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Abstract One of the most intriguing facets of the climate system is that it exhibits variability across all

temporal and spatial scales; pronounced examples are temperature and precipitation. The structure of this

variability, however, is not arbitrary. Over certain spatial and temporal ranges, it can be described by

scaling relationships in the form of power laws in probability density distributions and autocorrelation

functions. These scaling relationships can be quantified by scaling exponents which measure how the

variability changes across scales and how the intensity changes with frequency of occurrence. Scaling

determines the relative magnitudes and persistence of natural climate fluctuations. Here, we review

various scaling mechanisms and their relevance for the climate system. We show observational evidence of

scaling and discuss the application of scaling properties and methods in trend detection, climate sensitivity

analyses, and climate prediction.

PlainLanguage Summary Climate variables are related over long times and large distances.

This shows up as correlations for averages on long intervals or between distant areas. An important finding

is that the majority of correlations in climate can be described by a simple mathematical relationship.

We present such correlations for temperature on long times. Similarly, the intensity of precipitation

events depends on their frequency in a simple manner. A useful concept is scaling where a scale

denotes the width of an average. Scaling says that averages on different scales are related by a simple

function—mathematically, this is a power law with the scaling exponent as a characteristic number. Scaling

has impacts on predictability, temperature trends, and the assessment of future climate changes caused by

anthropogenic forcing.

1. Introduction

An emerging topic in climate science is the systematic change of the temporal and spatial structures of

climate variability seen across a multitude of spatial and temporal scales, in particular power law behavior

(e.g., Graves et al., 2017; Hurst, 1951; Huybers & Curry, 2006; Lovejoy & Schertzer, 2013; Mandelbrot &

Wallis, 1968). The intensity distribution of climate variables in relation to their frequency of occurrence also

shows such power lawbehavior. It is of importance to improve our understanding of the underlying structure

of climate variability since this may potentially allow us not only to improve our predictive capabilities but

also contribute to an improved overall understanding of the complex Earth system as a whole. The presence

of power law behavior in both the temporal and spatial domains and in intensities can reveal aspects of the

underlying dynamics of the Earth system such as climate sensitivity and predictability.
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Figure 1. (a) Daily precipitation at Xichang, China. (b) Probability density function of precipitation (red dashed line:
corresponding power law fit with exponent 4.97; black dashed line: corresponding exponential probability density
function with parameter 8.21). (c) Annual mean Central England Temperature (CET). Red line: non-linear trend,
magenta line: 11-year running mean, and blue line: decadal-scale fluctuations as derived from an empirical mode
decomposition (EMD) and (d) detrended fluctuation analysis (DFA) plot with d = 0.25. Circles: fluctuation function
and red line: straight line with slope 0.25. (e) Autocorrelation function of CET (black line) and the red dashed line
indicates a power law decay.

This behavior can be illustrated with two climatological time series (Figure 1). Our choice of precipitation

data (Figure 1a) exhibits the typical intermittent behavior with no or only very little precipitation on most

days interspersed with an occasional extreme event. Hence, precipitation is a climatological variable that

is highly episodic. Consequently, the distribution of precipitation is much more heavy tailed than a Gaus-

sian distribution (Figure 1b). Thus, large values are much more likely than in the case of variables that are

Gaussian distributed; the Gaussian distribution decays much faster than a power law. The tails of many

precipitation distributions, as well as of other climatological quantities, decay according to a power law
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(see section 1.2 for details). This power law relation between intensity and probability of occurrence
constitutes a scaling relationship.

As a second time series we present the Central England Temperature (CET) (Parker et al., 1992) time series
for the period 1772-2017. The CET consists of observations from stations located throughout central Eng-
land. In Figure 1c we show the annual mean time series overlayed by an 11-year running mean and the
nonlinearly filtered decadal-scale CET data using empirical mode decomposition (Franzke, 2009; Huang
et al., 1998; Huang & Wu, 2008). empirical mode decomposition allows for a systematic decomposition of
time series into dynamically relevant oscillatory modes and a nonlinear trend. The CET time series exhibits
decadal-scale variations about an instantaneousmean (Franzke, 2009). The observed decadal-scale variabil-
ity is a visible imprint of the scaling and long-range dependence (e.g., Gil-Alana, 2008; Graves et al., 2015).
Intuitively, long-range dependence has the property that spatially coherent anomalies persist for a long time;
for example, heatwaves or droughtsmay last formany years (Cook et al., 2015), which is indicative of a decay
of serial correlation which is slower than exponential, for example, power law decay. Long-range depen-
dence means that positive (negative) anomalies are very likely followed by positive (negative) anomalies for
long periods of time. The decay of serial correlations of long-range dependent systems behaves according
to a power law (Figures 1d and 1e) as can be shown by an analysis using detrended fluctuation analysis
(DFA) (see section 2.6.2). This approach provides more robust estimates than the standard autocorrelation
function, which can be noisy at long lags (Figure 1e). In brief, this method computes the variance for mov-
ing windows of different sizes which yields a scaling relationship for the correlation strength of values at
different times.

To summarize, many climatological time series exhibit a power law behavior in their amplitudes or their
autocorrelations or both. This behavior is an imprint of scaling, which is a fundamental property of many
physical and biological systems and has also been discovered in financial and socioeconomic data as well
as in information networks (Ball, 2003; Clauset et al., 2009; Mandelbrot, 1963; Mantegna & Stanley, 1999;
Saichev et al., 2009;Willinger et al., 2004).While the power law has no preferred scale, the exponential func-
tion, also ubiquitous in physical and biological systems, does have a preferred scale, namely, the e-folding
scale, that is, the amount by which its magnitude has decayed by a factor of exp(−1). For example, the aver-
age height of humans is a good predictor for the height of the next person you meet as there are no humans
that are 10 times larger or smaller than you. However, the average wealth of people is not a good predictor
for the wealth of the next person you meet as there are people who can be more than a 1,000 times richer
or poorer than you are. Hence, the height of people is well described by a Gaussian distribution, while the
wealth of people follows a power law (Newman, 2005).

Furthermore, a fascinating aspect of scaling in the climate system is that it occurs in many different charac-
teristics of climate variables. As demonstrated above, it exists in time and intensity and, as we will discuss
below, in space. For instance, negative vorticity anomalies, such as blocking, can be very persistent (e.g.,
Feldstein & Franzke, 2017), while positive vorticity anomalies, such as storms, have a heavy-tailed prob-
ability distribution of intensities (Blender et al., 2016; Corral et al., 2010) and heavy-tailed waiting time
distributions (Franzke, 2013; Yang, Franzke & Fu 2019). Persistence and heavy-tailed distributions are
described by scaling relationships. Different dynamical regimes are likely causing the scaling properties in
the intensity, time, and space. In section 2.5 we discuss potential physical mechanisms which can explain
scaling in the climate system. While there have been many mechanisms discussed in the literature (e.g.,
Beran, 1994; Beran et al., 2013), their applicability to the climate system is still an open question.

While the existence of scaling has been known for a long time and across many scientific areas, it had been
largely ignored for an almost equally long time in the analysis of climate data, with some exceptions (e.g.,
Becker et al., 2014; Blender & Fraedrich, 2003; Dangendorf et al., 2014; Gil-Alana, 2003; Franzke, 2012;
Koscielny-Bunde et al., 1998; Mann, 2011; Vyushin et al., 2004). Only recently has its usefulness been more
widely appreciated in climate science, partly due to its inclusion in text books (e.g., Chandler & Scott, 2011;
Lovejoy & Schertzer, 2013; Mudelsee, 2013; Schmitt & Huang, 2016) and partly due to the establishment of
working groups such as Climate Variability Across Scales, part of Past Global Changes, who employ scaling
approaches to improve our understanding of the complexities of the Earth system (see, e.g., Crucifix et al.,
2017).

These scaling ideas enter the climate sciences from theoretical physics, applied mathematics, statistics, and
theoretical climatology. They are rarely taught in standard meteorology, oceanography, or climate science
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Figure 2. Schematic diagram of important spatial and temporal scales in the climate system. The solid lines denote an
estimate of the relative variance of climate variability. The dashed lines denote the variance contribution to the total
variance from climatic processes with characteristic spatial scales smaller than those indicated on the x axis. The
periodic climate components are denoted by spikes of arbitrary width. See Mitchell (1976) for more details. Figure
source: Mitchell (1976).

courses. Here, we aim to bridge these disciplinary gaps by introducing the main ideas in a manner that is

accessible and applicable for climate scientists.

1.1. Scales in the Climate System

One of the fascinating aspects of the climate system is the close relationship between the spatial and tem-

poral scales of the relevant physical processes. This accounts for the success of scaling analyses of the

equations of motion and the systematic derivation of simplified versions of the primitive equations, such as

the quasi-geostrophic or the shallow-water equations (e.g., Franzke et al., 2019; Klein, 2010; Majda &Wang,

2006; Vallis, 2017). For instance, the quasi-geostrophic equations are valid in the limit of a small Rossby num-

ber (Vallis, 2017) and describe Rossby and synoptic-scale waves and, thus, provide an excellent conceptual

model to understand many important aspects of the atmosphere and ocean.

The many physical processes in the Earth's climate system span a vast dynamic range, both in space (from

10−3 to 107m) and time (from seconds tomillions of years) (Figure 2).Williams et al. (2017) provide a census

of atmospheric processes, the variability of which range from seconds to decades. In the climate system, we

typically deal with the following physical processes and associated scales: turbulent eddies on time scales

of a few seconds and length scales of millimeters to centimeters, convective activity on temporal scales of

hours and spatial scales of hundreds of meters to a few kilometers, synoptic weather systems varying diur-

nally on spatial scales of hundreds to thousands of kilometers, large-scale teleconnection patterns with an

intraseasonal to interannual temporal variability and spatial scales that can span an entire hemisphere, the

coupled atmosphere-ocean system which varies from decadal to centennial time scales and a global spatial

scale, and the ice ages that represent global variations on millennial time scales (Figure 2). The main four

components of the climate system (atmosphere, ocean, land, and cryosphere) tend to operate on different

time scales that interact nonlinearly with each other creating a plethora of interesting effects and feedbacks

(Peters et al., 2004; Rial et al., 2004; Williams et al., 2017).

An intriguing property of the climate system is that despite the fact that we have to deal with many different

physical processes, the variability constitutes a continuum of fluctuations, that is, while the variability spec-

trummay be interspersed by spikes belonging to some particular andwell-defined forcing process (e.g., daily,

annual, or Milankovich cycles), the vast part of the spectrum is continuous and scales over large ranges.

1.2. Power Law Scaling

By scaling, wemean the power law relationship between the amplitude of fluctuations and their probability

of occurrence on a given temporal or spatial scale:

𝑓 (a𝑦) = a𝛾𝑓 (𝑦) (1)
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Figure 3. Time series with scaling and nonscaling behavior. (a) A time series with scaling behavior (long-term
persistence parameter d = 0.495) and (b) zooms in the time period between 400 and 600 time units of (a). After
zooming in, the time series in (b) shows a similar pattern as the time series in (a). (c) A time series without scaling
behavior (first-order autoregressive process xt+1 = 0.5xt + 𝜁 t) and (d) zooms in the time period between 400 and 600
time units of (c). (e) Fluctuation functions for a short-term-dependent process (first-order autoregressive process)
(black line) and scaling model in form of a long-term-dependent process (red line) with regression lines with slopes of
0.5, which corresponds to d = 0.0 (blue line), and slope of 0.75, which corresponds to d = 0.25 (green line). (f) Power
spectrum of the short-term-dependent process (black), and the long-term-dependent process (red) plotted in (a) and
(c). The blue line is the theoretical slope line of a long-term-dependent process with slope 𝛽 = −0.5 (d = 0.25), and the
red green line is the theoretical slope line of the short-term-dependent process with slope 𝛽 = 0.0 (d = 0.0). The
relationship between slopes of the power spectrum 𝛽 and the DFA is as follows: 𝛽 = 2(d + 0.5) − 1.

where f is an arbitrary functionwhich can either be deterministic or stochastic, y is a climate variable or time,

and 𝛾 denotes the scaling exponent, a factorwhich allows us to zoom in and out. In case of f being a stochastic

function, the equality has to be interpreted as equality in distribution. When considering a time series, f is a

stochastic process and equation (1) implies that the variability of short time scales is statistically similar to

the variability on longer time scales. This also implies that no preferred time scale exists. Furthermore, this

equation describes a self-similar process (Lamperti, 1962); if y would denote time, then equation (1) would

imply that the variancewould go to infinity for increasing time scales. Furthermore, the fact that climate data
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Figure 4. Time series with scaling and nonscaling behavior. (a) Probability distribution function of an 𝛼-stable
distribution with linear axis scaling and (b) with logarithmic axis scaling. The case 𝛼 = 2 corresponds to the
exponential Gaussian distribution, while 𝛼 values less than 2 correspond to power laws.

exhibit scaling indicates that the statistical properties remain independent of the scale (Hurst, 1951; Feder,

1988; Franzke et al., 2012; Kolmogorov, 1940; Lamperti, 1962; Mandelbrot & Van Ness, 1968; Mandelbrot,

1982; Taqqu, 2013) as is the case for fractals (Feder, 1988). The scaling property might already be a familiar

concept from power spectrum analyses where, in addition to pronounced peaks, one also examines for the

existence of linear slopes in a double logarithmic scale representation (e.g., Huybers &Curry, 2006;Wunsch,

2003).

In Figure 3 we display time series sample paths in order to illustrate the scaling property; these were gener-

ated from anAutoregressive Fractional IntegratedMovingAverage (ARFIMA) scalingmodel (see section 2.4

and Appendix A). The displayed long-range dependence process has a slope of 0.75 in a log-log plot of fluc-

tuation function versus scale, while a short-range dependence (SRD) process has a slope of 0.5 at long time

scales. A slope of 0.5 corresponds to white noise which means that the process is uncorrelated (Figure 3c).
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Figure 5. Estimates of relative variance of climate over all periods of variation in the climate system. Source: Mitchell
(1976).

The power spectrum (Figures 3d) exhibits the corresponding behavior of increasing power for lower fre-

quencies (with a singularity at zero) of a long-range dependence process exhibiting while the SRD spectrum

is flat at low frequencies. Scaling in intensities is displayed in Figure 4 for the 𝛼-stable distribution.

