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Abstract

Many existing procedures for detecting multiple change-points in data sequences fail
in frequent-change-point scenarios. This article proposes a new change-point detection
methodology designed to work well in both infrequent and frequent change-point set-
tings. It is made up of two ingredients: one is “Wild Binary Segmentation 2” (WBS2),
a recursive algorithm for producing what we call a ‘complete’ solution path to the
change-point detection problem, i.e. a sequence of estimated nested models contain-
ing 0, . . . , T − 1 change-points, where T is the data length. The other ingredient is a
new model selection procedure, referred to as “Steepest Drop to Low Levels” (SDLL).
The SDLL criterion acts on the WBS2 solution path, and, unlike many existing model
selection procedures for change-point problems, it is not penalty-based, and only uses
thresholding as a certain discrete secondary check. The resulting WBS2.SDLL proce-
dure, combining both ingredients, is shown to be consistent, and to significantly out-
perform the competition in the frequent change-point scenarios tested. WBS2.SDLL is
fast, easy to code and does not require the choice of a window or span parameter.

Key words: Segmentation, break detection, jump detection, randomized algorithms,
adaptive algorithms, multiscale methods.

1 Introduction

A recent report (National Research Council, 2013) lists change-point detection as one of
the “inferential giants” (common building blocks in knowledge discovery) in massive data
analysis. Change-point analysis, be it a posteriori or online, is used in fields as diverse
as bioinformatics (Olshen et al., 2004), econometrics and finance (Hansen, 2001; Andreou
and Ghysels, 2002; Bai and Perron, 2003), climate and the natural environment (Reeves
et al., 2007; Liu et al., 2010; Salarijazi et al., 2012; Pezzatti et al., 2013), autonomous
driving (Galceran et al., 2015), computer vision (Ranganathan, 2012), clinical neuroscience
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(Younes et al., 2014) and quality/reliability monitoring (D’Angelo et al., 2011; Huang and
Lyu, 2011; Amiri and Allahyari, 2012).

A common testing ground for a posteriori change-point detection methods, and the focus
of this paper, is the model

Xt = ft + εt, t = 1, . . . , T, (1)

in which ft is a deterministic, one-dimensional, piecewise-constant signal with change-points
whose number N and locations η1, . . . , ηN are unknown. The sequence εt is random and
such that E(εt) is exactly or approximately zero. In the simplest case εt are modelled
as i.i.d. N(0, σ2), but can also have other marginal distributions and/or exhibit temporal
dependence. The task is to estimate N and η1, . . . , ηN under various assumptions on N , the
magnitudes of the jumps and the minimum permitted distance between the change-point
locations. This article focuses on the i.i.d. N(0, σ2) distribution for εt, as even in this
simplest case, the above change-point detection problem still poses major challenges for the
state of the art, as this article illustrates.

Although performance measures for the above estimation task, naturally, vary across the
literature, it can be anticipated that many users will have a preference for methods which

1. accurately estimate the number N and locations ηi of any change-points present in
ft, for both

(a) signals with few/infrequent change-points, and

(b) signals with many/frequent change-points;

2. are fast to execute and scale well to long signals.

Depending on the setting, other desirable features may include e.g. the existence of software,
ease of implementation and transferability to other, more complex stochastic models. Even
though much methodological and algorithmic progress has been made on the above change-
point detection problem in recent years, we show in this paper that very few (if any) state-
of-the-art techniques simultaneously possess the above desired features 1(a), 1(b) and 2. In
particular, many techniques perform surprisingly poorly for signals with frequent change-
points. We first briefly describe the history of the multiple change-point detection problem
and the state of the art. For reasons of space, our literature review mainly focuses on the
parametric case, i.e. models in which the distribution of Xt can be modelled parametrically,
with special emphasis on the i.i.d. Gaussian model for εt.

A major class of approaches to a posteriori multiple change-point detection is one in which
change-points are found by minimising a criterion function consisting of a likelihood-type
(or least-squares) term measuring the fit of the estimate to the data plus a penalty term to
prevent overfitting. In this category, Yao and Au (1989) consider least-squares estimation
of ft for a fixed N and i.i.d. noise. Braun et al. (2000) extend this work to noise for
which the variance is a function of the mean. In the Gaussian case, the SIC (BIC) is
used to estimate an unknown but bounded N in Yao (1988), and a more general penalty
but also linear in the number of change-points appears in Lee (1995). For an unknown
but bounded N , Lavielle and Moulines (2000) consider penalised least-squares estimation,
with a penalty linear in the number of change-points, for dependent εt’s; see also Lavielle
(1999) and Lavielle (2005), an article we return to later. For a fixed N , Pan and Chen
(2006) propose a likelihood criterion with a penalty depending not only on the number, but
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also on the locations of change-points, favouring more uniformly-spread estimated change-
points; related ideas appear in Zhang and Siegmund (2007). For an unknown N , Lebarbier
(2005) proposes least-squares estimation with a penalty originating from the model selection
approach of Birgé and Massart (2001); we revisit this approach below. Boysen et al. (2009)
use the least-squares criterion with a linear penalty on the number of change-points. More
general forms of Schwarz-like penalties are studied, for example, in Wu (2008), Ciuperca
(2011) and Ciuperca (2014). The SMUCE estimator of Frick et al. (2014) can also be cast
in the penalised cost function framework (while SMUCE is shown to control the FWER,
the related method of Li and Munk (2016) controls the FDR). An empirical Bayes approach
to change-point estimation in a marginal likelihood framework appears in Du et al. (2016).
The PELT algorithm by Killick et al. (2012) and the pruned dynamic programming by
Rigaill (2015) accelerate computation of some penalised change-point estimators to linear
time in best-case scenarios (while retaining quadratic speed in worst-case ones), and offer
fast implementations. Related ideas appear also in Maidstone et al. (2017).

Other attempts to reduce the computational complexity of the problem include Davis et al.
(2006), who (in a time series setting) use a genetic algorithm to minimise a Minimum De-
scription Length criterion, and Harchaoui and Lévy-Leduc (2010) who consider the least-
squares criterion with a total variation penalty, which enables them to use the LARS al-
gorithm of Efron et al. (2004) to compute the solution in O(NT log(T )) time. However,
the total variation penalty is not an optimal one for change-point detection (in the sense of
balancing out type-I and type-II errors, as described in Brodsky and Darkhovsky (1993) and
Cho and Fryzlewicz (2011)). The total variation penalty is also considered in the context of
peak/trough detection by Davies and Kovac (2001), who propose the ‘taut string’ approach
for fast computation. In the context of multiple change-point detection, it is considered
by Rinaldo (2009) (with a subsequent correction published on the author’s web page) and
Rojas and Wahlberg (2014) as part of the fused lasso penalty, proposed by Tibshirani et al.
(2005) and equivalent to taut string in model (1). Lin et al. (2017) propose a generic post-
processing procedure for any L2-consistent, piecewise-constant estimator of ft, including
in particular the total-variation-based one, which yields consistency for the estimators of
ηi under certain assumptions on the distances between the change-points and the jump
sizes. Similar results for general “trend filtering” (Tibshirani, 2014) estimators appear in
Guntuboyina et al. (2020).

Our experience is that many penalty-based methods in which the penalty has been pre-set
by the user (rather than having been chosen adaptively from the data) can struggle to offer
uniformly good performance across both signals with infrequent change-points, and signals
with frequent/numerous ones; in particular, we illustrate in Section 2.1 that the popular
BIC (Yao, 1988) and mBIC (Zhang and Siegmund, 2007) penalties can perform poorly
for signals with frequent change-points. An interesting approach to data-driven penalty
selection is proposed in Birgé and Massart (2001) and Birgé and Massart (2007), who define
the so-called minimal penalty; two approaches to estimating this quantity, referred to as
‘dimension jump’ and ‘data-driven slope estimation’ are described in Baudry et al. (2012).
Both offer impressive performance for short signals with a limited number of jumps, but
their performance degrades for signals with frequent jumps (more so for the dimension jump
approach). There is also computational price to pay for selecting the penalty in a data-driven
way: the ‘data-driven slope estimation’ approach is particularly slow for long signals. We
illustrate these points in Section 4.2. Lavielle (2005), motivated by the problem of selecting
a suitable penalty constant from the data, proposes a heuristic algorithm for estimating the
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number of change-points, which examines the second differential of the empirical loss of the
piecewise-constant model fit as a function of the number of change-points. The approach
requires the provision of the maximum number of change-points and a threshold parameter
whose value appears critical to the success of the procedure; the theoretical properties of
the method are not investigated. We review these and some related approaches to adaptive
penalty choice in Section 3.3 in more detail.

Another class of approaches to the multiple change-point detection problem is one in which
change-points are estimated one by one, in the order in which they appear in the data.
Huskova and Slaby (2001) and Eichinger and Kirch (2018) propose the “moving sum”
(MOSUM) technique, which requires the choice of an extra bandwidth parameter, but the
latter requirement is circumvented in the mosum R package (Meier et al., 2018), which pro-
duces estimates combined over a range of automatically chosen bandwidths. The pseudo-
sequential procedure of Venkatraman (1992), as well as the method of Ross (2015) are
based on an adaptation of online detection algorithms to a posteriori situations and work
by bounding the Type I error rate of falsely detecting change-points. The ‘Isolate-Detect’
method of Anastasiou and Fryzlewicz (2018a) is also pseudo-sequential in nature, avoids to
some extent the issue of bandwidth/span selection, and offers particularly fast implementa-
tion for signals with frequent change-points. However, from the performance point of view,
such signals tend to pose major difficulties for many methods in this category, an issue
magnified by the fact that many such techniques rely critically on the accurate estimation
of a threshold against which to judge the significance of each change-point candidate, but
the magnitude of this threshold can be difficult to estimate well in the presence of many
change-points. We demonstrate this phenomenon in Section 2.3.2.

Binary segmentation is one of the most popular approaches to multiple change-point de-
tection. Heuristically, it works by fitting the best model with a single change-point to data
Xt, and if the estimated change-point is deemed to be significant, the same procedure is
then repeated to the left and to the right of the estimate. Binary segmentation is fast,
conceptually simple and easy to implement, but tends not to work well for signals with
frequent change-points, the main reason being that for such signals there are no guarantees
that the single-change-point model fit at each stage of the procedure will behave well in the
presence of multiple change-points in the data segment considered. Possibly the first work
to propose binary segmentation in a stochastic process setting is Vostrikova (1981), who
shows consistency of binary segmentation for the number and locations of change-points for
a fixed N . Venkatraman (1992) offers a proof of the consistency of binary segmentation for
N and the change-point locations, even for N increasing with T , albeit with sub-optimal
assumptions and rates for the locations. In a setting similar to Vostrikova (1981) (for a
fixed N and with εt following a linear process), binary segmentation is considered in Bai
(1997). Chen et al. (2011) provide a proof of consistency of binary segmentation for the
number of change-points in the case of a fixed N and εt i.i.d. Gaussian. Binary segmen-
tation is used for univariate time series segmentation in Fryzlewicz and Subba Rao (2014)
and Cho and Fryzlewicz (2012), and for multivariate, possibly high-dimensional time series
segmentation in Cho and Fryzlewicz (2015). Circular Binary Segmentation (Olshen et al.,
2004; Venkatraman and Olshen, 2007), Wild Binary Segmentation (Fryzlewicz, 2014) and
the Narrowest-Over-Threshold method (Baranowski et al., 2019) are designed to improve
the performance of binary segmentation. We return to Wild Binary Segmentation later in
this section.
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A number of techniques do not directly fall into any of the above categories. Wang (1995)
uses the fast discrete wavelet transform to detect change-points. Muggeo and Adelfio (2011)
take the cumulative sum of Xt and then apply the methodology described in Muggeo (2003)
in the resulting piecewise-linear framework. An agglomerative, bottom-up, “tail-greedy”
method is proposed in Fryzlewicz (2018). Matteson and James (2014) present a heuristic
agglomerative algorithm for multiple change-point detection as a computationally attractive
alternative to their divisive one. An early review of some multiple change-point detection
methods (in the context of DNA segmentation, but applicable more widely) appears in
Braun and Mueller (1998).

