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Abstract 

Working memory (WM) training in typically developing (TD) children aims to enhance not 

only performance in memory tasks but also other domain-general cognitive skills such as 

fluid intelligence. These benefits are then believed to positively affect academic 

achievement. Despite the numerous studies carried out, researchers still disagree over the 

real benefits of WM training. This meta-analysis (m = 41, k = 393, N = 2,375) intended to 

resolve the discrepancies by focusing on the potential sources of within-study and between-

study true heterogeneity. Small to medium effects were observed in memory tasks (i.e., 

near transfer). The size of these effects was proportional to the similarity between the 

training task and the outcome measure. By contrast, far-transfer measures of cognitive 

ability (e.g., intelligence) and academic achievement (mathematics and language ability) 

were essentially unaffected by the training programs, especially when the studies 

implemented active controls (�̅� = 0.001, SE = 0.055, p = .982, τ2 = 0.000). Crucially, all the 

models exhibited a null or low amount of true heterogeneity, wholly explained by the type 

of controls (non-active vs. active) and statistical artifacts, in contrast to the claim that this 

field has produced mixed results. Since the empirical evidence shows an absence of 

generalized effects and true heterogeneity, we conclude that there is no reason to keep 

investing resources in WM training research with TD children. 

 

Keywords: academic achievement; cognitive enhancement; cognitive training; meta-

analysis; transfer; working memory training. 
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Introduction 

It is widely acknowledged that general cognitive ability is a major predictor of academic 

achievement and job performance (Detterman, 2014; Gobet, 2016; Schmidt, 2017; Wai, 

Brown, & Chabris, 2018). Finding a way to enhance people’s general cognitive ability 

would thus have a huge societal impact. That is why the idea that engaging in cognitive-

training programs can boost one’s domain-general cognitive skills has been evaluated in 

numerous experimental trials over the last two decades (for reviews, see Sala et al., 2019a; 

Simons et al., 2016). The most influential of such programs has been working memory 

(WM) training. 

 WM is the ability to store and manipulate the information needed to perform 

complex cognitive tasks (Baddeley, 1992, 2000). The concept of WM thus goes beyond the 

one of short-term memory (STM). While the latter focuses on how much information can 

be passively stored into one’s cognitive system, the former involves an active manipulation 

of the information as well (Cowan, 2017; Daneman & Carpenter, 1980). 

The importance of WM in cognitive development is well-known. WM capacity – 

that is, the maximum amount of information that WM can store and manipulate – steadily 

increases throughout infancy and childhood up to adolescence (Cowan, 2016; Gathercole, 

Pickering, Ambridge, & Wearing, 2004), both due to maturation and increase in knowledge 

(Cowan, 2016; Jones, Gobet, & Pine, 2007). WM capacity is positively correlated with 

essential cognitive functions such as fluid intelligence and attentional processes (Engle, 

2018; Kane, Hambrick, & Conway, 2005; Süß, Oberauer, Wittmann, Wilhelm, & Schulze, 
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2002). WM capacity is also a significant predictor of academic achievement (Peng et al., 

2018). Furthermore, low WM capacity is comorbid with learning disabilities such as 

dyslexia and attention-deficit hyperactivity disorder (Westerberg, Hirvikoski, Forssberg, & 

Klingberg, 2004). It is thus reasonable to believe that if WM skills could be improved by 

training, the benefits would spread across many other cognitive and real-life skills. 

Three mechanisms, which are not necessarily mutually exclusive, have been 

hypothesized to explain why WM training might induce generalized cognitive benefits. 

First, WM and fluid intelligence may share a common capacity constraint (Halford, Cowan, 

& Andrews, 2007). Performance on fluid intelligence tasks is constrained by the amount of 

information that can be handled by WM. If WM capacity is augmented, then one’s fluid 

intelligence is expected to improve (Jaeggi, Buschkuehl, Jonides, & Perrig, 2008). In turn, 

individuals with boosted fluid intelligence are expected to improve their real-life skills such 

as academic achievement and job performance, of which general intelligence is a major 

predictor. The second explanation focuses on the role played by attentional processes in 

both working memory and fluid intelligence tasks (Engle, 2018; Gray, Chabris, & Braver, 

2003). Cognitively demanding activities such as WM training may foster people’s 

attentional control, which is, once again, a predictor of other cognitive skills and academic 

achievement (for a detailed review, see Strobach & Karbach, 2016). Finally, Taatgen 

(2013, 2016) has claimed that enhancement in domain-general cognitive skills may be a 

byproduct of the acquisition of domain-specific skills. That is, training in a given task (e.g., 

n-back task) may enable individuals to acquire not only domain-specific skills (i.e., how to 

correctly perform the trained task) but also elements of more abstract production rules. 
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These elements are assumed to be small enough not to encompass any domain-specific 

content, and, therefore, can be transferred across different cognitive tasks. 

Typically developing (TD) children engaging in WM training represent an ideal 

group on which to test these hypothesized mechanisms, for several reasons. Most obvious, 

the population of TD children is larger than the population of children with learning 

disabilities, who suffer from different disorders (e.g., ADHD, dyslexia, and language 

impairment). Moreover, the distribution of WM skills in TD children encompasses a larger 

range (which reduces biases related to range restriction), and it is more homogeneous 

across studies. These latter features make studies involving TD children easier to meta-

analyze rather than studies including different learning disabilities. The results concerning 

TD children are thus more generalizable than those obtained from a more specific 

population. Also, unlike studies examining adult populations, studies involving TD children 

often include transfer measures of both cognitive skills (e.g., WM capacity and fluid 

intelligence) and academic achievement (e.g., mathematics and language skills). This 

feature allows us to directly test the hypothesis according to which WM training induces 

near-transfer and far-transfer effects that generalize into benefits in important real-life 

skills. Finally, and probably most importantly, TD children represent that population in 

which cognitive skills are still developing, and brain plasticity is at its peak. In other words, 

TD children are the most likely to benefit from cognitive-training interventions. Therefore, 

a null result would cast serious doubts on the possibility to obtain generalized effects in 

other populations as well (e.g., healthy adults).  
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The Meta-Analytic Evidence 

 To date, scholars disagree about the effectiveness of WM training programs, and 

several meta-analytic reviews have been carried out to resolve this issue. The most recent 

and comprehensive ones – including studies on both children, adults, and older adults – are 

Melby-Lervåg, Redick, and Hulme (2016; number of studies: m = 87) and Sala et al. 

