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Abstract. It is well known that boundedness of a subadditive function
need not imply its continuity. Here we prove that each subadditive func-
tion f : X → R bounded above on a shift–compact (non–Haar–null,
non–Haar–meagre) set is locally bounded at each point of the domain.
Our results refer to results from Kuczma’s book (An Introduction to
the theory of functional equations and inequalities. Cauchy’s equation
and Jensen’s inequality, 2nd edn, Birkhäuser Verlag, Basel, 2009, Chap-
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1. Motivation and Auxiliary Results

Let X be an Abelian topological group. A function f : X → R is subadditive
if1

f(x + y) ≤ f(x) + f(y) for every x, y ∈ X.

1In the paper we do not admit infinite values of f . For more information on infinite-valued
subadditive functions see [31, Chapter 16].
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A function f : X → R which is subadditive and also satisfies

f(nx) = nf(x) for every x ∈ X, n ∈ N
is called sublinear.

Subadditive and sublinear functions play a fundamental role in mathe-
matics and so have attracted the interest of many authors (see e.g. [3,5,20,27,
31,33,34,42]). Examples of subadditive functions include norms, seminorms,
and the function R � x �→ √|x| ∈ R (see e.g. [27, Theorem 7.2.5]). A classical
result concerning subadditive functions is.

Theorem 1.1 ([31, Theorem 16.2.2]). If a subadditive function f : RN → R is
locally bounded above at some point, then f is locally bounded at each point
of RN .

Note that local boundedness of a subadditive function does not imply its
continuity; any function having values in the interval [a, 2a], with a > 0, is
subadditive.

A result stronger than Theorem 1.1 is the following.

Theorem 1.2 ([31, Theorem 16.2.4]). If a subadditive function f : RN → R

is bounded above on a set T ⊂ RN and such that its k-fold sum
∑k

i=1 T has
positive inner Lebesgue measure or is non-meagre for some k ∈ N, then f is
locally bounded at each point of RN .

Below we generalize the two theorems above using the notion of a shift–
compact set (see [39, III.2], [26, 5.1]).

Definition 1.3. In an Abelian topological group X, a set A ⊂ X is called shift–
compact if for every sequence (xn)n∈N tending to 0 in X there exists x ∈ X
such that the set {n ∈ N : x + xn ∈ A} is infinite.

Shift–compact sets were used in the context of subadditive functions for
the first time by Bingham and Ostaszewski in [9]. In the Euclidean context
of [6] a shift–compact set was earlier called subuniversal (following Kestelman
[30]), and also null–shift–compact (in [11] in the special context of R). The
underlying group action is studied in [37].

The notion of a shift–compact set is directly equivalent to the notion
of a non–null–finite set. The definition of null-finite sets was introduced by
Banakh and Jab�lońska in [2] (see also [32]). Using [2, Proposition 2.2] we can
easily explain the name “shift–compact”: a set is shift–compact if and only if
infinitely many points of this set belong to a translation of any infinite compact
set. It is clear that non-empty open sets are shift–compact. Moreover, in view
of [2, Theorem 3.1 (2)], countable sets in non-discrete metric groups are not
shift–compact. The result of Kwela [32, Theorem 4.1], that the Cantor set is
not shift–compact, seems to be of significant interest.
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To indicate the extent of shift–compact sets we need to recall two terms:
Haar–null sets, as defined by Christensen in [16], and their topological analogue
the Haar–meagre sets, as defined by Darji [23].

Definition 1.4. Let X be a complete Abelian metric group. A set A ⊂ X is
called universally measurable2 if it is measurable with respect to each complete
Borel probability measure on X. A universally measurable set B ⊂ X is Haar–
null if there exists a σ–additive probability Borel measure μ on X such that
μ(B + x) = 0 for all x ∈ X.

Christensen [16] proves that in each locally compact complete Abelian
metric group the notion of a Haar–null set is equivalent to the notion of a set
of Haar measure zero.

Definition 1.5. Let X be a complete Abelian metric group. A set A ⊂ X is
called universally Baire 3 if for each continuous function f : K → X mapping
a compact metric space K into X the set f−1(A + x) has the Baire property
for every x ∈ X. A universally Baire set B ⊂ X is called Haar–meagre if there
exists a continuous map f : K → X from a non-empty compact metric space
K such that the set f−1(B + x) is meagre in K for every x ∈ X.

Darji [23] shows that in each locally compact complete Abelian metric
group the notion of a Haar–meagre set is equivalent to the notion of a mea-
gre set. However, in the non-locally compact case, there is only a one-sided
inclusion: Haar–meagre sets are meagre, but the converse implication may fail.

