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Abstract

The Box-Cox power transformation family for non-negative responses
in linear models has a long and interesting history in both statistical practice
and theory, which we summarize. The relationship between generalized lin-
ear models and log transformed data is illustrated. Extensions investigated
include the transform both sides model and the Yeo-Johnson transformation
for observations that can be positive or negative. The paper also describes
an extended Yeo-Johnson transformation that allows positive and negative
responses to have different power transformations. Analyses of data show
this to be necessary. Robustness enters in the fan plot for which the for-
ward search provides an ordering of the data. Plausible transformations are
checked with an extended fan plot. These procedures are used to compare
parametric power transformations with nonparametric transformations pro-
duced by smoothing.
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1 Introduction
This paper is principally concerned with the Box-Cox transformation of the re-
sponse in linear regression models. The extensions include the transformation of
both sides of the model, the transformation of responses that can be both posi-
tive and negative and comparisons with nonparametric alternatives. It is taken as
given that robust procedures are necessary, since outlying observations can have
an appreciable effect on the estimated transformation.

The use of transformations in the simplif cation of distributions has a long
history. Cox (1977) instances Fisher’s z transformation of the correlation coeff -
cient (Fisher, 1915). Probit analysis for binomial proportions (Bliss, 1934) is also
a transformation to normality. General discussions of the history, purposes and
development of transformations are in the review article Cox (1977) and two re-
lated articles taken from the Encyclopedia of Statistics (Atkinson and Cox, 1988;
Taylor, 2004). Box and Cox (1964) emphasise the effect of transformations to
normality on the systematic part of the model. The transformation should pro-
vide simple, more revealing analyses that lead to sharper inferences. An extensive
survey of literature from the f rst quarter century of the Box-Cox transformation
is Sakia (1992). Hoyle (1973) lists 19 transformations, several of which are spe-
cial cases of the Box-Cox transformation. The monograph of Carroll and Ruppert
(1988) ranges widely over topics in the statistical transformation of data.

The Box-Cox transformation is described in §2 together with some of the in-
ferential problems arising from this seemingly simple model. The use of the Box-
Cox transformation is illustrated in §3 by the analysis of data on mental illness.
The results are compared with those from a generalized linear model, that is a
model in which the linear predictor, rather than the response, is transformed. Sec-
tion 4 covers the transform both sides method of Carroll and Ruppert (1988) which
can preserve the relationship between the response and a theoretical model whilst
achieving homogeneity of variance. The section also describes nonparametric
alternatives to the Box-Cox transformation, as well as other transformations, in-
cluding extensions of the Box-Cox transformation.

These procedures are based on aggregate statistics, calculated over the whole
sample. However, estimation of the transformation parameter can be particularly
sensitive to outliers and an incorrect transformation can indicate spurious outliers
that disappear under the correct transformation. In §5 we discuss robust methods
and, in §6.2, recall the fan plot that illuminates the effect of individual observa-
tions on the estimated transformation. Section 7 illustrates the use of these robust
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techniques in the analysis of the illness data and compares the results with those
from nonparametric transformations.

Yeo and Johnson (2000) extended the Box-Cox transformation to a one-parameter
family that allows the transformation of both positive and negative observations.
§8.2 describes the further extension of this transformation by Atkinson et al.
(2020) to allow different transformation parameters for positive and negative ob-
servations, together with robust procedures for testing whether the different pa-
rameter values are necessary. The paper concludes with an analysis of data on
differences (John and Draper, 1980) which illustrates the need for this extended
transformation as does the analysis in §4 of the supplementary material.

2 The Box-Cox Transformation
The Box-Cox transformation for non-negative responses is a function of the pa-
rameter λ. The transformed response is

y(λ) = (yλ − 1)/λ (λ 6= 0); log y (λ = 0), (1)

with λ = 1 corresponding to no transformation, λ = 1/2 to the square root trans-
formation, λ = 0 to the logarithmic transformation and λ = −1 to the reciprocal
transformation, thus avoiding a discontinuity at zero.

The development in Box and Cox (1964) is for the normal theory linear model

y(λ) = Xβ(λ) + ǫ, (2)

whereX is n×p, β(λ) is a p×1 vector of unknown parameters and the variance of
the independent errors ǫi (i = 1, ..., n) is σ2(λ). The aim of the transformation
is to produce a response for which the variance of ǫi is constant with an approx-
imately normal distribution. The linear model ideally should also be simple and
additive, for example avoiding interaction and quadratic terms. All three aims are
satisf ed in the examples given by Box and Cox (1964), as they are in the analysis
of numerous other data set, such as those in Atkinson and Riani (2000, Chapter 4).

To estimate λ it is necessary to allow for the change of scale of y(λ) with λ.
The likelihood of the transformed observations relative to the original observa-
tions y includes the Jacobian

J =

n
∏

i=1

∣

∣

∣

∣

∂yi(λ)

∂yi

∣

∣

∣

∣

. (3)

For the power transformation (1), ∂yi(λ)/∂yi = yλ−1

i , so that

log J = (λ− 1)
∑

log yi = n(λ− 1) log ẏ,
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where ẏ is the geometric mean of the observations. A simple form for the likeli-
hood is found by working with the normalized transformation

z(λ) = y(λ)/J1/n = (yλ − 1)/λẏλ−1. (4)

For given λ the parameters are estimated by least squares:

β̂(λ) = (XTX)−1XT z(λ) and (5)

s2(λ) = {z(λ)−Xβ̂(λ)}T{z(λ)−Xβ̂(λ)}/(n− p) = R(λ)/(n− p). (6)

If an additive constant is ignored, the prof le loglikelihood, partially maximized,
over β(λ) and σ2(λ), is

Lmax(λ) = −(n/2) log{R(λ)/(n− p)}, (7)

so that λ̂ minimizes R(λ).
For inference about plausible values of the transformation parameter λ, Box

and Cox suggest likelihood ratio tests using (7), that is, the statistic

TLR = 2{Lmax(λ̂)− Lmax(λo)} = n log{R(λ0)/R(λ̂)}. (8)

Although Box and Cox (1964) f nd the estimate λ̂ that maximizes the prof le
loglikelihood, they are careful to stress in their §2 that they are concerned not
merely to f nd a transformation which justif es assumptions, but rather to f nd,
where possible, a metric in terms of which the f ndings may be succinctly ex-
pressed. Typically in linear models, the main interest is in the factor effects, the
choice of λ being only a preliminary step. They state “we shall need to f x one,
or possibly a small number, of λ’s and go ahead with the detailed estimation and
interpretation of the factor effects on this particular transformed scale. We shall
choose (the estimate λ̃) partly in the light of the information provided by the data
and partly from general considerations of simplicity, ease of interpretation, etc.”

