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Many algorithms that are originally designed without explicitly considering incentive properties are later
combined with simple pricing rules and used as mechanisms. A key question is therefore to understand which
algorithms, or more generally which algorithm design principles, when combined with simple payment rules
such as pay-your-bid, yield mechanisms with small price of anarchy.

Our main result concerns mechanisms that are based on the relax-and-round paradigm. It shows that
oblivious rounding schemes approximately preserve price of anarchy guarantees provable via smoothness.
By the virtue of being smoothness proofs, our price of anarchy bounds extend to Bayes-Nash equilibria and
learning outcomes. In fact, they even apply out of equilibrium, requiring only that agents have no regret for
deviations to half their value.

We demonstrate the broad applicability of our main result by instantiating it for a wide range of optimiza-
tion problems ranging from sparse packing integer programs, over single-source unsplittable flow problems
and combinatorial auctions with fractionally subadditive valuations, to a maximization variant of the trav-
eling salesman problem.
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1. Introduction. Mechanism design—or “reverse” game theory—is concerned with protocols,
or mechanisms, through which potentially selfish agents interact with one another. The basic goal
is to achieve a socially desirable outcome in strategic equilibrium, despite the fact that agents are
selfish and may misreport the data that is optimized over.
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A celebrated result of Vickrey, Clarke, and Groves [48, 12, 25] establishes that for the central
goal of welfare maximization there is a dominant-strategy incentive-compatible (DSIC) mechanism
that achieves this goal. This mechanism, however, requires the underlying optimization problem
to be solved exactly, which for many optimization problems is an NP-hard task [41, 44]. Moreover,
despite major efforts [31, 6, 17, 16, 2, 1], it is not known how to turn an arbitrary approximation
algorithm into a DSIC mechanism with the same approximation guarantee.

An alternative, more recent approach, is to relax the incentive constraints, and instead of trying
to design a possibly complicated dominant-strategy incentive-compatible mechanism, use a stan-
dard approximation algorithm, combine it with a simple payment rule, and take strategic behavior
into account (e.g., [34, 11, 23, 35]). The standard way to evaluate the performance of such non-
truthful mechanisms is to bound the price of anarchy [29], i.e., the worst-possible ratio between
optimal welfare and welfare at equilibrium.

The central question in this area is: which algorithms or more generally which algorithm design
principles when combined with simple payment rules lead to mechanisms with small price of anar-
chy. The “canonical” result in this context is a result of Lucier and Borodin [34] according to
which every equilibrium of pay-your-bid mechanisms based on an α-approximate greedy algorithm
is within O(α) of the optimal social welfare.

1.1. Our contribution. In this work we consider a different algorithm design paradigm, and
show that it has a very desirable property in regard to price of anarchy guarantees.

Our results concern maximization problems and the algorithmic blueprint of relaxation and
rounding (see, e.g., [47]). In this approach a problem Π is relaxed to a problem Π′, with the pur-
pose of rendering exact optimization computationally tractable. Having found the optimal relaxed
solution x′, another algorithm rounds x′ to a solution x to the original problem.

Many rounding schemes in text books as well as highly sophisticated ones are oblivious. These
rounding schemes do not require knowledge of the objective function, but instead ensure that
the rounded solution provides at least a 1/α fraction of the value of the relaxed solution for all
possible objective functions. Up to this point, to the best of our knowledge, this property—though
wide-spread—has never proven useful. In this paper, we show that oblivious rounding schemes
approximately preserve bounds on the price of anarchy provable via smoothness.

1.1.1. Main result. The first ingredient to our main result is the smoothness framework
of Roughgarden and Syrgkanis and Tardos [42, 43, 46], which is the main technique for proving
price of anarchy guarantees. Guarantees proven through this technique extend to a broad range of
equilibrium concepts and compose across problems.

At the heart of this framework is the notion of a (λ,µ)-smooth mechanism, where λ,µ≥ 0. The
main result is that a mechanism that is (λ,µ)-smooth achieves a price of anarchy of β(λ,µ) =
max(1, µ)/λ with respect to a broad range of equilibrium concepts including learning outcomes.
Furthermore, the simultaneous and sequential composition of (λ,µ)-smooth mechanisms is again
(λ,µ)-smooth. Ideally, λ= 1 and µ≤ 1 in which case this result tells us that all equilibria of the
mechanism are socially optimal; otherwise, if λ< 1 or µ> 1, then this result tells us which fraction
of the optimal social welfare the mechanism is guaranteed to achieve at any equilibrium.

The other crucial ingredient to our main result is the notion of an α-approximate oblivious
rounding scheme, where α≥ 1. Such a rounding scheme is a (typically randomized) mapping from
solutions x′ to the relaxed problem Π′ to solutions x to the original problem Π which guarantees
that the expected value E [w(x)] of the rounded solution x is at least a 1/α fraction of the value
w(x′) of the relaxed solution x′ for all possible objective functions w.

Clearly an α-approximate oblivious rounding scheme leads to an approximation ratio of α. We
show that it also approximately preserves the price of anarchy of the relaxation. We focus on pay-
your-bid mechanisms for concreteness. Our result actually applies to a broad range of mechanisms
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and can also be extended to include settings where the relaxation is not solved optimally; we discuss

these extensions in Section 8.

Theorem 1 (Main theorem, informal). Consider problem Π and a relaxation Π′. Suppose

the pay-your-bid mechanism M for Π is derived from the pay-your-bid mechanism M ′ for Π′. If

M ′ is (λ,µ)-smooth, then M is (λ/(2α), µ)-smooth.

Corollary 1. The price of anarchy established via smoothness of mechanism M ′ of β trans-

lates into a smooth price of anarchy bound for mechanism M of 2αβ extending to both Bayes-Nash

equilibria and learning outcomes.

Smoothness generally only guarantees the existence of deviation strategies that yield high

(parametrized in λ and µ) utility. A key ingredient in our proof is to show that for the type of

mechanisms we consider it is approximately without loss of generality to consider deviations to half

the value. On the one hand, this means that we can often save the factor two in our main theorem

and its corollary by showing smoothness for deviations to half the value directly. On the other

hand, it means that our guarantees apply already out-of-equilibrium requiring only that players

have no regret for deviations to half their value.

1.1.2. Applications. We demonstrate the broad applicability of our main result by showing

how it can be used to obtain price of anarchy guarantees for a wide range of optimization problems.

For each of these problems we show the existence of a smooth relaxation and the existence of an

oblivious rounding scheme.

Sparse packing integer programs. The first problem we consider are multi-unit auctions

with n bidders and m items, where bidders have unconstrained valuations. The underlying opti-

mization problem has a natural LP relaxation, which we show is (1/2,2)-smooth. Using the 8-

approximate oblivious rounding scheme of Bansal et al. [4], our framework yields a constant price

of anarchy. This is quite remarkable as solving the integral optimization problem optimally leads

to a price of anarchy that grows linearly in n and m.

We then consider the generalized assignment problem in which n bidders have unit-demand

valuations for a certain amount of one of k services and allocations of services to bidders must

respect the limited availability of each service. For this problem we also show (1/2,2)-smoothness,

and use the 8-approximate oblivious rounding scheme of [4] to obtain a constant price of anarchy.

Both these results are in fact special cases of a more general result regarding sparse packing

integer programs (PIP) that we show. Namely, the pay-your-bid mechanism that solves the canon-

ical relaxation of a PIP with column sparsity d is (1/2, d+ 1)-smooth. Multi-unit auctions and

the generalized assignment problem have d = 1; combinatorial auctions in which each bidder is

interested in at most d items simultaneously have d≥ 1. For general PIPs the rounding scheme of

[4] is O(d)-approximate. We get a price of anarchy of O(d2).

To the best of our knowledge, these are the first price of anarchy guarantees for sparse PIPs or

general multi-unit auctions. A few results give constant price of anarchy bounds in the context of

multi-unit auctions [36, 46, 14]. The analyzed mechanisms ask each agent to submit a vector of

bids expressing her marginal value for each additional item, and assign items depending on which

agent’s value increases most by an additional item. This approach inherently requires some form

of subadditivity of the valuation functions, and the price-of-anarchy guarantees only apply in this

case. In contrast to our results, they do not hold, for example, if a bidder has a high value for

getting all items but no value for any strict subset.
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Single source unsplittable flow. The second problem that we consider are multi-commodity
flow problems with a single source. In these problems we are given a capacitated, directed network
and a set of requests consisting of a target and a demand, corresponding to requests of, say different
information, held at the source. We assume that each player corresponds to a target, and that she
has a private value for routing a certain demand from the shared source to her position. The goal
is to maximize the total value of the demand routed, subject to feasibility.

For this problem we show that the natural LP relaxation is (1/2,1)-smooth. A (1 + ε)-
approximate oblivious rounding scheme for high enough capacities is obtained through an adapta-
tion of the “original” randomized rounding algorithm of Raghavan and Thompson [39, 40]. This
yields a price of anarchy of 2(1 + ε).

An interesting feature of this result is that the LP can be solved greedily through a variant of
Ford-Fulkerson which allows us to exploit the known connection to smoothness [34, 46]. Crucially,
the reference to these results has to be on the fractional level, as a greedy procedure on the integral
level achieves a significantly worse approximation guarantee.