1.3. Climate Variability Across Scales

The first attempt to conceptualize atmospheric variability over a wide range of scales has been made by

Mitchell (1976). Mitchell's ambitious composite spectrum (Figure 5) ranged from hours to the age of the

Earth and focused on the peaks in the power spectrum, thus emphasizing the quasiperiodic phenomena in

the climate system and its forcings. Although Mitchell (1976) made a candid admission that his spectrum

was mostly an “educated guess,” and despite subsequent improvements in climate and paleoclimate data,

the original work has achieved almost iconic status.

Mitchell's scale-bound view led to a climate dynamics framework that emphasizes the importance of numer-

ous processes occurring at well-defined time scales and the separation into quasiperiodic “foreground”

processes (illustrated as sharp peaks in Figure 5) and the “unimportant background noise.” We argue that

while this division is not wrong per se, it can only explain a small fraction of the overall variability and the

underlying climate system dynamics. Wunsch (2003) showed that the quasiperiodic signals represent only

a small fraction of the total variability which is more akin to a Lorentzian spectrum of an autoregressive

process, while Pelletier (1997) and Huybers and Curry (2006) put an emphasis on the power law behavior

of the background spectrum.

Lovejoy and Schertzer (2013) and Lovejoy (2015b) postulated the existence of five distinct power law scaling

regimes. These regimes are based on different scaling exponents for the relationship E(𝜔) ∼ 𝜔−𝛽 , where E

denotes the spectral energy and𝜔 frequency (Huybers & Curry, 2006). The proposed regimes are as follows:

1. the weather regime with time scales from 6 hr up to 20 days with an exponent of 𝛽 ≈ 1.8

2. the macroweather regime with time scales between 20 days and 50 years and 𝛽 = 0.2

3. the climate regimewith time scales between 50 and 80,000 years (includes glacial-interglacial cycles) and

𝛽 = 1.8

4. the macroclimate regime between 80,000 and 500,000 years and 𝛽 = −0.6
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5. the megaclimate regime for time scales larger than 500,000 years which takes us to the limit of reliable
proxies (Lovejoy & Schertzer, 2013) and 𝛽 = 1.8.

See Figure 2a of Lovejoy (2015b) for an illustration of the scaling regimes.

Some recent studies focusedmore on the continuum aspects of the spectra (Huybers &Curry, 2006; Pelletier,
1998; Paillard, 2001). For instance, Huybers and Curry (2006) reported qualitatively similar results for the
macroweather and climate regimes, while Nilsen et al. (2016) provided quantitative evidence that supports
the hypothesis of just one scaling regime at least for the Holocene. Nilsen et al. (2016) also question whether
it is meaningful to classify climate variability into universal regimes on time scales where we observe forced
global climate changes and in particular geological time scales. The reason is that the variability on the long
time scales is fundamentally forced by time-dependent external processes, for example, the Milankovich
cycle; hence, its statistics are time varying (Nilsen et al., 2016). On shorter temporal scales, on the other
hand, scaling is better established inmany climatic data sets for a wide range of spatial and intensity ranges.
Furthermore, it has been recognized that quasiperiodic signals represent only a small fraction of the total
climate variability, and while many studies have focused on understanding these quasiperiodic signals, we
argue that the continuous variance spectrum is of equal significance and deserving of future research efforts.

1.4. Scope of the Review

Because scales and scaling properties in the climate system are hard to adequately cover in a single paper,
we will restrict this review to topics relevant to the interpretation and reconstruction of time series and to
the impacts of scaling on climate variability, trends, prediction, and climate sensitivity. While we cover the
potential physicalmechanisms behind scaling, we can only provide a broad and nonrigorous introduction to
themathematical framework of scaling processes.More rigorous treatments can be found elsewhere (Beran,
1994; Beran et al., 2013; Baillie, 1996; Doukhan et al., 2002; Embrechts & Maejima, 2007; Guegan, 2005;
Lovejoy & Schertzer, 2013; Palma, 2007; Samorodnitsky, 2007, 2016).

Our review is structured as follows: Section 2 covers the basic ideas of scaling and estimation methods;
section 3 provides empirical evidence of scaling in climatic time series; section 4 discusses applications of
scaling-like trend detection, climate prediction, and climate sensitivity. We end with an outlook and open
research questions in section 5.

2. Basic Concepts Related to Scaling Relationships

In this section we provide a brief review of the mathematical and physical background to scaling, with an
emphasis on an intuitive understanding of the main ideas, leaving the details to the specialist literature.

2.1. Scaling and Power Laws
2.1.1. Scaling FromDimensional Analysis

In the physical sciences, scaling is a well-known and long established concept (Bolster et al., 2011; Lon-
gair, 2003; Watkins et al., 2016). For instance, scaling can be used to explain: (i) how a pendulum's angular
frequency depends on its length or (ii) how the gravitational force between two bodies depends on their
distance from one another.

In the first example, the angular frequency 𝜔 depends on the length l as

𝜔 = 2𝜋

√
g

l
∼ l−

1
2 (2)

where g is the gravitational acceleration. In the second example, Newton's law of universal gravitation states
that the gravitational force, F, between two bodies with massesm1 and m2, is inversely proportional to the
square of the distance between their centers, r, as

F = G
m1m2

r2
∼ r−2 (3)

whereG is the universal gravitational constant. The scaling property in both examples is so well established
that it can be used to extrapolate and to test the behavior of systems outside their initial observable range. It
can easily be seen that equations (2) and (3) are different forms of the power law from equation (1) with 𝛾

equal to −(1/2) and −2, respectively.

While originally a result of empirical observation, the above equations can also be derived from dimensional
analyses. This embodies the physical principle of similarity, which requires that (natural) physical laws
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should be independent of (human) physical units used to describe a system. According to Buckingham's𝛱

theorem (Buckingham, 1914; Meinsma, 2019), dimensional analysis can be used to show that any physical

equation involving n variables can be rewritten using n-m dimensionless parameters, where m ≥ 0, thus

revealing possible scaling relations which can then be empirically tested (Bolster et al., 2011).

Dimensional analysis remains a very powerful technique for systems which resist analytic or numerical

treatment. The prime example is geophysical fluid turbulence. In 1941 Kolmogorov (Kolmogorov, 1991b,

1991a) derived a scaling relationship between turbulent kinetic energy E and the horizontal scale as mea-

sured by wavenumber k for isotropic turbulence. Thereby, he derived the Kolmogorov -5/3 spectrum(for

details and underlying assumptions see Vallis, e.g., 2017):

E(k) ∼ k−5∕3 (4)

While a power law distribution of the energy spectrum has been confirmed by observational evidence in

the atmosphere (Nastrom & Gage, 1985; Straus & Ditlevsen, 1999), the exact exponent is still a matter of

debate (Lovejoy et al., 2007; Lovejoy & Schertzer, 2013). For instance, Lovejoy et al. (2007) have shown that

the atmosphere is anisotropic with different scaling exponents in the horizontal and vertical directions,

which violates Kolmogorov's assumption of isotropy. Also, the theoretical−(5/3) scaling for large horizontal

scales is−2.4 according to aircraft measurements (Lovejoy et al., 2009). This does not invalidate dimensional

analysis but only shows that some of the underlying assumptions made by Kolmogorov in his first model

(homogeneous and isotropic three-dimensional turbulence) describe an idealized system but are typically

not valid in the real atmosphere or ocean, where vertical stratification, jet streams, and the presence of

boundaries prevents full isotropy and homogeneity.

Another example of scaling is the addition of N random numbers, where the standard error scales as 𝜎N ∝

N1/2, a result familiar to all scientists from the undergraduate laboratory and the treatment of experimental

errors (e.g., Wilks, 2011). Interestingly, this result can be connected to a physical situation, by considering

the root-mean-square of the displacement yN from the origin of the first N steps of a random walk, which

is one of the most basic stochastic models for a time series. In a typical one-dimensional discrete random

walk, a particle may start at a location and each step moves it either to the left or to the right with equal

probability. The resulting root-mean-square of the total displacement, y, afterN steps scales withN1/2 which

can also be expressed in terms of time, t, as

√
𝑦2− < 𝑦>2 ∼ t1∕2 (5)

This describes the growth of the diffusing edge of a particle cloud executing Brownianmotion (SeeAppendix

B) (Bouchaud & Potters, 2003). The random walk model is statistically self-similar; that is, the time series

generated by a random walk looks approximately the same as parts of it. In other words, the shapes

and behaviors of the time series are independent of the time scale under consideration. Mathematically,

statistical self-similarity can be written as

X(at)
d
= a𝛾SSX(t) (6)

and is equivalent to the scaling relationship in equation (1) where
d
= refers to that both sides are equally dis-

tributed. Here, 𝛾SS is the self-similarity parameter. In some processes, such as fractional Brownian motion,

this is identical to theHurst exponentH. TheHurst exponentH is named afterHarold EdwinHurst who first

identified a scaling relationship investigating the flow levels of the Nile river and other reservoirs (Doukhan

et al., 2002; Hurst, 1951, 1957). He developed the R/S method (see details below in Appendices C.1 and D)

to estimate the scaling exponent. A list of used exponents is given in Table 1.

The range of problems we can handle with scaling analysis can be greatly broadened if we introduce the

concept of fractals by considering scaling exponents 𝛾 which are nonrational. Just as in the integer or ratio-

nal cases, there is physically instructive information in fractal exponents that can go beyond that from

dimensional analysis. These nonrational exponents will play an important role from now on since they

are necessary to describe the observed scaling in climate time series due to long-range dependence and

heavy-tailed probability density functions (PDFs). They will be discussed in the following subsections.
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Table 1
Table of Scaling Exponents

Exponent Name Relationship to other exponents

𝛾 general power law exponent

𝛾SS self-similarity exponent

H Hurst exponent H ∶=
𝛽+1
2

where H measures long-

range dependence

𝛼 stability exponent

𝛽 power spectrum exponent from a station- 𝛽 ∶= 2H − 1 where H measures

ary process long-range dependence

d long-range dependence parameter d ∶= H −
1
2
for Gaussian processes

𝜏(q) multifractal exponent/Renyi scaling

exponent

Note. d is used in the statistics community in autoregressive fractional integrated moving average models.
These models are asymptotically self-similar. H is used in the physical and climatological communities
and can be a measure of long-range dependence or self-similarity in systems with Gaussian fluctuations.
Here, we use H only as a measure of long-range dependence.

2.2. Scaling in PDFs and Non-Gaussianity
2.2.1. Non-Gaussian but Stable PDFs

The central limit theorem states that the sum of independent and identically distributed random variables

with finite variance approaches a Gaussian distribution and results in anN1/2 scaling, whereN is the length

of the sums (von Storch & Zwiers, 2003; Wilks, 2011). However, many natural systems, for example, precipi-

tation (Figure 1) (Peters et al., 2001; 2010; Yang, Franzke & Fu 2019) and the Greenland ice cores (Ditlevsen,

1999;Gairing et al., 2017; Peavoy&Franzke, 2010), showmore erratic fluctuations, that is, the corresponding

PDF decays much slower than the corresponding Gaussian distribution with the same mean and variance.

Hence, such distributions have heavier tails than the corresponding Gaussian distribution and very extreme

events are much more likely than in the Gaussian world.

This behavior can be explained by the generalized central limit theorem (Sornette, 2006), a generalization of

the standard central limit theorem (Wilks, 2011) which permits the random variables to have infinite vari-

ance, which means that the sums of such random variables scale as N1/𝛼 and follow 𝛼-stable distributions

with 0 < 𝛼 ≤ 2 (Doukhan et al., 2002; Sornette, 2006; Samorodnitsky, 2016). For 𝛼 = 2we recover the Gaus-

sian case with finite variance. The central limit theorem expresses the fact that sums of random variables

from short-tailed PDFs converge to a fixed point, that is, a Gaussian distribution which retains its shape

and is therefore a stable distribution (Mantegna & Stanley, 1999). In the case of the generalized central limit

theorem, there is a series of such fixed points which can be imagined as forming a line in the space of all

possible distributions, with each point on the line corresponding to an exponent 𝛼 in the range from 2 to 0.

Hence, sums of random variables from heavy-tailed, power law PDFs converge to a power law distribution,

the 𝛼-stable distribution, rather than being Gaussian. In general, the 𝛼-stable PDFs do not have an analytic

representation except via their characteristic functions, that is, the Fourier transform of the PDF p(x) (Gar-

diner, 2009). The 𝛼-stable distributions with 𝛼 < 2 have characteristic functions of the form p(s) ∼ e−s
𝛼
and

so p(x) decays asymptotically as a power law: p(s) ∼ s−(1+𝛼) as s → ∞ (Sornette, 2006). Furthermore, these

power law distributions decay so slowly that for 𝛼 < 2 the variance does not exist and for 𝛼 < 1 not even the

mean exists. There is a corresponding random walk with 𝛼-stable increments, often called a “Lévy flight,”

whose root-mean-square displacement grows as ∼ t1/𝛼 , which is referred to as superdiffusion (Gardiner,

2009).

2.2.2. Other Non-Gaussian PDFs

The 𝛼-stablemodel is simple and, thus, economical but can have extremely wild fluctuations. The properties

of observational datamaymotivate othermodels for fluctuations which are less extreme than in the 𝛼-stable

model. In particular, the infinite variance property of the 𝛼-stable model may yield fluctuations with tails

that are heavier than desired and observed. Thus, other non-Gaussian PDFs need to be considered, such

as stretched exponentials, where the PDF is given by p(x) ∼ e−x
s
with s between 0 and 1 or a log-normal

distribution. Furthermore, heavy-tailed PDFs can also originate from extreme value statistics (Coles, 2001)
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Figure 6. Example time series for fractional Brownian motion (fBm) and the corresponding fractional Gaussian noise
(fGn; lower panel) for (a) H = 0.7 (fGn is persistent), (b) H = 0.5 (fGn is uncorrelated white noise), and (c) H = 0.3
(fGn is antipersistent). The fractional Brownian motion has self-similarity exponent H, and if H is greater than 0.5, it is
long range dependent, as in the H = 0.7 case above.
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that rely on the Fisher-Tippett-Gnedenko theorem (Coles, 2001) which is based on themaxima of identically

and independently distributed sequences of random variables, rather than their sums as in the central limit

theorem.