This formulation has led to some controversy in the statistical literature. Bickel
and Doksum (1981) and Chen et al. (2002) ignore the suggested procedure. They
show for regression models with response y(λ) that, when the transformation pa-
rameter is poorly determined, the variability of the estimated parameters in the
linear model can be greatly increased if λ is estimated by λ̂ rather than by λ̃. Box
and Cox (1982) and Hinkley and Runger (1984) query the scientif c usefulness
of such estimates of parameters on an unknown measurement scale. They further
comment that the effects observed by Bickel and Doksum would be greatly re-
duced if the investigation had been conducted in terms of z(λ) rather than y(λ).
McCullagh (2002a), in comments on Chen et al., is very clear about the Box-
Cox procedure for choosing λ. In the same discussion Reid (2002) comments
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“The Box-Cox model is very useful for the theory of statistics, as a moderately
anomalous model in the sense that blind application of conventional theory leads
to absurd results.” Details are in McCullagh (2002b) and Taylor and Liu (2007).
Cox and Reid (1987) use the Box-Cox model as an example of their method for
obtaining approximate parameter orthogonality, here between λ and the parame-
ters of the linear model.

The practical procedure is analysis in terms of z(λ) leading to λ̂ and hence to
a, hopefully, physically interpretable estimate λ̃ chosen from a grid of plausible
values. Carroll (1982) argues that the grid needs to become denser as n increases.
Indeed, for the small examples of Box and Cox, inverse or logarithmic transforma-
tions are indicated. But for the 509 observations on loyalty card usage in Perrotta
et al. (2009), the value 1/3 is rejected when outliers are removed, but the value 0.4
is acceptable. A f nal point is that, for comparisons across sets of data, parameter
estimates need to be calculated using y(λ̃) to avoid dependence on ẏ.

3 Mental Illness Data: Transformations and the Gen-
eralized Linear Model

Kleinbaum and Kupper (1978, p.148) describe observational data on the assess-
ment of mental illness of 53 patients. We compare the Box-Cox transformation
with an analysis using a generalized linear model with various Box-Cox links.

A psychiatrist assigns values for mental retardation and degree of distrust of
doctors in newly hospitalized patients. After six months of treatment, a value is
assigned for the degree of illness of each patient. We explore the Box-Cox trans-
formation of degree of illness with regression on the two initial assessments. The
maximum likelihood estimate of λ is 0.046, with 95% conf dence limits from the
prof le log-likelihood of -0.307, 0.404. The data support the log transformation,
λ = 0. There is signif cant regression on both variables with a t value of 2.88
for the relationship with the initial assessment of retardation and -2.21 for dis-
trust of doctors. The QQ-plots of residuals show an appreciable improvement in
normality after transformation.

In the Box-Cox model the transformed response follows a linear model. On
the other hand, in generalized linear models the linear model is transformed by the
link function. For positive skew continuous data, an alternative to the Box-Cox
transformation is a gamma GLM. The canonical link for this GLM is the inverse
function, but the log link often provides a good f t to data. There is a strong
relationship between the linear model f tted to the logged response and the GLM
with a log link. We illustrate this relationship for the Mental Illness data.

With E(Y ) = µ and the linear predictor η = xTβ, the link function relates
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Table 1: Mental illness data. Deviances from GLM analyses for three values of
the parameter of the Box-Cox link

Link Deviance
-1 19.18
0 19.56
1 20.12

the two by η = g(µ). For the gamma model the variance is quadratically related
to the mean; the variance function V (µ) = µ2. We use the Box-Cox link g(µ) =
(µλ − 1)/λ: for λ = −1 we obtain the reciprocal link, with the log link for
λ = 0. Table 1 gives the deviances from f tting the gamma model with λ =
−1, 0 and 1. Although the reciprocal link yields the smallest deviance, there is no
signif cant increase in deviance if one of the other links is used. The insensitivity
of data analyses to the exact specif cation of the gamma link is well established
- for example the analysis by McCullagh and Nelder (1989, p.377) of their car
insurance data. Further discussion of the relationship between the gamma and
lognormal models is in McCullagh and Nelder (1989, Chapter 8). Atkinson and
Riani (2000, Chapter 6) use the goodness of link test of Pregibon (1980) to provide
a fan plot for the parameter in the Box-Cox family of link functions.

We now consider the relationship between the two models f tted to the Mental
Illness data. The coeff cient of variation of the untransformed data is taken as
constant

var(Y ) = σ2{E(Y )}2 = σ2µ2,

so that σ is the coeff cient of variation of Y . The variance-stabilizing transforma-
tion is log(Y). For small σ2 the approximate moments of log(Y ) are

E{log(Y )} = log(µ)− σ2/2 and var{log(Y )} = σ2.

If the systematic part of the model is multiplicative on the original scale, coeff -
cient estimates of the parameters and of their precision may be obtained by trans-
forming to the log scale and using ordinary least squares. If the exact distribution
of Y is known, maximum likelihood estimation for the known distribution should
be used. Firth (1988) compares the log-normal and gamma models under recipro-
cal mis-specif cation, the gamma distribution performing slightly better.

Figure 1 shows the comparison of f tted values for the linear model after log
transformation of y with those from the gamma model for two Box-Cox links. In
the left-hand panel for the reciprocal link the relationship between the two sets
of f tted values is slightly convex. The right-hand panel shows the straight-line
relationship for the log link. The plot for the identity link (λ = 1) is not shown.
As is to be expected, it is slightly concave.
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Figure 1: Mental Illness data. Comparison of f tted values from gamma and log-
normal models. Left-hand panel, reciprocal link, right-hand panel log link

The close relationship between the gamma and log-normal f ts depends on σ2

being suff ciently small. For the mental illness data the estimated value of σ2 is
0.4. Results of a small simulation (Atkinson, 1982) on the choice between the
two models for the chimpanzee learning data of Brown and Hollander (1977) lead
McCullagh and Nelder to comment that discrimination between the two models
may be diff cult even for σ2 as large as 0.6. The relationship also depends on the
observations having a common variance. Wiens (1999) provides an example of
two-group data in which the relationship fails to hold due to different variances in
the two groups after log transformation.