It is again crucial to show smoothness of the relaxed problem, as solving the integral problem
optimally leads to an unbounded price of anarchy.

Combinatorial auctions. We also consider the “canonical” mechanism design problem of
combinatorial auctions. Our first result concerns fractionally subadditive, or XOS, valuations [33].
We show that the pay-your-bid mechanism for the canonical LP relaxation is (1/2,2)-smooth. Using
Feige’s ingenious e/(e−1)-approximate oblivious rounding scheme [21], our main result implies an
upper bound on the price of anarchy of 4e/(e− 1)≈ 6.328.

We then show how to extend this result to the recently proposed hierarchy ofMPH-k valuations
[22]. Levels of the hierarchy correspond to the degree of complementarity in a given function. The
lowest level k= 1 coincides with the class of XOS/fractionally subadditive valuations; the highest
level k=m can be shown to comprise all monotone valuation functions. We show that forMPH-k
valuations the LP relaxation is (1/2, k+ 1) smooth. Together with the O(k)-approximate oblivious
rounding scheme of [22] we obtain a price of anarchy of O(k2).

These results nicely complement recent work on the price of anarchy of simultaneous first- and
second-price auctions [11, 5, 23, 18, 3], in which each item is sold in a separate single-item auction. In
these mechanisms players cannot bid their valuation functions, which makes the overall mechanism
indirect. Our mechanisms, in contrast, are direct, meaning that players can report entire valuation
functions. This way, we address an open question due to Babaioff et al. [3] about the price of
anarchy of direct mechanisms based on approximation algorithms in this setting.

While the price of anarchy guarantees that we obtain are slightly worse, figuring out how to bid
in an indirect mechanism such as a simultaneous first- or second-price auction is a non-trivial task.
Indeed a sequence of recent works has established that finding exact or approximate equilibria of
these mechanisms is hard [7, 15, 13]. In our mechanisms, in contrast, players have simple fall-back
strategies and the guarantees that we show apply whenever players have no regret with respect to
these simple strategies.

Maximum traveling salesman. Our final application is the maximization variant of the
classic traveling salesman problem. We think of the problem as a game where each edge has a value
for being included, and the goal of the mechanism is to select a tour of maximum total value. The
classic algorithm for this problem is a 2-approximation due to Fisher et al. [24]. It proceeds by
computing a cycle cover, dropping an edge from each cycle, and connecting the resulting paths in
an arbitrary manner to obtain a solution. We prove this can be thought off as a 2-approximate
oblivious rounding scheme and show, through a novel combinatorial argument, that the relaxation
is (1/2,3)-smooth. We thus obtain a price of anarchy of 12.

The best approximation guarantee for max-TSP is a 3/2-approximation due to Kaplan et al. [27].
The same approximation ratio is achieved by a (much simpler) algorithm of Paluch et al. [37]. We
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show that this algorithm—just as the basic algorithm—can be interpreted as a relax-and-round
algorithm. Generalizing the arguments for the basic algorithm to the (different) relaxation used in
this interpretation, we show that this algorithm achieves a price of anarchy that is by a factor 3/4
better than the price of anarchy of the basic algorithm.

This application and these examples are interesting as they show how seemingly combinatorial
algorithms can be re-stated within our framework. They also represent the first non-trivial price
of anarchy bounds for this problem.

1.2. Further related work. Our work is closely related to the literature on so-called “back-
box reductions”, which has led to some of the most impressive results in algorithmic mechanism
design (such as [31, 6, 16, 17, 2, 1]). This approach takes an algorithm, and aims to implement
the algorithm’s outcome via a game. To this end it typically modifies the algorithm and adds a
sophisticated payment scheme. Our approach is different in that we consider an algorithm without
any modification, introduce a simple payment rule, such as the “pay your bid” rule, and understand
the expected outcomes of the resulting game.

Lavi and Swamy [31] use randomized metarounding [9] to turn LP-based approximation algo-
rithms for packing domains into truthful-in-expectation mechanisms. Our result is similar in spirit
as it demonstrates the implications of obliviousness for non-truthful mechanism design. The prop-
erty that we need, however, is less stringent and shared by most rounding algorithms. Another
important difference is that our approach is not limited to packing domains.

Briest et al. [6] show how pseudo-polynomial approximation algorithms for single-parameter
problems can be turned into a truthful fully polynomial-time approximation schemes (FPTAS).
Dughmi et al. [16] prove that every welfare-maximization problem that admits a FPTAS and can
be encoded as a packing problem also admits a truthful-in-expectation randomized mechanism that
is an FPTAS. Unlike our approach these approaches are limited to single-parameter problems, or
to multi-parameter problems with packing structure.

Dughmi et al. [17] present a general framework that also looks at the fractional relaxation of
the problem. They show that if the rounding procedure has a certain property, which they refer
to as convex rounding, then the resulting algorithm is truthful. They instantiate this framework
to design a truthful-in-expectation mechanism for combinatorial auctions with matroid-rank-sum
valuations (which are strictly less general than submodular). The main difference to our work is
that standard rounding procedures are often oblivious but typically not convex.

Babaioff et al. [2, 1] show how to transform a (cycle-)monotone algorithm into a truthful-in-
expectation mechanism using a single call to the algorithm. The resulting mechanism coincides
with the algorithm with high probability. This work differs from ours in that it only applies to
monotone or cycle-monotone algorithms.

By insisting on truthfulness, or truthfulness-in-expectation, as a solution concept, all these
approaches face certain natural barriers regarding the achievable approximation guarantees (see,
e.g., [38, 10]). In addition, they typically do not lead to simple, practical mechanisms. For example,
despite running times technically being polynomial, these mechanisms require far more computa-
tional effort than standard approximation algorithms for the underlying optimization problem. In
some cases, for example when using randomized metarounding [31], the reduction yields mecha-
nisms in which the approximation guarantee is tight on every single instance (not only in the worst
case). That is, even when the optimization problem is trivial, the mechanism sacrifices the solution
quality for incentives.

2. Preliminaries We begin by formally introducing the key concepts from algorithm design
and mechanism design that we need in this work. There will be several sources of randomness.
Whenever we write expectations without subscripts, the expectation is to be taken with respect to
the randomness in the algorithm or mechanism.
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Algorithm design basics. We consider maximization problems Π in which the goal is to
determine a feasible outcome x ∈ Ω that maximizes total weight given by w(x) for non-negative
a weight function w : Ω→ R≥0. A potentially randomized algorithm A receives the functions w
as input and computes an output A(w) ∈ Ω. The algorithm is an α-approximation algorithm, for
α≥ 1, if for all weights w, E [w(A(w))]≥ 1

α
·maxx∈Ωw(x).

We are interested in relax-and-round algorithms. These algorithms first relax the problem Π to
Π′ by extending the space of feasible outcomes to Ω′ ⊇ Ω and generalizing weight functions w to
all x∈Ω′. They compute an optimal solution x′ ∈Ω′ to the relaxed problem. In the rounding step,
a solution x∈Ω of the original problem is derived from x′ ∈Ω′, typically in a randomized way.

A rounding algorithm is an α-approximate oblivious rounding scheme if, given some relaxed
solution x′, it computes a solution x such that for all w, E [w(x)]≥ 1

α
w(x′).

Clearly, a relax-and-round algorithm that first optimally solves the problem Π′ and then applies
an α-approximate oblivious rounding scheme is an α-approximation algorithm.

Example 1. Consider the knapsack problem with a unit capacity knapsack, in which each
item i ∈ [n] has a size si ≥ 0 and a value vi ≥ 0 for being included in the knapsack, and the sizes
satisfy si ≤ 1/2 for all i. Feasible solutions correspond to x∈ {0,1}n such that

∑
i∈[n] sixi ≤ 1. The

goal is to find a feasible solution x that maximizes v(x) =
∑

i∈[n] vixi.
We relax the integrality constraint by allowing x′i ∈ [0,1], so that feasible solutions to the relax-

ation correspond to x′ ∈ [0,1]n such that
∑

i∈[n] six
′
i ≤ 1. We now compute an optimal solution

x′ to the relaxed problem for valuations v and turn it into a solution x of the original problem

as follows: For each agent i, set x′′i = 1 with probability
x′i
2

and x′′i = 0 otherwise. If the resulting
integral solution is feasible, i.e.,

∑
i∈[n] six

′′
i ≤ 1, set x= x′′. Otherwise, set x= 0.

Note that this rounding scheme ensures that
∑

i∈[n] six
′′
i ≤ 1 with probability at least 1

2
by

Markov’s inequality. So xi = 1 with probability at least x′i/4. In particular, for any vector of
valuations w (and not just v), we have E [w(x)]≥ 1

4
·w(x′). Therefore, the rounding scheme is a

4-approximate oblivious rounding scheme.

In the above example, setting w = v allows us to conclude that the respective relax-and-round
algorithm is a 4-approximation algorithm. We will see that the fact that the key inequality
E [w(x)]≥ 1

4
·w(x′) actually holds for any w will be useful when reasoning about a strategic version

of this problem and mechanisms for solving it.