Unlike 𝛼-stable distributions, these are not stable under addition which means that they converge toward

the Gaussian distribution under addition. For instance, a first-order autoregressive process xt+1 = axt + 𝜎2𝜁

where 𝜁 is a Gaussian-distributed random variable, with variance 𝜎2, is also Gaussian distributed for x.

However, if 𝜁 were assumed to be log-normal, then the process distribution x would not be log-normal but

asymptotically Gaussian. This suggests that also nonlinear and multiplicative processes need to be con-

sidered to explain the existence of power law PDFs. For instance, non-Gaussian distributions can also be

created bymultiplicative processes, such asmultiplying a state variable with Gaussian noise (Franzke, 2017;

Majda et al., 2008, 2009; Sardeshmukh & Sura, 2009). Such multiplicative noise can create heavy-tailed

distributions. They naturally occur in stochastic climate theory (Franzke et al., 2015; Franzke & O'Kane,

2017; Gottwald et al., 2017; Penland & Sardeshmukh, 2012; Sardeshmukh& Penland, 2015; Sura, 2011). The

energy cascade in turbulence is a particularly important multiplicative physical model as it describes the

nonlinear interaction between different scales or waves (Vallis, 2017).

2.3. Long-Range Dependence

Long-range dependence is characterized by a slow, power law decay of the autocorrelation function. This

implies that even long ago states still affect the current state, thus, even far apart in time states, show

dependence on each other.

The most basic long-range dependence model is the fractional Brownian motion (See Appendix B). The

main difference between fractional Brownian motion and regular Brownian motion is that in Brownian

motion the increments are independent of each other while in fractional Brownianmotion such increments

are dependent in time (Figure 6). This dependence actually covers the whole past; that is the reason that

this model is sometimes also called long-term persistence or long memory (forH > 0.5). There are different

definitions of fractional Brownian motion, and we refer to the specialist literature for more details (e.g.,

Beran et al., 2013; Beran, 1994; Embrechts & Maejima, 2007; Lévy, 1953; Mandelbrot & Van Ness, 1968).

While fractional Brownian motion is a continuous-time process, the statistics literature prefers a more flex-

ible model, the discrete time ARFIMA (e.g., Beran, 1994; Hosking, 1981; Granger, 1978; Granger & Joyeux,

1980):

Φ(B)(1 − B)dXt = Ψ(B)Zt (7)

where B denotes the back shift operator BXt = Xt−1,B
2Xt = Xt−2, … . The polynomials 𝛷 and 𝛹 are defined

asΦ(x) ∶= 1−
p∑

𝑗=1

a𝑗x
𝑗 andΨ(x) ∶= 1+

q∑
𝑗=1

b𝑗x
𝑗 , where p and q are integers and denote the order of the autore-

gressive 𝛷 and moving average 𝛹 parts, respectively. The noise variables Zt are assumed to be independent

Gaussian distributed with zero mean and constant variance 𝜎2
Z
. See Appendix A for more details.

However, the ARFIMAmodel can also be generalized to use 𝛼-stable distributed increments (Franzke et al.,

2012; Graves et al., 2017; Kokoszka & Taqqu, 1994; Stoev & Taqqu, 2005). For these infinite variance models

no agreed upon definition of long-range dependence exists (Samorodnitsky, 2016). Note that for d = 0 the

ARFIMA model reduces to the Autoregressive Moving Average model which is a SRD process. In general,

ARFIMAmodels can also be driven bynon-Gaussian (e.g., t-distributed) noise (Graves et al., 2017). ARFIMA

models are more flexible than fractional Brownian motion since they combine a long-range dependence

component with SRD behavior (Beran, 1994; Beran et al., 2013; Franzke et al., 2012; Graves et al., 2015). The

R package ARFIMA can be used to estimate ARFIMA models (Veenstra, 2012).

These are the twomost important andwidely used paradigmaticmodels of long-range dependence, but since

they were not derived from basic physical laws their use in climate research was originally, and continous

to be, met with criticism (e.g., Klemes, 1974; Maraun et al., 2004; Mann, 2011). Long-range dependence also

implies that even themost distant past still influences the current and future climate, which appears at odds

with common intuition. Many geophysical equations of motion such as the Navier-Stokes or the primitive

equations are usually Markovian, that is, their current state only depends on the immediately preceding

state and not on states in the more distant past. Furthermore, they do not have memory terms (Chorin &

Hald, 2013; Gottwald et al., 2017; Mori, 1965; Zwanzig, 1973, 2001). This fact appears to be at odds with the
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observed (non-Markovian) long-range dependence behavior ofmany climate time series andhas led tomuch

debate (Bunde et al., 2014; Cohn & Lins, 2005; Franzke, 2012; Maraun et al., 2004; Mann, 2011; Percival et

al., 2001; Vyushin &Kushner, 2009). The debate stems from the fact that the underlying equations ofmotion

areMarkovian.However, long-range dependence is frequently seen in time series from an aggregated system

rather than data from a less ambiguous physical variable, and so the apparent paradox may be illusory since

even Markovian systems can appear non-Markovian when not observing the full system. We will discuss

possible physical mechanisms to explain this behavior in section 2.5.

2.4. Multifractals

In section 1, we discussed scaling in precipitation intensities and in temperature time series. For intensity

fields as well as time series, there are notions of multifractality that generalize self-similar scaling.

Intensity fields in geophysics can have spatial characteristics that are consistent with random cascades

(Kahane & Peyriere, 1976; Kantelhardt, 2009; Sornette, 2006). In such cascades, the intensity in a spatial

region distributes nonuniformly between its smaller-scale subregions according to multiplicative processes.

The simplest example is the binomial cascade introduced by Kahane (1985). This model originates in turbu-

lence theory, as a rigorous analysis of the Kolmogorov-Obukhov model for spatial variability of the energy

dissipation rate (Kolmogorov, 1962; Obukhov, 1962). The multiplicative chaos model (Riedi et al., 1999) is a

modern version of the same idea.

The binomial cascade and the multiplicative chaos models define singular (nonsmooth) measures. By con-

struction, the qthmoments of the region-averaged intensities are power laws in spatial scale, with exponents

that depend concavely on q. Consequently, the distributions of intensities between different spatial regions

become increasingly leptokurtic with decreasing scale.

A multifractal time series X(t) is one where the qth moment of an increment |X(t + �t) − X(t)| scales with
the time lag �t, with an exponent 𝜁(q) that depends concavely on q. The scaling function 𝜁 (q) is linear for

self-similar processes.

There are several ways to construct multifractal stochastic processes from multifractal measures. In most

constructions, a multifractal intensity field on the time axis determines the amplitudes in the time series,

analogous to how the energy dissipation rate determines the amplitude of velocity field fluctuations in

turbulence theory.

For strictly concave scaling functions the distributions of increments are more leptokurtic on short time

scales than on longer time scales. Consequently, all multifractal time series are non-Gaussian. The reverse

implication does not hold. It is well known that unless one carefully verifies scaling of higher-order

moments, standard techniques for estimation of multifractality can lead to spurious results for time series

with non-Gaussian marginal distributions.

Whilemultifractals are an abstract concept, they are useful formodeling time serieswith volatility clustering

in time series, where the serial correlations between large and small amplitude events are different.

Applications of multifractal models in climate science have been shown by Schmitt et al. (1995). More

recently, Ashkenazy et al. (2003) analyzed climate data from the past 100 kyr and found evidence for non-

linearity and clustering of themagnitude of climatic changes, consistent withmultifractality. Similar results

have been found by Maslov (2014). Evidence of multifractal scaling in temperature, wind, and precipitation

has been found by Baranowski et al. (2015), Gan et al. (2007), and Royer et al. (2008). See Appendix E for

multifractal estimators.

2.5. Physical ScalingMechanisms

Scaling, and particularly long-range dependence, is an actively discussed topic in climate research. There is

no obvious physical mechanism in the climate system that would allow the distant past to directly affect the

current state of the system. Since the equations of motion used in climate models are all usually Markovian

and do not containmemory terms, how can we explain the presence of long-range dependence, and scaling,

in the climate system?

2.5.1. Model Reduction

Long-range dependence can be explained using the Mori-Zwanzig formalism from statistical physics

(Gottwald et al., 2017; Mori, 1965; Zwanzig, 1973, 2001) which rigorously demonstrates how model reduc-

tion leads to the emergence of memory terms in the reduced equations of motion. Let us consider the
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following example (Gottwald et al., 2017; Zwanzig, 2001):

.
x = L11x + L12𝑦 (8)

.
𝑦 = L21x + L22𝑦 (9)

where Lij are constant parameters. If we are now only interested in the dynamics of x, we can formally solve
for y

𝑦(t) = L12e
L22t𝑦(0) + L12 ∫

t

0
eL22(t−s)L21x(s)ds (10)

which we can now insert into equation (8)

.
x(t) = L11x + L12 ∫

t

0
eL22(t−s)L21x(s)ds + L12e

L22t𝑦(0) (11)

The first term is a Markovian term from the original equations, the second term is a memory term since it
integrates over the past, and the last term is the initial conditionwhich can be considered to be random. This
example explicitly shows how one gets memory terms when looking only at parts of the full state vector.
Equation (11) is still exactly equivalent to the original system.

Most of our measurements are point measurements or just measurements of a subset of the continuous
fields. In either case, their dynamics stem from a low-dimensional system embedded in a climate system
of infinite dimensions. The Mori-Zwanzig formalism shows that memory effects arise if only a small part
of the full system is observed. Thus, long-range dependence could be a direct result of this observation.
While the memory term in equation (11) is fairly general—which makes it impossible to know how exactly
memory decays—a power law decay is a possibility, especially when making additional assumptions about
the memory kernel. Kupferman (2004) approximated the memory kernel with a power law.

2.5.2. Nonlinearity and Regimes

Lorenz put forward the idea that deterministic systems can be almost intransitive; that is, they can exhibit
long-lasting climate changes and hence no unique climate state exists (Lorenz, 1968, 1976). Such long-term
anomalies can be a form of scaling in that the variance increases with increasing time scale. Several studies
have shown that nonlinearity can lead to scaling (Franzke et al., 2015; Lorenz, 1976; Mesa et al., 2012).
Atmospheric circulation regime behavior, a main component of the climate system (Feldstein & Franzke,
2017; Franzke, 2013; Franzke et al., 2011; Hannachi et al., 2017; Ghil & Robertson, 2002; Nicolis, 1990), has
been suggested as a prime candidate for scaling (Franzke et al., 2015). An example of atmospheric circulation
regimes is given by the quasi-stationary circulation systems like blocking events, which are quasi-stationary
high-pressure systems that can last for weeks and cause heat waves and cold spells (Feldstein & Franzke,
2017; Hannachi et al., 2017). It has been shown for very long but finite time series that regime behavior
is a plausible mechanism for scaling because the residence times of the regimes are power law distributed
(Diebold & Inoue, 2001; Franzke et al., 2015). The residence time is the time the system stays in one regime
state. If these time intervals are power law distributed, then the system can exhibit long-range dependence.
This implies that memory effects in the climate systemmay not be needed to explain the apparent scaling of
variance with time scale. The origin of this scaling has been found to be associated with the coarse graining
of the dynamics into a finite number of specific regimes, leading to non-Markovian dynamics (Nicolis, 1990;
Nicolis & Nicolis, 1988, 1995; Nicolis et al., 1997; Vannitsem, 2001).

Recent model experiments suggest also another possible nonlinear mechanism that could explain
long-range dependence: the coupling of the atmosphere with other components of the climate system that
have very different characteristic time scales. A case in point is ocean-atmosphere coupling, for which a
reduced order nonlinear coupled model has been developed recently (De Cruz et al., 2016; Vannitsem et
al., 2015). This model employs the quasi-geostrophic equations to describe the large-scale dynamics of the
atmosphere and oceans in extratropical regions. The coupling is achieved via an energy balance scheme and
momentum transfer through wind stress.

Multiple scaling regimes were found (Figure 7) using aHaar wavelet analysis (see Appendix C.1.4). Remark-
ably, no low-frequency variability was found in the coupled model for small friction coefficients and the
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Figure 7. (a) First and second moments, q = 1, 2, of the first mode of the stream function field as a function of time
scale for a wind stress drag coefficient C = 0.010 kg·m−2·s−1 and ocean layer depths h = 164.8m. (b) As in (a) but for
C = 0.015 kg·m−2·s−1 and h = 164.8m. (c) As in (b) but for C = 0.015 kg·m−2·s−1 and h = 41.2m.
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moments peak at a scale of about 10 days and decrease for larger periods. By low-frequency variability, we
mean a set of long-periodic, attracting orbits that couple the dynamical modes of the ocean and the atmo-
sphere in this model. If low-frequency variability develops in the system, then additional peaks emerge
at 10,000 and 40,000 days. Similar to Lovejoy (2015b), this allows us to define different regimes based on
the respective scaling exponents. The structure of the low-frequency variability and long-range dependence
critically depends on the water depth (Figures 7b and 7c). This suggests that one plausible explanation of
observed scaling regimes lies in the coupling of climate subcomponents.Wewill further discuss this coupling
mechanism in a linear framework next.

2.5.3. Superposition of Linear SRDModels and Linear Response

Another plausible scaling mechanism is the superposition of SRD models such as first-order autoregres-
sive process models (Granger, 1980). This approach assumes that each climate subcomponent (atmosphere,
ocean, land, cryosphere, etc.) evolves according to some SRD process. The superposition of those climate
subcomponent processes can result in scaling and long-range dependence behavior (Granger, 1980). The
plausibility of this hypothesis has been confirmed by the linear response in energy balance models (Fredrik-
sen&Rypdal, 2017). Linearmodel types include the vertical diffusionmodel of Fraedrich et al. (2004) for the
ocean temperature. With two layers the model produces a 1∕f spectral range in the mixed layer temperature
for a white noise surface forcing.