4 Further Transformations

4.1 Transform Both Sides
There is sometimes a strong, often theoretically derived, relationship between the
response and the model η(x, β), combined with variance heterogeneity. Box-Cox
transformation of the response to achieve stability of variance can destroy the rela-
tionship between E(Y ) and η(x, β). For example, the kinetic models of chemistry
provide deterministic relationships of concentrations of reactants and products on
time and temperature. A well-known simple example is the Michaelis-Menten
model for enzyme kinetics in which the response goes from zero to an asymptotic
value Vmax. Transforming the response to yλ would result in a different range for
the transformed response.
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Carroll and Ruppert (1988, Chapter 4) developed a transform both sides model
for such problems, motivated by theoretical models for sockeye salmon breeding.
The transformation model is

(yλ − 1)/λ = {η(x, β)λ − 1}/λ+ ǫ, (9)

where the independent errors are normally distributed. As with the Box-Cox trans-
formation, the parameters λ and β are found by minimizing the residual sum of
squares in the regression model which includes the Jacobian of the transformation,
again ẏ.

The theoretical procedure is to minimize the residual sum of squares using
y(λ)/ẏλ−1, or equivalently y(λ)/ẏλ, as the response and the similarly transformed
value of η as the model. Carroll and Ruppert comment that, unless λ is f xed, it
is not possible to use standard nonlinear regression routines for this minimization
as such routings typically do not allow the response to depend upon unknown pa-
rameters. They reformulate the problem in terms of a ‘pseudo model’, estimation
of which converged rapidly in our application.
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Figure 2: 99% prediction intervals for back-transformed mandible length data.
Left-hand panel, transform both sides, λ = 0. Right-hand panel, logarithmic
Box-Cox transformation with a quadratic model.

As our example we use data on mandible length in foetuses used by Royston
and Altman (1994) to illustrate the use of fractional polynomials as explanatory
variables in regression models. There are 158 observations on foetuses of age
x less than 28 weeks. There are also nine measurements with x > 28, which
the clinicians felt formed a different group with excessive measurement error.
The plot of the data in left-hand panel of Figure 2 suggests that mandible length
increases linearly with gestational age and that the variance likewise increases.
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Royston and Altman overcome the increase in variance by use of the log transfor-
mation, but the relationship between log(mandible length) and age is then curved.
We use the transformation of both sides to obtain a homoscedastic model in which
the linear relationship is preserved.

Regression of all 167 observations on age assuming homoscedasticity indi-
cates only two outliers, rather than 9. We proceed on the assumption that there
will be no outliers when we have allowed for heteroscedasticity. The estimate
for the Box-Cox transformation of the response suggests a value of 0.75 for λ -
a compromise between preserving linearity and a transformation to homoscedas-
ticity. With a logged response there is very strong evidence for inclusion of a
quadratic term. The transform both sides model with regression just on age also
indicates the log transformation with λ̂ = −0.08.

The left-hand panel of Figure 2 shows the 99% prediction interval for the
back-transformed response from the transform both sides model. The f tted model
retains the desired linearity and the prediction interval increases with gestational
age in line with the heteroscedasticity of the observations. The right-hand panel
shows a similar interval for the back-transformed quadratic regression with log y
as the response. This panel shows that, although the quadratic model f ts well to
the majority of the observations, there is increasing curvature for values of x > 28.

It is clear that the transform both sides model is to be preferred for predic-
tions over quadratic regression. The difference from predictions using the frac-
tional polynomial model of Royston and Altman is not so obvious. However,
the method of transforming both sides preserves the linear relationship between
length and age and, more generally, the ability to combine theoretical models with
transformation to normality.

4.2 Nonparametric Transformations
The Box-Cox transformation produces a smooth relationship between y(λ) and
the original y which is determined by the value of λ. The extended Yeo-Johnson
transformation of §8.1 for observations that can be positive or negative, likewise
produces a smooth relationship but depending on two parameters. These paramet-
ric transformations may be too restrictive. A nonparametric alternative is to use
some form of smoothing to estimate the relationship, allowing for greater f exi-
bility. This may have advantages in the analysis of a specif c set of data, with
disadvantages if the aim is to compare different sets of observations which are
subject to the same transformation. Figure 9 illustrates the extra information pro-
vided by one nonparametric transformation.

The general model is

g(y, κ) = η(x, β) + ǫ, (10)
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where κ might be a vector of parameters def ning a spline transformation and ǫ is
not necessarily normally distributed.

Ramsay (1988) uses a monotone spline to estimate g(.), with the regression
parameters estimated by least squares. An advantage is that the Jacobian of the
transformation is found by straightforward differentiation of the spline. His anal-
ysis of the wool data from Box and Cox produces a transformation very close to
that from the parametric analysis. The loglikelihood is not signif cantly improved
by increasing the complexity of the spline through the addition of extra knots.
Song and Lu (2012) adopt a Bayesian approach. They use penalized Bayesian
splines to transform the response to approximate normality by maximizing a nor-
mal likelihood with prior distributions for the parameters of η(x, β). Their plot of
the transformation for U-shaped data1 is sigmoid, far from the convex or concave
shapes attainable from the Box-Cox transformation.

The semiparametric method of Foster et al. (2001) assumes that the Box-Cox
transformation holds, that is g(y, κ) = y(λ) but that in (10) the distribution of ǫ is
unknown. An estimating equation, combined with a grid search over values of λ,
provides estimates of λ and β. The covariance matrix of the parameter estimates
is found using a resampling method. The parameter estimates and their standard
errors for the wool data are virtually indistinguishable from those of Box and
Cox. However, the semiparametric method shows appreciable improvement for
prediction when the error distribution is not normal. Cai et al. (2005) use related
methods for the transformation of censored survival times.

Two nonparametric methods use the “supersmoother” (Friedman and Stuet-
zle, 1982) instead of the spline smoothing of Ramsay (1988). Both methods can
transform explanatory variables and response. The assumed model is a general-
ized additive model, that is one with transformations of both response and ex-
planatory variables but without interactions. Both rely on repeated application of
the univariate smoother. In ACE (alternating conditional expectations) Breiman
and Friedman (1985) maximize a measure of correlation between all variables;
in regression the response variable is not treated as being different from the ex-
planatory variables. Tibshirani (1988) describes a related method in which the
transformation for the response is intended to yield additivity and variance stabi-
lization (AVAS). The asymptotic variance stabilizing transformation is estimated
for the response. Hastie and Tibshirani (1990, Chapter 7) provide a description of
both ACE and AVAS with an emphasis on response transformation and the math-
ematical relationship to the Box-Cox transformation. Subroutine AREG of the
R-package Hmisc (Harrell Jr, 2019) replaces the smoother in ACE with restricted
cubic smoothing splines, with a controllable number of knots.