Mechanism design basics. Our results apply to general multi-parameter mechanism design
problems Π in which agents N = {1, . . . , n} interact to select an element from a set Ω of outcomes.
Each agent has a valuation function vi : Ω→R≥0. We use v for the valuation profile that specifies
a valuation for each agent, and v−i to denote the valuations of the agents other than i. The quality
of an outcome x∈Ω is measured in terms of its social welfare

∑
i∈N vi(x).

We consider direct mechanisms M that ask the agents to report their valuations. We refer to the
reported valuations as bids and denote them by b. The mechanism uses outcome rule f to compute
an outcome f(b)∈Ω and payment rule p to compute payments p(b)∈R≥0. Both the computation
of the outcome and the payments can be randomized. So in general, f(b) and p(b) are random
variables. We are specifically interested in pay-your-bid mechanisms, in which agents are asked to
pay what they have bid on the outcome they get. In other words, in a pay-your-bid mechanism
M = (f, p), pi(b) = bi(f(b)). We assume that the agents have quasi-linear utilities and that they
are risk neutral. That is, we assume that agent i’s expected utility given value vi and bids b in
mechanism M = (f, p) is ui(b, vi) = E [vi(f(b))− pi(b)] .

For the game-theoretic analysis we distinguish two settings. In the complete information setting
valuations v are fixed, and agents know each others’ valuations. We write Bi for a distribution
over bids bi by agent i, and B=

∏
i∈N Bi for the corresponding product distribution. We let b−i =
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(b1, . . . , bi−1, bi+1, . . . , bn) and B−i =
∏
i′ 6=iBi′ . A distribution B over bids b is a mixed Nash equilib-

rium if for each agent i and alternative bid b′i, Eb∼B[ui(bi, b−i, vi)]≥Eb−i∼B−i
[ui(b

′
i, b−i, vi)]. In the

incomplete information setting valuations v are drawn from a product distribution D =
∏
i∈N Di,

and each agent i∈N knows its own valuation vi and the distributions D−i =
∏
i′ 6=iDi′ from which

the other agents’ valuations are drawn. Instead of a single bid distribution for agent i, we know
consider a collection of bid distributions Bi(vi), one for each vi in the support of Di. We let B(v) =∏
i∈N Bi(vi) and B−i(v) =

∏
i′ 6=iBi′(vi′). A collection of distributions {B(v)}v is a Bayes-Nash equi-

librium if for each agent i, valuation vi, and alternative bid b′i, Ev−i∼D−i,b(v)∼B(v)[ui(bi, b−i, vi)] ≥
Ev−i∼D−i,b−i(v)∼B−i(v)[ui((b

′
i, b−i), vi)].

Price of anarchy. We evaluate the quality of mechanisms by their price of anarchy. The
price of anarchy with respect to Nash equilibria (PoA) is the worst ratio between the optimal social
welfare and the expected welfare in a mixed Nash equilibrium. Similarly, the price of anarchy with
respect to Bayes-Nash equilibria (BPoA) is the worst ratio between the optimal expected social
welfare and the expected welfare in a mixed Bayes-Nash equilibrium. Formally, define NASH(v)
and BNASH(D) as the set of all mixed Nash and mixed Bayes Nash equilibria respectively. Then,

PoA= max
v

max
B∈NASH(v)

max
x∈Ω

∑
i∈N vi(x)

Eb∼B[
∑

i∈N E [vi(f(b))]]
, and

BPoA= max
D

max
{B(v)}v∈BNASH(D)

Ev∼D[
∑

i∈N max
x∈Ω

vi(x)]

Ev∼D,b∼B(v)[
∑

i∈N E [vi(f(b))]]
.

The smoothness framework. An important ingredient in our result is the following notion
of a smooth mechanism of Syrgkanis and Tardos [46]. A mechanism M = (f,p) is (λ,µ)-smooth for
λ,µ≥ 0 if for all valuation profiles v and all bid profiles b there exists an alternative bid b′i for each
agent i that may depend on the valuation profile v of all agents and the bid bi of that agent such
that ∑

i∈N

ui((b
′
i, b−i), vi)≥ λ ·max

x∈Ω

∑
i∈N

vi(x)−µ ·
∑
i∈N

E [pi(b)] .

Theorem 2 (Syrgkanis and Tardos [46]). If a mechanism is (λ,µ)-smooth and agents have
the possibility to withdraw from the mechanism, then the expected social welfare at any mixed Nash
or mixed Bayes-Nash equilibrium is at least λ/max(µ,1) of the optimal social welfare.

The smoothness definition in [46] also allows each agent i to deviate to a distribution B′i over bids
b′i. Our meta-theorems in the following section continue to hold for this more permissive definition,
but none of our smoothness proofs in the subsequent sections requires this additional power.

As shown in [46], (λ,µ)-smoothness also implies a bound of max(µ,1)/λ on the price of anarchy
for correlated equilibria, which are the outcomes of learning dynamics. Furthermore, the simulta-
neous and sequential composition of multiple (λ,µ)-smooth mechanisms is again (λ,µ)-smooth.

In fact, our smoothness proofs will show an even slightly stronger property than smoothness,
namely semi-smoothness as defined by [8]: the deviation strategy b′i only depends on the respective
agent’s valuation vi, but not on the agent’s bid bi or the other agents’ valuations v−i. Therefore, the
same price of anarchy bounds also apply to coarse correlated equilibria and Bayes-Nash equilibria
with correlated types.

3. Oblivious rounding and smooth relaxations. In this section, we show our main theo-
rems. We consider mechanisms for a problem Π that are constructed as follows. First, one computes
an optimal solution x′ to a relaxed problem Π′ that maximizes the declared welfare. That is, it max-
imizes

∑
i∈N bi(x

′). Afterwards, an α-approximate oblivious rounding scheme is applied to derive a
feasible solution x to the original problem Π. Each bidder is charged bi(x), i.e., his declared value
for this outcome.
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Theorem 3 (Main result). Consider problem Π and a relaxation Π′. Given a pay-your-bid
mechanism M ′ = (f ′, p′) that is (λ,µ)-smooth, where f ′ is an exact declared welfare maximizer for
the relaxation Π′. Then a pay-your-bid mechanism M = (f, p) for the original problem Π that is
obtained from the relaxation through an α-approximate oblivious rounding scheme is (λ/(2α), µ)-
smooth.

In many applications, smoothness is shown by the deviation strategy of reporting half one’s true
value. First we show that, while generally the deviation strategy b′i can be arbitrary, it is sufficient
to consider only this deviation b′i = 1

2
vi. We exploit the fact that f ′ performs exact optimization.

Lemma 1. Given a pay-your-bid mechanism M = (f, p) that is (λ,µ)-smooth where f is an
exact declared welfare maximizer. Then M is (λ/2, µ)-smooth for deviations to half the value.
That is, for all valuation profiles v, bid vectors b, and bids b′i = 1

2
vi for all i ∈ N it holds that∑

i∈N ui((b
′
i, b−i), vi)≥ λ

2
OPT (v)−µ

∑
i∈N pi(b).

Proof. We first use (λ,µ)-smoothness of M . For any valuations, there have to be deviation bids
fulfilling the respective conditions. So, in particular, let us pretend that each bidder i has valuation
1
2
vi. By smoothness, there are bids b′′i against b such that

∑
i∈N

ui

(
(b′′i , b−i),

1

2
vi

)
≥ λOPT

(v
2

)
−µ

∑
i∈N

pi(b). (1)

The next step is to relate the sum of utilities that agents with valuations v get in M
when they unilaterally deviate from b to b′i, i.e.,

∑
i∈N ui((b

′
i, b−i), vi) =

∑
i∈N

1
2
vi(f(b′i, b−i)) =∑

i∈N b
′
i(f(b′i, b−i)), to the sum of utilities that they get in M with valuations 1

2
v and unilateral

deviations from b to b′′i , i.e.,
∑

i∈N ui((b
′′
i , b−i),

1
2
vi).

The allocation function f optimizes exactly over its outcome space. Therefore, it can be used to
implement a truthful mechanism MVCG = (f, pVCG) by applying VCG payments. As VCG payments
are non-negative, we get

ui((b
′
i, b−i), vi) =

1

2
vi(f(b′i, b−i)) = b′i(f(b′i, b−i))≥ b′i(f(b′i, b−i))− pVCG(b′i, b−i).

Observe that the latter term is exactly the utility bidder i receives in MVCG if his valuation and
bid is b′i. As MVCG is truthful, this term is maximized by reporting the true valuation. In other
words, it can only decrease, if bidder i changes his bid to b′′i (keeping the valuation b′i). That is,

ui((b
′
i, b−i), vi)≥ b′i(f(b′i, b−i))− pVCG(b′i, b−i)≥ b′i(f(b′′i , b−i))− pVCG

i (b′′i , b−i).

Finally, we use that the VCG payment pVCG is no larger than the pay-your-bid payment p because
VCG payments never exceed bids, i.e., pVCG

i (b′′i , b−i)≤ b′′i (f(b′′i , b−i)) = pi(b
′′
i , b−i). By furthermore

changing b′i back to 1
2
vi, we get

ui((b
′
i, b−i), vi)≥

1

2
vi(f(b′′i , b−i))− pi(b′′i , b−i) = ui

(
(b′′i , b−i),

1

2
vi

)
.