Wild Binary Segmentation (WBS, Fryzlewicz, 2014) is one of the state-of-the-art procedures
for multiple change-point detection in model (1), for signals with a small or moderate num-
ber of change-points. Truong et al. (2020) give WBS “three stars” (their highest grade) for
scalability to long signals, and Wang et al. (2018) show certain assumption- and error-rate-
optimality of WBS. WBS is designed to deal with the shortcomings of binary segmentations
(described above) in the following manner. At the start of the procedure, M subsamples
[Xs, . . . , Xe] of the data, living on intervals [s, e], are drawn, with the start- and end-points
s and e selected randomly, independently, uniformly and with replacement. The single-
change-point model fit is then performed on each subsample, and the first change-point
candidate is selected as the one corresponding to the best fit over the M subsamples. The
hope is that if M is sufficiently large, then this best fit will come from a subsample con-
taining at most one change-point and will therefore lead to the accurate estimation of the
given change-point. If the first detected change-point is considered significant, the same
procedure is repeated to the left and to the right of it, re-using (for speed) the previously
drawn subsamples.

Notwithstanding this improvement over plain binary segmentation, we show in Section 2.1
that the performance of WBS deteriorates dramatically for signals with frequent change-
points (as does that of many other state-of-the-art methods). The roots of its poor perfor-
mance for such signals are multiple, and can be summarised as follows.

1. The recommended default number M of subsamples drawn by the WBS (the R pack-
ages breakfast (Fryzlewicz, 2017) and wbs (Baranowski and Fryzlewicz, 2015) rec-
ommend M not exceeding 20000) can be insufficient to ensure adequate performance
of WBS for signals with frequent change-points. Indeed, good performance can only
be hoped for if M is large enough for the drawn subsamples to include (with a high
probability) ones with start- and end-points immediately to the left and to the right
of each change-point; this means that the required M can easily be very large for
signals with frequent change-points. Increasing the default M to ensure this is not a
viable solution as this would increase the computation time beyond what is accept-
able (and is not needed for signals with no or few change-points). In the remainder of
this article, we refer to this issue as the lack of computational adaptivity of the WBS,
in the sense that the procedure does not decide automatically the number M or the
locations of the subsamples drawn.

2. A related point is that for WBS to be able to produce an entire solution path to
problem (1) (i.e. estimated models with 0, 1, . . . , T − 1 change-points), we would
have to draw all possible subsamples of the data. This would result in a procedure
of a cubic computational complexity in T , which is computationally inadmissible.
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Any value of M less than this upper limit would not guarantee the computability
of the entire solution path. If a solution path algorithm in multiple change-point
detection problems does not produce an entire solution path, we refer to this algorithm
as incomplete. The use of incomplete solution path algorithms is particularly risky
in frequent change-point scenarios, as it may lead to obtaining a partial solution
path that is shorter than the true number of change-points, in which case any model
selection criterion, however good, will not be able to recover all the change-points.
We illustrate this important phenomenon in Section 2.3.1.

3. Fryzlewicz (2014) proposes two model selection criteria for the WBS: one based on
thresholding, and the other based on the use of the sSIC (a penalty close to the
standard BIC/SIC). Both approaches fail in frequent change-point scenarios. Thresh-
olding does so because its success critically depends on the user’s ability to accurately
estimate the variance of the noise εt, but this task can be difficult in frequent change-
point settings, which we show in Section 2.3.2. BIC fails because it places too heavy
a penalty on frequent-change-point solutions to the estimation problem 1. The fail-
ure of BIC in frequent change-point scenarios occurs for other change-point search
algorithms too (see Section 2.1), not just WBS.

The objective of this paper is to introduce the “Wild Binary Segmentation 2” (WBS2)
solution path algorithm for multiple change-point problems, and the “Steepest Drop to Low
Levels” (SDLL) model selection for WBS2. The resulting multiple change-point detection
method, labelled WBS2.SDLL, addresses the above shortcomings of WBS in two separate
ways.

Firstly, WBS2 produces an entire solution path, i.e. sequences of solutions to the change-
point detection problem with 0, 1, . . . , T − 1 change-points. Among them, WBS2 guaran-
tees (with probability approaching one with T ) that the solution with the true number
N of change-points is such that the estimated change-point locations η̃1, . . . , η̃N are near-
optimally close to the true change-points η1, . . . , ηN . Because it produces the entire solution
path, the WBS2 is (unlike WBS), by defintion, a complete procedure, and its completeness
is achieved in a computationally efficient way as follows. In the first pass through the data,
WBS2 draws only a small number M̃ of data subsamples, and marks the first change-point
candidate as the arg-max of the resulting M̃ absolute CUSUMs. It then uses this change-
point candidate to split its domain of operation into two, and again recursively draws M̃
subsamples to the left and to the right of this change-point candidate, and so on. There-
fore, WBS2 adaptively decides where to recursively draw the next subsamples, based on
the change-point candidates detected so far (to re-express this is the language of machine
learning, WBS2 learns the locations of the subsamples to draw automatically and “on the
fly”, i.e. as it proceeds through the data and discovers the signal). This is in contrast to
the standard WBS, which (non-adaptively) pre-draws all its M subsamples at the start of
the procedure. We note that in practice, M̃ is of orders of magnitude smaller than M ; in
the numerical sections of this paper we will be using M̃ = 100. WBS2 draws subsamples on
every current subdomain of the data as long as its length is ≥ 2, which ensures complete-
ness. By contrast, WBS (non-adaptively) pre-draws all its M subsamples at the start of the
procedure, which leads to its incompleteness except if all possible subsamples are drawn,
which is computationally infeasible for even moderately long signals.

Secondly, the proposed SDLL procedure for estimating N from the WBS2 solution path
does not use a penalty, and only uses thresholding as a certain secondary check, which
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is in contrast to the use of thresholding as a primary model selection tool in WBS. This
means that the magnitude of the threshold in WBS2.SDLL does not need to be estimated
to a high degree of accuracy (which is difficult to do in frequent change-point scenarios).
SDLL works by monitoring the ratios of the the pairs of consecutive maximum absolute
CUSUM statistics returned by the WBS2 solution path, arranged in decreasing order. The
procedure then selects the largest ratio for which the denominator falls under a pre-specified
threshold. This is motivated by the fact that those absolute maximised CUSUMs that carry
information about the N change-points have the same order of magnitude between them,
which is larger than the order of magnitude of those CUSUMs that correspond to the no-
change-points sections of the data. The presence of this “drop” in the magnitude of the
absolute maximised CUSUMs gives the SDLL criterion its name.

Our numerical experiments suggest that unlike the standard WBS, the resulting WBS2.SDLL
procedure offers good detection accuracy and fast execution times for signals with frequent
change-points. We demonstrate that in doing so, WBS2.SDLL significantly outperforms
the state of the art for this signal class. Unlike many of its competitors, WBS2.SDLL does
not require the choice of a penalty or the specification of the maximum number of change-
points, and is easy to calibrate to return zero estimated change-points for constant signals
with a required probability. Both the WBS2 and the SDLL components are conceptually
simple and easy to code.

The paper is organised as follows. In Section 2, we illustrate the poor performance of
the state of the art for signals with frequent change-points, and we investigate the rea-
sons for WBS’s poor performance in frequent change-point scenarios. Section 3 motivates
and proposes WBS2 and SDLL and investigates their theoretical properties, as well as
offering a deeper comparison of WBS2.SDLL to the existing literature. Our practical rec-
ommendations and a comparative simulation study are in Section 4. Section 5 describes the
application of WBS2.SDLL to a London house price dataset. The proofs of our theoretical
results are in the Appendix.

2 Motivation

2.1 Frequent change-points: performance of the state of the art

To motivate the need for our new methodology, we start by illustrating the poor per-
formance of WBS and other state-of-the-art multiple change-point detection methods for
signals with frequent change-points, using the example of the extreme.teeth signal defined
below. We use this signal as a running example throughout the paper to motivate several
of our developments, which are then however shown to hold for a wide class of signals
both in theory and in practice. Throughout the paper, we work with methods available
from the R CRAN repository, and for each method tested, we use the default parameter
settings unless stated otherwise. For techniques that require the specification of the max-
imum number of change-points, we set this to the (rounded) length of the input signal
divided by three; in all our examples, the true number of change-points is (well) within
the interior of this range. Our R code enabling replication of the results from this paper
is available from https://github.com/pfryz/wild-binary-segmentation-2.0. We now
list the techniques tested in addition to our new WBS2.SDLL methodology.
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1. PELT+BIC and PELT+mBIC: the PELT technique from the R package changepoint
(Killick et al., 2016) with the BIC and mBIC penalties, respectively. The methodology
is described in Killick et al. (2012).

2. MOSUM: the multiscale MOSUM technique with localised pruning from the R package
mosum (Meier et al., 2018). (We do not give results for the multiscale MOSUM
technique with bottom-up bandwidth-based merging from the same package as it
frequently returned warnings in the examples we tested.)

3. ID: the ‘Isolate-Detect’ technique from the R package IDetect (Anastasiou and Fry-
zlewicz, 2018b), described in Anastasiou and Fryzlewicz (2018a).

4. FDRSeg: the multiscale FDR-based technique from the R package FDRSeg (Li and
Sieling, 2017), proposed in Li and Munk (2016).

5. S3IB: the technique from the R package Segmentor3IsBack (Cleynen et al., 2016).
It implements a fast algorithm for minimising the least-squares cost function for
change-point detection, as described in Rigaill (2015). The best model is selected
via the “oracle” criterion of Lebarbier (2005), which uses the so-called slope heuris-
tics.

6. SMUCE: the multiscale FWER-based technique from the R package stepR (Pein
et al., 2018), proposed in Frick et al. (2014).

7. CUMSEG: the linearisation-based technique from the R package cumSeg (Muggeo,
2012), described in Muggeo and Adelfio (2011).

8. FPOP: the ‘functional pruning and optimal partitioning’ technique from the R package
fpop (Rigaill and Hocking, 2016) with the BIC penalty. The methodology is described
in Maidstone et al. (2017).

9. DDSE and DJUMP: the “data-driven slope estimation” and “dimension jump” tech-
niques from the R package capushe (Arlot et al., 2016), with computation based also
on the R package jointseg (Pierre-Jean et al., 2017). The methodology is described
in Baudry et al. (2012).

10. TGUH: the tail-greedy, bottom-up agglomerative technique from the R package break-
fast (Fryzlewicz, 2017). The methodology is described in Fryzlewicz (2018).

11. WBS-C1.0, WBS-C1.3 and WBS-BIC: the Wild Binary Segmentation methods with
the model selection determined via thresholding with constants C = 1.0 and C = 1.3
and the BIC (respectively), as specified in Fryzlewicz (2014) and implemented in the
R package breakfast (Fryzlewicz, 2017). See Section 2.2 for their definitions.

We do not include the (non-parametric) methodology implemented in the R package ecp
(James and Matteson, 2014) as this procedure does not appear to be able to return zero
estimated change-points. We also do not provide results for the R package strucchange
(Zeileis et al., 2002) because of the slow speed of the methodology implemented therein.

Our example in this section is the signal ft, t = 1, . . . , T = 1000, referred to as extreme.teeth
and defined as follows: ft = 0 if 1 ≤ (t mod 10) ≤ 5; ft = 1 if (t mod 10) ∈ {0, 6, 7, 8, 9}.
We simulate 100 independent copies of Xt in model (1) with ft being the extreme.teeth
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signal and εt ∼ i.i.d. N(0, 0.32). Note that N , the true number of change-points in ft,
equals 199. Figure 1 shows the first 100 observations of the noiseless and noisy ft.
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Figure 1: The first 100 observations of the extreme.teeth signal (which continues in the
same manner for t = 1, . . . , 1000); left: with no noise; right: with additive i.i.d. Gaussian
noise with mean zero and σ = 0.3.

Figure 2 provides evidence that most of the techniques listed above fail somewhat dramati-
cally for this model, with all but three being able to estimate practically none or only a small
proportion of the change-points. The three best performers are DDSE, and two versions
of our method, labelled WBS2.SDLL(0.9) and WBS2.SDLL(0.95) (we provide the details
later). The DDSE, however, is over three times slower than WBS2.SDLL and estimates zero
change-points for two out of the 100 sample paths, which results in ÊDDSE(N̂ −N)2 ≈ 800
compared to ÊWBS2.SDLL(N̂ − N)2 ≈ 20. We return to DDSE and the other techniques
in the comparative simulation study in Section 4.2. WBS-C1.0, WBS-C1.3, WBS-BIC are
among the failing techniques and we now examine the reasons for their failure.