1In their Figure 2 these data have a minimum of −1.5. We are assured that, for the calculation
of the Box-Cox transformation in their Table 1, the data were shifted to be non-negative.
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For the transform both sides model Wang and Ruppert (1995) assume that the
observations are normally distributed and use kernel density estimation to deter-
mine g(y, κ). Since in the transform both sides model the form of the relationship
between y and η(x, θ) is known, least squares can be used to estimate β. A com-
panion article (Nychka and Ruppert, 1995) uses splines.

We use ACE, AVAS and AREG as our nonparametric alternatives to the Box-
Cox transformation, ACE and AVAS being the most studied of the nonparametric
transformations. We exclude the transformation of explanatory variables. The
original progams for both ACE and AVAS are written in ‘classical’ Fortran, with-
out comments and with many non-informative variable names. This Fortran code
also provides the basis of the R package acepack (Spector et al., 2016). We have
rewritten the programs in Matlab. These new programs have been thoroughly
compared with the Fortran programs and validated to give identical numerical re-
sults to the originals and incorporated into our toolbox for robust analysis. The
output of ACE and AVAS are a set of transformed responses, scaled to have unit
variance. Unlike ACE and AVAS, which are free of adjustable parameters, AREG
requires the specif cation of the number k of knots in the splines. The aggregate
statistic for comparison of models for all three is the value of R2 which Wang and
Murphy (2005) convert into BIC values. Harrell provides routines for bootstrap
evaluation of the variances of the estimated linear model parameters obtained from
AREG.

Marazzi et al. (2009) review papers on the Box-Cox transformation, from the
standpoint of computational feasibility and, particularly, robustness. None of the
methods have high breakdown and all, for example Carroll and Ruppert (1985),
breakdown for outliers at leverage points. In their discussion of Breiman and
Friedman (1985), Buja and Kass (1985) comment on the need to develop diag-
nostics and robust forms of ACE. Some diagnostic information can be obtained
by comparing parametric and nonparametric transformations on data before and
after the removal of outliers, which we exemplify in §10.

4.3 More Transformations
Extensions of the Box-Cox transformation

For values of λ other than zero, the distribution of y(λ) is truncated. For
λ > 0, y(λ) is bounded below at −1/λ; for λ < 0 it is bounded above at the
same value. Only exponentiation of the log normal distribution yields a normal
distribution on the whole real line. Yang (2006) introduced a dual transformation
y(λ) = (yλ − y−λ)/2λ, (λ 6= 0) with the logarithmic transformations at λ = 0,
which removes the bound in the Box-Cox transformation.

Zhang and Yang (2017) describe a method for applying the Box-Cox trans-
formation to huge data sets. The necessity is to avoid storing all the data in the
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computer before performing transformation calculations. For least squares re-
gression the required quantities (sums of squares and products of y andX) can be
sequentially updated. The procedure can be extended to the Box-Cox transforma-
tion to include storing sums of products of X and z(λ) for selected values of λ.
Zhang and Yang (2017) choose a grid of 41 values.

Box and Cox (1964) extended their transformation to the shifted power trans-
formation of (y + µ), where both µ and the transformation parameter λ are to be
estimated. A diff culty is that the range of the observations now depends on µ,
so that the inferential problem is non-regular. Atkinson et al. (1991) suggest a
grouped likelihood approach to parameter estimation, but the estimates may de-
pend on the size of the grouping interval.

In §10 we analyse data from John and Draper (1980). The normal plot of the
residuals (Atkinson, 1985, Figure 9.17) shows a long tailed symmetrical distribu-
tion, which structure led John and Draper to develop the modulus transformation
with

y(λ) =

{

(|y|+ 1)λ − 1

λ

}

sign(y),

for y 6= 0. This symmetric transformation family applies the same transformation
to the positive and negative tails of the distribution. The Yeo-Johnson transforma-
tion, which can also be applied to observations that can be negative or positive, is
either convex or concave over the whole range of y, whereas the extended Yeo-
Johnson transformation of §8.2 can be convex or concave in either tail as the data
dictate.

The two transformations of Aranda-Ordaz (1981) provide invertible transfor-
mations for binary data. In the symmetrical transformation in which “successes”
and “failures” are interchangeable, the value λ = 0 yields the logistic model.
In the asymmetrical transformation the limits are the complementary log log and
logistic models.

These methods are for independent univariate responses. The Box-Cox trans-
formation was generalized to multivariate data by Andrews et al. (1971) and
Gnanadesikan (1977). Velilla (1995) considers robust and diagnostic aspects of
multivariate transformations. Atkinson et al. (2004) provide examples of the anal-
ysis of transformed multivariate data using the forward search.

A more general point is inference for transformed data on the original scale.
The properties of predictions on the back-transformed scale are considered by
many, including Taylor (1986) and Carroll and Ruppert (1988). A second point
is that Box and Cox also develop a Bayesian procedure for transformation, which
leads to a data-dependent prior. Pericchi (1981) suggested a prior that avoided
data-dependence, which was modif ed by Sweeting (1984). Gottardo and Raftery
(2009) combine Bayesian transformations with model selection.

Transformation of Explanatory Variables
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Box and Tidwell (1962) explore power transformations of the explanatory
variables in regression. Since the response is not transformed, residual sums of
squares can be compared directly for different transformations.

Transformation of the response in ARIMAmodels results in transformation of
any lagged responses in the model. The constructed variables of Atkinson et al.
(1997) for Box-Cox transformation of ARIMAmodels were used by Riani (2009)
and Proietti and Riani (2009) in fan plots for the transformation of time series.

Transformation of Parameters
The lower left-hand panel of Figure 8.2 of McCullagh and Nelder (1989)

shows a virtually parabolic loglikelihood for a single gamma observation when
the plot is against µ−1/3. For multiparameter problems approximate orthogonality
and a nearly quadratic form of the log likelihood will usually speed the conver-
gence of iterative methods of estimation. This is a matter of numerical analysis,
but approximate independence of the components of parameters combined with
approximate normality is also desirable for statistical reasons, including ease of
interpretation in multiparameter problems. Ross (1990) includes many examples.

5 Robustness and Graphics
The data analyses so far are based on aggregate statistics. They do not allow
for the presence of dispersed or grouped outliers, or for inf uential observations,
one or a few of which may appreciably change the estimate of the transformation
parameter and so the interpretation of the data. Several robust statistical methods
address this problem, at least for many statistical models, such as regression, if not
for data transformation. A diff culty in the intelligent application of robust meth-
ods is that many require the specif cation of a parameter dependent on the amount
of contamination expected in the data or the required eff ciency of estimation.