Summing this inequality over all i∈N and combining it with inequality (1), we get

∑
i∈N

ui((b
′
i, b−i), vi)≥ λOPT

(v
2

)
−µ

∑
i∈N

pi(b) =
λ

2
OPT (v)−µ

∑
i∈N

pi(b). �
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It remains to show that smoothness of the relaxation for deviations to half the value, implies
smoothness of the derived mechanism for the original problem. As it is often possible to directly
show smoothness for deviations to half the value, we state the following stronger version of Theo-
rem 3 for relaxations that are (λ,µ)-smooth for deviations to half the value.

Theorem 3 follows by first using Lemma 1 to argue that unconstrained (λ,µ)-smoothness of the
relaxation implies (λ/2, µ)-smoothness for deviations to half the value and then using Theorem 3′

to show that the derived mechanism is (λ/(2α), µ)-smooth.

Theorem 3′ (Stronger version of main theorem). If the pay-your-bid mechanism M ′ =
(f ′, p′) that solves the relaxation Π′ optimally is (λ,µ)-smooth for deviations to b′i = 1

2
vi, then

the pay-your-bid mechanism M = (f, p) for Π that is obtained from the relaxation through an
α-approximate oblivious rounding scheme is (λ/α,µ)-smooth.

Proof. For any valuation profile v and bid vector b, denote the utility of agent i ∈ N under
mechanism M = (f, p) by ui(b, vi) = E[vi(f(b)) − pi(b)] and under mechanism M ′ = (f ′, p′) by
u′i(b, vi) = vi(f

′(b))− p′i(b).
For each bidder i, we consider the unilateral deviation to b′i = 1

2
vi. As M is a pay-your-bid

mechanism, bidder i’s utility when bidding b′i against b−i can be expressed by

ui((b
′
i, b−i), vi) = E [vi(f(b′i, bi))− pi(b′i, b−i)] =

1

2
E [vi(f(b′i, b−i))] .

Next we use that the outcome f(b′i, b−i) is derived from f ′(b′i, b−i) by applying an α-approximate
oblivious rounding scheme. Considering the weight function in which wi = vi and wi′ = 0 for all
i′ 6= i, we conclude that E [vi(f(b′i, b−i))]≥ 1

α
vi(f

′(b′i, b−i)). That is, for bidder i’s utility, we get

ui((b
′
i, b−i), vi)≥

1

2α
vi(f

′(b′i, b−i)) =
1

α
u′i((b

′
i, b−i), vi),

where the last step uses that M ′ is a pay-your-bid mechanism as well.
Next, we apply the fact that M ′ is (λ,µ)-smooth for deviations to b′i = 1

2
vi. For the the sum of

utilities in M we thus obtain that∑
i∈N

ui((b
′
i, b−i), vi)≥

1

α

∑
i∈N

u′i((b
′
i, b−i), vi)≥

1

α

(
λOPT (v)−µ

∑
i∈N

p′i(b)

)
.

To bound the terms p′i(b), we use once more the fact that we are applying an α-approximate
oblivious rounding scheme, this time to derive f(b) from f ′(b) and considering the weight function
in which wi = bi and wi′ = 0 for all i′ 6= i. This implies

p′i(b) = bi(f
′(b))≤ αE [bi(f(b))] = αE [pi(b)] .

Overall, we get ∑
i∈N

ui((b
′
i, b−i), vi)≥

1

α
λOPT (v)−µ

∑
i∈N

E [pi(b)],

as claimed. �

We note that while we stated our main theorem for pay-your bid mechanisms and for exact
optimization over the relaxed solution, both assumptions can be relaxed. We discuss these and
further extensions in more detail in Section 8.

Also, as already noted in the introduction, the price of anarchy bounds implied by our main
theorem and its strengthening apply even out-of-equilibrium assuming only that players have no
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regret for deviations to half their value. That is, the utility that they achieve is at least as high as
the utility they would get when bidding half their value.

Furthermore, obliviousness is indeed necessary in the sense that it cannot be dropped without
any replacement. The reason is that otherwise it would be feasible to use exact optimization over
the original problem as rounding procedure, ignoring the relaxed solution entirely. We provide
many examples throughout this paper where exact optimization over the original problem results
in a mechanism with high price of anarchy whereas the one based on oblivious rounding performs
much better.

4. Sparse packing integer programs. In a packing integer program (PIP) with r variables
and s constraints we are given weights w ∈Rr≥0, capacities c∈Rs≥0, and a constraint matrix A∈Rs×r≥0

and we seek to solve
max{wTx | x∈ {0,1}r,Ax≤ c}.

The column sparsity d is the maximum number of non-zero entries in a single column of A.
Formally, for each variable xj, let Sj be the set of constraints in A with a non-zero coefficient, that
is, Sj = {` |A`,j 6= 0}. Now d= maxj|Sj|.

We refer to such PIPs as d-sparse PIPs and consider algorithms that relax the above program
by allowing fractional solutions x∈ [0,1]s, solve the resulting linear program optimally, and apply
an α-approximate oblivious rounding scheme.

Letting r = nK, w = v, and grouping the variables into n disjoint sets M1, . . . ,Mn of size K,
we obtain an interpretation as a mechanism-design problem in which player i can be served in K
different ways and has additive preferences over the options, i.e., vi(x) =

∑
j∈Mi

vjxj.
This way we can encode knapsack auctions (with d= 1), multi-unit auctions with general valu-

ations (with d= 2), the generalized assignment problem (with d= 2), and multi-minded combina-
torial auctions in which each agent is interested in K bundles of items whose size is bounded by k
(with d= k+ 1).

Theorem 4. There is an oblivious rounding based, pay-your-bid mechanism for d-sparse pack-
ing integer programs that achieves a price of anarchy of 16d(d+ 1).

To prove Theorem 4 we use the fact that an 8d-approximate oblivious rounding scheme is avail-
able through [4]. In addition, we show in Lemma 2 that the canonical LP relaxation of a d-sparse
packing integer program that this rounding scheme is based on is (1/2, d+1)-smooth for deviations
to b′i = 1

2
vi. The claimed bound on the price of anarchy then follows from Theorem 3′.

Lemma 2. The pay-your-bid mechanism that solves the canonical LP relaxation of a d-sparse
packing integer program is (1/2, d+ 1)-smooth for deviations to b′i = 1

2
vi.

To prove this lemma we show the following auxiliary lemma. It shows that the sum of externalities
when unilaterally moving to a different fractional solution cannot be much higher than the optimal
declared welfare. Given a bid vector b and a capacity vector c, we denote by W b(c) the value of
the optimal LP solution.

Lemma 3. Let x̄ be an arbitrary fractional solution and let x̄(i) denote the solution that is
obtained from x̄ by setting all variables not belonging to player i to 0. Then,∑

i∈N

(
W b−i(c)−W b−i(c−Ax̄(i))

)
≤ (d+ 1) ·W b(c).

Proof. Let x̂ denote a fractional allocation that maximizes declared welfare for players N with
bids b (we have x̂j ∈ [0,1] for all j, Ax̂≤ c).

Now, define LP solution x̂−i by setting x̂−ij =
(
1− δij

)
x̂j, where δij = max`∈Sj

(Ax̄(i))`
c`

. Note that

δij ≤ 1 for all j and observe that Ax̂−i ≤ c−Ax̄(i).
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For all j, we have
∑

i δ
i
j ≤

∑
i

∑
`∈Sj

(Ax̄(i))`
c`

=
∑

`∈Sj

∑
i

(Ax̄(i))`
c`

≤ |Sj| ≤ d and therefore∑
i 6=j,i∈N(1− δij)≥ n− d− 1. This gives us∑

i∈N

W b−i(c−Ax̄(i))≥
∑
i∈N

∑
j∈N
j 6=i

∑
k∈Mj

bkx̂
−i
k

=
∑
j∈N

∑
i∈N
i6=j

∑
k∈Mj

bk
(
1− δik

)
x̂k

≥ (n− d− 1)
∑
j∈N

∑
k∈Mj

bkx̂k

= (n− d− 1)W b(c),

which gives the claimed bound as clearly W b−i(c)≤W b(c). �

Proof of Lemma 2. Consider valuations v, bids b and deviations of each player i ∈ N to b′i =
1/2 ·vi. Denote the optimal fractional allocation for bids (b′i, b−i) by x̄1(b′i, b−i), . . . , x̄n(b′i, b−i). Then,
by the definition of b′i,

ui((b
′
i, b−i), vi) = vi(x̄i(b

′
i, b−i))− b′i(x̄i(b′i, b−i)) = b′i(x̄i(b

′
i, b−i)).

Since x̄1(b′i, b−i), . . . , x̄n(b′i, b−i) is the fractional allocation that maximizes declared welfare with
respect to bids (b′i, b−i),

b′i(x̄i(b
′
i, b−i)) +W b−i(c)≥ b′i(x̄i(b′i, b−i)) +

∑
j 6=i

bj(x̄j(b
′
i, b−i))

≥ b′i(x̄i(v)) +W b−i(c−Ax̄(i)(v)),

where again x̄(i) denotes the solution that is obtained from x̄ by setting all variables not belonging
to player i to 0. Rearranging this gives

b′i(x̄i(b
′
i, b−i))≥ b′i(x̄i(v))− [W b−i(c)−W b−i(c−Ax̄(i)(v))].