Another example is the Pacific Decadal Oscillation (Mantua & Hare, 2002) which also shows strong
long-range dependence (Yuan et al., 2014). The Pacific Decadal Oscillation shows variability on interannual
to multidecadal time scales. The Pacific Decadal Oscillation is not thought of being a single physical model
of variability; instead, it is the aggregation of several different physical processes such as El Niño–Southern
Oscillation teleconnections, sea surface temperature reemergence, and stochastic atmospheric forcing
(Newman et al., 2003, 2016; Qiu et al., 2007; Schneider & Cornuelle, 2005; Vimont, 2005). Hence, the Pacific
Decadal Oscillation is rather an imprint of scaling in the climate system than its cause.

On the one hand this superposition mechanism is physically plausible; on the other hand from a statistical
point of view it requires the estimation of many parameters. Hence, from a model selection point of view,
which favors an economicalmodelwith as few parameters as necessary overmore complexmodels (Occam's
razor principle) (Burnham & Anderson, 2003), the scaling models are preferable. This does not mean that
they are the best representation of the underlying dynamics. This suggests that in practice one has to decide
whetherwewant to better understand the physical processes behind certain phenomena orwant an efficient
and skillful statistical model, for example, for prediction purposes.

2.5.4. Non-Gaussianity andMultiplicative Noise

As discussed above, scaling can also arise from the distribution of the increments or the driving noise in
a stochastic process. So far, we only discussed scaling in additive noise processes which in addition may
have heavy tails. Also, Gaussian noise can produce power law PDFs when it occurs in a multiplicative or
state-dependent process (Bódai&Franzke, 2017; Franzke, 2017;Majda et al., 2009; Penland&Sardeshmukh,
2012; Sornette, 2006; Sardeshmukh & Sura, 2009; Sura & Hannachi, 2015). The simplest multiplicative
noise process is the Kesten process (Sornette, 2006), a first-order autoregressive process model with random
coefficients:

xn+1 = anxn + bn (12)

where an and bn are independent random variables. Under certain conditions, the Kesten process has a
process cumulative probability density function with a power law decay of its tails, that is,

P(Xt > x) ∼ x−(1+𝛾) (13)

where 𝛾 is the power law exponent.

Stochastic climate theory predicts the presence of multiplicative noise in nonlinear systems (Franzke et al.,
2015, 2019, 2005; Franzke&Majda, 2006; Franzke, 2017; Gottwald et al., 2017;Majda et al., 1999, 2001, 2008,
2009; Penland & Sardeshmukh, 2012; Sardeshmukh & Sura, 2009; Sura & Hannachi, 2015). It can also be
shown that multiplicative noise leads to power laws over some ranges in stochastic climate models (Majda
et al., 2009; Sardeshmukh & Sura, 2009; Sura & Hannachi, 2015). Unlike power law processes, stochastic
climate theory also provides mechanisms to limit extremes. This power law roll-off is due to the same non-
linear interaction that causes the multiplicative noise in the first place: the nonlinear interaction between
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slow and fast components (Franzke et al., 2005; Franzke &Majda, 2006; Majda et al., 1999, 2001, 2008, 2009;

Sardeshmukh & Sura, 2009; Sura & Sardeshmukh, 2008). This can be understood as follows: The fast

components of the flow, for example, convection, synoptic-scale weather systems, are effectively serially

uncorrelated on the time scale of the slow components, for example, Rossby waves or the ocean. This time

scale separation allows us to treat the fast components effectively as a noise variable. While there are non-

linear interactions between the slow and the fast components in the climate system, this can be written

now as a product of the slow flow variable and a noise variable, that is, multiplicative noise, also called

state-dependent noise since the impact of the noise can be modulated by the state of the slow variable. This

is consistent with the findings of Sardeshmukh and Sura (2009) where they found evidence in global circu-

lationmodel simulations that multiplicative noise is due to turbulent adiabatic fluxes and not rapid diabatic

forcing fluctuations. An example is wind gusts: If the large-scale wind speed is low, then there are only

weak wind gusts; on the other hand, if the large-scale wind speed is high, also, the wind gusts are strong.

This behavior can be easily represented by a multiplicative noise where the wind gusts are computed by the

product of the large-scale wind speed and a noise. The relevance of multiplicative noise has been shown for

sea surface temperature variability (Sura & Sardeshmukh, 2008), atmospheric vorticity variability (Sardesh-

mukh & Sura, 2009), teleconnection patterns such as the North Atlantic Oscillation (Majda et al., 2009;

Önskog et al., 2019), and extreme events (Franzke, 2017; Penland & Sardeshmukh, 2012; Sura, 2013).

While theoretical considerations predict a power law, for example, the generalized central limit theorem

(Sornette, 2006), our climate system is of finite size and thus infinitely large events cannot occur which

means that the power laws need to cut or roll-off at some intensity or spatial size. This is also consistent with

the dynamical systems theory of extremes (Lucarini et al., 2016) which shows that pure power law dynamics

cannot occur at arbitrarily large intensities or sizes.

2.5.5. Nonstationarities

While Hurst (1951) was the first to discover scaling in natural time series, Kolmogorov (1940), Lamperti

(1962), Mandelbrot (1965), and Mandelbrot and Wallis (1968) developed the first mathematical long-range

dependence models (see above) to explain such behavior (Graves et al., 2017). From the outset, the

long-range dependence concept was controversial, especially in hydrology (Klemes, 1974). Klemes, argued

that long-range dependence can be caused by nonstationarities and by random walks with an absorbing

boundary. The latter is mostly relevant for natural storage systems but less so for the climate system and

will therefore not be discussed here. Klemes, argues that long-range dependence is only an apparent effect

and that there is no real memory in the climate system. While it is easy to construct nonstationary mod-

els exhibiting long-range dependence (Klemes, 1974), they raise deep philosophical questions about how

the climate system is modeled. In general, all models of natural systems are assumed to have fixed parame-

ters stemming from the underlying physical laws and all apparent nonstationarities would be the result of

nonlinearities in the underlying equations of motion or due to changes in external forcing (e.g., greenhouse

gas emissions andMilankovich cycles). One could design nonstationary climate models by introducing ran-

dom jumps in model parameters which would lead to shifts in the mean state, as proposed for hydrology by

Klemes (1974). For instance, the inclusion of volcanic activity, which is very intermittent, improves the scal-

ing behavior of climate simulations (Vyushin et al., 2004). While the success and skill of current numerical

weather and climate predictions show the usefulness of the stationarity assumption, the question remains

unresolved whether nonstationary models could provide a viable alternative.

2.5.6. Self-Organized Criticality

Self-organized criticality (SOC) may be another possible mechanism behind scaling (Bak et al., 1987; Bak,

1996; Watkins et al., 2016). SOC refers to a process driven by a slow and constant energy input that leads

to sudden burst behavior without any typical scale. Hence, the statistics of a SOC process are described by

power laws (Hergarten, 2003).

Peters et al. (2001), Peters and Christensen (2006), and Peters and Neelin (2006) used SOC to explain the

observed scaling of precipitation. The atmosphere receives energy from evaporation due to solar radiation.

The water vapor is stored in the atmosphere until a dynamical threshold (saturation) is reached, at which

point energy bursts out; that is, it rains and latent heat is released. These burst events have no typical scale

and are a possible explanation of the observed power law behavior of the tail of the PDF of precipitation

event sizes and durations.
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Another potentialmechanism for power laws is the highly optimized tolerance framework (Carlson&Doyle,
1999, 2000, 2002). This framework relates power laws to evolving structures. However, this framework has
been developed for biological and engineering systems.Howwell it can also be applied to the climate systems
needs to be examined. A recent application was to ecosystems and wild fires (Moritz et al., 2005).

2.5.7. Scaling via Turbulent Cascades

While the above approaches apply to the time domain and aim to explain the presence of long-range depen-
dence in the climate system or intensity distributions, we now discuss a theory to explain the existence of
scaling in the space domain. We focus on energy spectra, that is, on how energy is distributed with spatial
scale.

At the largest scales, the atmosphere is forced in a quasi-steady manner by the solar gradient between the
equator and the poles, which leads to a meridional temperature gradient. The corresponding energy flux is
represented by nonlinear terms in the equations of motion used in coupled atmosphere-ocean models. The
nonlinear interactions between different spatial scales cause large eddies to break up into smaller “daughter
eddies,” transferring their energy fluxes to ever smaller scales (Vallis, 2017) until viscosity dissipates the
energy as heat.

This process can bemodeled by cascademodels. In the first cascademodels, the parent eddies were typically
large cubes that produced smaller daughter cubes of half the parent's diameter (Schertzer & Lovejoy, 1987).
Now, for each daughter, one flips a coin to decide how the energy flux from the parent eddy will be trans-
ferred over to the daughter. This can be done so that some daughter eddies occasionally receive zero energy,
while others have their fluxes multiplicatively boosted to conserve the total energy (Frisch et al., 1978; Man-
delbrot, 1974; Novikov & Stewart, 1964). The outcome of these cascades is power laws for the distribution of
the energy with spatial scale (Nastrom&Gage, 1985; Straus & Ditlevsen, 1999; Vallis, 2017). These are qual-
itatively consistent with the theoretical power law spectra predicted by Kolmogorov (Kolmogorov, 1991b,
1991a) as discussed above.

2.6. EstimationMethods for Scaling Exponents

A multitude of estimators have been developed over the years to provide accurate estimates of the scal-
ing exponents, and different estimators infer different aspects of the scaling properties. For instance, most
estimators infer the long-range dependence parameter d or the Hurst exponent H of a time series and are
insensitive to non-Gaussianity of its amplitudes, which can cause them to differ from the self-similarity
parameter 𝛾SS. When deciding whether or not to use a particular estimator, one should always be aware of
the underlying assumptions that went into its construction.
2.6.1. Estimation of the Power Law Exponent

Recognizing the existence of power law tails and estimating the corresponding tail parameter or scaling
exponent of power law PDFs are important topics. Clauset et al. (2009) provide a review on this topic and
carefully explain the potential pitfalls. First, it is important to realize that true power laws can be hard
to identify and that simple regression approaches can lead to false positive identifications (Clauset et al.,
2009). Clauset et al. (2009) recommend the use of a maximum likelihood estimator. Code for the power
law estimation for the statistical programming language R is available online (http://tuvalu.santafe.edu/
~aaronc/powerlaws/plfit.r). They also show that the widely used least squares regression approach can lead
to inaccurate estimates and cannot answer the question whether the data obey a power law decay at all
(Clauset et al., 2009). Gerlach and Altmann (2019) propose a different way to identify power laws using
shuffling and undersampling of the data. This approach leads to less rejections and larger confidence inter-
vals than the Clauset et al. (2009) approach and potentially to more false positive identifications. While that
study is mostly concerned with power law tails of PDFs, the maximum likelihood estimator approach can
also be used for estimating the long-range dependence parameter. With a maximum likelihood estimator
also the parameters of other distributions such as the generalized extreme value, stretched exponential or
the log-normal distribution can be estimated. Most of these distributions can be estimated with standard
functions or packages included in the statistical software package R.

Extreme value statistics also provides methods to estimate the tail exponent of distributions (e.g., Beirlant
et al., 2006; Coles, 2001; Embrechts et al., 2013). However, they fit an extreme value distribution, either the
generalized extreme value or the generalized pareto distribution. Those distributions canhave either a power
law or an exponential decay of their tail. Gilleland and Katz (2016) provide a R package for the estimation
of extreme value distributions.
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Figure 8. Time series (lower left) and spike plot (upper left) of a 2,048-point multifractal time series simulation. Its
corresponding power spectrum is displayed on the right (black line). In the spike plots the horizontal dashed lines
correspond to the 10−5 and 10−10 probability levels. The blue curve in the power spectrum plot is the averaged
spectrum over 5,000 multifractal simulations. Above the blue curve is an orange 2 standard deviation curve and (red) 3,
4 standard deviation curves (probabilities of 0.1% and 0.003%, respectively). The arrows indicate spikes with Gaussian
probability p < 0.05. See Lovejoy (2018) for more details of the used multifractal model. Figure is from Lovejoy (2018).

While direct confirmation of power laws can be difficult, it is advisable to perform a model selection exer-

cise where different models, for example, power law and stretched exponential, are fitted to the data and

then the best fitted model is selected using some objective criterion. Burnham and Anderson (2003) discuss

systematic ways of model selection.

2.6.2. Estimation of the Long-Range Dependence Parameter

When analyzing andmodeling the temporal dependence of long-range dependent time series, it is important

to accurately estimate the strength of long-range dependence. This can be achieved by determining the

Hurst exponent, H, or the fractional integration parameter, d, arising from the ARFIMA class of processes

(Box et al., 2015; Franzke et al., 2012; Franzke, 2017; McNeil et al., 2015). H is more commonly used in

physics, while d is preferred by the statistics community (Appendix D). In principle, one could also analyze

the autocorrelation function and search for a power law decay at large time lags. However, the estimation

of the autocorrelation function suffers from sampling errors. The below described estimators provide more

robust estimates of the scaling exponent then the autocorrelation function.

As emphasized by Samorodnitsky (2016), most definitions of long-range dependence in the literature are

based on the second-order (or variance) properties of the process which include the asymptotic behavior

of covariances, spectral density, and variances of partial sums. Second-order properties are popular choices

because they are conceptually simple and they can be easily estimated from data. However, as noted by

Samorodnitsky (2016) this complicates the definition of long-range dependence when a process has infinite

variance, because theoretical moments and sample moments will behave in strikingly different ways.

Many methods are used to estimate the value of the Hurst exponent. They can be broadly divided into time

domain methods and frequency domain methods. Time domain methods include variance-type estima-

tors (Giraitis et al., 1999; Taqqu et al., 1995), the rescaled range or R/S statistic (Bhattacharya et al., 1983;

Mandelbrot & Taqqu, 1979), least squares regression using subsampling (Higuchi, 1990), and the variance of

residuals estimators (Peng et al., 1994). Frequency domain estimators includeWhittle estimators (Dahlhaus,

1989; Fox&Taqqu, 1986) and connections to Fourier spectrumdecay (Geweke&Porter-Hudak, 1983; Lobato

& Robinson, 1996). Wavelet-based regression approaches have also been considered (Abry et al., 2000, 1995;

Percival & Guttorp, 1994). Extensions of wavelet estimators to other settings such as observational noise and
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irregularly spaced time series have been published (Gloter & Hoffmann, 2007; Knight et al., 2016; Stoev et

al., 2006). Other works about long-range dependence estimation including multiscale approaches are Hsu

(2006) and Coeurjolly et al. (2014).