(2019a; m = 119). Both meta-analyses reach the conclusion that while WM training exerts a 

medium effect on memory-task performance (near transfer), no other cognitive or academic 

skills (far transfer) seem to be affected, regardless of the population examined; in 

particular, no effects are observed when active controls are implemented to rule out placebo 

effects (for a comprehensive list of meta-analyses about WM training, see Sala, Aksayli, 

Tatlidil, Gondo, & Gobet, 2019b). 

 Two meta-analyses have focused on children, with similar results to those described 

above. With TD children (aged 3 to 16), Sala and Gobet (2017) found a medium effect (�̅� = 

0.46) with near transfer and a modest effect with far transfer (�̅� = 0.12), with the 

qualification that the better the quality of the design (use of an active control group), the 

smaller the effect sizes. With children with learning disabilities (LD children), Sala et al. 

(2019a) re-analyzed a subsample of Melby-Lervåg et al. (2016). The effect size was �̅� = 

0.37 for near transfer, and �̅� = 0.02 for far transfer. Similar results obtain with Cogmed, a 

commercial working-memory training program that has been subjected to a considerable 

amount of research, especially with LD children (Aksayli, Sala & Gobet, 2009). 
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Critique of the Meta-Analytic Evidence 

 Some researchers have questioned the conclusions of meta-analytic syntheses about 

WM training. According to Pergher et al. (2019), the diversity of features in the training 

tasks (e.g., single vs. dual tasks) and the transfer tasks (e.g., numerical vs. verbal tasks) may 

make any meta-analytic synthesis on the topic essentially meaningless. Exact replications 

of studies are rare (where there are any), and the moderators (IVs in meta-regression) that 

should be added to account for all the differences across studies are too numerous to avoid 

power-related issues in meta-regression models. Therefore, it is not possible to reach strong 

conclusions from research into WM training. In simple words, this is nothing but the well-

known apples-and-oranges argument against meta-analysis (Eysenck, 1994). 

It is true that meta-analytic syntheses usually include just a few moderators 

examining only the most macroscopic study features. Nonetheless, meta-analysis also 

provides the tools to estimate the amount of variability across different findings in a 

particular field of research. The total variance observed in any dataset is the sum of 

sampling error variance and true variance. Sampling error variance is just noise and 

therefore does not require any further explanation. By contrast, true variance, also referred 

to as true heterogeneity, is supposed to be accounted for by one or more moderating 

variables (Schmidt, 2010). In a meta-analysis, it is possible to estimate both within-study 

and between-study true heterogeneity in order to evaluate whether specific moderating 

variables are affecting the effect sizes at the level of the single study (e.g., different 

outcome measures) or across studies (e.g., different types of training or populations 
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involved). Simply put, while it is nearly impossible to test every single potential moderator, 

it is easy to estimate how big the impact of unknown moderators is on the overall results. 

Interestingly, several meta-analyses have estimated within- and between-study true 

heterogeneity in WM training to be null or low, both with near-transfer and far-transfer 

effects. When present at all, true heterogeneity is accounted for by the type of control group 

used (active or non-active), statistical artifacts such as pre-post-test regression to the mean 

due to baseline differences between the experimental and control groups, and, to a lesser 

extent, a few extreme effect sizes. This is the case with meta-analyses on younger and older 

adults (Sala et al., 2019b) and children with learning disabilities (Aksayli et al., 2019; 

Melby-Lervåg et al., 2016; Sala et al., 2019a). In brief, despite the many design-related 

differences across WM training studies, consideration of true heterogeneity indicates that 

there are no real differences between the effects produced by such diverse training 

programs. 

The Present Study 

The first aim of the present study is to update the previous meta-analytic synthesis 

about WM training in TD children (Sala & Gobet, 2017), which included studies only until 

2016. As considerable efforts are devoted to this field of research, it is important to update 

this study to establish whether the same conclusions obtain. The second aim is to test, with 

the population of TD children, Pergher et al.’s (2019) claim that the broad variety of 

features of training and transfer tasks used in WM training research leads to differential 

outcomes. Specifically, some features are hypothesized to encourage transfer, while others 
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do not. Thus, Pergher et al.’s claim is tantamount to predicting within-study and between-

study true heterogeneity. To estimate both within-study and between-study true 

heterogeneity, we use multilevel modeling, and more especially robust variance estimation 

with hierarchical weights (Hedges, Tipton, & Johnson, 2010; Tanner-Smith, Tipton, & 

Polanin, 2016). 

More specifically, we here test the following study features. First, we examine the 

role played by the abovementioned design qualities (types of controls) and statistical 

artifacts (baseline differences and extreme effect sizes). As seen, these features have been 

found to be significant moderators in previous meta-analyses. Therefore, it is 

recommendable to test whether these findings can be replicated. Second, we check whether 

transfer effects are influenced by the participants’ age. Since WM capacity steadily 

develops throughout childhood, it is advisable to investigate whether WM training is more 

effective in TD children with a specific age range. Third, we check whether the training is 

more effective on specific far-transfer outcome measures. Fourth, we test whether the size 

of near-transfer effects is a function of transfer distance (i.e., the similarity between the 

training task and the outcome measures). Finally, we examine the effectiveness of different 

training programs. WM training tasks can be classified according to the type of primary 

manipulation required to perform the training tasks (e.g., Redick & Lindsay, 2013). In fact, 

while a number of WM training experiments have employed only one type of training task 

(e.g., n-back, Jaeggi, Buschkuehl, Jonides, & Shah, 2011), other scholars have suggested 

that including different kinds of WM tasks may maximize the chances to obtain transfer 

effects (Byrne, Gilbert, Kievit, & Holmes, 2019). 
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Method 

Literature Search 

A systematic search strategy was employed to find the relevant studies (PRISMA 

statement; Moher, Liberati, Tetzlaff, & Altman, 2009). The following Boolean string was 

used: ("working memory training" OR “WM training” OR “cognitive training”). We 

searched through MEDLINE, PsycINFO, Science Direct, and ProQuest Dissertation & 

Theses databases to identify all the potentially relevant studies. We retrieved 3,080 records. 

