(T).

Proof Let T be an S-wide spanning tree in G. For every i ∈ [k], let r1vi be the first
edge of the r1-si path on T . Replace each r1vi with rivi and call the resulting edge set
J . Then, J induces a forest F with k components in the auxiliary graph G ′, each of
which contains ri and si . Since δF (v) ≥ 1 for all v ∈ V ′, J induces a spanning tree in
the multigraph G ′

1, as well as a spanning tree in the multigraph G ′
2. Thus, J ∈ B1∩B2.

Moreover, g(J) = E(T). �

The last two lemmas imply that g is a surjective mapping from B1 ∩ B2 to T . It is

also cost-preserving because |J | = |g(J)| for all J ∈ B1. Therefore, we can efficiently
compute a minimum-weight S-wide spanning tree by computing a minimum-weight
common basis of M1 and M2.

Acknowledgements The authors would like to thankKanstantsin Pashkovich for suggesting the connection
with matroids in Sect. 6. The authors are also grateful to the anonymous reviewers for their valuable
comments, which have helped improve the presentation of this paper.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,

123

An efficient characterization of submodular spanning tree games

and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bird, C.G.: On cost allocation for a spanning tree: a game theoretic approach. Networks 6(4), 335–350
(1976)

2. Chalkiadakis, G., Elkind, E., Wooldridge, M.: Computational Aspects of Cooperative Game Theory.
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers
(2011)

3. Claus, A., Kleitman, D.J.: Cost allocation for a spanning tree. Networks 3(4), 289–304 (1973)
4. Faigle, U., Kern, W., Fekete, S.P., Hochstättler, W.: On the complexity of testing membership in the

core of min-cost spanning tree games. Int. J. Game Theory 26(3), 361–366 (1997)
5. Faigle, U., Kern, W., Kuipers, J.: Note computing the nucleolus of min-cost spanning tree games is

NP-hard. Int. J. Game Theory 27(3), 443–450 (1998)
6. Granot, D., Huberman, G.: Minimum cost spanning tree games. Math. Program. 21(1), 1–18 (1981)
7. Granot, D., Huberman, G.: The relationship between convex games and minimum cost spanning tree

games: a case for permutationally convex games. SIAM J. Algebr. Dis. Methods 3(3), 288–292 (1982)
8. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization,

Volume 2 of Algorithms and Combinatorics. Springer, Berlin (1993)
9. Kobayashi, M., Okamoto, Y.: Submodularity of minimum-cost spanning tree games. Networks 63(3),

231–238 (2014)
10. Kuipers, J.: A polynomial time algorithm for computing the nucleolus of convex games. Report M,

(Maastricht University, 1996). pp. 96–12
11. Maschler, M., Peleg, B., Shapley, L.S.: The kernel and bargaining set for convex games. Int. J. Game

Theory 1(1), 73–93 (1971)
12. Okamoto, Y.: Submodularity of some classes of the combinatorial optimization games. Math. Methods

Oper. Res. 58(1), 131–139 (2003)
13. Shapley, L.S.: Cores of convex games. Int. J. Game Theory 1(1), 11–26 (1971)
14. Trudeau, C.: A new stable and more responsive cost sharing solution for minimum cost spanning tree

problems. Games Econ. Behav. 75(1), 402–412 (2012)
15. van den Nouweland, A., Borm, P.: On the convexity of communication games. Int. J. Game Theory

19(4), 421–430 (1991)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/

	An efficient characterization of submodular spanning tree games
	Abstract
	1 Introduction
	2 Preliminaries and notation
	3 Violated cycles
	4 Candidate edges and expensive neighborhood
	5 Characterization of submodularity
	6 S-wide spanning trees
	Acknowledgements
	References