For technical details of the most common estimators see Appendix C. Amore detailed comparison of differ-

ent estimator and a discussion of their strengths and weaknesses is given by for examnple Faÿ et al. (2009),

Franzke et al. (2012), Schmittbuhl et al. (1995), and Witt and Malamud (2013).

2.7. Spectral Analysis and Its Limitations

Analyzing data by Fourier decomposition is attractive because each sinusoid has an exact and unambiguous

time scale: its period. Furthermore, one has to assume that the signal is statistically stationary in time or

homogeneous in space for Fourier analysis to be valid. This implies that the probability laws that govern

the behavior of the time series do not change over time. As a result, the phases of the Fourier modes are

randomly distributed and can be neglected. However, this only applies if the time series is Gaussian because

the phases are correlated otherwise; a fact that is often overlooked. If observationally data really had to

meet these criteria fully, then Fourier analysis would not be as useful as it has been, so we can relax these

conditions in practice to some extend.

A potential problem with Fourier analysis is that the interpretation of the resulting spectra is nontrivial. To

illustrate this problem, we consider surrogate time series which have the same multifractal characteristics

as the EPICA dust series (Lambert et al., 2008; Lovejoy, 2018). Since the time series are generated by a mul-

tifractal stochastic process, even the strong peaks are randomly excited (Figure 8). However, the presence

of such strong peaks can be misinterpreted as signatures of important climatic processes (Lovejoy, 2018).

This example should also be taken as a cautionary tale against the simple interpretation of peaks in Fourier

analysis as quasi-oscillations resulting from physical mechanisms. The important point we want to empha-

size here is not that these methods do not work but rather that their resulting spectra need to be carefully

interpreted and the model representing the underlying process carefully chosen.

3. Empirical Evidence of Scaling

The atmospheric near-surface temperature is a relevant indicator for climatic long-range dependence.

Instrumental measurements reach back to the seventeenth century (Central England Temperature) (Parker

et al., 1992) and cover inhabited areas and ocean areas near ship routes densely during the last 50 to 100

years. Furthermore, temperature is reconstructed using statistical relationships with proxy data for time

horizons of thousands up to a million years. In all these data, a continuous background in variability shows

up, which is parsimoniously described by power laws. In all these data sets, long-range dependence is con-

sidered to be present if power law scaling reaches the longest time scale observed (in contrast to a stringent

mathematical definition which requires infinity as a limit).

All observations and especially climate reconstructions based on proxy data are subject to nonclimatic influ-

ences such as measurement errors or imperfect recording of the climate signal. As this can also affect the

scaling (e.g., Franzke et al., 2012; Rust et al., 2008), it is important to consider these uncertainties in order

to infer useful information about the scaling of climate variability.

3.1. Station Temperatures

Significant evidence for long-range dependence in station temperature have been reported in many studies

(Bunde et al., 2014; Capparelli et al., 2013; Fraedrich & Blender, 2003; Franzke, 2010, 2012; Gao & Franzke,

2017; Graves et al., 2015; Koscielny-Bunde et al., 1998; Ludescher et al., 2015; Løvsletten & Rypdal, 2016,

2015). The exponent H = 0.65 of the fluctuation function F(𝜏) ∼ 𝜏H which was determined by DFA was

suggested to be universal for local temperature variations. This exponent is related to the exponent 𝛽 =

0.3 in a power spectrum, (𝑓 ) ∼ 𝑓−𝛽 by 𝛽 ∶= 2H − 1. Figure 9 shows the results for the fluctuation

function obtained by DFA (see Appendix C.1.3) for 12 meteorological stations distributed worldwide. In

the interannual range (up to the total duration) the stations reveal linear slopes given by an exponent H ≈

0.65. It is tempting to conclude that atmospheric long-range dependence could be characterized by a single

universal value. Later on, it was found that the value H = 0.65might be a transition phenomenon between

memory-less inner continents withH = 0.5 and some oceanic areas withH ≈ 1 (Fraedrich & Blender, 2003;

Ludescher et al., 2015; Løvsletten & Rypdal, 2016).
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Figure 9. Detrended fluctuation analysis fluctuation functions F(𝜏) for daily temperature data at the indicated stations.
The lines show the exponents (slopes) H = 0.65. Dashed vertical lines at 1 year and 15 years indicate the time range
denoted as decadal here.

3.2. Near-Surface Temperatures on Land and Ocean

Observed near-surface temperatures are available since 1900 with a sufficient density to estimate a global

pattern of long-range dependence (Jones, 1994; Jones et al., 2001; Parker et al., 1995). Figure 10 shows the

power law exponents H for the monthly data estimated by DFA with quadratic trend (DFA2). The results

are concentrated in coastal regions, Europe, North America, and along-ship routes. In inner continental

locations, long-range dependence is negligible with H ≈ 0.5. Along the coasts the memory increases to

H ≈ [0.6, 0.8] and in the central North Atlantic and in the equatorial Indian ocean, the highest values of

H ≈ 0.9 are found. This pattern shows that long-range dependence in the considered time range is a marine

phenomenon.On land nomemory is evident on these time scales far from the coasts. The finding ofH ≈ 0.65

in the stations can be explained by the locations of the stations considered in Figure 9. Inhabited areas with

observational stations are traditionally along coasts. Note that there can be a huge gradient in long-range

dependence as seen along thewesternNorth Pacific coast. Later on, Fraedrich and Blender (2003) found that
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Figure 10. Fluctuation exponent H in observed sea surface and near-surface air temperatures from HadCRUT2 data
(Climatic Research Unit, University of East Anglia, Norwich) estimated by detrended fluctuation analysis with
quadratic trend for the decadal scale (see the slopes in Figure 9).

this surface temperature long-range dependence can be found in coupled atmosphere-ocean simulations

with a dynamical ocean model but not with a slab ocean model.

A spectrum with 𝛽 = 1 is denoted as 1∕f noise (see Appendix F). If this extends to vanishing frequency

(or infinite time), stationarity is violated. Clearly, in observational data this limit cannot be attained, and

whether the sea surface temperature data are stationary remains open. However, this type of variability

indicates that short-term averages, as are typically used in climate science, are not defined and should be

interpreted with caution.

The 1∕f spectrum of the sea surface temperature in some oceanic regions can be obtained by a diffusion

model in a vertical column with two compartments (Fraedrich et al., 2004). A decisive parameter is the

diffusivity in the abyssal ocean. This parameter determines turbulent mixing and is caused by tides and

the orography. Although the atmospheric forcing is white, the sea surface temperature shows long-range

dependence close to nonstationarity. Furthermore, wind also provides a significant part of the mechanical

energy for diapycnal mixing in the ocean (Munk & Wunsch, 1998; Wunsch & Ferrari, 2004) which could

also lead to this behavior as discussed in section 2.5.2.

In summary, the analysis of observational data reveals that long-range dependence in the lower atmosphere

is predominantly found in oceanic regions where the variability is close to nonstationarity (1∕f spectrum).

Far from coasts long-range dependence on decadal time scales is not observed. In transition zones along

coasts a spectrum is found which is approximately given by (𝑓 ) ∼ 𝑓−0.3.

3.3. Scaling in Regional and Global Mean Temperatures

Local and regional surface temperature variations have a much greater magnitude and show a weaker

scaling than global average temperature variability (e.g., Laepple &Huybers, 2014a). This difference in vari-

ability is strongest for interannual and shorter time scales and decreases on longer time scales. The reduced

variability of the global mean temperatures reflects cancelation of variability in the global mean, and the

weaker cancelation toward lower frequencies is consistent with findings that temperature anomalies have

greater spatial autocorrelation toward longer time scales (Jones et al., 1997). This behavior is also repro-

duced in diffusive energy balance models (Rypdal et al., 2015) where the predicted slope of the spectrum of

global mean temperatures is around double the slope of regional temperatures over a large frequency range
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Figure 11. Detrended fluctuation analysis fluctuation functions for the Greenland ice cores GRIP, GISP2, and
simulated sea surface temperature (model CSIRO) close to 30◦W, 65◦N. The slopes indicate the exponents H = 0.5
(no memory), 0.7, and 0.84.

following from the horizontal diffusive coupling. Thus, it is important to consider the spatial scale analyzed

when interpreting the variability and long-term memory of temperature time-series.

3.4. Paleo Data and Simulations

The isotope fraction 𝛿18O in ice cores can be used as a proxy for the surface temperature due to the different

weights of the molecules (Barlow et al., 1997; Dansgaard, 1964). As the annual snowfall is preserved on the

Greenland and Antarctic ice sheets, this allows in principle to analyze climate scaling from interannual to

multimillennial time scales. However, especially on the shorter time scales, nontemperature effects such as

snow redistribution (Fisher et al., 1985), diffusion (Johnsen et al., 2000) and aliasing effects from intermit-

tent snowfall (Laepple et al., 2017) considerably affect the recorded variability and have to be corrected for,

to infer about climate scaling (Münch & Laepple, 2018). The oxygen fractions measured in the Greenland

ice cores GRIP and GISP2 during the last 10,000 years reveal estimates forH (Blender et al., 2006) which are

clearly above 0.5 in the millennial time range (Figure 11). The corresponding exponents in the power spec-

trum (𝑓 ) correspond to H ≈ 0.5. Hence, scaling can be assumed, at least approximately. It is remarkable

that this result can be obtained in an extremely long coupled atmosphere-ocean simulation (Blender et al.,

2006) which reveals intense long-range dependence south of Greenland (see Figure 11) with exponents of

similar magnitude but much less long range dependence in other oceanic regions; the Pacific ocean reveals

no long-range dependence of a comparable intensity. The simulation was performed under present-day

conditions; hence, no external variability is necessary to explain this result. The long-range dependence is

related to the variability of the zonally averaged stream function in the North Atlantic Ocean. Evidence for

long-range dependence has also been found in other coupled climate models (Fredriksen & Rypdal, 2016;

Østvand et al., 2014; Vyushin et al., 2004; Zhu et al., 2010). Vyushin et al. (2004) showed that the inclusion

of volcanic eruptions improves the simulation of long-range dependence in climate models.

An important question is how well climate models reproduce the true internal variability on time scales of

centuries and longer. The local model surface temperature spectra seem to indicate a lower (or even zero)

spectral exponent 𝛽 for frequencies below 1×10−2 year−1, but on long time scales the finite sample size errors

are so large that this cannot be concluded with high statistical confidence (Fredriksen & Rypdal, 2016). This

flattening of the spectra on time scales longer than a century cannot be detected in the instrumental tem-

peratures, since the time series are too short, but they are also not detected in temperature reconstructions

of Holocene climate (Laepple & Huybers, 2014b) even after correcting for nonclimate effects on the spectra.

On the contrary, some authors claim higher exponents for local temperatures (𝛽 ≈ 2.2) for these longer time

scales based on composite spectra established from different proxy records (Huybers & Curry, 2006; Lovejoy
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Figure 12. (a) Red: the Moberg Northern hemisphere (NH) temperature reconstruction (Moberg et al., 2005). Blue: NH
surface temperature in a NorESM simulation with historical forcing. (b) Haar fluctuation functions for various signals.
Red bullets: the NH reconstruction shown in panel (a). Blue bullets: the NorESM simulation shown in panel (a). Green
bullets: the same NorESM simulation with the spikes due to volcanic eruptions removed, as shown by the green curve
in panel (d). The full curves are Haar fluctuation functions for 20 realizations of an fGn with H = 0.9. (c) A close-up on
panel (a) to illustrate that the fast responses due to volcanic eruptions are almost absent in the reconstruction. (d) The
green curve illustrates how we have chopped off the volcanic responses from the NorESM signal.

& Schertzer, 2012b). This conclusion, however, can only be drawnwith confidence from proxy records span-

ning the last glacial period and including the last deglacation and hence may not be valid for the Holocene

climate.

Analyzing global mean temperatures that are dominated by external forcing on the other hand suggests that

the scaling and variability are comparable between reconstructions and model simulations (Crowley, 2000;

Zhu et al., 2019) or climate model simulations may even overestimate global mean temperature variability.

The issue is illustrated in Figure 12awherewe have plotted time series of reconstructed annual temperatures

for the Northern Hemisphere and the corresponding series derived from the NorESM model with histor-

ical forcing. In Figure 12b we have estimated their Haar fluctuation functions (see Appendix C.1.4). The

fluctuation level is more than twice as high for the model temperatures on time scales less than 100 years.

It turns out that this is due to the higher short-time responses to large volcanic eruptions in the models.

This can be seen by elimination of these spikes from the model signal, as shown in the zoomed in signals in

Figure 12. The fluctuation function of this “chopped” signal is very close to that of the reconstructed temper-

ature (Figure 12). The cloud of thin curves in Figure 12 is fluctuation functions estimated for 20 realizations

of fractional Gaussian noises with Hurst exponent H = 0.9 of the same length as the NorESM model run.

The width of the cloud suggests that the reconstruction and the chopped model signal are consistent with

such a fractional Gaussian noise, although the power at time scales longer than a few centuries is somewhat

high. It is easy to verify that this increased power is due to the temperature difference between theMedieval

Warming Anomaly and the Little Ice Age. Some authors interpret the power in this oscillation as a signa-

ture of a transition to scaling with an exponent 𝛽 > 1 on time scales longer than a few centuries (Huybers &

Curry, 2006; Lovejoy & Schertzer, 2012b). On the other hand, Nilsen et al. (2016) argue that existing temper-

ature reconstructions for the Holocene are generally consistent with a single scaling regime with H ≈ 0.9

on all time scales shorter than the duration of the interglacial period.

Similar ideas are advocated by Rypdal and Rypdal (2016b), who demonstrate that temperatures derived

from ice cores over the last 100 kyr can be described as sudden transitions between stadials and interstadials

superposed on a 1∕f noise (H ≈ 1) background. According to this view, monofractal, near Gaussian, scaling
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withH ≈ 1 is a useful description of the climate noise background in Quaternary climate. Whether a scaling

description is appropriate for the succession of transitions between stadials and interstadials is another story

and needs more research.