Armed with these terms, we may now note (see [2, Theorems 5.1 and 6.1]
and also [14, Theorem 3]) that

Theorem 1.6. In a complete Abelian metric group:4

(i) each universally Baire non–Haar–meagre set is shift–compact;
(ii) each universally measurable non–Haar–null set is shift–compact.

The converse of Theorem 1.6 does not hold: see [19, Theorem 12], [2,
Example 7.1] and also [38].

It emerges that in non-locally compact complete Abelian metric groups
there exist sets which are neither Haar–null nor Haar–meagre and with k-fold
sums that are meagre for each k ∈ N. An example is provided by the positive
cone C := {(xn)n∈N ∈ c0 : xn ≥ 0 for each n ∈ N} in the space c0 (of all
real sequences tending to zero); this is neither Haar–meagre nor Haar–null,
C =

∑k
i=1 C for each k ∈ N and C is nowhere dense in X (see [28,35]). By

the Steinhaus–Pettis–Piccard Theorem (see [40,41,43] or [31, Theorems 2.9.1,
3.7.1]), such a situation is not possible in the case of locally compact Abelian

2See e.g. [29, p. 227].
3See e.g. [25].
4Here by a metric group we mean a group with an invariant metric; by the Birkhoff–Kakutani
theorem (see e.g. [29, Theorem 9.1]) any metrizable topological group is a metric group.
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Polish groups, where the families of Haar–meagre sets and of meagre sets
coincide, and likewise the families of Haar–null sets and of sets of Haar measure
zero coincide. This motivates the following:

Question 1.7. For X a complete Abelian metric group and f : X → R a sub-
additive function, bounded above on a set T ⊂ X with a k-fold sum

∑k
i=1 T

either universally Baire and non–Haar–meagre, or universally measurable and
non–Haar–null, is f locally bounded at each point of X?

Below we give an affirmative answer. Actually, we prove a more general
result: we show that for X an Abelian metric group, every subadditive function
f : X → R that is bounded above on a shift–compact subset of X is necessarily
locally bounded at each point of X.

Analogous results for additive functions as well as mid–point convex func-
tions [i.e. functions satisfying

f((x + y)/2) ≤ (f(x) + f(y))/2

for every x, y from the domain of f ] were obtained in [2, Theorems 9.1 and
11.1], and also in [6, §7 and Theorem 1] in the case of R (cf. [9, §10 Convexity]),
where the following two results were proved. (We use ‘shift–compact’ in place
of ‘non–null–finite’ as in [1]; see §1.)

Theorem 1.8 ([2, Theorem 9.1]). Each additive functional f : X → R on an
Abelian metric group X is bounded above on a shift–compact set in X if and
only if it is continuous.

Theorem 1.9 ([2, Theorem 11.1]). Each mid-point convex function f : X → R
defined on a real linear metric space X is bounded above on a shift–compact
set in X if and only if it is continuous.

Since each sublinear function f : X → R defined on a real linear space X
is necessarily mid-point convex (see [31, Lemma 16.1.11]), from Theorem 1.9
we obtain

Corollary 1.10. Each sublinear function f : X → R defined on a real linear
metric space X is bounded above on a shift–compact set in X if and only if it
is continuous.

The result above in the case X = R was obtained by Bingham and
Ostaszewski in [12, Proposition 5] (cf. [13, Theorem R] and [15, Proposition
5]).

This is also why boundedness from above of subadditive functions on
shift–compact sets seems to be all the more interesting.

Finally, we determine the relationship between local boundedness at some
point, boundedness from above on a shift–compact set and property WNT,
as proposed by Bingham and Ostaszewski in [5], in the class of functions
f : X → R defined on an Abelian topological group X.
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2. Main Results

First, let us recall some basic properties of subadditive functions.

Lemma 2.1 ([31, Lemmas 16.1.3, 16.1.4, 16.1.5]). Let X be a group and f :
X → R be a subadditive function. Then:

(i) f(0) ≥ 0;
(ii) f(−x) ≥ −f(x) for each x ∈ X.

We are now ready to prove the main result, which in the case of R, was
obtained in [6, Theorem 2 (ii) and Remark].

Theorem 2.2. Let X be an Abelian metric group and f : X → R a subadditive
function. If f is bounded above on a set T ⊂ X whose k–fold sum

∑k
i=1 T is

shift–compact for some k ∈ N, then f is locally bounded at each point of X.

In the proof of the above result we use classical methods from [31, Proof
of Theorem 16.2] and from [6, Proof of Theorem 2 (ii)].