There are three general classes of approaches to robust regression: (i). Soft
Trimming (downweighting). M estimation and derived methods (Huber, 1973).
Observations near the centre of the distribution retain their value, but observations
far from the centre have a weight that decreases with distance from the centre;
(ii). Hard Trimming. In Least Trimmed Squares (LTS: Hampel, 1975, Rousseeuw,
1984) the amount of trimming is determined by the choice of the trimming param-
eter h, which is specif ed in advance. The LTS estimate is intended to minimize
the sum of squares of the residuals of h observations and (iii). Adaptive Hard
Trimming. In the Forward Search (FS), the observations are again hard trimmed,
but the value of h is determined adaptively by the data. Starting from a small ini-
tial subset of data, the number of observations used in f tting then increases until
all are included and outliers identif ed. Atkinson et al. (2010) provide a general
survey of the FS with discussion.
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Two properties of these robust regression estimators are important when se-
lecting a method: (i). Breakdown Point, bdp ; the asymptotic proportion of obser-
vations that can go to∞without affecting the parameter estimates. This def nition
requires both that n → ∞ and also that the distance between the contaminated and
uncontaminated observations increases with n; (ii). Eff ciency of Estimation, of
the parameters relative to least squares for uncontaminated data.

Ideally a robust estimator would have both a high breakdown point and a high
eff ciency. Unfortunately this is not possible. For hard trimming, once one of
the values, for example the breakdown point bdp, has been selected, the other
is determined. Riani et al. (2014) extended these results to S-estimation. To il-
luminate the non-asymptotic properties of robust estimators Riani et al. (2014)
monitor the behaviour of several extensions of M estimation, including MM esti-
mation (Yohai, 1987), by analysing data over a grid of values of the eff ciency of
estimation of the parameters of the linear model. They observe that there is often a
point at which the f t switches from being robust to non-robust least squares. This
important property, which at present cannot be determined analytically, depends
both on the nominal properties of the estimator and on the particular data set being
analysed.

The examples in Riani et al. (2014) indicate that the FS, combined with a suit-
able stopping rule to avoid the inclusion of outliers, provides a robust procedure
with good properties which avoids any a priori specif cation of quantities indicat-
ing the required degree of robustness. We therefore use it as the method for robust
estimation of transformations. Details of the method are in §6.2.

The FS by its nature provides a series of f ts to subsets of the data of increasing
size. Forward plots of residuals, that is of residuals as the subset sizem increases,
are informative about the presence of outliers. They are used both as a tool to
determine outliers and as a means of understanding the structure of the data. The
left-hand panel of Figure 6 illustrates the outlier detection procedure. The panels
of Figure 8 show the information gained by linking plots, making clear the effect
of individual observations on the estimated transformation parameter, the test for
outliers, the trajectory of residuals over the FS and the position of the observations
on scatter plots. A different use of dynamic graphics in the determination of robust
transformations is in Seo (2019)
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6 A Robust Approximate Score Test for the Trans-
formation Parameter

6.1 Constructed Variables
For inference Box and Cox (1964) rely on complete-sample likelihood inference
through the likelihood ratio statistic (8). A disadvantage of this likelihood ratio
test is that a numerical maximization is required to f nd the value of λ̂. In our
robust procedure using the FS, we calculate almost n test statistics for the hypoth-
esis that λ = λ0, typically for f ve values of λ0. There is an appreciable literature
on methods that avoid such maximizations of the likelihood: score tests (Cook
and Weisberg, 1982; Atkinson, 1985) and Lagrange multiplier tests (Breusch and
Pagan, 1979).

We use the approximate score statistic Tp(λ), (Atkinson, 1973) derived by
Taylor series expansion of z(λ) (4) about λ0. This leads to the approximate re-
gression model

z(λ0) = xTβ − (λ− λ0)w(λ0) + ǫ

= xTβ + γ w(λ0) + ǫ, (11)

where γ = −(λ − λ0) and the constructed variable w(λ0) = ∂z(λ)/∂λ|λ=λ0
,

which only requires calculations at the hypothesized value λ0.
The approximate score statistic for testing the transformation is the t statistic

for regression on −w(λ0) , that is the test for γ = 0 in the presence of all compo-
nents of β. Because Tp(λ0) is the t test for regression on −w(λ0), large positive
values of the statistic mean that λ0 is too low and that a higher value should be
considered.

A different approximate score statistic for the Box-Cox transformation is found
by Lawrance (1987) through an approximation to the variance of the score statis-
tic, leading to an improved null distribution for the statistic. Some numerical com-
parisons of the two procedures are in Atkinson and Lawrance (1989). A similar
procedure for testing the value of the parameter in the Yeo-Johnson transformation
is shown in §9.

6.2 The Fan Plot
The robust transformation of regression data is complicated by the dependence of
outliers on the value of λ. In the data of Wiens mentioned in §3, very small values,
arbitrarily allocated to observations below the detection limit, have an appreciable
effect when the data are log transformed. Atkinson and Riani (2000) show how
different observations appear outlying for various transformations of the Poison
data of Box and Cox (1964).
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We use the Forward Search to provide a robust plot of the approximate score
statistic Tp(λ). We start with a f t to m0 = p + 1 observations and then succes-
sively f t to larger subsets. For the subset of size m we order all observations by
closeness to the f tted model; the residuals determine closeness. The subset size is
increased by one to consist of the subset with them+1 smallest squared residuals
and the model is ref tted to this new subset. The process continues with increasing
subset sizes until, f nally, all the data are f tted. The process moves from a very
robust f t to non-robust least squares. Any outliers will enter the subset towards
the end of the search. We thus obtain a series of f ts of the model to subsets of the
data of size m,m0 ≤ m ≤ n for each of which we ref t the model and calculate
the value of the score statistics for selected values of λ0. These are then plotted
against the number of observations m used for estimation to give the “fan plot”.
As Figure 4 shows, the ordering of the observations in a fan plot may depend on
the value of λ0.

Since the constructed variables are functions of the response, the statistics
cannot exactly follow the t distribution. Atkinson and Riani (2002) provide some
numerical results on the distribution in the fan plot of the score statistic for the
Box-Cox transformation. They f nd that departures from the null distribution are
most extreme towards the end of the search, where the statistic has too large a
variance; increasingly strong regression relationships lead to null distributions that
are closer to t.

7 Mental Illness Data: A Robust Analysis
Section 3 introduced data on 53 patients and provided an analysis based on aggre-
gate statistics, which indicated the log transformation of the response. Here we
compare the Box-Cox transformation with three nonparametric transformations,
both on the original data and on a version contaminated with outliers, and illus-
trate the use of the fan plot in the detection of outliers inf uential for the parametric
data transformation.