3.5. Scaling Behaviors in OtherMeteorological and Climatological Variables

Besides the evidence of long-range dependence in temperatures, there are also scaling behaviors detected

in many other variables, including precipitation, river runoff, total ozone, relative humidity, and sea level

change. For in situ precipitation records, small long-range dependence parameters have been found by sev-

eral studies (Jiang et al., 2017; Kantelhardt et al., 2006; Yang, Fu 2019). On average, the DFA exponent H

mainly ranges between 0.5 and 0.55, indicatingweak long-range dependence. For river runoffmuch stronger

long-range dependence has been detected. Kantelhardt et al. (2006) found that the mean long-range depen-

dence parameter for river runoff is 0.72 based on 42 river runoff records observed from Europe, North and

South America, Africa, Australia, and Asia. Wang et al. (2008) detected long-range dependence close to 1∕f

(H ≈ 1) for the intra-annual Yangtze discharge. As for relative humidity, Chen et al. (2007) reported that the

mean DFA exponentH for in situ relative humidity records over China is around 0.75. Recently, there were

also results reported indicating that sea level changes are characterized by long-range dependence. TheDFA

exponent H has a large variation range from 0.60 to 0.95, depending on different regions (Dangendorf et

al., 2014). Other variables such as wind speed, atmospheric circulation indices, and ozone anomalies have

also been shown to have the scaling behavior (Feng et al., 2009; Franzke et al., 2015; Vyushin et al., 2007;

Vyushin & Kushner, 2009; Varotsos & Kirk-Davidoff, 2006).

3.6. Evidence of Multifractal Behavior

Besides long-range dependence that only needs one exponent H to describe monofractal behavior, there is

also empirical evidence of multifractal behavior. For instance, in precipitation records, although the mea-

sured long-range dependence is weak, pronouncedmultifractality has been found (Kantelhardt et al., 2006),

indicating that precipitation records of different amplitudes have different scaling behaviors. Similar prop-

erties also exist in river runoff data (Koscielny-Bunde et al., 2006), where the multifractality was found to be

even stronger than that in precipitation records (Kantelhardt et al., 2006). For temperature related records

such as the surface mean air temperature and diurnal temperature range, different multifractal behaviors

were found over different regions (Lin & Fu, 2008; Yuan, Fu, & Mao, 2013). Such as in the south of the

Yangtze River, pronounced multifractality was found in diurnal temperature range records, while in the

north, the multifractal behavior is very weak or even nonexistent (Yuan, Fu, & Mao, 2013). Other vari-

ables such as wind speed and relative humidity have also been shown to have the multifractal behavior

(Baranowski et al., 2015; Kavasseri & Nagarajan, 2005).

4. Applications of Scaling in Climate Research
4.1. Scaling for Trend Detection

The identification of trends is one of the most frequent and prominent goals in the analysis of geophys-

ical time series (Chandler & Scott, 2011; Wu et al., 2007). Although apparently an easily understandable

objective, trend assessment is very challenging, starting with the lack of a precise definition of trend itself.

Implicit in the intuitive notion of trend are concepts such as long term, smoothness, or monotonicity, but it

is not unambiguously defined how long is “long term” or how smooth needs a pattern to be in order to be a

trend. Furthermore, time series characterized by scaling behavior often exhibit features that can be classified

broadly as a trend, even in the absence of any genuine trend.

Unlike the notion of trend, stationarity is a well-defined statistical property. A time series (Xt) is weakly

stationary if its first and second moments are time invariant (i.e., the mean and variance are constant and

the covariance depends only on the time lag between the observations). The trend in a time series can be

ascribed to a nonstationary generating process (at least the mean is not constant in time) and described by a

trendmodel. Trendmodels can be broadly classified as either being (i) deterministic or (ii) stochastic. Deter-

ministic trend models represent deterministic (nonrandom) nonstationary processes which are described

by a function evolving in time; one example is trends which are forced by external factors such as anthro-

pogenic greenhouse gas emissions. Stochastic trend models represent stochastic nonstationary processes

described by models such as a random walk or an autoregressive integrated moving average model. Such

models exhibit apparent trends without any external forcing; instead, these trends are caused by the internal
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dynamics of the process. Unfortunately, it is extremely difficult, for example, by visual judgment alone (Per-

cival & Rothrock, 2005), to select a trend model or even to distinguish between deterministic and stochastic

trend models, particularly in the case of short time series (Franzke, 2012).

Furthermore, weakly stationary processes can generate a time series with an apparent trend, particularly

when a short segment of the process is observed. Such “spurious” trends can be misleadingly taken as

evidence of nonstationary behavior when in fact the process is stationary. A classical example since long rec-

ognized as a potential culprit in the interpretation of climate variability (Wunsch, 1999) is the typical “red

noise” (Red noise sometimesmeans that the spectral power increases with period scale. However, in climate

science red noise typically denotes the power spectrum of a first-order autoregressive process which has first

increasing power for increasing period but then becomes white noise; also called Lorentzian spectrum. See

Figure 3 for an example.) structure of climate records. A red noise (described by a simple first-order autore-

gressive process) can produce visually appealing trends despite being a stationary process, particularly in

the case of short time series.

Long-range dependence processes, for example, described by ARFIMA models, are another type of sta-

tionary processes that can produce apparent nonstationary behavior and local “spurious” trends. Since

long-range dependence is a feature common in many geophysical time series, a crucial challenge in the

identification and estimation of trends is to discriminate between nonstationary processes and stationary

long-range dependent processes. The problem is, however, quite difficult since genuine trends generated

by a nonstationary process and spurious trends from a long-range dependence process can coexist in the

same time series. Disentangling the different contributions to the observed temporal structure is not pos-

sible by visual inspection, and even specific methodologies addressing the issue have to rely on substantial

assumptions and simplifications, for example, on the type of nonstationary behavior or the dominance of

one specific type of process. For instance, the approach proposed by Beran and Feng (2002) of semipara-

metric fractional autoregressive (SEMIFAR)models considers a trend functionmodeled nonparametrically,

with the remaining components of the model estimated by maximum likelihood. Despite the flexibility of

SEMIFARmodels, the performance is poor in the case of short time series, and the trend is estimated based

on a subjective concept of smoothness. More importantly, discrimination between stochastic and determin-

istic trends remains difficult to achieve, given that a significant amount of spurious trends associated with

long-range dependence behavior alone can be easily included in the nonparametric trend estimation. The

statistical test of Berkes et al. (2006) aims to discriminate between stationary long-range dependence time

series and nonstationary time series with change points in the mean but requires previous identification of

a small number of change points in the time series.

Shifting from a general trend model to a linear trend significantly constrains the problem of trend identi-

fication in the presence of long-range dependence. Although such an assumption is hardly realistic and is

theoretically limiting, it is nevertheless of practical relevance since the overwhelming majority of trends in

geophysical records are reported as the slope from a linear regression model. Most studies are based on the

up-front assumption that a time series can be described by a nonstationary linear trend with a stochastic

long-range dependence component (e.g., Bunde et al., 2014; Capparelli et al., 2013; Franzke, 2010, 2012;

Lennartz & Bunde, 2009; Ludescher et al., 2015; Myrvoll-Nilsen et al., 2019; Rybski & Bunde, 2009) and

focus on the assessment of the corresponding uncertainty (e.g., Cohn & Lins, 2005; Koutsoyiannis, 2006;

and Koutsoyiannis & Montanari, 2007).

A complementary approach is to test the assumption of a linear deterministic trend itself. The test devised

by Phillips and Perron (1988), the PP test, is a classical unit root test for testing nonstationarity in the form

of a randomwalk, which is a scaling process. The test devised by Kwiatkowski et al. (1992), the KPSS test, is

a parametric statistical test which assumes as a null hypothesis a deterministic linear trend plus a stationary

stochastic noise. Although the two tests can be applied independently, their joint use is recommended for

trend assessment purposes (Carrion-i-Silvestre et al., 2001; Kwiatkowski et al., 1992). For a time series with

a random walk stochastic trend the PP test should not reject the null hypothesis and the KPSS test should

reject the linear trend null hypothesis. Conversely, for a time series with a linear deterministic trend, the PP

test should reject the null hypothesis but not the KPSS test. In the case of a times series for which both tests

fail to reject the null hypothesis, then the time series or the tests are not sufficiently informative to distin-

guish between a stochastic (randomwalk) trend and a deterministic trend. However, if both tests reject their

respective null hypothesis, this is an indication that alternative parametrizations for long-term behavior
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need to be considered, such as long-range dependence. Since long-range dependence is a common feature

of geophysical time series, this outcome of rejection of both PP and KPSS test is quite common, for example,

in the case of air temperature (Fatichi et al., 2009) or global sea surface temperature (Barbosa, 2011). Unfor-

tunately, these tests require long time series (in order to meet asymptotic assumptions) and are known to

have low explanatory power particularly against long-range dependence alternatives (Lee & Schmidt, 1996;

Leybourne & Newbold, 1999).

A widely used trend test is the Mann-Kendall test (Kendall, 1948; Mann, 1945), which in its original form is

only valid for independent data. TheMann-Kendall test is a nonparametric test which tests for the presence

of a monotonic trend without making any assumptions about the form of the trend. This is in contrast to

most other trend tests which have to assume some parametric trend form, for example, a linear trend. The

Mann-Kendall test has been extended to also account for serial correlation in time series (Hamed & Rao,

1998) and also for the presence of long-range dependence (Hamed, 2008).

A further trend significance test has been developed by Lennartz and Bunde (2009, 2011) and Tamazian et

al. (2015). Thismethod has been developed for theDFAmethod in the presence of long-range dependence in

the time series (Bunde et al., 2014; Ludescher et al., 2015). Based on Monte Carlo simulations, they studied

how the trend uncertainties vary with the strength of long-range dependence, as well as the data length.

This method has been applied to evaluate trend significances of the surface air temperature and the sea ice

extent in Antarctica (Bunde et al., 2014; Ludescher et al., 2015; Yuan et al., 2017).

Recent developments in temperature trend significance testing with long-range dependent noise show

how we can also incorporate information about forced global temperature changes in the trend estimate

(Myrvoll-Nilsen et al., 2019). In that way, one avoids attributing forced changes deviating from, for example,

a linear trend as part of the stochastic variability (Gil-Alana, 2005; Fatichi et al., 2009; Franzke, 2012, 2014).

Results show that the observed trends since 1900 are significant relative to the noise for most locations and

to a larger degree than when assuming a linear trend (Løvsletten & Rypdal, 2016).

4.2. Scaling for Climate Response and Sensitivity

Linear responsemodels, which predict how the climate systemwill react to a change in forcing, for example,

anthropogenic greenhouse gas emissions, have shown considerable success in describing the global tem-

perature response in climate model data, instrumental data, and in multiproxy reconstructions (Caldeira

& Myhrvold, 2013; Fredriksen & Rypdal, 2016; Held et al., 2010; Geoffroy et al., 2013; Lovejoy et al., 2015;

Østvand et al., 2014; Rypdal & Rypdal, 2014; Rypdal et al., 2015). In particular, Rypdal and Rypdal (2014)

demonstrated that a scaling linear response function provides a good description of the global tempera-

ture response to radiative forcing over both the historical period and to a multiproxy reconstruction of the

temperature over the last millennium.

It has been known for several decades that Coupled Atmosphere-Ocean General CirculationModels exhibit

climate responses on multiple time scales (Caldeira & Myhrvold, 2013; Fredriksen & Rypdal, 2017; Held

et al., 2010; Geoffroy et al., 2013); that is, there is more than one time constant involved in the response.

The scaling response studied in Rypdal and Rypdal (2014) could be considered an approximation to the

multiple time scale response, bridging the responses on time scales from years to centuries, and Fredriksen

and Rypdal (2017) demonstrates how an energy balance box model can provide such an approximation.

In addition to describing the response to historical radiative forcing, the same scaling response to a white

noise stochastic forcing is also consistent with the observed internal variability. One way of extracting the

internal variability from observed global temperature is to compute the deterministic, historically forced

variability from the response model and subtract this from the observed record. The power spectrum of this

estimated internal variability compares well with a power law (Rypdal & Rypdal, 2014). This tendency for a

multiboxmodel to form a power law spectrum is studied systematically in Fredriksen and Rypdal (2017) and

reflects a well-known result which states that a scaling spectrum can be obtained from the aggregation over

an ensemble of first-order autoregressive processes (Granger, 1980); see also section 2.5.3. Thus, long-range

dependence can be caused by the constructive superposition of SRD processes.

The emergent scale invariance makes it possible to infer equilibrium climate sensitivity from a scaling

frequency-dependent climate sensitivity R(f) ∼ f𝛽/2. This scaling response implies infinite magnitude

response as f → 0, and therefore, there must exist a lower-frequency limit of where the scaling response is

valid and where the response stabilizes as we go to even lower frequencies. R(f) can be estimated for a given
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climate model by exploiting the relation between the historic radiative forcing applied to a model and the

observed instrumental global temperature. Rypdal et al. (2018) applied this to an ensemble of Earth system

models, where the inferred values of R(f) evaluated at f = 1∕1, 000 year−1 correlate strongly to estimates of

equilibrium climate sensitivity from idealized model runs. They could use the distribution of estimated R(f)

over the model ensemble to constrain the distribution of equilibrium climate sensitivity obtained from the

ensemble of idealized runs. Thus, scale-invariant linear responsemodels are useful tools for the estimation of

equilibrium climate sensitivity from observation data. The advantage over multibox energy balance models

is that the scale-invariant models contain fewer free parameters and are less prone to statistical overfitting.

4.3. Scaling for Climate Prediction

The property of long-range dependence in the climate system raises the question whether models which

explicitly include long-range dependence can be used for skillful predictions. The first attempt for climate

predictions was tried by Baillie and Chung (2002). Recently, a model was developed for seasonal to decadal

predictions, the Stochastic Seasonal to Inter-Annual Prediction System (StocSIPS) (Lovejoy, 2015a; Love-

joy et al., 2015, 2018). StocSIPS is based on the low-frequency limit of a fractional differential equation,

the fractional energy balance model. This model is valid for periods between 20 days and 50 years, where

intermittency is relatively weak so that a quasi-Gaussian approximation can be used. StocSIPS forecast skill

compares favorable with operational long-range forecasting models based on traditional climate models.

One advantage of StocSIPS is that data assimilation of observations is not necessary, since it can directly be

fitted to observed data. This also implies that downscaling of forecasts is not needed.