Proof. Suppose that f is not locally bounded at the point x0 ∈ X. This means
that there is a sequence (xn)n∈N with xn → x0 and |f(xn)| → ∞. Then we
may choose either a subsequence (x′

n)n∈N of (xn)n∈N with f(x′
n) > n for each

n ∈ N or a subsequence (x′′
n)n∈N of (xn)n∈N with f(x′′

n) < −n for each n ∈ N.
In the first case, put yn := x′

n for n ∈ N and y0 := x0. In the second
case, take yn := −x′′

n for n ∈ N and y0 := −x0. By Lemma 2.1, f(−x′′
n) ≥

−f(x′′
n) > n for each n ∈ N so, in both cases, there exists a sequence yn → y0

such that f(yn) > n for n ∈ N. Since yn − y0 → 0 and
∑k

i=1 T ⊂ X is shift–
compact, there exists z0 ∈ X such that the set N0 := {n ∈ N : z0 + yn − y0 ∈∑k

i=1 T} is infinite. Moreover, by hypothesis, there exists a constant M ∈ R
with f(

∑k
i=1 xi) ≤ ∑k

i=1 f(xi) ≤ kM for each x1, . . . , xk ∈ T ; so f(x) ≤ kM

for each x ∈ ∑k
i=1 T . Thus, by Lemma 2.1,

n < f(yn) ≤ f(yn − y0 + z0) + f(y0 − z0) ≤ kM + f(y0 − z0)

for each n ∈ N0, so N0 is finite, a contradiction. �

Next we consider some applications of Theorem 2.2.
Since each non-empty open set is shift–compact, we obtain the following

generalization of Theorem 1.1.

Corollary 2.3. If X is an Abelian metric group and f : X → R a subadditive
function locally bounded above at some point, then f is locally bounded at every
point of X.

The above corollary is also obtained in the case of R in [13, Theorem R]
(cf. also [9, Lemma 4.3]), but the proof there relies only on group structure,
as here.
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By Theorem 1.6, in a complete Abelian metric group each universally
Baire non–Haar–meagre set, and also each universally measurable non–Haar–
null set, is shift–compact. Thus we obtain the next result, generalizing to some
extent Theorem 1.2.

Corollary 2.4. If X is a complete Abelian metric group and f : X → R a sub-
additive function bounded above on a set T ⊂ X with some k-fold sum

∑k
i=1 T

either universally Baire and non–Haar–meagre, or universally measurable and
non–Haar–null, then f is locally bounded at each point of X.

3. A Connection with Generic Subadditive Functions

In 2008 Bingham and Ostaszewski [5] (see also [7,8]) introduced the notion of
Weak No Trumps functions (called WNT–functions).

Definition 3.1. Let f : X → R be defined on an Abelian metric group 5 and
Hk := f−1(−k, k) for k ∈ N. Call f a WNT–function if for every convergent
sequence (un)n∈N in X there exist k ∈ N, an infinite set M ⊂ N and t ∈ X
such that {t + um : m ∈ M} ⊂ Hk.

The more basic No Trumps combinatorial principle, denoted NT, refers
to a family of subsets of reals {Tk : k ∈ N} (see [7, Definition 2]). The function
class WNT is one of a hierarchy introduced in [8] and is so named as it refers
to the weakest condition in the hierarchy.

One readily observes the following.

Lemma 3.2. A function f : X → R defined on an Abelian metric group X is
WNT if and only if for every sequence (un)n∈N convergent to 0 in X there exist
k ∈ N, an infinite set M ⊂ N and t ∈ X such that {t + um : m ∈ M} ⊂ Hk.

Now let us present some connections between the WNT–property, bound-
edness on a shift–compact set, and local boundedness at a point.

Proposition 3.3. Let f : X → R be defined on an Abelian metric group. Then
the following implications hold:

(i) if f is locally bounded at a point, then f is bounded on a shift–compact
set in X;

(ii) if f is bounded on a shift-compact set in X, then f is WNT.

Proof. (i) It is an easy consequence of the fact that open sets are shift–compact.
(ii) Assume that for some shift–compact set D ⊂ X there exists k ∈ N

such that f(D) ⊂ (−k, k). Since D is shift–compact, for each sequence (xn)n∈N
tending to 0 in X there are x0 ∈ X and an infinite set N0 ⊂ N such that
f(xn +x0) ∈ f(D) ⊂ (−k, k) for each n ∈ N0. Consequently, for each sequence
(xn)n∈N convergent to 0 there are k ∈ N, x0 ∈ X and an infinite set N0 ⊂ N
such that xn + x0 ∈ f−1(−k, k) for n ∈ N0. So f is WNT. �
5In fact, Bingham and Ostaszewski defined a WNT–function in the case X = RN .



Vol. 75 (2020) On Subadditive Functions Bounded Above Page 7 of 12 58

Note that the converse implication to (i) in Proposition 3.3 does not hold.

Example 1. Define a function g : [0, 1) → R by

g(x) :=

{
(−1)nn, for x = m/n ∈ Q ∩ (0, 1), where gcd (m,n) = 1,

0, for x ∈ {0} ∪ [(0, 1)\Q].