Original data. The left-hand panel of Figure 3 shows the fan plot for f ve
values of λ0, fanning out as the search progresses. The trajectory of values of
the score test for the log transformation (λ0 = 0) remains within the 99% limits
(±2.58) throughout the search. Other values for λ0 are rejected, −1 and +1 more
strongly than ±0.5. There are no abrupt changes in the trajectories which might
indicate the inclusion of an inf uential observation in the subset of observations
used in f tting. The log transformation is further conf rmed by a comparison of the
QQ plots of residuals which is straightened by the transformation; approximate
normality has been achieved.

The right-hand panel of Figure 3 shows the monotonic transformation for these
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Figure 3: Mental illness data. Left-hand panel, fan plot indicating the log trans-
formation; right-hand panel, transformed and original response values for two
transformations

data found by AVAS (we are not transforming the explanatory variables). The f g-
ure also includes the Box-Cox logarithmic transformation. In order to compare
these two transformations we have scaled the transformed values of the observa-
tions to have mean zero and variance one and plotted these values against the un-
transformed observations. The transformation found by AVAS is the more highly
curved in the f gure, closely corresponding to the inverse transformation. The
effect of the inverse transformation is that the f tted model exhibits two outliers,
which are not present for the log transformed data.

Because transformations need to be invertible, the ACE transformation is con-
strained to be monotonic. The result is almost a straight line, that is no transfor-
mation. For the transformation with AREG, the calculation for k = 3, yields a
virtually straight line transformation, but convex rather than concave. For k = 4
and 5 the transformation is decreasing. These four transformations, maximizing
R2, give virtually the same value of R2 as that of the original data. The Box-Cox
transformation and AVAS yield transformations with reduced values of R2, but
residuals with improved normality, desirable for inferential purposes.

Contaminated data. We now study the effect of outliers by modifying three
of the smallest observations (17, 30 and 53) to have the value 1. The intention
is to produce large outliers on the reciprocal scale, which have little effect on
the untransformed data and so inf uence λ̂ towards one. The fan plot for these
contaminated data is in Figure 4. The effect is dramatic. For four values of λ0,
the three outliers enter at the end of the search, causing the trajectories for λ0 =
−1,−0.5 and 0 to move appreciably outside the 99% bands; earlier in the search
the values of the statistics for λ0 = −1 lie in the centre of the band. The plot
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shows that a plausible estimate for λ based just on a f t to all the data would be
0.5. However, this value is rejected earlier in the search.
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Figure 4: Contaminated mental illness data: fan plot, showing the effect of three
changed observations

A plot similar to the right-hand panel of Figure 3 for the contaminated data
shows that the curvature in the plot of transformed against original y from AVAS
is reduced; the transformation is close to the log transformation. Regression with
the log transformation on the contaminated data then clearly shows that the three
altered observations have large residuals. The transformation from ACE is, as pre-
viously, virtually a straight line. The transformations indicated by AREG for k up
to 5 are similar to those in the absence of outliers. In this example the value of k is
not clearly determined by the data. Regression using the transformation suggested
by AVAS indicates the three outliers for the contaminated data and the logarithmic
transformation, but suggests an inadequate transformation for the uncontaminated
data.

Section 2 of the supplementary material for this paper includes an analysis of
the motivating data set from Chen et al. (2002) on gasoline consumption. The data
appear to need transformation with λ around 1.5. However, application of the fan
plot reveals that all evidence for this transformation comes from one observation,
with by far the lowest values of both x and y. The second example in the sup-
plementary material is an analysis of the Poison data from Box and Cox (1964).
The fan plot, like that in Figure 3, is exemplary, with no indication of inf uential
observations.
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8 The Transformation of Responses that can be Neg-
ative as well as Positive

8.1 The Yeo-Johnson Transformation
Yeo and Johnson (2000) extended the Box-Cox transformation to observations
that can be positive or negative by using different Box-Cox transformations for
the two classes of response. For y ≥ 0 this is the generalized Box-Cox power
transformation of y + 1. For negative y the transformation is of −y + 1 to the
power 2−λ. They used a smoothness condition to combine the transformations for
positive and negative observations, so obtaining a one-parameter transformation
family. Atkinson et al. (2020) extended the transformation to allow for distinct
transformation parameters for the two response classes. They further provided
constructed variables for this extended transformation and an extended fan plot
which permits checking the correctness of the two transformations. This section
brief y summarizes their results.

As with the Box-Cox transformation, analysis of data from this transformation
needs to include the Jacobian J of the transformation to allow for changes of
scale as λ varies. We continue to work with a normalized transformation z(λ) =
y(λ)/J1/n in which the Jacobian is spread over all observations. If, to extend the
notation of Box and Cox, ẏY J is the nth root of J , it follows from equation (3.1)
of Yeo and Johnson (2000) that

ẏY J = exp
[

∑

{sgn(yi) log(|yi|+ 1)}/n
]

. (12)

The normalized version of the transformation is then

y ≥ 0 :
(y + 1)λ − 1

λẏλ−1

Y J

(λ 6= 0); ẏY J log(y + 1) (λ = 0)

y < 0 : −
{(−y + 1)2−λ − 1}

(2− λ)ẏλ−1

Y J

(λ 6= 2); − log(−y + 1)/ẏY J (λ = 2).

(13)

8.2 The Extended Yeo-Johnson Transformation andHomogene-
ity of Transformation

Some authors, for example Weisberg (2005), query the physical interpretability
of the constraint that positive and negative observations should be transformed by
the same value of λ, which is indeed violated by the data analysed in §10. Ac-
cordingly, Atkinson et al. (2020) extended the score test to testing for the equality
of the value of λ in the two regions of y. The procedure takes the transformation
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parameter as λ for one part and λ+α for the other and uses the score testing proce-
dure for α = 0, leading to tests that positive, or negative yi need a transformation
different from λ.

There are now separate Jacobians, ẏP and ẏN , for positive and negative y from
breaking the summation in (12) into parts for positive and negative observations.
To test for positive observations having a distinct transformation let v = y + 1.
The general model for y ≥ 0 is

z(α, λ) =
vλ+α − 1

(λ+ α)ẏλ−1

N ẏλ+α−1

P

, (14)

which reduces to the standard transformation when α = 0 since ẏ = ẏN ẏP .
When y < 0 let vN = −y + 1. Keeping the parameter for positive y as λ + α

the model for the negative y only depends on α through the Jacobian. Then

z(α, λ) = −
v2−λ
N − 1

(2− λ)ẏλ−1

N ẏλ+α−1

P

. (15)

Similar expressions when the parameter for negative y is λ + α are given by
Atkinson et al. (2020).