Yuan, Fu, and Liu (2013) and Yuan et al. (2014) developed a method for the extraction of the long-range

dependence using a fractional integrated statistical model. They proposed a new variable memory kernel

which clearly shows how the states from the distant past maintain their impacts over time till the current

time. Accordingly, climate variables with long-range dependence can be decomposed into two parts: (i) the

memory part, which represents the influences accumulated from the past, and (ii) the residual part, which
is related to the current dynamical forcing conditions. With the memory part extracted, one can at least
determine on what basis the considered time series will continue to change. By combining this with the
estimated residual part, it is possible to make predictions. Therefore, they proposed a new perspective for
climate prediction for climate variables with long-range dependence. Because the influence from the past
can be extracted quantitatively, one only need to focus on the prediction of the residual part.

Also, statisticalmodelswith non-Gaussian features have recently been developed. For instance,Önskog et al.
(2018) show that the forecast skill of theNorthAtlantic Oscillation (Feldstein&Franzke, 2017) increases in a
SRDstatisticalmodelwhennon-Gaussiannoise is used.Graves et al. (2017) developed aBayesian framework
for ARFIMA models with various non-Gaussian noises and demonstrated its usefulness using the t-stable
and the 𝛼-stable distributions.

5. Outlook and Open Questions

Here we have provided an overview of scaling methods and their relevance for understanding the climate

system and its variability on time scales of days tomillenia and ice ages. Scalingmethods have improved our

understanding of the climate system. The climate community mainly distinguishes between weather and

climate, even though it is not well defined where weather ends and climate starts. Weather systems evolve

over a few days, with the weather prediction limit at about 10–14 days (Zhang et al., 2019), while climate

starts at time scales of about 30–40 years. This leaves a large gap in between. The area between weather and

climate, the weather-climate interface, consists of the active research areas of subseasonal-to-seasonal (S2S)

up to decadal predictions.

Through scaling analysis, we have now a better understanding of the climate system and that it consists of

different scaling regimes distinguished by their scaling exponents.While in theweather and climate regimes,

the variability strongly increases with time scale; this is not the case for the regime in between where the

increase is rather weak. The exact ranges of these scaling regimes and their robustness andmeaning are still

a matter of debate (e.g., Huybers & Curry, 2006; Nilsen et al., 2016). On longer time scales, such as decadal

time scales, the effect of global warming might already affect the variability making the observed scaling

likely not a product of internal climate processes but a response to external forcing and nonstationarity.

More research is needed to clarify this point.
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An important future research question is to understand these differences and to elucidate how predictable

subseasonal-to-seasonal and decadal processes are. Forecasts on these time scales are of societal impor-

tance and currently an important research topic. In this context it is also an important research question:

How the slope of the scaling relationship determines predictability? While the predictive skill in weather

forecasts has significantly improved over the last few decades, the skill of seasonal forecasts is rather lim-

ited and for decadal forecasts only the climate change signal and perhaps the El Niño–Southern Oscillation

phenomenon is currently the predictable components.

Scaling of paleo-climate data has received a lot of attention (e.g., Bunde et al., 2014; Fredriksen & Rypdal,

2016; Huybers & Curry, 2006; Laepple & Huybers, 2013; Lovejoy & Schertzer, 2013; Lovejoy & Varotsos,

2016; Nilsen et al., 2016; Rypdal & Rypdal, 2016a; Schmitt et al., 1995; Zhu et al., 2019) and has been used in

evaluating how well climate models reproduce observed long-term climate variability (Blender et al., 2006;

Fraedrich & Blender, 2003; Østvand et al., 2014). While global mean temperature variability on interannual

to millennial time scales seems to be consistent between climate models and climate reconstructions, the

strong discrepancy of slow climate variability at regional scales calls for continued research on the tem-

poral and spatial structures of climate variability and also on improving the interpretation and quality of

paleo-climate records. How well scaling can contribute to the reconstruction of past climate needs to be

assessed.

Over longer time scales, there are several unanswered questions in paleoclimate where scaling approaches

may help our understanding of the climate system. One of the great puzzles of Quaternary science is the

transition from the 41-kyr world before 1 × 106 years ago to the current 100-kyr glacial-interglacial regime,

without any external forcing changes. Potential explanations for this change have involved ice sheet dynam-

ics (Clark & Pollard, 1998), the progressive cooling of Earth's temperature throughout the Quaternary

(Snyder, 2016), the amount of dust in the atmosphere (Chalk et al., 2017), or continental distribution (Kender

et al., 2018). However, all studies acknowledge that the transition period between the 41-kyr cycle ∼1.2 Myr

ago and the 100-kyr cycle since ∼600 kyr ago is poorly defined and not well characterized. The recovery of

the 800-kyr-long EPICA ice core allowed a first look into the younger part of that transition section (Jouzel et

al., 2007). The soon to be started oldest ice project aims to recover an Antarctic ice core that will reach back

to the 41-kyr world, 1.2×106 years ago and provide a high-resolution record throughout theMid-Pleistocene

Transition (MPT), which denotes the fundamental change in the behavior of glacial cycles around 1 × 106

years ago. Before theMPT the glacial cycles were dominated by a 41,000-year period; after theMPT they fol-

lowed less regular cycles with an approximate period of 100,000 years. The statistical techniques described

in this review could provide a robust description of the data variability upon which physical and dynamic

models can be chosen to explain the observed changes.

Another interesting paleo-climatic question has been why human civilization has evolved during the

Holocene and not during any of the previous interglacials (Robinson et al., 2006). Has the Holocene climate

been exceptionally stable in time or in space (Kopp et al., 2017)? While Greenlandic ice core records pro-

vide evidence for a very stable Holocene (Ditlevsen et al., 1996), the dependency of climate variability on

the climate state seems to be much smaller in the rest of the world (Rehfeld et al., 2018). A related question

is whether conditions in the fertile crescent during previous interglacials were markedly different from the

Holocene. Scaling analyses could help answer these questions by providing a description of both temporal

and spatial variability at different times during the Pleistocene.

A still open question is the mechanism of long-range dependence in the climate system.While the evidence

is strong for long-range dependence, it leads to counterintuitive implications, that is, that the distant past

still influences the present. There are also studies who show that inhomogeneities on station time series

increase the strength of long-range dependence (Mills, 2007; Rust et al., 2008). These inhomogeneities take

on the form of jumps or shifts due to changes in the station instruments or location. The fact that jumps lead

to increased long-range dependence strength that would be consistent with the fact that volcanic eruptions

improve the reproduction of long-range dependence in climate models (Vyushin et al., 2004). Maraun et

al. (2004) point out the difficulty in distinguishing between long-range dependence and the superposition

of SRD processes in practice. However, that long-range dependence could be due to the superposition of

SRD representing the climate system on different time scales would be physically meaningful. More work

on the physical origin is needed; especially, it has to be examined whether the climate system indeed has

long memory, even on long time scales, or whether the observed long-range dependence is the result of the

FRANZKE ET AL. 29 of 44



Reviews of Geophysics 10.1029/2019RG000657

superposition of short memory effects or nonlinearities. Whichever of the two is the case would affect not

only climate sensitivity but also the climate evolution on long time scales.

As we have shown here, scaling is an ubiquitous feature of the climate system for a multitude of time scales.

Hence, it also should be included in our climate models. The parameterization problem can be seen as a

model reduction problem, and as discussed above the Mori-Zwanzig formulism predicts the presence of

memory terms (Franzke et al., 2015; Gottwald et al., 2017); however, most current weather and climate

prediction models do not include memory terms (Berner et al., 2017). Recent research showed the benefit

of including such memory terms (Frederiksen et al., 2017; Sakradzija et al., 2015; Vissio & Lucarini, 2018),

although somedifficulties in implementing the approach in simple climatemodelswere reported (Demaeyer

& Vannitsem, 2018). Hence, whether memory terms in parameterization schemes are useful needs more

research.

As already discussed, the presence of long-range dependence hampers the detection of externally forced

trends especially if the form of the trend is not a priori specified and thus nonparametric. Furthermore, there

is also evidence of scaling breaks in temperature time series for the Holocene period (Lovejoy & Schertzer,

2012b) and the Central England Temperature time series (Graves et al., 2015). However, how robust these

breaks are is still a matter of debate (Nilsen et al., 2016) and improved statistical methods are needed. The

existence of scaling breaks would also create new questions about the origin of long-range dependence in

climate. If long-range dependence is an intrinsic property of the equations of motion, then one would not

expect scaling breaks, at least notwithout changes in external forcing or experiencing of a bifurcation (which

are unlikely for the Holocene and Central England Temperature periods).

This review provided evidence for the relevance of scaling in the climate system and how it can affect the

detection of trends, the estimation of climate sensitivity, and the skill of long-range predictions. We also

discussed various physical mechanisms which can cause scaling in the climate system.

Glossary

Brownian motion Brownian motion is a continuous-time stochastic process, also called Wiener process.

The increments of Brownian motion are Gaussian distributed independent random variables.

Fractal A fractal is a self-similar object, that is, when shrinking or enlarging a fractal pattern, its

appearance remains statistically unchanged. A good introduction is given by Feder (1988).

Heavy-tailed distribution Heavy-tailed distributions are distributions whose tail decays slower than

exponential. In particular, its tail is heavier than for a corresponding Gaussian distribution. A good

introduction is given by Sornette (2006).

Leptokurtic A leptokurtic distribution has a kurtosis which is larger than 3. The Gaussian distribution

has a kurtosis of 3. Hence, a leptokurtic distribution has fatter tails than the corresponding Gaussian

distribution.

Long memory Synonym for long-range dependence

Long-term persistence (LTP) Synonym for long-range dependence

long-range dependence Long-range dependence is the property of the autocorrelation function of a time

series to decay according to a power law. Consequently, the power spectrum of such a time series has

increasing power for lower frequencies and a singularity at zero frequency.

Monofractal Monofractals are fractals described by a single scaling exponent

Multifractal Multifractals are fractals described by multiple scaling relationships and whose exponents

are functions of scale

Power law A power law describes a functional relationship between two variables where a change in

one variable results in a proportional relative change in the other variable. Mathematically, it is of the

following form: f(x) = ax−k where k is the power law exponent.

Randomwalk Also known as Drunkards walk, has scaling power spectrum with slope −2, variance

increases as
√
t. A good introduction is given by Sornette (2006).

Red noise Red noise means that the spectral power increases on longer time scales. However, in climate

science red noise typically denotes the power spectrum of a first-order autoregressive process which

has first increasing power for increasing period but then becomes white noise; also called Lorentzian

spectrum
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Scaling In mathematical form we can express scaling as follows:

F(at)
d
= a𝛾F(t), (14)

where F is the fluctuation function, 𝛾 the scaling exponent, a is a rescaling factor of time t, and
d
= denotes

equality in distribution. a can be seen as the factor with which one is zooming in or out, and the scaling

property now means that the statistical properties of the data stay the same (Feder, 1988; Franzke et al.,

2012; Mandelbrot, 1982) and this is the same property as fractals have.

Short-range dependence Short-range dependence is the property of the autocorrelation function of a

time series to decay exponentially. Consequently, the power spectrum of such a time series has almost

constant power at lower frequencies.

Self-similarity A self-similar object is exactly or approximately similar to a part of itself. When zooming

in or out, one sees similar structures. Self-similarity is a property of Fractals.

Unit root A unit root is a characteristic of stochastic processes. In particular, it denotes that a stochastic

process is nonstationary without necessarily having a trend. A good introduction is given by Box et al.

(2015).

Volatility clustering Volatility clustering refers to the observation that in many time series large changes

are followed by large changes of either sign, while small changes are followed by small changes of either

sign.

Appendix A: Fractionally Integrated Processes

Integration, or the inverse procedure differentiation, is a standard procedure in time series analysis to deal

with nonstationary time series (e.g., Box et al., 2015). For instance, a linear trend can be removed from a time

series by examining the time series increments instead; higher-order trends can consequently be removed by

repeating differentiationmultiple times and examining the resulting increment time series. Hence, repeated

application of differentiation canmake every time series stationary. The resulting increment time series can

be modeled with an autoregressive moving averaging time series model. In order to represent the original

time series, the modeled time series would be subsequently cumulatively summed up as many times as

differences have been taken before. This results in an autoregressive integrated moving average model. A

fractional Brownian motion (see Appendix B) is an example of a nonstationary time series; its variance goes

to infinity with increasing time. Its increments, fractional Gaussian noise (see Appendix B), on the other

hand, are stationary.

In standard time series analysis only integer order integration or differentiation is used. However, the

integration and differentiation processes can be generalized to also use noninteger integration orders,

so-called fractional integration and differentiation (Samorodnitsky, 2016). This allows to mathematically

model long-range dependent time series.

The fractional integration parameter d is introduced as follows: let (Xn) be a fractionally differenced process

with

(1 − B)dXn = Zn, d ∈ IR

where (Zn) is white noise with zero-mean and unit variance, and

(1 − B)d =

∞∑
𝑗=0

Γ( 𝑗 − d)

Γ( 𝑗 + 1)Γ(−d)
B𝑗

where Γ(z) = ∫ ∞

0 xz−1e−xdx,ℜ(z) > 0 is the Gamma function. Hence,

Xn =

∞∑
𝑗=0

Γ( 𝑗 + d)

Γ( 𝑗 + 1)Γ(d)
Zn−𝑗

Observe that

Γ( 𝑗 + d)

Γ( 𝑗 + 1)Γ(d)
∼ Γ(d)−1𝑗d−1, 𝑗 → ∞
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and for d ∈ (0, 0.5)

𝛾(𝑓 ) ∼ Kd𝑓
2d−1, 𝑓 → ∞ (A1)

where Kd ∶= 𝜋−1Γ(1 − 2d) sin(𝜋d). Note that the autocovariance equation (A1) has the same (asymptotic)

power law decay as the autocovariance equation (B2).

Appendix B: Fractional BrownianMotion

Brownian motion is an important stochastic process (e.g., Embrechts & Maejima, 2007). Brownian motion

(also called the Wiener process) is the limit of the symmetric random walk. While the random walk is a

discrete-time process, Brownian motion has continuous sampling paths and is a continuous-time process,

while at the same time it is nowhere differentiable.