2.2 Wild Binary Segmentation

We first review WBS as proposed in Fryzlewicz (2014). Throughout the paper, our main
“locator” statistic for indicating the locations of change-point candidates is the CUSUM
statistic, defined, for the data portion (Xs, . . . , Xe), as

X̃b
s,e =

√
e− b

n(b− s+ 1)

b∑
t=s

Xt −

√
b− s+ 1

n(e− b)

e∑
t=b+1

Xt, (2)

where s ≤ b < e, with n = e − s + 1. It is used in different ways in WBS and WBS2. In
both these algorithms, we use arg maxb |X̃b

s,e| as the most likely location of a change-point in
(fs, . . . fe). This is the same as the location indicated by fitting the best possible piecewise-
constant function with one change-point to (Xs, . . . , Xe) via least squares. Therefore, the
use of the CUSUM statistic is equivalent to the use of maximum likelihood in model (1) in
which εt ∼ i.i.d. N(0, σ2).
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Figure 2: From top to bottom and left to right: boxplots of N̂−N over 100 simulated sample
paths, for the noisy extreme.teeth signal, for the following techniques: PELT+mBIC,
PELT+BIC, MOSUM, ID, FDRSeg, S3IB, SMUCE, CUMSEG, FPOP, DDSE, DJUMP,
TGUH, WBS-C1.0, WBS-C1.3, WBS-BIC and two configurations of the WBS2 procedure
proposed in this paper – WBS2.SDLL(0.9) and WBS2.SDLL(0.95). See Section 2.1.

Denote by FMT a set of M random intervals [sm, em], m = 1, . . . ,M , whose start- and end-
points have been drawn (independently with replacement) uniformly from the set {1, . . . , T}.
How many intervals M to draw is decided by the user (Fryzlewicz (2014) and version 1.0.0
of the R package breakfast (Fryzlewicz, 2017) recommend M = 5000 and M = 20000,
respectively, for signal lengths T not exceeding a few thousand). An appropriate choice of M
is key: on the whole, the larger the value of M , the more accurate but slower the procedure.
Using pseudocode, the main function of the WBS algorithm, with model selection performed
via thresholding with threshold ζT , is defined in the following way.

function WBS(s, e, ζT )
if e− s < 1 then

STOP
else

10



Ms,e := set of those indices m for which [sm, em] ∈ FMT is such that [sm, em] ⊆ [s, e]
(m0, bm0) := arg maxm∈Ms,e,b∈{sm,...,em−1} |X̃b

sm,em |
if |X̃bm0

sm0 ,em0
| ≥ ζT then

add bm0 to the set of estimated change-points (with the additional side

information (m0, sm0 , em0 , |X̃
bm0
sm0 ,em0

|))
WBS(s, bm0 , ζT )
WBS(bm0 + 1, e, ζT )

else
STOP

end if
end if

end function

The WBS procedure (with model selection via thresholding with threshold ζT ) is launched
by the call WBS(1, T , ζT ). The WBS-C1.0 and WBS-C1.3 versions, singled out by Fry-
zlewicz (2014) and used in Section 2.1 above, use, respectively, ζT = σ̂{2 log T}1/2 and
ζT = 1.3 σ̂{2 log T}1/2, where σ̂ is the Median Absolute Deviation (MAD) estimator of
σ = Var1/2(εt), computed using {2−1/2(Xt+1 − Xt)}T−1

t=1 on input. An alternative imple-
mentation of WBS with thresholding first computes all possible change-point candidates
via the call WBS(1, T , 0) and then tests them, as is done in the definition of the routine
WBS(·, ·, ·), against the threshold ζT .

As an alternative to thresholding, Fryzlewicz (2014) also proposes model selection via the
“strengthened Schwarz Information Criterion” (sSIC). The sSIC penalty is close to the
standard SIC (BIC) penalty, and therefore we do not review it here in detail. If an estimated
change-point arises via the maximisation of |X̃b

sm,em | over b, we refer to this estimate as bm
in this paragraph. The WBS-BIC version of the procedure, used in Section 2.1, initially
computes all possible change-point candidates via the call WBS(1, T , 0). It then sorts
them in the order of decreasing magnitudes of |X̃bm

sm,em |. Let m1,m2, . . . ,mÑ be the indices
(i.e. values of the indexing variable m) corresponding to this sorted order. The WBS-BIC
returns as the estimated change-points the set bm1 , . . . , bmK that yields the minimum of the
BIC.

The key difference between the WBS and standard binary segmentation algorithms is that
each change-point candidate is found by WBS by examining all intervals [sm, em] con-
tained within [s, e] (rather than examining only [s, e] itself, as in binary segmentation), and
finding the overall arg-max of the CUSUM statistics fitted on each such interval [sm, em].
The reason why this improves on the standard binary segmentation is that if M is large
enough, each true change-point is guaranteed (with probability approaching one in T ) to
be contained within at least one of the intervals [sm, em] which contains only that single
change-point. This alone provides suitable guarantees for the size of the largest maximum
of the CUSUM statistics, and is enough to yield substantial theoretical and practical advan-
tages of WBS over binary segmentation, as similar guarantees are unavailable in the latter
method. The collection of intervals [sm, em] is only drawn once at the start of the WBS
procedure; therefore, previously-drawn intervals are reused as the algorithm progresses.

11



2.3 Issues affecting Wild Binary Segmentation

2.3.1 Incompleteness of WBS

With the definition of the routine WBS(·, ·, ·) as in Section 2.2, the call WBS(1, T , 0)
returns all possible change-point candidates in the sense that with ζT = 0, the change-point
candidates are not tested against a threshold before they enter the output. Any model
selection procedure can then be applied to this output to identify the final set of estimated
change-points.

The call WBS(1, T , 0) is defined recursively. The equivalent non-recursive procedure for
producing the same set of change-point candidates can be described as follows. For each
[sm, em] ∈ FMT , let bm = arg maxb∈{sm,...,em−1} |X̃b

sm,em |. Initially let C := {(m, sm, em, bm, |X̃bm
sm,em |) :

m = 1, . . . ,M} and P := ∅. While C 6= ∅, repeat the following pair of operations.

1. (Identification of next change-point candidate)

m0 := argmax
m : (m,sm,em,bm,|X̃bm

sm,em |)∈C
|X̃bm

sm,em |,

P := P ∪ (m0, sm0 , em0 , bm0 , |X̃
bm0
sm0 ,em0

|).

2. (Removal of all intervals containing this change-point candidate)

C := C \ {(m, sm, em, bm, |X̃bm
sm,em |) : sm ≤ bm0 < em}.

At the end of this process, the set P contains the same set of change-point candidates as
the output of WBS(1, T , 0). To see the equivalence between these two observe that the
two recursive steps WBS(s, bm0 , ζT ) and WBS(bm0 +1, e, ζT ) in the definition of the WBS
routine are equivalent to: after the recording of each change-point candidate bm0 , remove
from consideration all those intervals that contain bm0 , and only operate on those intervals
that fall entirely within [s, bm0 ] and [bm0 + 1, e]. In the above non-recursive definition of P,
this removal is explictly performed in stage 2. The removal is essential for the procedure to
avoid repeated estimation of the same change-point multiple times.

Let Ñ = |P| (where | · | returns the cardinality of its argument when it is a set). P can

be viewed as an ordered set in the following sense. Let (mk)
Ñ
k=1 be the order in which

the 5-tuples (mk, smk
, emk

, bmk
, |X̃bmk

smk
,emk
|) enter P. The sequence (|X̃bmk

smk
,emk
|)Ñk=1 is non-

increasing, as its each next element is a maximum over the progressively shrinking set C.
In the remainder of this paper, we treat P as an ordered set with this particular ordering.
Therefore, the ordered set P can be viewed as a WBS “solution path”: the change-point
candidates contained in P are arranged in order of decreasing importance (i.e. decreasing

magnitude of |X̃bmk
smk

,emk
|), and therefore any reasonable WBS model selection procedure

would typically choose a certain number of the first components of P as the final set of
estimated change-points.

As a result of the repeated removal of intervals from the set C, the cardinality Ñ of the
solution path P is typically much smaller than the cardinality M of the initial set C. This
is illustrated in the following example.
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Example 2.1 Consider a sample path simulated from the model Xt = ft + εt, t =
1, . . . , T = 1000, where ft is the extreme.teeth signal defined in Section 2.1 and εt ∼
N(0, 0.32) and has been simulated in R on setting the random seed to 1. We simulate
M = 5000 (a value recommended in Fryzlewicz (2014)) intervals [sm, em]. On completion
of the computation of P as described in this section, we obtain Ñ = 119. As the length
Ñ of the solution path P is less than 199, the true number of change-points in ft, no
model selection procedure is able to recover all the change-points in this example: indeed,
even if we were to accept all change-point candidates in P, we would only estimate 119
change-points. Therefore, WBS as proposed in Fryzlewicz (2014) fails in this case. (End of
example.)

The above example illustrates that too small a value of M can prevent WBS from working
well for signals with frequent change-points, regardless even of the model selection procedure
used. Increasing the default value of M in the hope of obtaining a longer solution path
P is not a viable option as it can easily slow down the WBS procedure beyond what
is acceptable (in particular, drawing all possible sub-intervals of [1, . . . , T ] leads to WBS
having computational speed O(T 3)) and is unnecessary for signals with no or few change-
points, which require far fewer intervals. In other words, WBS does not adapt to the data
in terms of the number M or the locations [sm, em] of the intervals it draws. From the user
perspective, this lack of adaptivity creates two related major practical issues: (a) in the
absence of prior information about the number and frequency of change-points, it is unclear
whether any particular value of M is large enough in practice, and (b) setting M to be very
large to be “on the safe side” is not an option from the computational point of view.

We formalise the issue of the length of solution paths in the language of “completeness”,
which we now introduce.

Definition 2.1 Let A be a solution path algorithm in a multiple change-point detection
problem which produces a sequence of candidate models with 0, 1, . . . , Ñ estimated change-
points. We refer to A as complete if Ñ = T − 1, where T is the length of the input data,
and incomplete otherwise.

Note that Ñ = T − 1 means that every time point is a change-point candidate, so that the
candidate model with Ñ = T − 1 is maximal. The definition of completeness leads to the
following proposition for WBS. The proof is straightforward, so we omit it.

Proposition 2.1 The solution path P obtained via WBS as described in this section is
guaranteed to be complete in the sense of Definition 2.1 if and only if {[sm, em]}Mm=1 represent
all possible sub-intervals of [1, . . . , T ], in which case M = T (T − 1)/2. Furthermore, if
M = O(T 2), then the WBS solution path procedure is of computational order O(T 3).

We argue that completeness is a desirable feature of the solution path component of any
change-point detection procedure if it is to be applied in frequent change-point scenarios, as
the presence of completeness guarantees that we avoid situations (such as the one illustrated
in this section) in which the solution path is too short to enable estimation of all the change-
points. Completeness embodies the idea that no change-point candidate should be dismissed
as inadmissible at the “solution path” stage: this should only happen at the model selection
stage. For both scalability and good performance in frequent change-point scenarios, it is
important for a solution path procedure to be both fast and complete, and we have shown
in this section that WBS does not simultaneously possess these two features.

13



2.3.2 Shortcomings of thresholding and BIC as model selection for WBS

Fryzlewicz (2014) proposes two model selection criteria for WBS: one based on thresholding,
and the other based on the sSIC, an information criterion for all practical purposes equiv-
alent to the standard SIC (a.k.a. BIC). In this section, we argue that both can easily be
inadequate in frequent change-point scenarios (independently of the issue of completeness
described in Section 2.3.1).

The success of thresholding as a model selection criterion for WBS critically relies on the
user’s ability to accurately estimate σ = Var1/2(εt). The following example illustrates that
this task can be difficult to achieve in frequent change-point models.