8.3 The Extended Fan Plot; Checking Postulated Transforma-
tions

The original Yeo-Johnson transformation of §8.1 yields a score test and so a fan
plot for a set of values of λ0. The extended Yeo-Johnson transformation of §8.2
provides constructed variables for testing whether the positive and negative ob-
servations also require the transformation λ0. The extended fan plot accordingly
contains three trajectories for each value of λ0. If the same transformation is ap-
plied to both positive and negative responses, agreement of the three trajectories
indicates that only one transformation is needed.

An important feature of the extended fan plot is that it provides a method
of testing a proposed transformation with different parameters, λP and λN for
transformation of the positive and negative observations. Once the data have been
correctly transformed, the extended fan plot testing λ0 = 1 for the transformed
data should lie within the bounds for all values of m. We use this method in §§9
and 10 to conf rm transformations of the data which have distinct values of λP

and λN .
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Figure 5: Simulated data. Extended fan plots with green (mostly upper) curve
for positive observations: left-hand panel, λ0 = 1, indicating inf uential observa-
tions and the need for two transformation parameters; right-hand panel, checking
λN = 0.25 and λP = 1.5 (test of λ0 = 1 for transformed data), conf rming trans-
formation parameter values and suggesting the presence of potential outliers.

9 A Simulated Example
We simulated 1,000 regression observations, with three explanatory variables and
independent normal errors, which were heavily contaminated with outliers. We
f rst demonstrate the use of the augmented fan plot in indicating a transformation
and then use the forward search on the transformed data to detect the outliers. We
compare this procedure with the information from using nonparametric transfor-
mations on the contaminated data.

Contaminated data. Different transformations were applied to the positive
and negative observations and 200 of the observations were shifted to provide
outliers. This is a challengingly high contamination proportion unless the outliers
are distinct. However, they are not evident on the scatterplots of y against the
individual x vectors (Figure 1 of the supplementary material). Linear regression
gave an R2 value of 0.31. The fan plot for these data for λ0 = 0.5, 0.75, 1, 1.25
and 1.5 indicated a value of 1.25 for the overall transformation parameter, with all
score statistic values lying within the 99% interval. For other parameter values a
large number lie outside the interval; around 200 for λ0 = 1.

To investigate whether an overall transformation with λ = 1.25 is satisfactory
we calculated extended fan plots for a few values of λ. That for λ0 = 1 in the
left-hand panel of Figure 5 shows clear evidence, from m = 400 or less, that
different values are needed for λN and λP . The plot also shows the effect of a set
of inf uential observations entering in the last 160 steps.
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The extended fan plot is used to f nd pairs of parameter values. The data are
transformed with pairs of values λP and λN and the extended fan plot for λ0 = 1
for the transformed data inspected. The right-hand panel of Figure 5 shows the
plot for λN = 0.25 and λP = 1.5. The trajectories for the positive and negative
observations are close together and close to the trajectory for a single value of λ.
In addition the inf uential observations are clearly articulated.
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Figure 6: Simulated data, detection of outliers using the forward search on data
transformed with λN = 0.25 and λP = 1.5. Left-hand panel, forward plot of
minimum deletion residuals. Right-hand panel, scatter plots of the transformed
data against explanatory variables; the 164 observation identif ed as outliers are
plotted as open (red) circles.

To check for outliers, we perform a robust analysis on transformed data with
λN = 0.25 and λP = 1.5. The left-hand panel of Figure 6 shows a plot of (ab-
solute) minimum deletion residuals from the forward search on the transformed
data. For each m these are the outlier tests for the next observation to enter the
subset, which is the one closest to the already f tted model. The envelopes in the
plot provide guidance as to whether the observation is outlying. The procedure
for outlier detection is that of Riani et al. (2009) adapted to regression. As a re-
sult 164 outliers were identif ed. The scatter plots in the right-hand panel of the
f gure show outliers as circles. The R2 for this regression is 0.518, an appreciable
improvement over the original 0.31.

Nonparametric transformations. We now consider nonparametric transfor-
mations of the response in regression. AVAS yields a virtually linear relationship
between the transformed and original y, that is effectively no transformation at
all. The value of R2 is 0.303, slightly worse than untransformed regression. Re-
sults for ACE are in the two panels of Figure 7. Now the plot of transformed
against residual y is virtually a straight line for positive y, but there is a bend in
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Figure 7: Simulated data. Properties of simulated data transformed with ACE:
left-hand panel, transformed y against y; right-hand panel, residuals against f tted
values

the curve near y = 0. The transformed y are constant for many negative val-
ues of y, the downward slope resuming for the most extreme values. The plot of
residuals against f tted values shows a cluster, but also a diagonal band of points,
indicating some structure in the data that has not been explained by the regression
model. The value of R2 is 0.369, an improvement on the value of 0.31 for the
untransformed data. For k = 5, AREG produces a transformation similar to that
of ACE with an R2 value of 0.355. For k = 6, the value of R2 is larger, but the
transformation is non-monotonic.

The data were, in fact, generated with three explanatory variables drawn in-
dependently from standard normal distributions. All regression coeff cients were
0.3 and the error standard deviation was 0.5. Once the data had been generated, a
value of 1.9 was subtracted from 200 responses. The negative observations were
then transformed so that the value of λN was 0. For the positive observations
λP = 1.5. Subtraction of 1.9 from 200 observations, some of which were origi-
nally negative and some not, has meant that some uncontaminated positive obser-
vations have become negative when contaminated. In the data generating process
such observations have been transformed to require transformation with λN rather
than λP . We have recovered the transformation parameters for both positive and
negative observations. Regression on the uncontaminated generated data, before
they had been transformed, gave an R2 value of 0.538, slightly greater than the
0.518 we found without knowing the number of outliers. Our simulation proce-
dure was designed to increase the complexity of the data. The combination of the
extended Yeo-Johnson transformation and robust outlier detection has recovered
the transformation used in this complicated data generating process.
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10 John and Draper Difference Data
Section 4 of the supplementary material contains part of an analysis of 1,405 ob-
servations on the prof t or loss of individual f rms of which 407 make a loss.
Further analysis is in Atkinson et al. (2020) which uses the procedure exempli-
f ed in §9. Here we robustly f nd a transformation for data from John and Draper
(1980), delete outliers on that scale and then compare parametric and nonpara-
metric transformations on the “cleaned” data. The readings are on the subjective
assessment of the thickness of pipe. Five inspectors assessed wall thickness at
four different locations on the pipe. The experiment was repeated three times.
The sixty responses are a multiple of the difference between the inspector’s as-
sessment and the ‘true’ value determined by an ultrasonic reader. If both readings
were available, the Box-Cox transformation could be applied to all 120 readings
and the differences analysed in the transformed scale. But the ultrasonic readings
are no longer known.