Also, the references in earlier meta-analytic and narrative reviews (Aksayli et al., 2019; 

Melby-Lervåg et al., 2016; Sala et al., 2019a; Sala & Gobet, 2017; Simons et al., 2016) 

were searched through. 

Inclusion Criteria 

The studies were included according to the following seven criteria: 

1. The study included children (maximum mean age = 16 years old) not diagnosed 

with any learning disability or clinical condition; 

2. The study included a WM training condition; 

3. The study included at least one control group not engaged in any adaptive WM-

training program; 

4. At least one objective cognitive/academic task was administered. Self-reported 

measures were excluded. Also, when the active control group was trained in 

activities closely related to one of the outcome measures (e.g., controls involved 

in a reading course), the relevant effect sizes were excluded (e.g., tests of 
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reading comprehension); 

5. The study implemented a pre-post-test design; 

6. The participants were not self-selected; 

7. The data were sufficient to compute an effect size. 

 

We searched for eligible published and unpublished articles through July 21st, 2019. When 

the necessary data to calculate the effect sizes were not reported in the original 

publications, we contacted the researchers by email (n = 3). We received one positive reply. 

In total, we found 41 studies, conducted from 2007 to 2019, that met all the inclusion 

criteria (Appendix A in the Supplemental materials). These studies included 393 effect 

sizes and a total of 2,375 participants. The previous most comprehensive meta-analysis 

about WM training in TD children included 25 studies (conducted between 2007 and 2016), 

134 effect sizes, and 1,601 participants (Sala & Gobet, 2017). The present meta-analysis, 

therefore, adds a significant amount of new data. The procedure is described in Figure 1.  

Meta-Analytic Models 

Each effect size was considered either near-transfer or far-transfer. The near-

transfer effect sizes consisted of memory tasks referring to the Gsm construct as defined by 

the Cattell-Horn-Carroll model (CHC model; McGrew, 2009). Far-transfer effect sizes 

referred to all the other cognitive measures. The two authors coded each effect size 

independently and reached 100% agreement.  
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Moderators 

We evaluated four potential moderators based on previous meta-analyses: 

1. Baseline difference (continuous variable): The corrected standardized mean 

difference (i.e., Hedges’s g) between the experimental and control groups at pre-

test. This moderator was included to assess the amount of true heterogeneity 

accounted for by regression to the mean; 

2. Control group (active or non-active; dichotomous variable): Whether the WM 

training group was compared to another cognitively demanding activity (e.g., non-

adaptive training); no-contact groups and business-as-usual groups were considered 

as “non-active.” Also, in line with Simons et al.’s (2016) criteria, those control 

groups involved in activities that were not cognitively demanding were labeled as 

“non-active.” The inter-rater agreement was 98%; here and elsewhere, the two raters 

resolved every discrepancy by discussion; 

3. Age (continuous variable): The mean age of the participants. A few primary studies 

did not provide the participants’ mean age. In these cases, the participants’ mean 

age was extracted from the median (when the range was reported) or the school 

grade; 

4. Type of training task (categorical variable): What type of training task was used in 

the study. This moderator included updating tasks (n-back tasks and running tasks; 

Gathercole, Dunning, Holmes, & Norris, 2019), span tasks (e.g., reverse digit span 

task, Corsi task, odd one out, etc.; Shipstead, Hicks, & Engle, 2012), and a mix of 

updating and span tasks (labelled as mixed). A few training tasks did not fall into 
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any of these categories and were labelled as others. Cohen’s kappa was κ = 1.00; 

5. Outcome measure (categorical variable): This moderator, which was analyzed only 

in the far-transfer models, included measures of fluid intelligence (Gf; McGrew, 

2009), processing speed (Gs), mathematical ability, and language ability. The 

authors coded each effect size for moderator variables independently. Cohen’s 

kappa was κ = .98; 

6. Type of near transfer (categorical variable): Whether the task was the same as or 

similar to the WM training tasks (nearest transfer) – i.e., referred to the same 

narrow memory skill – or was a different memory task (less near transfer) – i.e., 

referred to different skills in the same broad construct (i.e., Gsm; McGrew, 2009). 

This categorization was the same as that proposed by Noack, Lövdén, Schmiedek, 

and Lindenberger (2009). This moderator was added only in the near-transfer 

models. The authors coded each effect size for moderator variables independently. 

The inter-rater agreement was 97%.  

 

Effect Size Calculation 

 The effect sizes were calculated for each comparison in the primary studies meeting 

the inclusion criteria. Redundant comparisons (e.g., rate of correct responses and incorrect 

responses) were excluded. 

The effect size (Hedges’s g) was calculated with the following formula: 

𝑔 =
൫ெ_ೞିெ_ೝ൯ି(ெ_ೞିெ_ೝ)

ௌೝ

× ቀ1 −
ଷ

(ସ×ே)ିଽ
ቁ  (1) 
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where Me_post and Me_pre are the mean performance of the experimental group at post-test 

and pre-test, respectively, Mc_post and Mc_pre are the mean performance of the control group 

at post-test and pre-test, respectively, SDpooled_pre is the pooled pre-test SDs in the 

experimental group and the control group, and N is the total sample size. 