Example 2.2 Consider 100 sample paths simulated from the model Xt = ft + εt, t =
1, . . . , T = 1000, where ft is the extreme.teeth signal defined in Section 2.1. and εt ∼
N(0, 0.32). For each simulated sample path, we evaluate the Median Absolute Deviation
(MAD) and Inter-Quartile Range (IQR) estimators (two commonly used robust estimators)
of σ = 0.3 calibrated for the Gaussian distribution, computed with {2−1/2(Xt+1 −Xt)}T−1

t=1

on input. Figure 3 shows that both estimators are heavily biased upwards on this example
and overestimate σ by around 25%. The degree of this overestimation prevents thresholding
from being an effective model selection tool in this model. (End of example.)

MAD IQR
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Figure 3: Boxplots of the empirical distribution of the MAD (left) and IQR (right) estima-
tors of σ in the extreme.teeth model described in Section 2.3.2, over 100 simulated sample
paths. The true value of σ is 0.3.

In addition, there is ample empirical evidence that the BIC is a poor model selector in
frequent change-point scenarios, also for search algorithms other than WBS. For instance,
we showed in Section 2.1 that the PELT method (Killick et al., 2012) equipped with the
BIC stopping rule failed on the extreme.teeth example. In brief, this is due to the fact
that the BIC term places too heavy a penalty on frequent-change-point solutions.
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It is tempting to ask at this point whether choosing a penalty adaptively from the data
(so that possibly different penalties are applied in infrequent and frequent change-point
scenarios) may provide a successful remedy to this issue. Based on our empirical experience,
the best such approach that we have come across is the “data-driven slope estimation”
technique implemented in the R package capushe (Arlot et al., 2016) and described in
Baudry et al. (2012). However, we show in Section 4.2 that this approach scales poorly to
long signals and is outperformed by WBS2.SDLL in the frequent change-point examples we
tested.

3 Wild Binary Segmentation 2 and Steepest Drop to Low
Levels

3.1 WBS2: data-adaptive computation of complete solution path

3.1.1 Computation of the WBS2 solution path

This section describes how the WBS2 solution path is computed. This is the first of the two
ingredients of the WBS2.SDLL procedure; the other is the application of the new “Steepest
Drop to Low Levels” model selection criterion, described in Section 3.2.

We start with a heuristic description, followed by a formal algorithmic definition. In the
first pass through the data, WBS2 draws a small number M̃ of data subsamples, with
start- and end-points chosen randomly, uniformly and independently with replacement from
the set {1, . . . , T}. WBS2 marks the first change-point candidate as the arg-max of the
resulting M̃ absolute CUSUMs. It then uses this change-point candidate to split its domain
of operation {1, . . . , T} into two, and again recursively draws M̃ subsamples to the left
and to the right of this change-point candidate, and so on. Eventually, on short sub-
domains, the number of all possible subsamples will be less than M̃ , in which case WBS2
will draw all possible subsamples of each such sub-domain. WBS2 stops and takes no
action on a given current sub-domain only if its length is 1. Having completed this step,
WBS2 then sorts all thus-obtained change-point candidates in the decreasing order of their
corresponding absolute CUSUMs. The resulting object is referred to as the WBS2 solution
path. Algorithmically, the main ingredient of the computation of the WBS2 solution path
is the routine WBS2.Sol.Path, defined recursively as follows.

function WBS2.Sol.Path(s, e, M̃)
if e− s < 1 then

STOP
end if
if M̃ ≥ 1

2(e− s+ 1)(e− s) then

M̃ := 1
2(e− s+ 1)(e− s)

Draw all intervals [sm, em] ⊆ [s, s+ 1, . . . , e], m = 1, . . . , M̃ , s.t. em − sm > 1.
else

Randomly draw intervals [sm, em] ⊆ [s, s+1, . . . , e], m = 1, . . . , M̃ , s.t. em−sm > 1
and sm, em drawn uniformly and independently with replacement.

end if
(m0, bm0) := arg maxm=1,...,M̃ , b∈{sm,...,em−1} |X̃

b
sm,em |
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Add (sm0 , em0 , bm0 , |X̃
bm0
sm0 ,em0

|) to the (unsorted) solution path P̃.

WBS2.Sol.Path(s, bm0 , M̃)
WBS2.Sol.Path(bm0 + 1, e, M̃)

end function

The WBS2 solution path P̃ is computed in two stages, defined below.

1. (Identification of change-point candidates)

Initialise P̃ := ∅.
Add elements to the (unsorted) WBS2 solution path P̃ by executing the command
WBS2.Sol.Path(1, T , M̃). We state in Section 3.1.2 that the length of the thus-
obtained sequence P̃ is T − 1.

2. (Sorting of the WBS2 solution path)

Rearrange the elements of P̃ so that the sequence of its 4th components, denoted by
(|X̃bk

sk,ek
|)T−1
k=1 , is non-increasing, breaking any ties at random. Denote the elements of

the resulting (sorted) sequence P̃ by (sk, ek, bk, |X̃bk
sk,ek
|)T−1
k=1 .

The philosophy of WBS2 is fundamentally different from WBS. In WBS, all M intervals
are pre-drawn before the launch of the procedure, and there needs to be a sufficient number
of them for all change-points to be detectable from this single draw. By contrast, in WBS2,
with each draw of M̃ intervals, we only hope to detect one of the remaining undetected
change-points (if there are any). For this reason, M̃ will typically be much smaller than M .
We comment in Section 3.1.2 on the theoretical orders of magnitude of M̃ ; for now suffice
it to say that we use M̃ = 100 in all numerical examples of this paper.

In comparison to WBS, the computation of the WBS2 solution path is data-adaptive. WBS2
does not use the data in drawing its M intervals; by contrast, in WBS2, the location of the
domain of each next batch of M̃ intervals is determined by the locations of the previously
detected change-point candidates. One consequence of this computational adaptivity of
WBS2 is that on average, the intervals drawn by WBS2 rapidly become shorter as the
procedure progresses, as the procedure operates on shorter and shorter sub-domains of
[1, . . . , T ]. This makes WBS2 fast; we comment on the theoretical computational complexity
of the WBS2 solution path in Section 3.1.2 and actual computation times are given in Section
4.2.

Finally, we note that the computation of the WBS2 solution path requires no other pa-
rameters besides M̃ , and that it is natural for it to be defined (and indeed implemented)
recursively.

3.1.2 Theoretical properties of the WBS2 solution path

We introduce the following technical assumption.

Assumption 3.1

(a) The sequence (εt)
T
t=1 is i.i.d. N(0, σ2).
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(b) With the additional notation η0 = 1, ηN+1 = T + 1, the minimum spacing between
change-point satisfies mini=1,...,N+1(ηi − ηi−1) ≥ δT , where δT = δ T with δ > 0.

(c) |ft| ≤ f̄ <∞ for t = 1, . . . , T .

(d) The magnitudes f ′i = |fηi − fηi−1| of the jumps satisfy mini=1,...,N f
′
i ≥ fT ≥ CT

κ for
some C > 0 and κ > −1/2.

Assumptions 3.1(a) or (b) are not strictly necessary for the procedure to work, and both have
been made for technical simplicity and to simplify the exposition as much as possible, while
still enabling the demonstration of the full mechanics of the procedure; various extensions
are in principle possible. In frequent change-point scenarios, the reader is invited to think
of situations in which δ, the smallest possible spacing between neighbouring change-points
as a fraction of the sample size, is small. We note, also, that the minimum jump size
in Assumption 3.1(d) satisfies the condition spelled out in Assumption 3.3 of Fryzlewicz
(2014). Finally, we emphasise that it is permitted for the jump sizes f ′i to have different
orders of magnitude in T , as long as their minimum satisfies the lower bound in Assumption
3.1(d).

To facilitate the statement of the theorem below, we introduce the concept of ‘scale’ at
which the WBS2 procedure operates as follows. Initially, the procedure operates on the
domain [1, . . . , T ], and we refer to this stage as scale 1. It then subdivides this domain
into two and operates on the two sub-domains; this is scale 2. The scale parameter then
increases by one with each subdivision.

We have the following result.

Theorem 3.1 Let Xt follow model (1) and let Assumption 3.1 hold. Let N and η1, . . . , ηN
denote, respectively, the number and the locations of the change-points. Let P̃ be the solution
path of the WBS2 algorithm, defined in Section 3.1.1. The following statements are true.

(i) The length of P̃ is T − 1.

(ii) Let Γj be the length of the longest sub-domain on which the WBS2 solution path algo-
rithm operates at scale j = 1, 2, . . .. Let J = min{j : Γj = 1}− 1. The computational
complexity of the WBS2 solution path algorithm is O(M̃JT ).

(iii) Let {bk}T−1
k=1 be the 3rd components of the elements of P̃. Sort {bk}Nk=1 in increasing

order, and denote the thus-ordered sequence by (η̃i)
N
i=1. Define the event

AT = { max
i=1,...,N

|ηi − η̃i| ≤ C1(∆)(f
T

)−2 log T ∩ |X̃bk
sk,ek
| & f

T
T 1/2 for k = 1, . . . , N

∩ |X̃bk
sk,ek
| ≤ C2(∆) log1/2 T for k = N + 1, . . . , T − 1},

where C1(∆), C2(∆) are positive constants that only depend on the positive ∆ param-
eter below, and the & symbol means “of the order of or larger”. For T large enough,
we have

P (AT ) ≥ 1− αT −
1

2
N(N + 1)(2C1(∆)(f

T
)−2 log T + 1)2(1− δ2/9)M̃ , (3)

where
αT = 1− P (B∆,T )
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with

B∆,T =

{
∀ 1 ≤ l ≤ m ≤ T |m− l + 1|−1/2

∣∣∣∣∣
m∑
i=l

εi

∣∣∣∣∣ ≤ σ{2(1 + ∆) log T}1/2
}
.

We now comment on several aspects of Theorem 3.1. Part (i) means that the WBS2 solution
path procedure is complete in the sense of Definition 2.1. In part (ii), we investigate the
magnitudes of M̃ and J to gain a better idea of the computational complexity of the WBS2
solution path procedure. Beginning with M̃ , we now discuss the minimum number of draws
M̃ required to ensure that P (AT ) in part (iii) converges to 1 suitably fast. To match the
equivalent rate for WBS (see Theorem 3.2 in Fryzlewicz (2014)), we require

1

2
N(N + 1)(2C1(∆)(f

T
)−2 log T + 1)2(1− δ2/9)M̃ ≤ T−1,

which is equivalent to

M̃ ≥ log−1{(1− δ2/9)−1}(log T + log{N(N + 1)/2}+ 2 log(2C1(∆)(f
T

)−2 log T + 1)),

and therefore M̃ = O(log T ). The maximum magnitude of J depends on the location of the
splits bm0 within each each interval [s, e] on which the routine WBS2.Sol.Path(s, e, M̃)
is executed. In particular, we have the following result (the proof is straightforward, so we
omit it).

Proposition 3.1 If, in each execution of the routine WBS2.Sol.Path(s, e, M̃), the split
location bm0 is such that

γ ≤ bm0 − s+ 1

e− s+ 1
≤ 1− γ, (4)

for a certain fixed γ ∈ (0, 1), then J = O(log T ).

It is immediate that condition (4) is automatically satisfied if e− s ≤ 1/γ− 1, i.e. for short
intervals. From the proof of Theorem 3.1, it is also automatically satisfied (for γ small
enough, with probability tending to 1 with T ) for those intervals [s, e] which contain previ-
ously undetected change-points. Since the locations of the splits bm0 in those intervals [s, e]
that do not contain previously undetected change-points is immaterial for the performance
of the procedure, this in turn implies that an alternative WBS2 solution path procedure, in
which the existing selection of bm0 were replaced by constrained maximisation of the form

(m0, bm0) := arg max
m=1,...,M̃ , b∈{sm,...,em−1}

|X̃b
sm,em | s.t. condition (4)

would enjoy exactly the same properties as the original WBS2 solution path procedure, plus
would come with a guarantee that J = O(log T ). However, we refrain from discussing such
a modified procedure further as it would require the choice of γ, an additional parameter.

Proposition 3.1 and the above discussion regarding the magnitude of M̃ imply the following
corollary.