The fan plot of the data when the Yeo-Johnson transformation is applied shows
large increases in the values of the score statistics when the last six or seven ob-
servations are included in the subset used for f tting; possible values of λ up to
this point are between 0.75 and 1.5. Since λ = 1 is a possible value, we use the
untransformed data to check for outliers.

The top left-hand panel of Figure 8 is the fan plot for λ0 = 1. The last six
observations to enter the subset, marked by red dots in the online version, produce
changes in the value of the score statistic, all in the same direction. The top right-
hand panel shows the forward plot of minimum deletion residuals. The red line
shows that the six inf uential observations are also outlying, as are many other
observations. The linked plot in the bottom-left hand panel, a forward plot of
scaled residuals, shows that the six observations (lowest, red, lines) have large
negative residuals at least from m = 30. The last panel of the f gure is a scatter
plot of y against the f rst three of the explanatory variables, with the outlying
observations again marked in red.

We “cleaned” the data by removing these six observations. Extended fan plots
for the remaining 54 observations show that positive and negative observations
require distinct transformations; 1.5 for the negative observations and 0 for the
positive ones.

Table 2 gives the values of R2 for regression with four transformations of the
response. Unconstrained ACE gives a value of 0.364, compared with 0.355 for the
constrained version. The plots of transformed against untransformed y for these
two transformations are similar. The value from the extended Yeo-Johnson trans-
formation is slightly less at 0.336. It is surprising that AVAS performs so poorly,
producing an R2 of 0.275. It is to be expected that a nonparametric transforma-
tion with its f exibility of shape will produce a better transformation than one with
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Figure 8: Cleaned difference data; brushing linked plots from the forward search
when λ = 1. Upper left-hand panel, fan plot for λ0 = 1; six inf uential observa-
tions are highlighted. Upper right-hand panel, forward plot of deletion residuals
with the six inf uential observations highlighted. Lower left-hand panel, forward
plot of scaled residuals; the six outliers have the six lowest trajectories. Lower
right-hand panel, scatter plot of y against x1 − x3 with outliers plotted as red dots

only a few adjustable parameters. However there are only 54 observations in the
cleaned data, which may be small for smoothing methods.

The top left-hand panel of Figure 9 gives the plot of transformed against orig-
inal observations for the extended Yeo-Johnson transformation with λN = −1.5
and λP = 0. The curve is convex for negative y and concave for positive y, re-
sulting in an overall sigmoid shape. The centre panel shows the results of the un-
constrained transformation with ACE. The most negative observations are trans-
formed to a convex curve; there is then a series of virtually constant transformed
values before a point of inf ection at y = 0, above which the transformation is
almost a straight line, that is no transformation. The transformation when ACE
is constrained to be monotonic is found by isotonic regression on the transfor-
mation in the f gure; it is similar in shape but with a horizontal central section.
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Table 2: Values of R2 for four transformations of the John and Draper difference
data with six outliers deleted

Transformation R2

ACE unconstrained 0.364
ACE with monotonicity constraint 0.355
Extended Yeo-Johnson 0.336
AVAS 0.275

Both procedures give a plot of residuals against f tted values similar to that in
the lower centre panel, with a strong diagonal band and a scatter of points. The
transformation from AVAS in the right-hand panel is gently convex up to y = 0
and more sharply concave thereafter. The residuals plotted in the lower left- and
right-hand panels, have a more random scatter than those from ACE, lacking the
diagonal band. Finally, the transformations found by AREG for k from 3 to 6 are
non-monotonic. They are shown in Figure 11 of the supplementary material.

The plot of the ACE transformed data in Figure 9 indicates that a smooth
power transformation such as the extended Yeo-Johnson, does not adequately
catch the structure of the data. The panels of Figure 8 show that there are many
outliers, both positive and negative in the untransformed scale and a band of ob-
servation in the lower-left panel with small residuals. Although the ACE transfor-
mation hardly transforms these observations and brings in both tails of the distri-
bution, the plot of residuals against f tted values in Figure 9 suggests that there is
some structure in the data that may need the addition of further terms to the linear
model.

11 Conclusions: nonparametric Transformations
The data analyses in this paper show that the nonparametric transformations can
provide guidance in the choice of a parametric transformation, as well as indica-
tions of its inadequacy. AVAS indicates the inverse transformation for the mental
illness data of §7, whereas the Box-Cox transformation is logarithmic. For the
contaminated data AVAS f nds the log transformation. For these data constrained
ACE provides transformations which are almost linear. On the other hand, for the
simulated data of §9, ACE on the contaminated data produces a transformation
with an inf ection near y = 0 and another near y = −1. The plot of residuals from
ACE suggests that the data may contain some further structure that needs mod-
elling. The results of this analysis with ACE are similar to that for the difference
data in §10 once the data have been “cleaned”; again there is a transformation with
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Figure 9: Cleaned difference data; properties of data transformed by the extended
Yeo-Johnson transformation, ACE and AVAS. Left-hand column, extended Yeo-
Johnson; central column, ACE; right-hand column, AVAS. Upper row transformed
y against y; lower row, residuals against f tted values

perhaps three zones and a non-random residual plot. For these examples AVAS
produces respectively a virtually straight line transformation and a smooth con-
cave curve. The transformations indicated by AREG for these examples are either
non-informative, that is no transformation is indicated, or are non-monotonic.

Unlike AREG, but like the forward search, ACE and AVAS have the advantage
that the methods do not require the advance specif cation of parameters. Further
results in the supplementary material indicate that ACE and AVAS may behave
well for non-negative data. However, for the balance sheet data, both ACE and
AVAS are inf uenced by the outliers in the data. A promising strategy is that of §10
in which the fan plot, a robust method, is used to indicate a parametric transforma-
tion and a scale in which the data can be cleaned. Parametric and nonparametric
transformations can then be compared on data without outliers.
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The calculations in this paper used Matlab routines from the FSDA toolbox,
available as a Matlab add-on from the Mathworks f le exchange
https://www.mathworks.com/matlabcentral/fileexchange/.
The data, the code used to reproduce all results including plots, and links to FSDA
routines are available at http://www.riani.it/ARC2019.
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