The formula used to calculate the sampling error variances was 

𝑉𝑎𝑟 = ቀ
ேିଵ

ேିଷ
× ቀ

ଶ×(ଵି)

ೣ ೣ
+

ௗ
మ

ଶ
× 

ே

ேିଵ
ቁ ×

ଵ

ே
+

ேିଵ

ேିଷ
× ቀ

ଶ×(ଵି)

ೣ ೣ
+

ௗ
మ

ଶ
× 

ே

ேିଵ
ቁ ×

ଵ

ே
ቁ ×

ቀ1 −
ଷ

(ସ×ே)ିଽ
ቁ

ଶ

  (2) 

where rxx is the test-retest reliability of the measure, Ne and Nc are the sizes of the 

experimental group and the control group, de and dc are the within-group standardized mean 

differences of the experimental group and the control group, and r is the pre-post-test 

correlations of the experimental group and the control group, respectively (Schmidt & 

Hunter, 2015; pp. 343-355). The pre-post-test correlations and test-retest coefficients were 

rarely provided in the primary studies. Therefore, we assumed the reliability coefficient 

(rxx) to be equal to the pre-post-test correlation (i.e., no treatment by subject interaction was 

postulated; Schmidt & Hunter, 2015; pp. 350-351), and we imposed the pre-post-test 

correlation to be rxx = r = .700. (We replicated the analyses using correlation values ranging 

between .500 and .800. No significant differences were observed.) 

 Some of the studies reported follow-up effects. In these cases, the effect sizes were 

calculated by replacing the post-test means in formula (1) with the follow-up means in the 

two groups. 
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Modeling Approach 

Robust variance estimation (RVE) with hierarchical weights was used to perform 

the intercept and meta-regression models (Hedges, Tipton, & Johnson, 2010; Tanner-

Smith, Tipton, & Polanin, 2016). RVE allowed us to model nested effect sizes (i.e., 

extracted from the same study). Importantly, we used RVE to estimate within-cluster (ω2) 

and between-cluster (τ2) true heterogeneity, that is, the amount of heterogeneity that is not 

due to sampling error. The effect sizes extracted from one study were thus grouped into the 

same cluster. These analyses were performed with Robumeta software R package (Fisher, 

Tipton, & Zhipeng, 2017). 

Sensitivity Analysis 

A set of additional analyses were run to test the robustness of the results. The 

Metafor R package (Viechtbauer, 2010) was used. We first merged all the statistically 

dependent effect sizes using Cheung and Chan’s (2014; for more details, see Appendix B in 

the Supplemental materials) weighted-samplewise correction and ran a random-effect 

model. This analysis was implemented to check whether the results were sensitive to the 

way statistically dependent effect sizes were handled. 

Second, we performed Viechtbauer and Cheung’s (2010) influential case analysis. 

This analysis evaluated whether some effect sizes exerted an unusually strong influence on 

the model’s parameters such as the meta-analytic mean (�̅�) and amount of between-effect 

true heterogeneity (τ2). The RVE models were then rerun without the detected influential 

effect sizes. 
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Third, we ran publication bias analyses. We removed those influential effect sizes 

that increased true heterogeneity in order to rule out heterogeneity-related biases in the 

publication-bias corrected estimates (Schmidt & Hunter, 2015). We then merged all the 

statistically dependent effect sizes and ran the trim-and-fill analysis (Duval & Tweedie, 

2000). The trim-and-fill analysis estimates whether some smaller-than-average effects have 

been systematically suppressed and calculates a corrected overall effect size. We used the 

L0 and R0 estimators described in Duval and Tweedie (2000). Finally, we employed Vevea 

and Woods’ (2005) selection method. This technique estimates the amount of publication 

bias by assigning to p-value ranges different weights. As suggested by Pustejovsky and 

Rodgers (2019), the weights employed in the publication bias analysis were not a function 

of the effect sizes (for more details, see Appendix C in the Supplemental materials).  

Results 

Descriptive Statistics 

 The mean age of the samples included in the present meta-analysis was 8.63 years. 

The median age was 8.69, the first and third quartiles were 6.00 and 9.85, and the mean age 

range was 4.27–15.40. The mean Baseline difference was 0.037, the median was 0.031, the 

first and third quartiles were -0.183 and 0.216, and the range was -0.912–1.274. The 

descriptive statistics of the categorical/dichotomous moderators are summarized in Tables 1 

and 2. 
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Far Transfer 

In this section, we examined the effects of WM training on TD children’s ability to 

perform non-memory-related cognitive and academic tasks. The tasks did not share any 

features with the trained tasks. 

Immediate post-test. 

The overall effect size of the RVE intercept model was �̅� = 0.092, SE = 0.033, 95% 

CI [0.021; 0.163], m = 34, k = 146, df = 14.8, p = .015, ω2 = 0.000, τ2 = 0.000. The random-

effect (RE) model (with Cheung & Chan’s correction) correction yielded very similar 

estimates: �̅� = 0.105, SE = 0.040, p = .013, τ2 = 0.005 (p = .291). Baseline was a 

statistically significant moderator (b = -0.376, SE = 0.065, p < .001), whereas Age was not 

(p = .117). Regarding the categorical moderators, the control group was the only 

statistically significant moderator (p = .030). No significant differences were found across 

different outcome measures (p = 1.000 in all pairwise comparisons; Holm’s correction) or 

Type of training task (all ps ≥ .563). 

Analysis of the control group moderator. 

 Since the control group moderator was statistically significant, we performed the 

sensitivity analysis on the sub-samples separately. When non-active controls were used, the 

overall effect size was �̅� = 0.139, SE = 0.045, 95% CI [0.034; 0.243], m = 21, k = 75, df = 

8.2, p = .015, ω2 = 0.000, τ2 = 0.005. The RE model yielded very similar results, �̅� = 0.177, 

SE = 0.056, p = .005, τ2 = 0.012 (p = .176). Five influential cases were found. Excluding 

these effects did not meaningfully affect the results, �̅� = 0.150, SE = 0.050, 95% CI [0.040; 
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0.261], m = 20, k = 70, df = 9.9, p = .013, ω2 = 0.000, τ2 = 0.000. The two influential cases 

inflating heterogeneity were excluded for the following analyses. The trim-and-fill 

retrieved four missing studies with the L0 estimator, and the corrected estimate was �̅� = 

0.116, 95% CI [0.020; 0.211]. No missing study was retrieved with the R0 estimator. Vevea 

and Woods’ (2005) selection model calculated a similar estimate (�̅� = 0.097). 