First we prove that g is locally unbounded at each point of [0, 1). Indeed, for
each x ∈ [0, 1) every open neighbourhood Ux ⊂ [0, 1) of x contains infinitely
many positive rational numbers, hence supt∈Ux

|g(t)| = ∞.
Next, define a function f : R → R as 1–periodic extension of g. Clearly,

f is locally unbounded at each point of R.
Moreover, by Theorem 1.6, the set R\Q is shift–compact (as it has positive

Lebesgue measure) and f(R\Q) = {0}. Thus, according to Proposition 3.3 (ii),
f is WNT.

Note also that there exists a function f : R → R bounded above on
a shift–compact set in R which is not WNT. It means that we are not able to
weaken the assumption in Proposition 3.3 (ii).

Example 2. Let f : R → R be given by f(x) := −|g(x)| for x ∈ R with
a discontinuous additive function g : R→ R. Clearly then f is bounded above
on R. We have to show yet that f is not WNT.

Since g is additive and discontinuous, its graph is dense in R2 (see [31,
Theorem 12.1.2]). So, there exists a sequence (un)n∈N convergent to 0 such
that |g(un)| > n for every n ∈ N. Fix k ∈ N and t ∈ R. Then

{n ∈ N : |f(t + un)| < k} = {n ∈ N : −k − g(t) < g(un) < k − g(t)}
⊂ {n ∈ N : |g(un)| < max{|k − g(t)|, |k + g(t)|}}.

Hence the set {n ∈ N : t + un ∈ f−1((−k, k))} is finite, which means that
{t + un : n ∈ M} �⊂ Hk for every infinite set M ⊂ N.

In view of Example 2 we see that Theorem 2.2 can not be derived from
the following result obtained in [5].

Proposition 3.4 ([5, Proposition 1]). If f : RN → R is a subadditive WNT–
function, then f is locally bounded at each point of RN .

We have shown that generally, for every f : X → R defined on an Abelian
metric group,

boundedness
on a shift–compact set

� \� �
local boundedness

at some point ⇓ �⇑ WNT

� /� \�
boundedness above

on a shift–compact set
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Question 3.5. Does every WNT function have to be bounded (above) on a shift–
compact set?

Nevertheless, combining Theorem 2.2 and Propositions 3.3 and 3.4, we
deduce that the situation is completely different in the class of subadditive
functions.

Corollary 3.6. Let f : X → R be a subadditive function defined on an Abelian
metric group. The following conditions are equivalent:

• f is locally bounded at some point;
• f is WNT;
• f is bounded above on a shift–compact set;
• f is bounded on a shift–compact set.

4. Concluding Remarks

4.1. This joint paper arose out of a newfound interest in shift–compactness.
The concept was isolated a decade ago in establishing a common proof for
the two known ‘generic cases’ of measure and category of the Uniform Con-
vergence Theorem for regularly varying functions (for background see [4] and
[7]). Most recently one of the current authors in collaboration initially with
Banakh initiated the study of a common generalization of Christensen’s notion
of Haar–null sets and Darji’s notion of Haar–meagre sets by replacing the rel-
evant σ–ideals by other ideals I and working in the general context of Abelian
metric groups. This yielded Haar–I sets, and led in particular to the notion
of null–finite sets (corresponding to the ideal of finite subsets). A null–finite
set is simply a non–shift–compact set and this explains the recent resurgence
of interest in shift–compactness in metric groups, and the new results as in
[38]. Results on subadditivity using shift–compactness have been studied in
various publications in the last decade typically in Euclidean contexts, so it
seemed natural to collect together the known results from the widely scattered
literature, in the more natural contexts here of groups or linear spaces.

4.2. Use of large sets in the contexts of additivity, subadditivity, and convexity
may be traced back to the work of Ger and Kuczma on ‘test sets’ (the Ger–
Kuczma classes of test sets A,B,C [31, Chapters 9,10]), the idea being that a
property holding on a test set would automatically imply a related property
globally, as in the well-known related case of automatic continuity (for which
see Dales [1] and [21,22]). Such ideas were also pursued by Kominek on the
basis of result by Jones (test set there being capable of spanning the reals, as
with Hamel bases but not coincidental with these; for recent work on Hamel
bases see e.g. [17,18,24]). An alternative approach to test sets was developed
also in [10] with connections to uniformity results in the theory of regular
variation.
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For further thematic uses of large sets (in connection with regularity, i.e.
‘smoothness’, properties of functions) see the extended arXiv version of this
paper.

Postscript. With sadness we dedicate this paper to the memory of Harry
I. Miller, friend and collaborator, recently passed away—a latter—day pioneer
of shift–compactness (see [36]).
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