Summing over all players and applying Lemma 3, we obtain∑
i∈N

ui((b
′
i, b−i), vi) =

∑
i∈N

b′i(x̄i(b
′
i, b−i))

≥
∑
i∈N

(b′i(x̄i(v))− [W b−i(c)−W b−i(c−Ax̄(i)(v))].)

≥
∑
i∈N

b′i(x̄i(v))− (d+ 1) ·
∑
i∈N

bi(x̄i(b))

=
1

2
·
∑
i∈N

vi(x̄i(v))− (d+ 1) ·
∑
i∈N

bi(x̄i(b)),

which completes the proof. �

Our next proposition shows that it is crucial to take the detour via relaxation and rounding:
The mechanism that solves the integral problem optimally has an unbounded price of anarchy even
when d= 1.

Proposition 1. The pay-your-bid mechanism that maximizes the declared welfare over integral
allocations in a multi-unit auction has a pure Nash equilibrium whose welfare is by a factor (n−
2)/2 =m/2 smaller than the optimal welfare, where n is the number of bidders and m is the number
of goods.
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Proof. Consider a setting with n bidders and m= n−2 units of an identical good. The valuations
for bidders i= 1, . . . , n− 2 are vi,0 = 0 for not receiving any item and vi,k = 1 for any set of k ≥ 1
items. For bidders i= n− 1 and i= n, we set vi,k = 0 for k <m and vi,m = 2. It is socially optimal
to allocate one item each to bidders 1, . . . ,m, achieving welfare m.

On the other hand, consider bids bi,k = 0 for i = 1, . . . ,m and all k and bi,k = vi,k for i = m+
1,m+2 and all k. The social welfare is 2. It is a pure Nash equilibrium because bidders 1, . . . ,m get
no items unless they bid at least 2, which is above their value. Bidders m+ 1 and m+ 2 both have
zero utility but when lowering the bid they are outbid by the respective other bidder; increasing
the bid will result in negative utility. �

We note that in all of the applications mentioned above with d> 1, the constraint matrix A has
a unit-demand constraint of the form

∑
j∈Mi

xj ≤ 1 for each player i. We remark that it is possible
to treat these constraints separately, so that d is the maximum number of constraints excluding
the unit-demand constraint that any given variable participates in, while still achieving a price of
anarchy guarantee of 16d(d+ 1).

The analysis in this section can remain unchanged. In particular, Lemma 2 and Lemma 3 still
apply with this modified definition of d. The rounding scheme in [4] has to be adapted slightly:
Rather than setting each variable independently, the randomization has to make sure that at most
one variable from each set Mi is set to 1. As the sets Mi are disjoint and

∑
j∈Mi

x′j ≤ 1, this
is no problem. We can interpret x′j for j ∈Mi as a probability distribution, and choose j ∈Mi

with probability 1
4d
x′j. The rest of the algorithm and the analysis is unchanged, and we obtain a

8d-approximate oblivious rounding scheme.
Finally, combining Lemma 2 for the new definition of d with the existence of a 8d-approximate

oblivious rounding scheme for the alternate problem formulation we obtain the claimed price of
anarchy guarantee through Theorem 3′.

5. Single source unsplittable flow. We next consider the single source unsplittable multi-
commodity flow problem, in which we are given a graph G= (V,E) with edge capacities ce for each
edge e∈E. All bidders share a source node s and each bidder i has a sink node ti. Bidder i asks for
a path connecting s and ti fulfilling his demand di. His value for this is vi · di, and he has no value
for less flow than his demand. We assume that capacities and demands are rational numbers, so it
is without loss of generality to assume they are integral. We define the capacity-to-demand ratio
as ρ= mine∈E ce/maxi∈N di. We assume that the sink ti and demand di for each player is common
knowledge, so the player’s bid bi is a claimed value per unit of flow.

Let Pi be the paths connecting s and ti. For each P ∈ Pi, we have a variable fi,P denoting
the amount of flow along path P . The problem requires single path routing, that is, all the di
flow satisfying player i’s demand must be carried by a single path. We use the canonical LP
relaxation, which maximizes

∑
i∈N
∑

P∈Pi
bifi,P subject to

∑
i∈N
∑

P∈Pi:e∈P
fi,P ≤ ce for all e ∈ E

and
∑

P∈Pi
fi,P ≤ di for all i∈N .

Substituting fi,P by dix̄i,P , we would get an LP formulation in the spirit of Section 4. However,
this LP is not necessarily sparse, as the column sparsity d corresponds to the maximum path
length. Nevertheless we are able to establish the following theorem.

Theorem 5. There is a constant c > 0 such that for all ε > 0 for which ρ≥ cε−1 log |E| there is
an oblivious rounding based, pay-your-bid mechanism for the single source unsplittable flow problem
with price of anarchy at most 2(1 + ε).

For the setting considered here Raghavan and Thompson [39, 40] present a (1 + ε)-approximate
oblivious rounding scheme. So it only remains to prove smoothness of the relaxed problem. The
price of anarchy bound then follows by Theorem 3′.
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Lemma 4. The pay-your-bid mechanism that solves the canonical LP relaxation is (1,1/2)-
smooth for deviations to b′i = 1

2
vi.

We can represent solutions to the canonical LP relaxation by n-dimensional vectors x =
(x1, . . . , xn), where xi ∈ R≥0 is the amount of flow routed from s to ti. A well known result by
Federgruen and Groenevelt [20] establishes that the set of feasible solutions forms a polymatroid,
i.e., there exists a submodular function g such that the set of feasible solutions is

Qg =

{
x∈Rn≥0 :

∑
i∈N ′

xi ≤ g(N ′) ∀N ′ ⊆N

}
.

A solution of maximum weight can thus be found using the standard greedy algorithm for finding
a maximum weight basis of a polymatroid [45].

With integral capacities and demands, the submodular function g will in fact be integer valued
so that it suffices to consider the corresponding integer polymatroid with x∈Nn.

To prove Lemma 4 it therefore suffices to show the following proposition.

Proposition 2. Consider an integer polymatroid, in which each dimension corresponds to the
allocation of a player and players have linear preferences. Then the pay-your-bid mechanism that
maximizes declared welfare is ( 1

2
,1)-smooth for deviations to b′i = 1

2
vi.

A key component in our proof of this proposition will be the following generalized Rota exchange
property for polymatroids, which we prove in Appendix A.

Lemma 5. Let Q = (N,Q) be an integer polymatroid, α,β bases in Q, and q ∈ N. Let
α1, . . . , αn ∈Q be such that α1

i + . . .+αni = k ·αi for all i ∈N . Then there are β1, . . . , βn ∈Q such
that β1

i + . . .+βni = k ·βi for all i∈N , and for each j, αj + (β−βj)∈Q.

Proof of Proposition 2. Denote the welfare maximizing solution for valuations v by x∗ and the
declared welfare maximizing solution for bids b by x. Furthermore, define z as the point-wise
minimum of x∗ and x, that is, zi = min{xi, x∗i }. We now apply Lemma 5 to the polymatroid after
contracting z, letting α= x∗− z, αi = (αi,0), β = x− z. Define yi = βi + (zi,0). By this definition,
(x∗i , x−i− yi−i) is feasible and yii ≥ zi for all i. Furthermore

∑
i y

i =
∑

i b
i + z = x∗.

Let S = {i | xi ≥ x∗i }. Consider an arbitrary player i and a deviation to b′i = vi/2. Denote the
resulting solution by x′. If i ∈ S and vi

2
≥ bi, we have by monotonicity x′i ≥ xi ≥ x∗i . Therefore

x′i ·
vi
2
≥ x∗i ·

vi
2
≥ x∗i

vi
2
− zibi. If i∈ S and vi

2
< bi, we have x′i ·

vi
2
≥ 0 = (x∗i − zi) ·

vi
2
≥ x∗i

vi
2
− zibi. So,

whenever i∈ S, we have

x′i ·
vi
2
≥ 0≥ x∗i

vi
2
− zibi ≥ x∗i

vi
2
− yiibi ≥ x∗i

vi
2
−
∑
i′

yii′bi′ .

If i 6∈ S, then we use that x′ maximizes declared welfare for bids b′ = (b′i, b−i),

x′i ·
vi
2

+
∑
i′ 6=i

x′i′ · bi′≥ x∗i ·
vi
2

+
∑
i′ 6=i

(x− yi)i′ · bi′ . (2)

By optimality of x on bids b, ∑
i

xi · bi ≥
∑
i

x′i · bi ≥
∑
i′ 6=i

x′i′ · bi′ . (3)

Combining (2) and (3), and using that i 6∈ S, so xi− yii = zi− yii ≤ 0, we get

x′i ·
vi
2
≥ x∗i ·

vi
2

+
∑
i′ 6=i

(x− yi)i′ · bi′ −
∑
i′

xi′ · bi′

≥ x∗i ·
vi
2

+
∑
i′

(x− yi)i′ · bi′ −
∑
i′

xi′ · bi′ = x∗i ·
vi
2
−
∑
i′

yii′ · bi′
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Using that the utility of player i for bid b′i = vi/2 is ui(b
′
i, b−i) = x′i ·

vi
2

and summing over all
players i we obtain,∑

i

ui((b
′
i, b−i), vi)≥

∑
i

x∗i ·
vi
2
−
∑
i

∑
i′

yii′ · bi′ =
1

2

∑
i

x∗i vi−
∑
i

xibi

as claimed. �

Importantly, the reference to greedy in the above proof is on the level of the relaxation with
splittable flows, as the approximation ratio of the greedy algorithm for the original problem with
unsplittable flows can be as bad as Ω(

√
|E|) (see [28]). Also, as we show next, solving the original

problem optimally again leads to an unbounded price of anarchy, even if there is a single source, a
single sink and just one unit-capacity edge between the two.