 When active controls were used, the overall effect size was �̅� = 0.032, SE = 0. 049, 

95% CI [-0.073; 0.138], m = 18, k = 71, df = 12.3, p = .517, ω2 = 0.000, τ2 = 0.000. The RE 

model yielded very similar results, �̅� = 0.001, SE = 0.055, p = .982, τ2 = 0.000. One 

influential case was found. Excluding this effect did not meaningfully affect the results, �̅� = 

0.046, SE = 0.047, 95% CI [-0.055; 0.148], m = 17, k = 70, df = 12.0, p = .339, ω2 = 0.000, 

τ2 = 0.000. No missing study was retrieved with either the L0 or R0 estimator. The selection 

model estimate was �̅� = -0.002. 

Follow-up. 

The overall effect size of the RVE intercept model was �̅� = 0.006, SE = 0.022, 95% 

CI [-0.048; 0.059], m = 13, k = 66, df = 6.2, p = .809, ω2 = 0.002, τ2 = 0.000. The RE model 

provided very similar estimates: �̅� = 0.014, SE = 0.056, p = .809, τ2 = 0.000. Due to the 

limited number of studies included in this model, no further analysis was conducted. 

Near Transfer 

In this section, we examined the effects of WM training on TD children’s ability to 

perform memory tasks. 
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Immediate post-test. 

The RVE model included all the effect sizes related to near-transfer measures. The 

overall effect size was �̅� = 0.389, SE = 0.056, 95% CI [0.271; 0.507], m = 29, k = 123, df = 

18.8, p < .001, ω2 = 0.006, τ2 = 0.059. The RE model yielded very similar estimates: �̅� = 

0.365, SE = 0.056, p < .001, τ2 = 0.036 (p = .002). The meta-regression showed that neither 

Baseline nor Age were a significant moderator (p = .154 and p = .914, respectively). The 

type of control group and Type of training were not significant moderators either (p = .845 

and ps ≥ .477, respectively). By contrast, type of near transfer (i.e., nearest vs. less near) 

was a significant moderator (p = .005). 

Type of Near Transfer. 

Since the type of near transfer moderator was statistically significant, we performed 

the sensitivity analysis on these two sub-samples separately. With regard to nearest-transfer 

effects, the meta-analytic mean was �̅� = 0.468, SE = 0.072, 95% CI [0.310; 0.626], m = 20, 

k = 76, df = 11.9, p < .001, ω2 = 0.011, τ2 = 0.054. The RE model yielded very similar 

results, �̅� = 0.457, SE = 0.064, p < .001, τ2 = 0.022 (p = .090). One influential case was 

found. Excluding this effect did not meaningfully affect the results, �̅� = 0.451, SE = 0.071, 

95% CI [0.297; 0.605], m = 20, k = 75, df = 11.8, p < .001, ω2 = 0.000, τ2 = 0.052. Merging 

the effects after excluding the influential case lowered the between-study true heterogeneity 

to a non-significant amount (τ2 = 0.015, p = .158). The trim-and-fill retrieved seven missing 

studies with the L0 and R0 estimators, and the corrected estimate was �̅� = 0.356, 95% CI 

[0.221; 0.492]. The selection model estimate was �̅� = 0.391. 
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The less-near-transfer overall effect size was �̅� = 0.261, SE = 0.092, 95% CI [0.060; 

0.462], m = 20, k = 47, df = 12.0, p = .015, ω2 = 0.000, τ2 = 0.051. The RE model yielded 

similar results, �̅� = 0.292, SE = 0.070, p < .001, τ2 = 0.030 (p = .086). One influential case 

was found. Excluding these effects did not meaningfully affect the results, �̅� = 0.284, SE = 

0.089, 95% CI [0.090; 0.477], m = 20, k = 46, df = 12.2, p = .008, ω2 = 0.000, τ2 = 0.039. 

Excluding the influential effect and merging the statistically dependent effects lowered the 

between-study true heterogeneity to a non-significant amount (τ2 = 0.010, p = .234). No 

missing study was retrieved with either the L0 or R0 estimator. Finally, the selection model 

estimated some publication bias (�̅� = 0.196). 

Follow-up. 

The overall effect size of the RVE intercept model was �̅� = 0.239, SE = 0.103, 95% 

CI [-0.012; 0.489], m = 12, k = 58, df = 6.1, p = .059, ω2 = 0.000, τ2 = 0.045. The results 

with the RE model were �̅� = 0.276, SE = 0.084, p = .007, τ2 = 0.031 (p = .080). Due to the 

limited number of studies included in this model, no further analysis was conducted. 

Discussion 

This paper has analyzed the impact of WM training on TD children’s cognitive 

skills and academic achievement. The findings were clear: whereas WM training fosters the 

performance on memory tasks, small (with non-active controls) to null (with active 

controls) far-transfer effects are observed. Therefore, the impact of training on far-transfer 

measures does not go beyond placebo effects. The follow-up overall effects are consistent 

with this pattern of results. These results are also in line with Sala and Gobet (2017; a re-
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analysis with RVE of the data used in that study yields similar results; for the details, see 

the supplemental materials) and, more broadly, the conclusions of previous meta-analytic 

syntheses concerning WM training in the general population (Aksayli et al., 2019; Melby-

Lervåg et al., 2016; Sala et al., 2019a). The findings are summarized in Table 3. 

The examination of true heterogeneity reveals that the meta-analytic models exhibit 

high internal consistency. No appreciable within-study true heterogeneity is observed (ω2 ≈ 

0.000 in all the models). This result supports the validity of Noack et al.’s (2009) taxonomy 

of transfer distance, which was used here. If near-transfer tasks had incorrectly been 

classified as far-transfer tasks (or vice versa), some within-study true heterogeneity would 

have been present. In addition, this result suggests that the memory tests (near transfer) 

used in the primary studies are correlated to each other and can be averaged by study to get 

more precise measures. Analogously, as reported in the meta-regression analysis, there is 

no significant variability across diverse far-transfer measures. The important implication is 

that WM training fails to induce far transfer in every type of outcome measure (e.g., fluid 

intelligence, mathematics, etc.). 