Corollary 3.1 Under the assumptions of Theorem 3.1 and Proposition 3.1, the computa-
tional complexity of the WBS2 solution path algorithm is O(T log2 T ).
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Regarding part (iii) of Theorem 3.1, it is the statement of Lemma 1 in Yao (1988) that
P (B∆,T ) → 1 for all ∆ > 0, at a rate that depends on the magnitude of ∆. The uniform
bound on the magnitudes of the errors |ηi− η̃i| is the same as in WBS and is ‘near-optimal’
in the sense described in Fryzlewicz (2014).

We emphasise that part (iii) does not yet constitute a complete consistency result for the
WBS2.SDLL procedure, as it does not specify a model selection process; it merely says that
the model with the true number N of estimated change-points is such that the locations of
all N change-points are estimated near-optimally. In Section 3.2, we will describe how to
estimate N consistently via SDLL and this will lead to a complete consistency result (for
the number and locations of estimated change-points) for the WBS2.SDLL method.

3.2 “Steepest Drop to Low Levels” model selection

3.2.1 Motivating example and methodology of SDLL model selection

This section introduces our new model selection criterion, labelled “Steepest Drop to Low
Levels”, which will be used to select a model along the WBS2 solution path P̃. Given P̃,
the model selection task is equivalent to indicating an estimate N̂ of N (the number of

change-points), as the estimated change-point locations will then be given by {bk}N̂k=1, if

N̂ > 0. This section will define our estimator N̂ . We start with a motivating example.

Example 3.1 As in Section 2.1 and Example 2.1, we consider the model Xt = ft + εt,
t = 1, . . . , 1000, where ft is the extreme.teeth signal. However, the set-up in the current
example is even more challenging in that we consider εt i.i.d. ∼ N(0, 0.42) as compared to
εt ∼ N(0, 0.32) in Section 2.1 and Example 2.1. For a particular realisation of this model,
we compute the WBS2 solution path P̃ with M̃ = 100 and plot the resulting sequence
{|X̃bk

sk,ek
|}T−1
k=1 (Figure 4, top plot). Recall that by the construction of P̃, this sequence is

non-increasing.

The true number of change-points in ft is N = 199. A visual inspection of the top plot in
Figure 4 reveals an increasing (negative) gradient in {|X̃bk

sk,ek
|}T−1
k=1 at around k = 199. This

appears to align well with the assertion of part (iii) of Theorem 3.1, according to which, on
a set of high probability, the elements of {|X̃bk

sk,ek
|}T−1
k=1 are of a higher order of magnitude

(& f
T
T 1/2) for k = 1, . . . , N than they are for k = N + 1, . . . , T − 1 (O(log1/2 T )). This

observation provides a basis for our procedure for estimating N : our N̂ will be an estimator
of the location of this change in orders of magnitude, or equivalently the location of this
large negative gradient.

In order to perform the estimation of this location, it is natural to work on the log scale: we
denote Yk = log |X̃bk

sk,ek
|. The reason is that taking the differences Zk = Yk − Yk+1 leads to

the cancellation of the log T terms for k = 1, . . . , N−1 and the cancellation of the log log T

terms for k = N + 1, . . . ,K (where K is the largest k for which |X̃bk+1
sk+1,ek+1 | ≥ C log1/2 T

for a certain constant C). Therefore, the terms Zk for k = 1, . . . , N − 1, N + 1, . . . ,K will
be bounded in T , whereas the single term ZN will tend to infinity with T at the speed of
log T . As a consequence, it is tempting to consider setting N̂ to the value of k for which
Zk is the largest. Our new model selection criterion does exactly that, but with a certain
finite-sample correction, which we motivate next.

The bottom plot of Figure 4 shows the sequence Zk for k = 1, . . . ,K = 333. In light of
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Figure 4: Top: the sequence {|X̃bk
sk,ek
|}T−1
k=1 of Example 3.1; bottom: the sequence {Zk}333

k=1

of Example 3.1.

the above discussion, it is unsurprising to see a prominent peak in Zk around k = N =
199 (in this particular example, the location of this local peak is k = 202). Yet, setting
N̂ = arg maxk=1,...,K Zk would have failed in this particular case, as the global maximum of

Zk is achieved for k = 3. However, one way of checking that N̂ = 3 leads to an infeasible
model in this example is to examine the size of Y4, the smaller term entering the difference
Z3 = Y3 − Y4. If k = 3 were to be the true model size, then by part (iii) of Theorem
3.1 we would expect |X̃b4

s4,e4 | = exp(Y4) = O(log1/2 T ). We use a threshold to decide

whether |X̃b4
s4,e4 | is indeed of this magnitude, and the form of this “universal” threshold is

1.2 σ̂T {2 log T}1/2 (where σ̂T is the MAD estimate of σ with {2−1/2(Xt+1 − Xt)}T−1
t=1 on

input); this formula will be motivated in Sections 3.2.2 and 4.1. In this particular example,
we have |X̃b4

s4,e4 | ≈ 2.25 > 2.0 ≈ 1.2 σ̂T {2 log T}1/2, and therefore k = 3 is rejected as
a feasible model. Our procedure then goes on to examine the next largest Zk, which in
this case is Z202; this leads to examination of |X̃b203

s203,e203 |, whose magnitude is well under

1.2 σ̂T {2 log T}1/2 ≈ 2.0. As a consequence, the model with 202 change-points is accepted
and we set N̂ = 202 (over-estimating the true number of change-points by 3). (End of
example.)
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We now comment heuristically on some aspects of Example 3.1 before introducing a formal
algorithmic description of our new “Steepest Drop to Low Levels” (SDLL) model selection
procedure.

The name “Steepest Drop to Low Levels” has its origins in the fact that our model selection
procedure does not merely look for the “steepest drop” (= largest negative gradient) in
log |X̃bk

sk,ek
| (this occurs at k = 3 in the above example) but it searches for the steepest drop

followed by “low levels” (= values of |X̃bk
sk,ek
| that fall under the threshold); this occurs at

k = 202 in the example.

We emphasise that the use of thresholding in the SDLL model selection is new and dif-
ferent from the classical use of thresholding in change-point detection problems (as in e.g.
Fryzlewicz (2014)). In classical thresholding, a threshold is used as the main model se-
lection device in the sense that its value is used to separate significant from insignificant
change-point candidates. This happens in a “continuous” manner, in the sense that even
small changes in the threshold value can lead to the exclusion or inclusion of additional
candidate change-points and therefore to changes in the selected model. A satisfactory
threshold should in theory be linear with σ, so due to this sensitivity of the selected model
to the threshold value, the user should have the ability to estimate σ accurately, which is
not always possible in frequent change-point settings, as illustrated earlier.

By contrast, SDLL uses thresholding only as a secondary model selection device, the main
criterion being the size of the negative gradient in log |X̃bk

sk,ek
|. In SDLL, thresholding is

used “discretely” in the sense that the consecutive models being tested via thresholding
are often very remote from each other in terms of their numbers of change-points; in the
example above, we first tested a model with 3 change-points followed by a model with 202
change-points. In other words, we used thresholding not so much to “choose” a model, but
to test the feasibility of models pre-ordered according to their respective negative gradients
in log |X̃bk

sk,ek
| (rather than according to their numbers of change-points). The model with

3 change-points was rejected as easily as the model with 202 change-points was accepted.
This suggests that SDLL does not require the threshold to be selected as precisely as is the
case in classical thresholding. This is potentially a useful feature of SDLL as it facilitates
accurate model selection in the presence of frequent change-points, when the user is not
always able to estimate σ (and hence the threshold) well.

We are now in a position to introduce a complete algorithm describing our SDLL model
selection procedure. It is defined by the WBS2.SDLL routine below, which takes three
parameters on input: P̃ is a WBS2 solution path, whose computation is outlined in Section
3.1.1; ζ̃T is a threshold; and β ∈ (0, 1) is a constant. In the remainder of this paper, we use
ζ̃T = C̃σ̂T {2 log T}1/2, and this choice will be motivated in Section 3.2.2; the choice of the
constants C̃ and β will be described in Section 4.1.

function WBS2.SDLL(P̃, ζ̃T , β)
if |P̃| = 0 then

STOP
end if
if |X̃b1

s1,e1 | < ζ̃T then

N̂ := 0
else

K := max{k : |X̃bk+1
sk+1,ek+1 | ≥ β ζ̃T }
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if K = 0 then
N̂ := 1

else
Zk := log |X̃bk

sk,ek
| − log |X̃bk+1

sk+1,ek+1 |, k = 1, . . . ,K

if ∃ k = 1, . . . ,K s.t. |X̃bk+1
sk+1,ek+1 | ≤ ζ̃T then

N̂ := arg{maxk=1,...,K Zk s.t. |X̃bk+1
sk+1,ek+1 | ≤ ζ̃T }

else
N̂ := K + 1

end if
end if
(η̃1, . . . , η̃N̂ ) := Sort((b1, . . . , bN̂ ), Increasing)

end if
end function

If the magnitudes of |X̃bk
sk,ek
| all fall under ζ̃T , the procedure returns zero change-points.

Otherwise, the procedure extracts all those indices k = 1, . . . ,K for which |X̃bk+1
sk+1,ek+1 | ≥

βζ̃T ; this is to ensure that we only work with those k for which |X̃bk+1
sk+1,ek+1 | ≥ C log1/2 T as

motivated in Example 3.1. Within this range of k, it then looks for the maximum negative

gradient in log |X̃bk
sk,ek
|, subject to the constraint that |X̃bk+1

sk+1,ek+1 | ≤ ζ̃T , and assigns N̂ to

be that location; if the constraint |X̃bk+1
sk+1,ek+1 | ≤ ζ̃T is never satisfied, this necessarily means

that the end of the range has been reached, in which case N̂ = K + 1.

We now comment on a few important aspects of the SDLL model selection. As described
earlier in the discussion of Example 3.1, SDLL is not a classical thresholding model selection
procedure, but also does not used a penalty-based approach. Its execution, not including
the call to the Sort routine, is of computational order O(T ). Under the assumptions
of Theorem 3.2, the execution of the Sort routine is of computational order O(1) with
high probability. Unlike some penalty-based approached, SDLL does not need to know the
maximum number of change-points present in the data, in either theory or practice.

3.2.2 Theoretical properties of SDLL model selection

In this section, we formulate a complete consistency theorem for the WBS2 method equipped
with the SDLL model selection criterion, as regards the estimation of both the number N
and the locations η1, . . . , ηN of the change-points. We have the following result.

Theorem 3.2 Let Xt follow model (1) and let Assumption 3.1 hold. Let N and η1, . . . , ηN
denote, respectively, the number and the locations of the change-points. Let P̃ be the solution
path of the WBS2 algorithm, defined in Section 3.1.1. Let N̂ and η̃1, . . . , η̃N̂ be the estimates
of the number and the locations (respectively) of the change-points, returned by the SDLL
model selection criterion as defined by the WBS2.SDLL routine with P̃, ζ̃T and β on input,
with β ∈ (0, 1) and ζ̃T = C̃σ̂T {2 log T}1/2 for a large enough constant C̃. Define the events

Θθ,T = {(1 + θ)−1 < σ̂T /σ < 1 + θ},
ET = {N̂ = N ∩ max

i=1,...,N̂
|ηi − η̃i| ≤ C1(∆)(f

T
)−2 log T},

where θ is a positive constant and C1(∆) is defined in the statement of Theorem 3.1. For
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T large enough, we have

P (ET ) ≥ 1− αT −
1

2
N(N + 1)(2C1(∆)(f

T
)−2 log T + 1)2(1− δ2/9)M̃ − P (Θc

θ,T ), (5)

where αT is defined in the statement of Theorem 3.1.

The remarks below complement and extend the discussion of Theorem 3.1 in Section 3.1.2.
In that discussion, we already clarified that αT → 1 as T → ∞ and that 1

2N(N +

1)(2C1(∆)(f
T

)−2 log T + 1)2(1 − δ2/9)M̃ = O(T−1) if M̃ ≥ C log T for a large enough
constant C. We note that for P (Θc

θ,T ) → 0, we do not even require that σ̂T should be a
consistent estimator of σ, but only that the ratio σ̂T /σ be bounded with probability tending
to 1 with T . This is emphasised in order to reflect the empirical fact that σ may be difficult
to estimate well in frequent change-point scenarios.