Brownian motion has independent increments. In contrast, fractional Brownian motion has dependent

increments. These increments Xn are called fractional Gaussian noise, and the strength of the dependence

is measured by the parameter H:

Xn = BH(n + 1) − BH(n), n = 1, 2, … (B1)

where H is often called the Hurst exponent and can take values in (0, 1]. Fractional Gaussian noise is a

discrete-time increment process of fractional Brownian motion. For fractional Gaussian noise even those

values that are far apart in time are still serially correlated. Hence, even the distant past affects the current

values. If H =
1

2
, then the process is standard Brownian motion; if H >

1

2
, then the increments are posi-

tively correlated, while forH <
1

2
they are negatively correlated and antipersistent, which is the opposite of

long-range dependence because the process will wildly fluctuate.

Note that the stationarity of the increments of fractional Brownian motion implies that this is a stationary

zero-mean Gaussian process whose autocorrelation function, acf(h)∶= E(XnXn+h), satisfies (e.g., Beran et

al., 2013)

acf(h) ∼ H(2H − 1)h−2(1−H), h → ∞ (B2)

provided that H ∈ [0, 1]. If H ∈ [0.5, 1], then the correlations are not summable; thus, they go to infinity,

and we say that Xn exhibits long-range dependence and H measures its intensity. If, on the other hand,

H ∈ [0, 0.5], we say that Xn is antipersistent.

Fractional Brownian motion is self-similar. By considering probability distributions, it can be shown that

BH(at)
d

| a|HBH(t) (B3)

The Hurst exponent describes the raggedness of the time series, with a higher H leading to smoother time
series. Examples for persistent, white noise (serial uncorrelated time series), and antipersistent time-series
are displayed in Figure 6. Fractional Brownianmotionwas introduced byKolmogorov (1940).More rigorous
treatment of fractional Brownian motion can be found in the books by Embrechts and Maejima (2007) and
Beran et al. (2013).

Appendix C: Details of Long-Range Dependence Parameter Estimators
C.1. Time DomainMethods
C.1.1. R/S Estimator

The R/Smethodwas the first long-range dependence estimator. For a time seriesX1, … ,XN , the R/S statistic

(Beran, 1994; Hurst, 1951) is given by

Rn
Sn

=

max
0≤i≤n

(
Yi −

i

n
Yn

)
− min

0≤i≤n
(
Yi −

i

n
Yn

)

√
1

n

n∑
i=1

(Xi −
1

n
Yn)

2

=∶
I − II√

1

n

n∑
i=1

(Xi −
1

n
Yn)

2
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where Yi =
∑i

𝑗=1 X𝑗 . I measures how far the partial sums, Yi, exceed the straight line they would follow if all

observationswere equal (to the samplemean). I−II is the difference between thehighest and lowest positions

of the partial sums with respect to the straight line of uniform growth. For either fractional Gaussian noise

or the ARFIMA model

E(Rn∕Sn) ∼ KH · nH , n → ∞

here KH is a positive, finite constant which depends on H. H > 0.5 for data with long-range dependence.

Following Taqqu et al. (1995), the methodology for estimating H comprises the following steps: subdivide

the time series X1, … ,XN , into K blocks of size r ∶= N∕K. For each lag n, compute Rri ,n∕Sri ,n, starting at

points ri = iN∕K + 1, for i = 1, 2, … , such that ri ≤ N − n. Plot (logRri ,n∕Sri ,n) versus log(n) by fitting a

straight line. The slope of the line gives H. However, this R/S approach does not result in reliable estimates

and its use is no longer recommended (Franzke et al., 2012; Rea et al., 2009).

C.1.2. Variance-Type Estimator

As a more robust alternative, Taqqu et al. (1995) proposed the aggregated variance method to estimate

H. Variance-type estimators are a popular method to estimate the long-range dependence parameter. The

variance-type estimator of Taqqu et al. (1995) takes the form

Ĥ = −
S2
m

log(m)
(C1)

where

S2
m
= [m∕N]

[N∕m]∑
k=1

(
X (m)

k
− [m∕N]

[N∕m]∑
𝑗=1

X (m)

𝑗

)2

with [·] denoting the integer part and X (m)

k
is the aggregated series of orderm

X (m)

k
=

1
m

m∑
i=1

Xi+(k−1)m, k = 1, 2, …

A major drawback of this variance-type estimator is that its bias is of order no less than 1∕ log(N) so that

only when dealing with very long time series such an estimator can provide reliable point estimates for H.

Thus, Giraitis et al. (1999) introduced the following refined estimator of (C1)

Ĥ = −

m1∑
𝑗=m0

a𝑗 log(S
2
𝑗
)

m1∑
𝑗=m0

a2
𝑗

(C2)

where

a𝑗 ∶= log( 𝑗) −
1

m1 −m0

m1∑
i=m0

log(i)

form0 < m1, such thatm0 → ∞ as N → ∞ and N∕m1 → ∞. Giraitis et al. (1999) proved that the estimator

in (C2) is less biased than (C1). Specifically, this method plots the logarithm of the variance of an aggregated

(averaged) process against the logarithm of the aggregation level. A least squares line is then fitted to the

data, the slope of which provides an estimate of H.

C.1.3. DFA Estimator

The DFA is a variant of the above method (Bunde et al., 2014; Koscielny-Bunde et al., 1998; Kantelhardt et

al., 2001; Lennartz & Bunde, 2009, 2011; Ludescher et al., 2015; Peng et al., 1994; Rybski & Bunde, 2009)

and estimates the variability of a time series, Xt, on different time scales. First, a profile is computed by

Y (i) =
∑i

t=1 Xt. The profile is then split intoNs nonoverlapping segments of equal length s, and then the local

trend is subtracted for each segment v by a polynomial least squares fit. Linear (DFA1), quadratic (DFA2), or

higher-order polynomials can be used for detrending. In the nth-order DFA, trends of order n in the profile,
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and of order n− 1 in the original time series, are eliminated. Next, the variance for each of the Ns segments

is calculated by averaging over all data points i in the vth segment:

F2
s
(v) ∶=< Y 2

s
(i) >=

1
s

s∑
i=1

Y 2
s
[(v − 1)s + i] (C3)

By computing the average over all segments and taking the square root, we obtain the fluctuation function:

F(s) =

√√√√ 1
Ns

Ns∑
v=1

F2
s
(v) (C4)

For time series with long-range dependence, F(s) will increase with s as a power law,

F(s) ∼ sH (C5)

with the exponent H>0.5. Unlike most algorithms, the DFA algorithm developed by Løvsletten (2017) is

capable of dealing with missing data. The R package nonlinearTseries provides code for DFA. The DFA

method is biased for H < 0.5 (Franzke et al., 2012).

C.1.4. Wavelet-Based Estimators

The long-range dependence parameter can also be estimated using wavelets. A wavelet (WL) 𝜓 is a local-

ized wave function with zero average and is normalized to one. A family of wavelets is generated by scaling

the wavelet 𝜓 by a factor s and translating it by u (𝜓u,s(t)) =
1√
s
𝜓(

t−u

s
). The wavelet transform allows

one to construct a time-frequency representation of a signal, the wavelet spectrum. One can then infer the

self-similarity parameter from the wavelet spectrum via ordinary least squares at large wavelet scales (Abry

&Veitch, 1998; Stoev&Taqqu, 2005). Awidely usedwavelet for scaling analysis is theHaarwavelet (Lovejoy

& Schertzer, 2012a, 2012b; Lovejoy, 2014). The Haar wavelet mother function is given by

𝜓(t) =

⎧⎪⎨⎪⎩

1 if 0 ≤ t < 1

2

−1 if 1

2
≤ t < 1

0 if otherwise

(C6)

In theHaar wavelet technique, one usually considers the original time seriesX1, … ,XN and divides the time

series into Ns segments of length s. For each segment v, one first determines the mean value x̄v of the data,

then considers the quantityG2
v
(s) = (x̄v)

2 for a zeroth-order wavelet (WT0),G2
v
(s) = (x̄v − x̄v−1)

2 for first-order

wavelet (WT1), and G2
v (s) = (x̄v − 2x̄v−1 + x̄v−2)

2 for second-order wavelet (WT2). By averaging G2
v (s) over all

segments and taking the square root, the wavelet fluctuation function can be obtained as (Bogachev et al.,

2017)

G2(s) =

√√√√ 1
Ns

Ns∑
v=1

G2
v
(s) (C7)

For time series with long-range dependence, the parameter can be estimated according to the relationship

G2(s) = G2(1)s
H−1 (C8)

Similar to the orders of DFA, the different orders of wavelet methods also indicates trend elimination. For

example, in WT2, effects of the linear external trends are eliminated.

C.2. Frequency DomainMethods

Spectral methods are also widely used for estimating the long-range dependence parameter.
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C.2.1. Geweke-Porter-Hudak Estimator

Awidely usedmethod is the Geweke-Porter-Hudak (GPH) estimator (Geweke& Porter-Hudak, 1983). Spec-
tral methods find d by estimating the spectral slope. The periodogram, an estimate of the spectral density of
a finite-length time series, is given by

𝑓 (𝜆𝑗) =
1
N
|
N∑
t=1

xte
−i2𝜋t𝜆𝑗 |2, 𝑗 = 1, … , [N∕2] (C9)

where 𝜆j = j∕N is the frequency and the square brackets denote rounding toward 0. A series with long-range
dependence has a spectral density proportional to |𝜆|−2d close to the origin. Since f(𝜆) is an estimator of the
spectral density, d is estimated by a regression of the logarithm of the periodogram versus the logarithm of
the frequency 𝜆. Thus, having calculated the spectral density estimate f(𝜆), semiparametric estimators fit a
power law of the form f(𝜆, b, d) = b|𝜆|−d , where b is the scaling factor. TheR package fracdiff provides code
for GPH.

C.2.2. Whittle Estimator

The Whittle estimator is based on the periodogram. Specifically, it involves the function

G(𝜃) ∶= ∫
𝜋

−𝜋

I(𝜆)

𝑓 (𝜆, 𝜃)
d𝜆

where I(·) represents the periodogram, f(·, ·) is the spectral density at frequency 𝜆, and 𝜃 denotes the vector
of unknown parameters. TheWhittle estimator corresponds to the value of 𝜃 which minimizes the function
G(·). In the case of fractional Gaussian noise or fractional autoregressive integrated moving average model,
𝜃 = {H}. The R package longmemo provides code for the Whittle estimator.

Appendix D: Hurst Exponent and Long-Range Dependence

Examining water levels of the Nile river, Harold E. Hurst discovered that if the variance is computed for
windows of different sizes and then plotted against the window size, he obtained a power law behavior
(Hurst, 1951, 1957). This has been named the Hurst phenomenon, and the exponent of this power law is the
Hurst exponent.

The Hurst exponent, as we defined it here, is related to long-range dependence (Talkner & Weber, 2000).
The tail exponent, whichmeasures the power law decay of PDFs, does not affect long-range dependence but
does affect the self-similarity exponent (Franzke et al., 2012).

The long-range dependence parameter, d, can be related toH inmonofractal Gaussian systems asH = d+ 1

2
.

However, it is typically used with ARFIMA models that are only asymptotically self-similar.

Appendix E: Estimation of Multifractality

For some climatic time series, it may be not sufficient to characterize the scaling behavior using only one
constant exponent. This is the so-called multifractality. To quantify this property, a traditional method is the
partition function,

Zq(s) =

Ns∑
𝜈=1

|Y (𝜈s) − Y ((𝜈 − 1)s)|q ∼ s𝜏(q) (E1)

where 𝜏(q) is the Renyi scaling exponent and Y (i) =
∑i

t=1 xt is the profile of the time series xt as for DFA.
When 𝜏(q) is linear in q, the time series is considered monofractal, otherwise it is multifractal. In recent
years, the multifractal DFA (MF-DFA) has gained increasing popularity (Kantelhardt et al., 2002).

MF-DFA is a generalized version of DFA, as shown below,

Fq(s) = [
1
Ns

Ns∑
𝜈=1

[F2
𝜈
(s)]q∕2]1∕q (E2)

For q = 2, the monofractal DFA is retrieved. Analogous to equation (25), for each q, the generalized
fluctuation exponent h(q) can be defined as

Fq(s) ∼ sh(q) (E3)
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Since it is easy to verify that Zq(s) is related to Fq(s) by Fq(s) = [(1∕Ns)Zq(s)]
1/q, the Renyi scaling exponent

𝜏(q) can be connected with h(q) as (Bogachev et al., 2017),

h(q) = [𝜏(q) + 1]∕q (E4)

Another way to characterize the multifractality is the singularity strength k (or Holder exponent) and the

singularity spectrum f(k) (Koscielny-Bunde et al., 2006). Based on a Legendre transform, the singularity

spectrum f(k) can be derived as

𝑓 (k) = qk − 𝜏(q) (E5)

where k is given by

k =
d𝜏(q)

dq
(E6)

Using equation (30), k and f(k) can be related to h(q) as

k = h(q) + q
dh(q)

dq
(E7)

and

𝑓 (k) = q[k − h(q)] + 1 (E8)

Accordingly, the strength of the multifractality can be estimated fromMF-DFA, by calculating the width of

the singularity spectrum (the differences between the maximum and the minimum k).

WhileMF-DFA is equivalent to the wavelet transformmodulus maxima (WTMM)method, it is much easier

to implement on a computer (Arneodo et al., 2002; Muzy et al., 1991).

Appendix F: Power Spectrum  (𝒇 ) and 1∕fNoise

Power spectra are important to understand temporal variability (Kay & Marple, 1981). Power spectra are

especially useful for detecting (quasi)periodic signals like the diurnal and annual cycles which constitute an

important aspect of climate variability. However, power spectra can also reveal the background variability

of the climate system (Huybers & Curry, 2006).

A power spectrum displays the fraction of squared amplitudes at different frequency ranges after Fourier

transformation of a time series (von Storch & Zwiers, 2003; Wilks, 2011). The most common ways of com-

puting a power spectrum are via the Fourier transform or the maximum entropy method (von Storch &

Zwiers, 2003).

The 1∕f noise has a power law form of f−1 in which the squared amplitudes increase with decreasing fre-

quencies; hence, longer time scales exhibit a stronger variability. The 1∕f is a generic termwhich also applies

to 1∕f𝛽 where the power law has a different exponent 𝛽.
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