The models report some between-study true heterogeneity (τ2 > 0.000). Regarding 

far transfer, this heterogeneity is very low and is accounted for by the type of control group, 

baseline differences, and a few influential cases. The near-transfer models show slightly 

higher between-study true heterogeneity, which is partly explained by the type of near 

transfer (nearest vs. less near). The remaining true heterogeneity almost completely 

disappears when the statistically dependent (i.e., belonging to the same study) effects are 
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averaged into more precise measures of memory skills. This corroborates the idea that most 

of the observed between-study heterogeneity is a statistical artifact related to measurement 

error in memory tasks. Otherwise, between-study true heterogeneity would occur even after 

averaging the effect sizes within the same study. 

Finally, no significant amount of true heterogeneity appears to be accounted for by 

either the participants’ mean age or the type of training task. The various training programs 

seem equally (in)effective in eliciting transfer effects. This outcome is in line with the 

findings of Melby-Lervåg et al. (2016) and corroborate the idea that transfer is function of 

distance between training task and target task rather than the features of the training 

program per se (e.g., Byrne et al., 2019; Pergher et al., 2019). Analogously, since age exerts 

no appreciable impact on the amount of transfer, we can conclude that the stage of WM 

development in TD children does not play any role in making training programs more (or 

less) effective. That being said, it is worth noting that most of the primary studies have 

investigated the effects of WM training in preschool and primary school TD children (see 

Descriptive Statistics section). Only a fraction of the primary studies include adolescent 

samples, which makes our findings somewhat less generalizable with typically middle/high 

school students (e.g., 12-16 years of age). 

Overall, Pergher et al.’s (2019) claim that outcomes in WM training might be 

mediated by specific characteristics of the training and transfer tasks is not supported by 

our analyses: the estimated true heterogeneity, when present at all, was explained by a few 

moderators (distance of transfer and type of control group) and statistical artifacts (baseline 
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differences and a few extreme effects). Therefore, searching for other potential moderators 

(e.g., duration of the intervention) seems pointless, and may even be perceived as a 

questionable research practice (i.e., capitalizing on sampling error; Schmidt & Hunter, 

2015). In other words, even though, just like in pretty much any field of research in the 

behavioral sciences, there are a number of design-related differences across the primary 

studies (as correctly observed by Pergher and colleagues), almost none of these differences 

exerts any influence on the ability of WM training to induce near or far-transfer effects. In 

fact, without quantitative evidence for within- and between-study true heterogeneity, 

appealing to generic differences across studies risks ending up being just a smokescreen 

behind which anybody can question the conclusions of meta-analytic syntheses and justify 

the need to carry out further research (Schmidt, 2017; Schmidt & Hunter, 2015). 

Moreover, it is unlikely that WM training exerts positive far-transfer effects on 

subgroups of individuals (e.g., underachievers at baseline assessment; Jaeggi et al., 2011). 

Assuming so would necessarily lead to implausible conclusions. Since the meta-analytic 

far-transfer mean is null when placebo effects are ruled out, postulating non-artifactual 

between-individual differences implies that, while WM training enhances 

cognitive/academic skills in some children (positive effect), other individuals have their 

skills damaged by the training (negative effect). However, there is no theoretical reason nor 

any empirical evidence to believe that WM training exerts a detrimental effect on one’s 

cognition. Instead, the reported between-study and between-individual differences are 

simply statistical fluctuations (e.g., sampling error and regression to the mean). 
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Therefore, given the circumstances, it is possible to apply Occam’s razor (Schmidt, 

2010) and conclude that WM training does not produce any generalized (far-transfer) effect 

in TD children. Furthermore, as the same pattern of results has been found in adults, older 

adults, and children with learning disabilities (Aksayli et al., 2019; Melby-Lervåg et al., 

2016; Sala et al., 2019a), the most parsimonious and plausible conclusion is that WM 

training does not lead to far transfer. Thus, based on the available scientific evidence, the 

rational decision should be to redirect research efforts and resources to other means of 

fostering cognitive and academic skills, most likely means using domain-specific methods 

(Gobet, 2016; Simon & Gobet, 1996). 

Practical and Theoretical Implications 

 The practical implications of our results are the most obvious to highlight. Given 

the absence of appreciable far-transfer effects, especially in those studies implementing 

active controls, WM training should not be recommended as an educational tool. Although 

there seems to be no reason to believe that WM training negatively affects children’s 

cognitive skills or academic achievement, implementing such programs would represent a 

waste of financial and time resources. 

Given that positive effects were observed in our meta-analyses with respect to near 

transfer, one might nonetheless wonder whether WM training is worth the effort. In our 

opinion, it is not. First, nearest transfer effects do not constitute any robust evidence for 

cognitive enhancement. Rather, they are clearly a measure of children’s boosted ability to 

perform the training task or one of its variants. This fact reflects the well-known 
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psychometric principle according to which cognitive tests are not reliable proxies for 

cognitive constructs of interest if the participant has the opportunity to carry out the task 

multiple times. Second, less-near-transfer effects are not evidence of improved domain-

general memory skills either. As noted by Shipstead, Redick, and Engle (2012), even 

though some less-near-transfer memory tasks (e.g., odd-one-out task) are not part of the 

training programs, they still share some overlap with some training tasks (e.g., simple-span 

tasks). Simply put, individuals engaging in WM training do not expand their WM capacity. 

Rather, they most likely acquire the ability to perform some memory tasks somewhat better 

than controls, which explains the small effect sizes reported in less-near-transfer measures 

and the absence of far transfer. 