Proving such a boundedness condition is typically not problematic for a variety of commonly
used estimators of σ. As an example, we now sketch how boundedness from above can be
shown for a simplified Median Absolute Deviation estimator, defined by

σ̂MAD
T = C med{|Xt+1 −Xt|}T−1

t=1 ,

where C is a certain universal normalising constant and med is the median operator. Let
avg denote the sample mean operator, and let at = C|Xt+1 − Xt|. Similarly to Mallows
(1991), recalling that the median measures the centre of the data in the l1 sense, we have

|avg{at} −med{at}| = |avg{at −med{at}}| ≤ avg|at −med{at}|
≤ avg|at| = avg{at},

which gives med{at} ≤ 2 avg{at}. Therefore the boundedness from above of σ̂MAD
T will fol-

low from that of avg{at}. For the latter, note that its expectation, E(avg{at}), is necessarily
bounded, regardless of the number of change-points in the signal, due to Assumption 3.1(c).
Therefore, it suffices to establish a concentration bound on avg{at} around its expectation,
but this is a standard result, available, e.g., in Theorem 1.4 in Bosq (1998), which applies to
zero-mean weakly-dependent processes satisfying Cramer’s conditions, such as at − E(at).
This completes the sketch of this argument.

Finally, note that the rate of O(log1/2 T ) for the threshold ζ̃T is standard and also appears,
for example, in the standard Wild Binary Segmentation algorithm of Fryzlewicz (2014) and
in the Tail-Greedy bottom-up method of Fryzlewicz (2018).

3.3 WBS2.SDLL vs other adaptive change-point model selection methods

In this section, we compare and contrast WBS2.SDLL, in a more thorough way than was
done in Section 1, to some existing methods in the literature which select the change-point
model (i.e. estimate N) by choosing the value of an appropriate tuning parameter in a
data-driven way; for brevity, we refer to such techniques as adaptive.

In this sense, WBS2.SDLL can also be interpreted as an adaptive technique: given a sorted
WBS2 solution path P̃, constructed as described in Section 3.1.1, the SDLL model selec-
tion procedure regards as significant the N̂ change-points that correspond to the first N̂
CUSUMs |X̃bk

sk,ek
|, for k = 1, . . . , N̂ , which are also the largest ones. Therefore SDLL can
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be interpreted as an “adaptive thresholding” technique, which retains a change-point can-
didate bk if and only if |X̃bk

sk,ek
| ≥ λSDLL(X) and discards it otherwise, where λSDLL(X)

is a certain data-driven threshold, chosen by the SDLL procedure from the shape of the
solution path P̃ as described in the definition of SDLL in Section 3.2.1.

Birgé and Massart (2001) and Birgé and Massart (2007) propose the adaptive choice of
what they refer to as the minimal penalty, in the context of penalised Gaussian model
selection in which the cost function is the L2 risk, via an algorithm referred to in later
works as “dimension jump”. The main idea of dimension jump is as follows. Consider a
family of penalties of the form CDm/T , where Dm is the dimensionality of the space of
candidate models (in our context, this would be the postulated number of change-points).
Heuristically, too small a choice of the constant C when minimising the corresponding
penalised L2 risk criterion will lead to models with a lot of change-points, whereas a large
(or indeed too large) a choice will reduce this considerably. Therefore the dimension jump
approach looks at the graph of the function C/σ2 7→ Dm̂ and chooses the constant C that
corresponds to the largest jump in this function, hoping that this will locate the “sweet
spot” between penalties that are too small and those that are too large.

In the approach termed “slope estimation” (Lebarbier, 2005) the observation is that the
optimal penalty for Gaussian model selection under the L2 risk, in the sense of Birgé and
Massart (2007), depends on the unknown parameter σ2. For any postulated number of
change-points N ′, let f̂N

′
t be the best fit to the data in the L2 sense that contains exactly N ′

change-points. For N ′ large enough, the function N ′ 7→
∑T

t=1(Xt − f̂N
′

t )2 is approximately
linear with slope −σ2/T , which can in principle be used to estimate σ2, which can then be
plugged into the optimal penalty.

Specific algorithmic ideas regarding the implementation of dimension jump and slope esti-
mation in the context of the multiple change-point problem studied in this paper appear,
amongst others, in Lebarbier (2005) and Baudry et al. (2012). Our comparative simula-
tion study in Section 4.2 includes both these approaches and describes the details of the R
packages used. Arlot (2019) is an excellent and comprehensive review article on minimal
penalties and the slope heuristics, which describes these two approaches and their variants
in detail, including an unpublished two-stage refinement by Rozenholc, branded “statistical
base jumping”.

We note that SDLL is fundamentally different from both dimension jump and slope esti-
mation. To start with, SDLL makes its model selection decision based on the shape of the
function k 7→ log{|X̃bk

sk,ek
|}, where |X̃bk

sk,ek
| are the WBS2 CUSUMs sorted in decreasing

order. As described above, dimension jumps considers the shape of an entirely different
function, which does not appear obviously related to that considered by SDLL. Slope esti-
mation considers the tail behaviour (which is very different from the steepest drop to low
levels as considered by SDLL) of the function N ′ 7→

∑T
t=1(Xt − f̂N

′
t )2, which for each N ′

measures the impact of the N ′ most important change-points in the data. Therefore if we
were to take the difference

∑T
t=1(Xt − f̂N

′
t )2 −

∑T
t=1(Xt − f̂N

′+1
t )2, this would provide a

measure of the importance of the N ′ + 1st change-point. Even this is different from the
measure of importance of each change-point used by SDLL, which is the WBS2 CUSUM.
The attractive feature of considering WBS2 CUSUMs in the context of SDLL, rather than,
say, the differences

∑T
t=1(Xt − f̂N

′
t )2 −

∑T
t=1(Xt − f̂N

′+1
t )2, is that the WBS2 procedure

targets and returns the maximum available CUSUM at each stage. As a result, it is hoped
that WBS2 maximises the measure of each significant change-point, without unduly inflat-
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ing the CUSUMs corresponding to the insignificant change-points, as these are uniformly
bounded. This aggressive separation makes it easier for SDLL to identify the drop in the
sorted sequence of WBS2 CUSUMs. Indeed, in experiments not reported in this paper,
we tried using the SDLL criterion applied to measures of change-point significance closely
related to

∑T
t=1(Xt− f̂N

′
t )2−

∑T
t=1(Xt− f̂N

′+1
t )2 and the results were much less encouraging

than those for WBS2.SDLL. For the same reason, SDLL does not appear to work well when
coupled with the standard binary segmentation.

While dimension jump and slope estimation are approaches to choosing a suitable penalty
constant (which is then used for model choice), SDLL is a direct model selector. In this latter
category is also the proposal of Lavielle (2005), who (motivated by the problem of selecting
a suitable penalty constant from the data), proposes a heuristic algorithm for estimating
the number of change-points. The proposed estimator of N is the largest value of N ′ for
which the second derivative of the (normalised) empirical risk

∑T
t=1(Xt − f̂N

′
t )2 is greater

than a certain threshold. Other that the difference in how this approach and WBS2.SDLL
measure the importance of each change-point (see the discussion in the previous paragraph),
the two model selectors: SDLL and Lavielle (2005) use fundamentally different functionals
of their corresponding solution paths, with Lavielle (2005) (in contrast to SDLL) requiring
the provision of the maximum number of change-points and a threshold parameter whose
value appears critical to the success of the procedure; the theoretical properties of the
method in Lavielle (2005) are not investigated.

4 Practicalities and comparative simulation study

4.1 Practicalities

This section discusses our default choices and recommendations for the parameters of the
WBS2 solution path procedure with the SDLL model selection; as before, we refer to this
combination as WBS2.SDLL.

The number M̃ of interval draws. M̃ , the maximum number of random interval draws in
each recursive execution of the WBS2.Sol.Path routine defined in Section 3.1.1, is the
only parameter of the WBS2 solution path. In all numerical examples in this paper, we use
M̃ = 100. This value has not been optimised and it is likely that other values may lead to
even better performance.

The estimator σ̂T of σ. We use the MAD estimator for Gaussian data, with {2−1/2(Xt+1−
Xt)}T+1

t=1 on input. In our experience, this estimator generally behaves well in infrequent
and moderate number of change-point scenarios. Section 2.3.2 shows that it may not be a
very accurate estimator of σ in frequent change-point settings, but this is of little relevance
as Theorem 3.2 shows that we only require an estimator for which σ̂T /σ is bounded (which
even allows for inconsistent estimators).

The threshold constant C̃. Recall that the threshold ζ̃T , used in the SDLL model selection
procedure, is of the form C̃σ̂T {2 log T}1/2. We numerically calibrate the multiplicative
threshold constant C̃ over a range of sample sizes T , so that the WBS2.SDLL procedure
correctly estimates zero change-points for signals that have none, in either 90% or 95% of
the simulated sample paths, based on 1000 simulations. For the remaining sample sizes
within the range of T considered, we extrapolate C̃ linearly; for any sample sizes outside
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the range of T considered, we extrapolate C̃ as continuous and constant. For the 90% level,
the values of C̃ range from 1.42 for T = 10 and under, to 1.135 for T = 10000 and above.
For the 90% level, they range from 1.55 for T = 10 and under to 1.17 for T = 10000 and
above. We refer to the two versions of the procedure as, respectively, WBS2.SDLL(0.9)
and WBS2.SDLL(0.95). To obtain C̃ for any T , we refer the reader to our R code at
https://github.com/pfryz/wild-binary-segmentation-2.0.

Constant β. Recall from the definition of the WBS2.SDLL routine in Section 3.2 that SDLL
performs model selection over those model sizes for which the corresponding WBS2 absolute
CUSUM statistics are of magnitude βζ̃T or larger. We have tested β is the region 0.3–0.6
and have found that the SDLL model choice is relatively robust to the values of β within
this range. We use β = 0.3 in all examples of this paper and this is also the default value
in our code.

Reducing the randomness of the output of WBS2.SDLL. WBS2 is a random procedure, in
the sense that it relies on the randomly drawn intervals [sm, em]. As a result, the output of
the WBS2.SDLL procedure can vary across executions on the same dataset. This variation
can be particularly pronounced for datasets for which the signal to noise ratio is very low.
Two naive ways to reduce or eliminate the randomness of the output of WBS2.SDLL might
be: to set a fixed random seed before the execution of the procedure, or to use a fixed
grid for the interval draws. Fixing the seed is risky as the user has no knowledge of what
particular seeds may lead to favourable interval draws. On the other hand, using a fixed
uniform grid makes it impossible to request any given number M̃ of intervals as this is
constrained by the spacing of the grid. Also, this normally excludes short intervals (which
can be good for detecting finer-scale change-points) unless M̃ is very large, which tends not
to be the case in WBS2.

Instead, we propose the following solution:

1. run the WBS2.SDLL procedure R times;

2. choose the run that leads to the median number of change-points across the R runs;

3. return this “median run” along with the ensemble of estimated change-point locations
pooled across all R runs.

Our experiments (with R = 9), not reported in this paper, suggest that the median run
is remarkably stable with respect to the number and the locations of estimated change-
points, and tends to show only very little, if any, randomness. Also, the pooled ensemble of
change-point estimates can be used to construct the histogram of all change-point locations
detected across the R runs, which provides an interesting informal visualisation of the
significance of the estimated change-point locations. We provide an implementation of this
procedure in our R code at https://github.com/pfryz/wild-binary-segmentation-2.
0. However, to save computation time, in the remainder of the paper we consider the
standard WBS2.SDLL procedure, without this extra randomness-reduction feature.

4.2 Comparative simulation study

In the first part of the simulation study, we exhibit the finite-sample performance of the
WBS2.SDLL method on signals with small/moderate numbers of change-points, and com-
pare it with that of the competitors defined in Section 2.1. Our test models are defined in
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Appendix B of Fryzlewicz (2014) and are as follows: (1) the blocks model (length 2048,
11 change-points), (2) the fms model (length 497, 6 change-points), (3) the mix model
(length 560, 13 change-points), (4) the teeth10 model (length 140, 13 change-points), (5)
the stairs10 model (length 150, 14 change-points). For techniques that require the spec-
ification of the maximum number of change-points, we set this to the (rounded) length of
the input signal divided by three; in all our examples, the true number of change-points is
(well) within the interior of this range. We set the random seed to 1 before running 100
simulations for each of the test signals and each of the competitors.