Proposition 3. The pay-your-bid mechanism that solves the single source unsplittable flow
problem optimally has a price of anarchy of at least m

2
even if there is a single source, a single sink

and a unit-capacity edge connecting the two.

Proof. Consider a network with two nodes, one of which is the source and the other is the sink,
and a single edge with unit capacity between the two. There are m+ 2 players. Two big players
with demand 1 and value 2 · 1 = 2, and m small players with demand 1/m and value m · 1/m= 1.

Note that this setting is effectively the same as the one considered in the proof of Proposition 1.
So, again, having the big players both bid 2 and the small players bid 0 is a pure Nash equilibrium
with social welfare 2, where the optimal is m. �

6. Combinatorial auctions. In this section, we consider combinatorial auctions. In a com-
binatorial auction, m items are sold to n bidders. Each item is allocated to at most one bidder
and each bidder i has a valuation vi(S) for the subset S ⊆ [m] of items he receives. The canonical
relaxation as a configuration LP uses variables xi,S ∈ [0,1] representing the fraction that bidder i
receives of set S. The goal is to maximize

∑
i∈N
∑

S⊆[m] bi(S)x̄i,S s.t.
∑

i∈N
∑

S:j∈S xi,S ≤ 1 for all
j ∈ [m] and

∑
S xi,S ≤ 1 for all i∈N .

For arbitrary valuation functions, only very poor approximation factors can be achieved for the
optimization problem. Therefore, we focus on XOS or fractionally subadditive valuations. That is,
each valuation function vi has a representation of the following form. There are values v`i,j ≥ 0 such
that vi(S) = max`

∑
j∈S v

`
i,j. Feige et al. [22] generalized the class of XOS functions to MPH-k,

where XOS is precisely the case k = 1. A valuation function vi belongs to class MPH-k if there
are values v`i,T ≥ 0 such that vi(S) = max`

∑
T⊆S,|T |≤k v

`
i,T .

Theorem 6. There is a pay-your-bid mechanism for combinatorial auctions that is based on
oblivious rounding and achieves a price of anarchy of 4 e

e−1
for XOS-valuations and of O(k2) for

MPH-k-valuations.

For generalMPH-k-valuations Feige et al. [22] present a O(k+1)-approximate rounding scheme;
a better constant of e

e−1
for the special case XOS can be achieved via the rounding scheme described

in [21]. Both schemes are oblivious. Regarding smoothness we show below that the configuration
LP that these rounding schemes are based on is (1/2, k+ 1)-smooth for deviations to b′i = 1

2
vi. The

claimed price of anarchy bounds then follow from Theorem 3′.
As in the previous applications the key lemma in the smoothness proof is the following lemma

that bounds the net loss of enforcing a feasible solution one player at a time. For a bid profile b
and a vector of quantities q let W b(q) denote the optimal declared social welfare over all fractional
allocations, constrained by capacity vector q.
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Lemma 6. Let x be an arbitrary fractional solution to the configuration LP. Then,∑
i∈N

(
W b−i(1)−W b−i(1−xi)

)
≤ (k+ 1) ·W b(1).

Proof. As removing a player can only decrease the achievable declared welfare, we have∑
i∈NW

b−i(1) ≤
∑

i∈NW
b(1). It now remains to show that

∑
i∈NW

b−i(1 − xi) ≥ (n − k −
1)
∑

i∈NW
b(1). Subtracting this inequality from the first one implies then the claim.

Let x̂ denote a fractional allocation that maximizes declared welfare for players N with bids b,
so
∑

S bi(S)x̂i,S =W b(1). Let b̂i,T be the corresponding values such that

W b(1) =
∑
S

bi(S)x̂i,S =
∑
S

 ∑
T⊆S,|T |≤k

b̂i,T

 x̂i,S .

In order to bound W b−i(1−xi) for a fixed i, we will turn x̂ into a feasible solution x̂−i for the more
restricted constraint capacities 1− xi. We derive x̂−i as follows. If xi,A = 1 for a set A⊆ [m], then
from every set allocated to any other player we remove the intersection with A. That is, the value of
x̂i′,U is then redirected to the set U \A. This procedure generalizes to arbitrary fractional allocation
by taking the respective convex combination. For a formal definition, we simplify notation and
assume that for every i we have

∑
A xi,A = 1. This is possible without loss of generality as we can

increase xi,∅ without modifying the objective function or feasibility. The LP solution x̂−i is now
defined by setting x̂−ii′,S =

∑
A xi,A

∑
U :S=U\A x̂i′,U .

The first step is to show feasibility of this solution. For all A⊆ [m] and j ∈ [m], we have∑
i′ 6=i

∑
S:j∈S

∑
U :S=U\A

x̂i′,U =

{
0 if j ∈A∑

i′ 6=i
∑

U :j∈U x̂i′,U if j 6∈A.

This implies that for all j ∈ [m]∑
i′ 6=i

∑
S:j∈S

x̂−ii′,S =
∑
i′ 6=i

∑
S:j∈S

∑
A

xi,A
∑

U :S=U\A

x̂i′,U

=
∑
A

xi,A
∑
i′ 6=i

∑
S:j∈S

∑
U :S=U\A

x̂i′,U

=
∑
A:j 6∈A

xi,A
∑
i′ 6=i

∑
U :j∈U

x̂i′,U .

By feasibility of x̂, we have
∑

i′ 6=i
∑

S:j∈S
∑

U :S=U\A x̂i′,U . Furthermore, as we assumed
∑

A xi,A = 1,

we also have
∑

A:j 6∈A xi,A = 1−
∑

A:j∈A xi,A. Therefore
∑

i′ 6=i
∑

S:j∈S x̂
−i
i′,S ≤ 1−

∑
A:j∈A xi,A. That is,

x̂−i is a feasible solution with respect to the capacity vector q= 1−xi.
Next, we bound the value of this constructed solution x̂−i. Let us first consider the contribution

to the declared welfare by player i′ 6= i in x̂−i. We get

∑
S

bi′(S)x̂−ii′,S ≥
∑
S

 ∑
T⊆S,|T |≤k

b̂i′,T

 x̂−ii′,S

=
∑
S

 ∑
T⊆S,|T |≤k

b̂i′,T

∑
A

xi,A
∑

U :S=U\A

x̂i′,U

=
∑
A

xi,A
∑
U

 ∑
T⊆U\A,|T |≤k

b̂i′,T

 x̂i′,U .
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Taking the sum over all i′ 6= i, this implies

W b−i(1−xi)≥
∑
i′ 6=i

∑
A

xi,A
∑
U

 ∑
T⊆U\A,|T |≤k

b̂i′,T

 x̂i′,U .

In the remainder, we will bound the sum of all W b−i(1− xi) and bound it in terms of W b(1).
Using the bound on W b−i(1−xi) obtained so far and reordering the sums, we get

∑
i

W b−i(1−xi)≥
∑
i′

∑
i 6=i′

∑
A

xi,A
∑
U

 ∑
T⊆U\A,|T |≤k

b̂i′,T

 x̂i′,U

=
∑
i′

∑
U

∑
i6=i′

∑
A

xi,A
∑

T⊆U\A,|T |≤k

b̂i′,T

 x̂i′,U .

By reordering the sums further, we get∑
i 6=i′

∑
A

xi,A
∑

T⊆U\A,|T |≤k

b̂i′,T =
∑

T⊆U,|T |≤k

b̂i′,T
∑
i 6=i′

∑
A:A∩T=∅

xi,A

=
∑

T⊆U,|T |≤k

b̂i′,T

∑
i 6=i′

∑
A

xi,A−
∑
i6=i′

∑
A:A∩T 6=∅

xi,A

 .

As we assumed
∑

A xi,A = 1 for all i, we have∑
i 6=i′

∑
A

xi,A = n− 1 .

Furthermore, we use feasibility of x and the fact that |T | ≤ k. This implies∑
i6=i′

∑
A:A∩T 6=∅

xi,A ≤
∑
j∈T

∑
i 6=i′

∑
A:j∈A

xi,A ≤ |T | ≤ k .

Overall, this implies∑
i

W b−i(1−xi)≥ (n− k− 1)
∑
i

∑
S

bi(S)x̂i,S = (n− k− 1)W b(1) .

As W b(1)≥W b−i(1) for all i, this shows the claim. �

Lemma 7. The pay-your-bid mechanism that solves the configuration LP for MPH−k valua-
tions exactly is (1/2, d+ 1)-smooth for deviations to b′i = 1

2
vi.