 Two main theoretical implications stem from our findings. First, on the behavioral 

level, we observe that the amount of transfer is a function of the similarity between the 

training task and the outcome task. This pattern of results has been replicated in many 

different domains and appears to be a constant in human cognition (for a review, see Sala & 

Gobet, 2019). Second and most important, our findings support recent empirical evidence 

showing that WM and fluid intelligence do not share the same neural mechanisms as 

previously hypothesized (e.g., Halford et al., 2007; Jaeggi et al., 2008; Strobach & 

Karbach, 2016; Taatgen, 2013, 2016). Brain imaging data suggest that WM performance is 

associated with increased network segregation, whereas the opposite pattern occurs when 

participants are asked to solve fluid intelligence tasks (Lebedev, Nilsson, & Lövdén, 2018). 

In the same vein, Burgoyne, Hambrick, and Altman (2019) have recently failed to find any 

evidence of a causal link between WM capacity and fluid intelligence. In fact, this study 
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shows that the correlation between performance in WM tasks and fluid intelligence tasks is 

not a function of the capacity demands of the items of fluid intelligence tasks. This finding 

is in direct contradiction to the predictions of the common capacity constraint hypothesis. 

Thus, WM and fluid intelligence do not appear isomorphic or even causally related, which 

would explain why WM training fails to induce any far-transfer effect despite the well-

known correlation between measures of WM capacity, fluid intelligence, and academic 

achievement. 

 Pessimism about the possibility to stimulate cognitive enhancement through WM 

training is thus upheld by a robust corpus of evidence that goes beyond our meta-analytic 

results. Such convergent findings at different levels of empirical evidence (experimental, 

correlational, and neural) is a successful example of triangulation that does not leave much 

room for further debate (Campbell & Fiske, 1959; Munafò & Smith, 2018). Indeed, it is our 

conviction that the data collected so far should lead researchers involved in WM training to 

entirely reconsider the theoretical bases of the field or even dismiss this branch of research.  

Conclusions 

 This meta-analysis has examined the impact of WM training on TD children’s 

performance on cognitive and academic tasks using a multilevel approach. The results 

significantly extend and corroborate the conclusions reached in a previous meta-analysis 

(Sala & Gobet, 2017). The training programs exert an appreciable effect on memory task 

performance. The size of this effect is a function of the similarity between the training task 

and the outcome task. By contrast, small to null effects are found on far-transfer measures 
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(i.e., fluid intelligence, attention, language, and mathematics). The magnitude of these 

effects equals zero in studies implementing active controls, suggesting that the small 

benefits reported in some studies are the product of placebo effects. Finally, the meta-

analytic models exhibit a low to null amount of true heterogeneity that is entirely explained 

by transfer distance, type of control group, baseline between-group differences, and a few 

extreme effect sizes. The lack of residual true heterogeneity means that there is no variance 

left to explain and implies that systematically comparing the features of training tasks and 

far-transfer outcome measures to identify successful WM training regimens, as suggested 

by Pergher et al. (2019), is bound to fail.  



WORKING MEMORY TRAINING IN CHILDREN 

29 
 

Acknowledgements 

The support of the Japan Society for the Promotion of Science [GS; 17F17313] is gratefully 

acknowledged. 

 

Data availability statement 

The data that support the findings of this study are openly available in OSF at 

http://doi.org/10.17605/OSF.IO/BW8PG. 

  



WORKING MEMORY TRAINING IN CHILDREN 

30 
 

References 

Aksayli, N. D., Sala, G., & Gobet, F. (2019). The cognitive and academic benefits of 

Cogmed: A meta-analysis. Educational Research Review, 29, 229-243. 

doi:10.1016/j.edurev.2019.04.003 

Baddeley, A. (1992). Working memory. Science, 255, 556-559. 

doi:10.1126/science.1736359 

Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in 

Cognitive Sciences, 4, 417-423. doi:10.1016/S1364-6613(00)01538-2 

Burgoyne, A. P., Hambrick, D. Z., & Altman, E. M. (2019). Is working memory capacity a 

causal factor in fluid intelligence? Psychonomic Bulletin & Review, 26, 1333-1339. 

doi:10.3758/s13423-019-01606-9 

Byrne, E. M., Gilbert, R. A., Kievit, R., & Holmes, J., (2019, April 16). Evidence for 

separate backward recall and n-back working memory factors: A large-scale latent 

variable analysis. https://doi.org/10.31234/osf.io/bkja7 

Campbell, D., & Fiske, D. (1959). Convergent and discriminant validation by the 

multitrait-multimethod matrix. Psychological Bulletin, 56, 81-105. 

doi:10.1037/h0046016 

Cheung, S. F., & Chan, D. K. (2014). Meta-analyzing dependent correlations: An SPSS 

macro and an R script. Behavioral Research Methods, 46, 331-345. 

doi:10.3758/s13428-013-0386-2 



WORKING MEMORY TRAINING IN CHILDREN 

31 
 

Cowan, N. (2016). Working memory maturation: Can we get at the essence of cognitive 

growth? Perspective on Psychological Science, 11, 239-264. 

doi:10.1177/1745691615621279 

Cowan, N. (2017). The many faces of working memory and short-term storage. 

Psychonomic Bulletin & Review, 24, 1158-1170. doi:10.3758/s13423-016-1191-6 

Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and 

reading. Journal of Verbal Learning and Verbal Behavior, 19, 450-466. 

doi:10.1016/S0022-5371(80)90312-6 

Detterman, D. K. (2014). Introduction to the intelligence special issue on the development 

of expertise: Is ability necessary? Intelligence, 45, 1-5. 

doi:10.1016/j.intell.2014.02.004 

Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel plot based method of 

testing and adjusting for publication bias in meta-analysis. Biometrics, 56, 276-284. 

doi:10.1111/j.0006-341X.2000.00455.x 

Engle, R. W. (2018). Working memory and executive attention: A revisit. Perspectives on 

Psychological Science, 13, 190-193. doi:10.1177/1745691617720478 

Eysenck, H. J. (1994). Systematic reviews: Meta-analysis and its problems. BMJ, 309:789. 

doi:10.1136/bmj.309.6957.789 

Fisher, Z., Tipton, E., & Zhipeng, H. (2017). Package “robumeta.” Retrieved from 

https://cran.r-project.org/web/packages/robumeta/robumeta.pdf 



WORKING MEMORY TRAINING IN CHILDREN 

32 
 

Gathercole, S. E., Dunning, D. L., Holmes, J., & Norris, D. (2019). Working memory 

training involves learning new skills. Journal of Memory and Language, 105, 19-

42. doi:10.1016/j.jml.2018.10.003 

Gathercole, S. E., Pickering, S. J., Ambridge, B., & Wearing, H. (2004). The structure of 

working memory from 4 to 15 years of age. Developmental Psychology, 40, 177-

190. doi:10.1037/0012-1649.40.2.177 

Gobet, F. (2016). Understanding expertise: A multi-disciplinary approach. London: 

Palgrave/Macmillan. 