The average absolute error in estimating the number N of change-points, denoted by
Ê|N̂ − N |, is an easy-to-interpret error measure which, in our experience, tends to cor-
relate strongly with many measures of accuracy of the estimated change-point locations. In
particular, for each method, let f̂t be the piecewise-constant function whose value between
each pair of consecutive estimated change-points is the mean of the data over the interval
delimited by this pair of change-points, and let Ê(f̂ − f)2 be the mean-square error in
estimating ft, averaged across the simulations. We have found that the empirical across-
method correlation between log{Ê|N̂ − N |} and log{Ê(f̂ − f)2}, averaged over the five
models tested, is 0.799.

method (1) (2) (3) (4) (5)

PELT+mBIC 0 1 0 0 1
PELT+BIC 1 1 0 0 1

MOSUM 1 1 0 0 1
ID 1 1 0 1 1

FDRSeg 1 1 0 0 1
S3IB 0 0 0 0 0

SMUCE 0 1 0 0 0
CUMSEG 0 0 0 0 1

FPOP 1 1 0 0 1
DDSE 1 1 1 1 1

DJUMP 1 1 1 0 1
TGUH 1 1 0 1 1

WBS-C1.0 1 0 1 1 1
WBS-C1.3 0 1 0 0 1
WBS-BIC 1 1 0 1 1

WBS2.SDLL(0.9) 1 1 0 1 1
WBS2.SDLL(0.95) 1 1 0 1 1

Table 1: Logical flags indicating the performance of each method on each of the models
(1)–(5): 1 means Ê|N̂ −N | < 1 (the true number of change-points is mis-estimated by less
than 1 on average across 100 simulated sample paths); 0 means Ê|N̂ −N | ≥ 1.

Table 1 shows the (method, model) combinations for which Ê|N̂ − N | < 1, i.e. the true
number of change-points is mis-estimated by less than 1 on average. The WBS2.SDLL
method is one of the better performers, achieving Ê|N̂ −N | < 1 for four out of the five test
models. The only exception is the mix model, the most challenging out of the five models
tested, for which WBS2.SDLL(0.9) and WBS2.SDLL(0.95) achieve Ê|N̂ − N | = 1.41 and
1.4, respectively.

The other techniques achieving Ê|N̂ − N | < 1 for four out of the five test models are ID,
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DJUMP, TGUH, WBS-C1.0 and WBS-BIC, with DDSE being the only method achieving
Ê|N̂ −N | < 1 for all five test models.

However, in the second part of the simulation study, we show that the impressive perfor-
mance of DDSE does not appear to extend to signals with frequent change-points. We first
provide, in Table 2, the full simulation results for the extreme.teeth example from Section
2.1, for which N = 199. The two WBS2.SDLL methods are clear winners; relative to them,
the large value of Ê(N̂−N)2 for DDSE originates from the fact that DDSE estimates N̂ = 0
for two out of 100 sample paths. All other methods perform consistently poorly.

method Ê(N̂)−N Ê|N̂ −N | Ê(N̂ −N)2 Ê(f̂ − f)2 time

PELT+mBIC -198.97 198.97 39589.09 0.250 0.001
PELT+BIC -193.23 193.23 37392.13 0.247 0.001

MOSUM -199.00 199.00 39601.00 0.250 0.007
ID -186.00 186.00 35842.88 0.239 0.039

FDRSeg -139.32 139.32 22568.66 0.197 1.329
S3IB -199.00 199.00 39601.00 0.250 1.738

SMUCE -192.47 192.47 37057.27 0.251 0.006
CUMSEG -199.00 199.00 39601.00 0.250 1.282

FPOP -193.23 193.23 37392.13 0.247 0.001
DDSE -3.71 6.49 803.19 0.051 0.721

DJUMP -199.00 199.00 39601.00 0.250 0.069
TGUH -132.38 132.38 18543.98 0.194 0.061

WBS-C1.0 -160.84 160.84 25935.10 0.242 0.083
WBS-C1.3 -193.70 193.70 37531.66 0.250 0.083
WBS-BIC -199.00 199.00 39601.00 0.250 0.517

WBS2.SDLL(0.9) -0.52 3.52 26.42 0.049 0.193
WBS2.SDLL(0.95) -0.08 3.22 17.20 0.049 0.191

Table 2: Various measures of performance for the competing methods on the extreme.teeth
example with σ = 0.3, averaged over 100 simulated sample paths. “Time” denotes the
average execution time in seconds (in R, on a 2015 iMac); the other column headings are
self-explanatory.

We further consider a slightly altered set-up in which the signal under consideration has
more frequent change-points, but less noise. The signal, labelled extreme.extreme.teeth,
is one in which the pattern 0, 0, 0, 0, 1, 1, 1 repeats itself 100 times, so that we have T = 700
and N = 199. We use εt ∼ N(0, 0.22) (rather than the εt ∼ N(0, 0.32) used in the
extreme.teeth example). See Figure 5 for an illustration. The full simulation results
are in Table 3. This time the two WBS2.SDLL methods are the only ones with acceptable
performance and all the other methods, along with DDSE, fail somewhat dramatically.

We close with a few further comparative remarks regarding DDSE and WBS2.SDLL. Unlike
WBS2.SDLL, the DDSE method requires the specification of the maximum number of
change-points and this was set to [T/3], but we also tried T − 1 and the results did not
improve. Importantly, DDSE appears to scale poorly: the execution on a signal of length
104 took 22 seconds, was interrupted by us on a signal of length 5 × 104 after several
minutes, and we were unable to execute DDSE on a signal of length 105 because of what
we believe were memory-related issues. By contrast, the corresponding execution times for
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WBS2.SDLL were: 3.7 sec (T = 104), 15 sec (T = 5×104), 30 sec (T = 105), which suggests
empirical computation times close to O(T ).
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Figure 5: The first 100 observations of the extreme.extreme.teeth signal (which continues
in the same manner for t = 1, . . . , 700); left: with no noise; right: with additive i.i.d.
Gaussian noise with mean zero and σ = 0.2.

4.3 Performance for heavy-tailed noise

In this section, we illustrate the performance of WBS2.SDLL in the presence of heavy-tailed
noise. The noise distribution is not known to the algorithm, and it proceeds as it would
if the noise were Gaussian. We consider the extreme.teeth signal and use the following
noise distributions: t2.5, t5, t7, t10 and Gaussian, all scaled, as in Section 2.1, to have the
standard deviation of 0.3.

Figure 6 shows the results. We are encouraged by the fact that the upward bias in the
estimation of N appears to be rather small even in the case of t2.5, which is strongly heavy-
tailed.

5 London House Price Index

We consider monthly percentage changes in the UK House Price Index (UKHPI), for all
property types, in the 32 London boroughs (the 32 local authority districts that make up
the Greater London county). We exclude the City of London as its resident population is
much smaller than in any of the 32 boroughs and, as a result, the monthly fluctuations in
the UKHPI for the City of London are much more variable. As of December 2018, the data
are available from http://landregistry.data.gov.uk/app/ukhpi. The 32-dimensional

time series Xt = (X
(1)
t , . . . , X

(32)
t )′ runs from February 1995 to September 2018, so that

t = 1, . . . , T = 284. In the order of the indexing (i = 1, . . . , 32), the boroughs are: Barking
and Dagenham, Barnet, Bexley, Brent, Bromley, Camden, City of Westminster, Croydon,
Ealing, Enfield, Greenwich, Hackney, Hammersmith and Fulham, Haringey, Harrow, Haver-
ing, Hillingdon, Hounslow, Islington, Kensington and Chelsea, Kingston upon Thames,
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method Ê(N̂)−N Ê|N̂ −N | Ê(N̂ −N)2 Ê(f̂ − f)2 time

PELT+mBIC -198.97 198.97 39589.09 0.245 0.001
PELT+BIC -189.95 189.95 36238.03 0.237 0.001

MOSUM -199.00 199.00 39601.00 0.245 0.007
ID -173.64 173.64 32457.76 0.220 0.026

FDRSeg -140.77 140.77 24744.07 0.181 0.460
S3IB -199.00 199.00 39601.00 0.245 0.865

SMUCE -195.42 195.42 38197.30 0.245 0.006
CUMSEG -199.00 199.00 39601.00 0.245 0.554

FPOP -189.95 189.95 36238.03 0.237 0.001
DDSE -167.16 167.28 33265.02 0.208 0.439

DJUMP -199.00 199.00 39601.00 0.245 0.033
TGUH -84.92 84.92 8692.78 0.124 0.048

WBS-C1.0 -154.47 154.47 23939.55 0.230 0.068
WBS-C1.3 -192.37 192.37 37027.93 0.244 0.068
WBS-BIC -199.00 199.00 39601.00 0.245 0.438

WBS2.SDLL(0.9) 0.26 0.76 1.92 0.017 0.117
WBS2.SDLL(0.95) 0.31 0.71 1.71 0.017 0.116

Table 3: Various measures of performance for the competing methods on the
extreme.extreme.teeth example with σ = 0.2, averaged over 100 simulated sample paths.
“Time” denotes the average execution time in seconds (in R, on a 2015 iMac); the other
column headings are self-explanatory.

Lambeth, Lewisham, Merton, Newham, Redbridge, Richmond upon Thames, Southwark,
Sutton, Tower Hamlets, Waltham Forest, and Wandsworth.

As a preliminary dimension-reduction step, we run the PCA on a version of Xt scaled so
that the empirical second moment of each of the 32 components is one; the scaling appears

necessary due to the fact that the empirical variances of X
(i)
t range from 0.97 (for Bromley)

to 9.02 (for Kensington and Chelsea). The scree plot is shown in the top left plot of Figure 8
and appears to offer visual evidence that the 2nd principal component may be of importance
in explaining some of the contemporaneous relationship between the components of Xt

beyond the contemporaneous mean (the 1st PC is close to the contemporaneous average of

X
(i)
t and we do not discuss it here).

Let ω
(2)
i denote the loading of X

(i)
t in the 2nd principal component of Xt. The 2nd PC

appears to furnish an interesting and interpretable separation of Xt according to the sign

of ω
(2)
i . Let U ,V be two complementary subsets of J = {1, 2, . . . , 32} corresponding to the

opposing signs of ω
(2)
i ; that is, U ∪ V = J ; U ∩ V = ∅ and ∀ i ∈ U ∀ j ∈ V ω

(2)
i ω

(2)
j < 0.

The assignment of boroughs to sets U and V is in Table 4, and it is visualised in Figure 9.
It is interesting to observe that the 16 boroughs forming part of set U , which we refer to as
“Inner(PC2)” below, overlap very strongly with London’s most expensive boroughs by av-
erage house price as of September 2018 (source: https://www.gov.uk/government/publications/

uk-house-price-index-england-september-2018/uk-house-price-index-england-september-2018). We
refer to the boroughs in set V as “Outer(PC2)”. The Inner(PC2) form a spatially contigu-
ous area; the Outer(PC2) boroughs are made up of two such areas. In summary, the 2nd
PC appears to act as a separator between the relatively expensive and inexpensive London
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Figure 6: From top to bottom and left to right: boxplots of N̂ − N over 100 simu-
lated sample paths, for the noisy extreme.teeth signal, for WBS2.SDLL(0.9) [top] and
WBS2.SDLL(0.95) [bottom] and the following noise distributions, each with standard de-
viation 0.3: t2.5, t5, t7, t10 and Gaussian.

boroughs.

We form separate contemporaneous averages of Xt over the sets U and V, i.e. corresponding
to the Inner(PC2) and Outer(PC2) boroughs, respectively. We denote

Ut =
1

16

∑
i∈U

X
(i)
t , Vt =

1

16

∑
i∈V

X
(i)
t .