Proof. Following the same steps as in the proof of Lemma 2 and using Lemma 6 instead of
Lemma 3 completes the proof. �

7. Maximum traveling salesman. In the asymmetric maximization version of the traveling
salesman problem, one is given a complete digraph G= (V,E) with non-negative weights (we)e∈E.
Players are the edges with value we for being selected, and the mechanism aims to select a Hamil-
tonian cycle C that maximizes

∑
e∈C we. We show how existing combinatorial algorithms for this

problem can be interpreted as relax-and-round algorithms, and derive the following theorem.

Theorem 7. There is a pay-your-bid mechanism for the maximum traveling salesman problem
based on oblivious rounding that achieves a price of anarchy of 9.
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We present a proof based on the algorithm of Fisher et al. [24] that yields a slightly worse but
easier to prove price of anarchy bound of 12; in Appendix B we show how to improve this bound
to 9 using the algorithm of Paluch et al. [37] instead.

We will first argue how the algorithm of Fisher et al. can be interpreted as an oblivious, 2-
approximate rounding scheme that relaxes the problem to the problem of finding a maximum-
weight cycle cover (defined below). We will then argue that the pay-your-bid mechanism that finds
a cycle cover is (1/2,3)-smooth for deviations to half the value. Together with Theorem 3′ these
two facts imply the claimed price of anarchy bound.

Fisher et al.’s algorithm uses cycle covers as relaxed solutions. A collection of cycles C1, . . . ,Ck
in a (di-)graph is called a cycle cover if each vertex of the graph is contained in exactly one of
the cycles. A maximum-weight cycle cover can be computed in polynomial time by computing a
maximum-weight perfect matching in a suitably defined bipartite graph. In order to approximate
the max-weight TSP tour, one first determines a max-weight cycle cover C1, . . . ,Ck, and then from
each of the obtained cycles the minimum-weight edge is dropped, resulting in a collection of vertex-
disjoint paths P1, . . . , Pk. These paths are connected in an arbitrary way to obtain a Hamiltonian
cycle C. Going from Ci to Pi, we lose at most half of the weight of this respective cycle. As all
weights are non-negative, no weight is lost going from P1, . . . , Pk to C. In combination, we have∑

e∈C we ≥
∑

i∈[k]

∑
e∈Pi

we ≥ 1
2

∑
i∈[k]

∑
e∈Ci

we.
The final rounding step, which turns the cycle cover into a tour, can also be modified to work in

an oblivious way without loss in the worst case by removing one edge uniformly at random from
each cycle. This way, for each edge that was contained in the cycle cover, the individual probability
to be also included in the output is at least 1

2
.

To be able to apply Theorem 3′ and obtain the price of anarchy bound it remains to show that
the pay-your-bid mechanism that finds a cycle cover is (1/2,3)-smooth for deviations to half the
value.

Lemma 8. The pay-your-bid mechanism for computing an optimal cycle cover is (1/2,3)-
smooth for deviations to b′i = 1

2
vi.

Our proof of this lemma follows a similar pattern as our proof for sparse packing integer programs.
The idea is again to bound the net loss in declared welfare for a given feasible allocation relative to
the optimal declared welfare. Let C denote the set of all cycle covers. Given any bid vector b and
any C′ ⊆ C, we write W b(C′) for the maximum declared welfare of a cycle cover in C′ with respect
to b. Letting now Ce denote the set of all cycle covers that include edge e∈E, W b−i(C)−W b−i(Ce)
is the social cost of including e∈E in the cycle cover. Specifically, we show the following auxiliary
lemma.

Lemma 9. Consider bids b. Let C1, . . . ,Ck be the cycle cover that maximizes reported welfare
for bids b and use EC to denote the set of edges used in this cycle cover. Consider any other cycle
cover C ′1, . . . ,C

′
` with edge set EC′. Then,∑

i∈N :ei∈EC′

(
W b−i(C)−W b−i(Cei)

)
≤ 3 ·W b(C).

Proof. Let us first consider any fixed edge e∈E and let us construct a cycle cover from the edge
set EC that contains e.

Figure 1 depicts the two possible cases. The thin edges are edges from EC . The thick edge is e.
Note that we can w.l.o.g. assume that v1 and v4 are distinct. (As otherwise e would already be
contained in EC and there would be nothing to show.)

The first case is when nodes v1 and v6 are distinct. In this case we can remove edges (v3, v1) and
(v6, v4) from EC and add edge (v6, v1). The resulting edge set is a valid cycle cover because this
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Case 1

v5

v3

v1

v6

v4

v2

Case 2

v5

v3

v1 = v6

v4

v2

Figure 1. Smoothness of Cycle Cover LP

modification to EC maintains the in-/outdegrees of all nodes and does not create self-loops as we
assumed v1 and v6 to be distinct.

The second case is when nodes v1 and v6 are identical. In this case the modification just described
would create a self-loop from/to node v1 = v6. We can avoid this by instead removing edges (v3, v1),
(v6, v4), and (v4, v2) from EC and adding edges (v4, v1) and (v6, v2). This leads to a valid cycle cover
as it maintains in- and outdegrees and does not create self-loops as we assumed v1 and v6 to be
identical and v2 must be different from v1 (as otherwise this node would have an indegree of 2,
which would violate the cycle cover constraint).

In order to bound
∑

i∈N :ei∈EC′
(W b−i(C)−W b−i(Cei)), we now assume that e was drawn uniformly

at random from EC′ , the set of all edges in C ′. As edge weights are non-negative, the loss in
declared welfare by forcing e into C, i.e., W b−i(C)−W b−i(Ce), is upper-bounded by the weight of
all edges removed by our construction. For any edge e′, the probability of being removed by our
construction is at most 3

|EC′ |
. This is due to the fact that e′ is only removed if it fulfills a certain

role in relation to e, namely being the edge (v3, v1), (v4, v2), or (v6, v4) in Figure 1. As C ′ is a cycle
cover, each edge e′ can have each role only with respect to a single e∈EC′ . Overall, this gives

E
[
W b−i(C)−W b−i(Ce)

]
≤
∑
e′∈EC

we′
3

|EC′ |
=

3

|EC′ |
W b(C).

Using the definition of the expectation, and multiplying the previous inequality by |EC′ | shows the
claim. �

Proof of Lemma 8. Following the same steps as in the proof of Lemma 2 and using Lemma 9
instead of Lemma 3 completes the proof. �

8. Extensions. Throughout this paper, we focused on pay-your-bid rules. However, all of our
results generalize to payment schemes that use arbitrary non-negative payments which are upper
bounded by the respective bid. In this case, we resort to weak smoothness [46]. In our statements
(λ,µ)-smoothness would be replaced by weak (λ,0, µ)-smoothness. Considering equilibria without
overbidding, i.e., always bi(x)≤ vi(x), this implies a price of anarchy bound of (1 +µ)/λ.

A second observation is that Theorem 3 also holds with a slightly weaker assumption on the
rounding. It is sufficient if for all possible valuation profiles each agent is guaranteed to get, in
expectation, a 1/α-fraction of the value that it would have had for the solution to the relaxed
problem. That is, wi(f(w))≥ 1

α
wi(f

′(w)) for all w.
Furthermore, Theorem 3 also holds if f ′ is not an exact declared welfare maximizer, but only

allows implementation as a truthful mechanism. The interesting consequence is that it might make
sense to only approximately solve the relaxation if this improves the smoothness guarantees. For
example, a packing LP can be solved using the fractional-overselling mechanism in [26], which
was originally introduced in [30]. The allocation rule is an O(logn+ logL)-approximation for any
packing LP with n bidders and L constraints between bidders. It allows implementation as a
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truthful mechanism but it is also a greedy algorithm in the sense of [34]. Therefore, the respective
pay-your-bid mechanism is ( 1

O(logn+logL)
,1)-smooth. This means that combining this algorithm with

any α-approximate oblivious rounding scheme for the respective packing LP, we get a pay-your-bid
mechanism with price of anarchy at most O(α(logn+ logL)).

Finally, Carr and Vempala [9] introduced randomized metarounding, which is a technique to
derive oblivious rounding schemes from non-oblivious ones. Lavi and Swamy [31] used this result
to construct truthful mechanisms. However, they additionally need a packing structure. As in our
case oblivious rounding is enough, any rounding scheme derived from the original version in [9] is
enough for our considerations.

9. Conclusion and future work. In this paper we showed that oblivious rounding schemes
approximately preserve price of anarchy bounds provable via smoothness, and used this result to
derive new mechanisms for a broad range of applications.

An interesting direction for future work would be to identify additional algorithm design
paradigms that yield mechanisms with low price of anarchy, or more generally to obtain a combi-
natorial characterization of algorithms with low price of anarchy. A first step towards this direction
is [19], which provides such a result for settings where the private information held by each player
is a single number and players can either win or lose.

Finally, in the tradition of [31], one could try to reduce mechanism design to algorithm design, by
considering mechanisms that have only black-box access to an underlying approximation algorithm,
but instead of aiming for a DSIC mechanism that approximately preserves the approximation guar-
antee of the underlying algorithm the goal would be to approximately preserve the approximation
guarantee as a price of anarchy guarantee.

Acknowledgments. We would like to thank the anonymous reviewers of this and an earlier
version of this work for their valuable feedback.

Appendix A: Proof of Lemma 5. To prove the lemma, we rely on the following lemma,
which establishes a generalized Rota exchange property for matroids.