The scatter plot of Ut versus Vt is shown in the top right plot of Figure 8. We model both Ut
and Vt as piecewise-constant signals observed with noise. We are interested in a comparative
analysis of the estimated change-point locations in E(Ut) and E(Vt) and the behaviour of
the estimates of E(Ut) and E(Vt) between the estimated change-points. To this end, we
use the WBS2.SDLL(0.9) method. The resulting piecewise-constant estimates of E(Ut) and
E(Vt), denoted, respectively, by Ê(Ut) and Ê(Vt), are shown in Figure 7 (together with the
data Ut and Vt, respectively) and in the middle left plot of Figure 8 (without the data). Both
Ê(Ut) and Ê(Vt) contain frequent change-points (38 and 33, respectively, in a sample of
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Figure 7: Top: Ut and Ê(Ut) (blue); bottom: Vt and Ê(Vt) (red).

length 284), which justifies the use of WBS2.SDLL. The bottom plots in Figure 8 show the
sample autocorrelation functions of the empirical residuals Ut− Ê(Ut) and Vt− Ê(Vt) from
the respective piecewise-constant fits. The estimated residuals display only a limited degree
of autocorrelation. The piecewise-constant fits also remove practically all contemporaneous
correlation between Ut and Vt: the sample correlation between Ut and Vt is 0.7, while the
sample correlation between Ut − Ê(Ut) and Vt − Ê(Vt) is 0.06. It is tempting to conclude
that the piecewise-constant modelling of E(Ut) and E(Vt) with frequent change-points leads
to reasonable goodness-of-fit.

The British mainstream press and professional bodies regularly comment on the perceived
link between the outcome of the 2016 UK European Union membership referendum and
the evolution of house prices in London and elsewhere in the UK, see e.g. https://www.

theguardian.com/business/2018/dec/13/uk-property-market-at-weakest-since-2012-as-brexit-takes-toll-rics,
amongst a large amount of material on this topic. We investigate the behaviour of Ê(Ut)
and Ê(Vt) between June 2016, the month in which the referendum was held, and September
2018; this corresponds to the time range t = 257, . . . , 284 in our data. The corresponding
illustration is in the middle right plot of Figure 8. It is interesting to observe that Ê(Ut),
the estimated average monthly percentage change in price for the Inner(PC2) boroughs,
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Figure 8: Top left: scree plot for the PCA of the (scaled) Xt; top right: scatter plot of Ut
versus Vt; middle left: Ê(Ut) (blue) and Ê(Vt) (red); middle right: Ut (thin blue), Ê(Ut)
(thick blue), Vt (thin red), Ê(Vt) (thick red) [note: the time ranges in the two middle row
plots are different]; bottom left: sample acf of Ut − Ê(Ut); bottom right: sample acf of
Vt − Ê(Vt). See Section 5 for details.
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Indexing set List of boroughs Notation

U Barnet, Camden, City of West-
minster, Ealing, Hackney, Hammer-
smith and Fulham, Haringey, Houn-
slow, Islington, Kensington and
Chelsea, Kingston upon Thames,
Lambeth, Merton, Richmond upon
Thames, Southwark, Wandsworth

Inner(PC2)

V Barking and Dagenham, Bexley,
Brent, Bromley, Croydon, En-
field, Greenwich, Harrow, Havering,
Hillingdon, Lewisham, Newham,
Redbridge, Sutton, Tower Hamlets,
Waltham Forest

Outer(PC2)

Table 4: The memberships of the sets U (Inner(PC2) boroughs) and V (Outer(PC2) bor-
oughs). See Section 5 for details.

contains no change-points over this time period (and has the numerical value of 0.15), while
Ê(Vt), the same quantity for the Outer(PC2) boroughs, shows three change-points which
take it from the positive value of 0.8 to the negative value of −0.26, before a rebound which
takes it to the level of 0.5. These three most recent change-points in Ê(Vt) occur in October
2016 (the level changes from 0.8 to 0.22), October 2017 (from 0.22 to −0.26) and May 2018
(from −0.26 to 0.5). We mention that the larger number of change-points in Ê(Vt) than in
Ê(Ut) over this particular time period is in contrast to the fact that it is Ê(Ut) that has more
change-points in total (38 to Ê(Vt)’s 33). We conclude that the average house price growth
in the Inner(PC2) and Outer(PC2) boroughs appears to have followed different paths in
the time period since the referendum: the average growth in the Inner(PC2) boroughs has
remained relatively slow but constant, while the average growth in the Outer(PC2) bor-
oughs had moved from a relatively high value into the negative territory before recovering
considerably in the recent months.

6 Discussion

We emphasise the modular character of the proposed WBS2.SDLL change-point detection
methodology: one ingredient is the WBS2 solution path, and the other is the SDLL model
selection criterion. The two parts have been designed with each other in mind, but it is in
principle possible to use them separately; that is, to use WBS2 with an alternative model
selection criterion, and to attempt to adapt the SDLL model selection principle to other
settings, including ones unrelated to change-point detection.

This paper introduces WBS2 and SDLL in the possibly simplest change-point detection
setting, in which a one-dimensional signal is observed in i.i.d. Gaussian noise; part of this
paper’s message that even this simplest framework was traditionally challenging for the
state of the art. We believe that WBS2.SDLL fills an important gap in the literature by
providing a solution to this canonical problem in frequent-change-point scenarios. Just as
the WBS procedure was extended from the canonical signal + i.i.d. Gaussian noise setting
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Figure 9: London boroughs. Turquoise: the Inner(PC2) boroughs (included in set U);
white: the Outer(PC2) boroughs (included in set V). See Table 4 for a list, and Section 5
for details.

to univariate time series (Korkas and Fryzlewicz, 2017) and high-dimensional panel data
(Wang and Samworth, 2018), we envisage that WBS2’s and SDLL’s simplicity means that
they are both extendible to these and other stochastic models.

A Proofs

Proof of Theorem 3.1.

Part (i). The statement is trivially true if T = 1. Suppose, inductively, that it is true for
data lengths 1, . . . , T − 1. For an input data sequence of length T , the first addition to
the solution path breaks the domain of operation into two, of lengths bm0 and T − bm0 .
Therefore by the inductive hypothesis, the length of the solution path for the input data
will be 1 + (bm−0 − 1) + (T − bm0 − 1) = T − 1, which completes the proof of part (i).

Part (ii). The computation of the CUSUM statistic for all b in formula (2) is of compu-
tational order O(e − s). Therefore the addition of elements to the solution path from all
sub-domains within a single scale of operation is of computational order O(M̃T ). If the
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scale has reached J , there is nothing to do and the procedure has stopped. Therefore the
overall computational complexity before the sorting step is of order O(M̃JT ). The sorting
can be performed in computational time O(T log T ), which never dominates O(M̃JT ) as
the smallest possible J is of computational order O(log T ), which is straightforward to see
from its definition. This completes the proof of part (ii).

Part (iii). We first set the probabilistic framework in which we analyse the behaviour of
the WBS2 solution path algorithm. With the change-point locations denoted by η1, . . . , ηN
(with the additional notation η0 = 1, ηN+1 = T + 1), we define the intervals

Ik,li,j = [max(1, ηi + k),min(T, ηj + l)],

where k, l ∈ Z ∩ [−C1(∆)(f
T

)−2 log T,C1(∆)(f
T

)−2 log T ] for each 1 ≤ i+ 1 < j ≤ N + 1.

Suppose that on each interval Ik,li,j , M̃ intervals {[sm, em]}M̃m=1 have been drawn, with the

start- and end-points having been drawn uniformly with replacement from Ik,li,j (if M̃ >

|Ik,li,j |(|I
k,l
i,j | − 1)/2, then we understand {[sm, em]}M̃m=1 to contain all possible subintervals of

Ik,li,j ). Note we do not reflect the (stochastic) dependence of sm, em on i, j, k, l so as not to
over-complicate the notation. As in the proof of Theorem 3.2 in Fryzlewicz (2014), we define
intervals Ir between change-points in such a way that their lengths are at least of order
O(T ), and they are separated from the change-points also by distances at least of order
O(T ). To fix ideas, define Ir = [ηr−1 + 1

3(ηr − ηr−1), ηr−1 + 2
3(ηr − ηr−1)], r = 1, . . . , N + 1.

For each interval Ik,li,j , we are interested in the following event

Ak,li,j = {∃m0∈{1,...,M̃} ∃r∈{i+1,...,j−1} (sm0 , em0) ∈ Ir × Ir+1}.

Note that

P{(Ak,li,j )
c} ≤

M̃∏
m=1

P

{
(sm, em) 6∈

j−1⋃
r=i+1

Ir × Ir+1

}

≤
M̃∏
m=1

max
r∈{i+1,...,j−1}

(1− P{(sm, em) ∈ Ir × Ir+1}) ≤ (1− δ2/9)M̃ ,

and hence

P

 ⋂
i,j,k,l

Ak,li,j

 ≥ 1−
∑
i,j,k,l

P{(Ak,li,j )
c} ≥ 1−1

2
N(N+1)(2C1(∆)(f

T
)−2 log T+1)2(1−δ2/9)M̃ .

Define further the following event

D∆,T =
{
∀ 1 ≤ s ≤ b < e ≤ T |ε̃bs,e| ≤ 2σ{(1 + ∆) log T}1/2

}
,

where ε̃bs,e is defined as in formula (2) with εt in place of Xt. It is the statement of Lemma
A.1 in Fryzlewicz (2018) that B∆,T ⊆ D∆,T .

The following arguments apply on the set
⋂
i,j,k,lA

k,l
i,j∩D∆,T for any fixed ∆ > 0. Proceeding

exactly as in the proof of Theorem 3.2 in Fryzlewicz (2014), at the start of the procedure
we have s = 1, e = T , and in view of the fact that we are on A0,0

0,N+1 ∩D∆,T , the procedure
finds a bm0 ∈ [sm0 , em0 ] ⊆ [s, e] such that
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(a) there exists an r ∈ {1, 2, . . . , N} such that |ηr − bm0 | ≤ C1(∆)(f
T

)−2 log T , and

(b) |X̃bm0
sm0 ,em0

| & T 1/2f
T

,

where the & symbol means “of the order of or larger”. Again by arguments identical
to those in the proof of Theorem 3.2 in Fryzlewicz (2014), on each subsequent segment

containing previously undetected change-points, we are on one of the sets Ak,li,j ∩ D∆,T ,
and therefore the procedure again finds a bm0 satisfying properties (a), (b) above for a
certain previously undetected change-point ηr, until all change-points have been identified
in this way. Once all change-points have been identified, by Lemma A.5 of Fryzlewicz
(2014), all maximisers bm0 of the absolute CUSUM statistics |X̃b

sm,em | (over b) are such that

|X̃bm0
sm0 ,em0

| ≤ C2(∆) log1/2 T . As log1/2 T = o(T 1/2f
T

), for T large enough, the sorting of

the elements of P̃ does not move any elements from the first N to the last T − 1 − N or
vice versa, which completes the proof of part (iii). �

Proof of Theorem 3.2.

With the notation as in the statement of the theorem and in the proof of Theorem 3.1, the
following arguments apply on the set

⋂
i,j,k,lA

k,l
i,j ∩ D∆,T ∩Θθ,T for any fixed ∆ > 0. Let T

be large enough for the assertion of Theorem 3.1 to hold. Further, let C̃ be large enough
for the following inequality to hold

ζ̃T = C̃σ̂T {2 log T}1/2 > max(C2(∆) log1/2 T, 2σ{(1 + ∆) log T}1/2) (6)

(this is always possible on Θθ,T ). If N = 0, then in view of inequality (6) and the fact that

we are on D∆,T , from the definition of the SDLL algorithm we necessarily have N̂ = 0. If

N > 0, then by part (iii) of Theorem 3.1, we must have K + 1 ≥ N . If |X̃bK+1
sK+1,eK+1 | > ζ̃T ,

then by inequality (6), we have N = K + 1 and the SDLL procedure correctly identifies

N̂ = K + 1 = N . If |X̃bK+1
sK+1,eK+1 | < ζ̃T , then we necessarily have N < K + 1, and by part

(iii) of Theorem 3.1, we have, for Zk = log |X̃bk
sk,ek
| − log |X̃bk+1

sk+1,ek+1 |,

ZN ∼ log T,

Zk ≤ log

(
(1 + θ)C2(∆)

βC̃σ21/2

)
for k = N + 1, . . . ,K if this range is non-empty.

Therefore, from the definition of the SDLL and by part (iii) of Theorem 3.1, for T large
enough, N̂ = N will be chosen. This completes the proof of the Theorem. �
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