Lemma 10 (Lee et al. [32]). Let M = (EM,I) be a matroid and A,B bases in M. Let
A1, . . . ,An be subsets of A such that each element of A appears in exactly k of them. Then there
are subsets B1, . . . ,Bn of B such that each element of B appears in exactly k of them, and for each
j, Aj ∪ (B−Bj)∈ I.

To reduce our statement to matroids, we first define a vector m by setting mi = min{αi, βi}.
Clearly m is in Q, so we can contract m in Q. Therefore, without loss of generality, we can assume
that for each i we have αi = 0 or βi = 0.

Now, let us consider the equivalent matroid M = (EM,I) (see, e.g., Chapter 44.6b of [45]):
Form a ground set EM = ∪iEi by introducing, for each polymatroid dimension i ∈N , sufficiently
many distinct elements Ei. Associate with each set of elements I ⊆EM a vector s(I)∈NN≥0, where
si(I) = |I ∩Ei|. A set I ⊆EM is independent if s(I)∈Q.

To apply Lemma 10, we let A and B be an arbitrary set of elements such that |A∩Ei|= αi and
|B ∩Ei|= βi for all i. By equivalence of the matroid and polymatroid, A and B are bases in M.
Furthermore, let A1, . . . ,An be any division of A into subsets such that each e∈A is contained in
exactly k of them.

By Lemma 10, there are subsets B1, . . . ,Bn of B such that each element of B appears in exactly
k of them, and for each j, Aj∪(B−Bj)∈ I. Define βji = |Bj∩Ei|. By this construction

∑
j β

j
i = kβi

because each element of B appears in exactly k sets B1, . . . ,Bn. It remains to show that αj + (β−
βj)∈Q for all j. To this end, we use that si(Aj∪(B−Bj)) = |(Aj∪(B−Bj))∩Ei|= (αj+(β−βj))i
for all i. This is true for the following reason. If αi = 0, then also αj = 0 and Aj = ∅. So, the identity
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follows from the definitions of B and βj. Otherwise, we have βi = 0. So, also B ∩Ei,Bj ∩Ei = ∅
and the claim follows by the definition of αj.

The proof is completed by the fact that s(Aj ∪ (B−Bj))∈Q because the set is independent in
M.

Appendix B: Proof of Theorem 7. The approximation guarantee of the algorithm of
Fisher et al. [24] could be improved to 3/2 if one could find a cycle cover that does not contain
cycles of length two. Since finding such a cover is APX-hard, Paluch et al. [37] relax the problem
even further by allowing so called half-edges.

More formally: From the original digraph G = (V,E) with weights we ∈ R+ construct a new
digraph G̃= (Ṽ , Ẽ) with weights w̃ẽ ∈R+ as follows. First add all vertices vi ∈ V to Ṽ . Then, for
each edge (vi, vj)∈E add a vertex vi,j to Ṽ and edges (vi, vi,j) and (vi,j, vj) to Ẽ. Give each of these
edges a weight of w(vi,vj)/2. Now a cycle cover without 2-cycles but with half-edges is a collection

of edges such that: (1) each vertex in the original graph vi ∈ V ⊆ Ṽ has in- and outdegree exactly
one, (2) for each pair of edges in the original graph (vi, vj) and (vj, vi) either (a) none of the edges
(vi, vi,j), (vi,j, vj), (vj, vj,i), (vj,i, vi) is used or (b) the cycle cover contains exactly two of the four
edges, one incident to vi and one incident to vj. In other words, it is possible to take both heads
or both tails of the edges between vi and vj.

Paluch et al. show that a cycle cover C̃ without 2-cycles but with half-edges can be computed in
polynomial time. Furthermore, it is possible to derive from it three node disjoint paths P1, P2, P3

in the original graph, whose weight is at least twice the weight of C̃. Since the optimal tour yields
a cycle cover without 2-cycles but with half edges, choosing the path with maximum weight and
extending it to a tour yields a 3/2-approximation. Since the derivation of the paths requires no
knowledge of the weights, choosing one of the paths at random and extending it to a tour without
looking at the weights yields an oblivious rounding scheme.

Our proof of the price of anarchy guarantee now follows a similar pattern as the proof for the
pay-your-bid mechanism based on Fisher et al’s algorithm. However, as each player now controls
two edges, a direct translation of the argument would only show (1/2,6)-smoothness for deviations
to half the value and hence a price of anarchy of 18 via Theorem 3′. We therefore slightly deviate
from our proof pattern by bounding only the net cost of enforcing a solution to the original problem,
and showing that this suffices for our main theorem to go through.

Lemma 11. Consider any bid profile b. Let C̃ be the set of all cycle covers without 2-cycles
but with half-edges and for any edge e in the original graph let C̃e be the set of all cycle covers
without 2-cycles but with half-edges that contain edge e. Let T be any tour in the original graph
with corresponding edge set ET . Then,∑

i∈N :ei∈ET

(
W b−i(C̃)−W b−i(C̃ei)

)
≤ 3 ·W b(C̃).

Proof. Let C̃ be the cycle cover without 2-cycles but with half edges that maximizes reported
welfare for bids b and use ẼC̃ to denote the set of edges used in this cycle cover. We begin by
showing how to incorporate a given edge e∈ET from the tour T into the cycle cover C̃ by removing
as few as possible edges from ẼC̃ .

Figure 2 depicts the possible configurations that can occur. The thick edge is e. One possible
choice of the set of edges ẼC̃ are the thin edges. Some of these edges can be replaced by alternative
edges. The alternatives are drawn as dotted edges.

We will distinguish two cases. The case where v1 and v6 are distinct and there is no edge between
v1 and v6 in the cycle cover, and the case where either v1 and v6 are identical or there is an edge
between v1 and v6 in the cycle cover. Note that if we have v1 = v4 then v6, which is distinct from
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Case 1
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oror
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Figure 2. Possible Configurations of the Cycle Cover LP without 2-Cycles but with Half Edges

v4, must be distinct from v1. Hence the case v1 = v4 is covered by the first case, and in the second
case we can assume that v1 6= v4.

In the first case we remove the edges between v3 and v1 and between v6 and v4 from ẼC̃ , and add
an edge between v1 and v6. We direct the half-edges in this edge so that they fit the in-/outgoing
edges at v1 and v6. The resulting edge set is a valid cycle cover without 2-cycles but with half-
edges because this modification to EC maintains the in-/outdegrees of all nodes, does not create
self-loops (as in this case we assumed that v1 6= v6), and does not create a 2-cycle (as in this case
we assumed that there was no edge between v1 and v6).

In the second case we remove edges between v3 and v1, between v6 and v4, and between v4 and
v2 from ẼC̃ , and add an edge between v4 and v1 and an edge between v6 and v2. We direct the
half-edges so that they fit with the in- and outgoing edges at v1, v2, and v6. This leads to a valid
cycle cover without 2-cycles but with half edges as it maintains in- and outdegrees and does not
create self-loops or 2-cycles. To see that it does not create self-loops note that in this case we can
assume that v1 6= v4, and v2 = v6 would imply that there was a 2-cycle in the cycle cover. To see
that it does not create 2-cycles first observe that we need not be worried about an edge between v1

and v4 because in the case where v1 = v6 we removed this edge, and in the case where v1 6= v6 we
assumed that there is an edge between v1 and v6 and so if there was an edge between v1 and v4 in
the cycle cover then v1 would have had three incident edges. By a similar argument we also need
not be worried about an edge between v2 and v6. Namely, in the case where v1 = v6 this would
imply v2 6= v3 because otherwise there would have been a 2-cycle involving v1 = v6 and v2 = v3, but
then v6 would have had three incident edges. Otherwise, v1 6= v6 and there is an edge between v1

and v6. Then either v2 6= v1 in which case v6 would have had three incident edges, or v2 = v1 in
which case v2 would have had three incident edges.

We conclude that in order to add any edge e∈ET from the tour we need to remove at most three
edges from the cycle cover. Since each removed edge plays each role in the above construction at
most once, we obtain ∑

i∈N :ei∈ET

(
W b−i(C̃)−W b−i(C̃ei)

)
≤ 3 ·W b(C̃). �

Lemma 12. Consider valuation profile v and bid profile b. Denote the welfare achieved by the
welfare maximizing tour by OPTT (v). Then for the pay-your-bid mechanism that computes an
optimal cycle cover without 2-cycles but with half-edges and bids b′i = 1

2
vi for all i∈N ,∑

i∈N

ui((b
′
i, b−i), vi)≥

1

2
OPTT (v)− 3 ·

∑
i∈N

pi(b).
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Proof. The proof is analogous to the proof of Lemma 2. The only two differences are that
(1) instead of switching to the optimal relaxed solution for v we switch to the optimal original
solution T for v and (2) we then apply Lemma 11 instead of Lemma 3 to bound the social cost∑

i∈N :ei∈ET
(W b−i(C̃)−W b−i(C̃ei) of enforcing the optimal solution T . �

To establish the price of anarchy guarantee we can now follow the same steps as in proof of
Theorem 3′. The only exception is that instead of invoking smoothness for deviations to half the
value for the pay-your-bid mechanism for the relaxation and lower bounding the optimal fractional
solution with the optimal original solution, we directly apply Lemma 12.
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