Gobet, F., & Simon, H. A. (1996). Templates in chess memory: A mechanism for recalling 

several boards. Cognitive Psychology, 31, 1-40. doi:10.1006/cogp.1996.0011 

Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid 

intelligence. Nature Neuroscience, 6, 316-322. doi:10.1038/nn1014 

Halford, G. S., Cowan, N., & Andrews, G. (2007). Separating cognitive capacity from 

knowledge: A new hypothesis. Trends in Cognitive Sciences, 11, 236-242. 

doi:10.1016/j.tics.2007.04.001 

Hedges, L. V., Tipton, E., & Johnson, M. C. (2010). Robust variance estimation in meta-

regression with dependent effect size estimates. Research Synthesis Methods, 1, 39-

65. doi:10.1002/jrsm.5 

Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid 

intelligence with training on working memory. Proceedings of the National 

Academy of Sciences of the United States of America, 105, 6829-6833. 

doi:10.1073/pnas.0801268105 



WORKING MEMORY TRAINING IN CHILDREN 

33 
 

Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Shah, P. (2011). Short- and long-term benefits 

of cognitive training. PNAS, 108, 10081-10086. doi:10.1073/pnas.1103228108 

Jones, G., Gobet, F., & Pine, J. M. (2007). Linking working memory and long-term 

memory: A computational model of the learning of new words. Developmental 

Science, 10, 853-873. doi:10.1111/j.1467-7687.2007.00638.x 

Kane, M. J., Hambrick, D. Z., & Conway, A. R. A. (2005). Working memory capacity and 

fluid intelligence are strongly related constructs: Comment on Ackerman, Beier, and 

Boyle (2005). Psychological Bulletin, 131, 66-71. doi:10.1037/0033-2909.131.1.66 

Lebedev, A. V., Nilsson, J., & Lövdén, M. (2018). Working memory and reasoning benefit 

from different modes of large-scale brain dynamics in healthy older adults. Journal 

of Cognitive Neuroscience, 30, 1033-1046. doi:10.1162/jocn_a_01260 

McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on 

the shoulders of the giants of psychometric intelligence research. Intelligence, 37, 1-

10. doi:10.1016/j.intell.2008.08.004 

Melby-Lervåg, M., Redick, T. S., & Hulme, C. (2016). Working memory training does not 

improve performance on measures of intelligence or other measures of far-transfer: 

Evidence from a meta-analytic review. Perspective on Psychological Science, 11, 

512-534. doi:10.1177/1745691616635612 

Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for 

systematic reviews and meta-analyses: The PRISMA statement. Annals of Internal 

Medicine, 151, 264-269. doi:10.7326/0003-4819-151-4-200908180-00135 

Munafò, M. R., & Smith, G. D. (2018). Replication is not enough. Nature, 553, 399-401. 



WORKING MEMORY TRAINING IN CHILDREN 

34 
 

Noack, H., Lövdén, M., Schmiedek, F., & Lindenberger, U. (2009). Cognitive plasticity in 

adulthood and old age: Gauging the generality of cognitive intervention effects. 

Restorative Neurology and Neuroscience, 27, 435-453. doi:10.3233/RNN-2009-

0496 

Peng, P., Barnes, M., Wang, C., Wang, W., Li, S., Swanson, H. L., … Tao, S. (2018). A 

meta-analysis on the relation between reading and working memory. Psychological 

Bulletin, 144, 48-76. doi:10.1037/bul0000124 

Pergher, V., Shalchy, M. A., Pahor, A., Van Hulle, M. M, Jaeggi, S. M., & Seitz, A. R. 

(2019). Divergent research methods limit understanding of working memory 

training. Journal of Cognitive Enhancement. Advanced online 

publication. doi:10.1007/s41465-019-00134-7 

Pustejovsky, J. E., & Rodgers, M. A. (2019). Testing for funnel plot asymmetry of 

standardized mean differences. Research Synthesis Methods, 10, 57-71. 

doi:10.1002/jrsm.1332 

Redick, T. S., & Lindsey, D. R. B. (2013). Complex span and n-back measures of working 

memory: A meta-analysis. Psychonomic Bulletin & Review, 20, 1102-1113. 

doi:10.3758/s13423-013-0453-9 

Sala, G., Aksayli, N. D., Tatlidil, K. S., Tatsumi, T., Gondo, Y., & Gobet, F. (2019a). Near 

and far transfer in cognitive training: A second-order meta-analysis. Collabra: 

Psychology, 5, 18. doi:10.1525/collabra.203 



WORKING MEMORY TRAINING IN CHILDREN 

35 
 

Sala, G., Aksayli, N. D., Tatlidil, K. S., Gondo, Y., & Gobet, F. (2019b). Working memory 

training does not enhance older adults’ cognitive skills: A meta-analysis. Retrieved 

from https://psyarxiv.com/5frzb/ 

Sala, G., & Gobet, F. (2017). Working memory training in typically developing children: A 

meta-analysis of the available evidence. Developmental Psychology, 53, 671-685. 

doi:10.1037/dev0000265 

Sala, G., & Gobet, F. (2019). Cognitive training does not enhance general cognition. 

Trends in Cognitive Sciences, 23, 9-20. doi:10.1016/j.tics.2018.10.004 

Schmidt, F. L. (2010). Detecting and correcting the lies that data tell. Perspectives on 

Psychological Science, 5, 233-242. doi:10.1177/1745691610369339 

Schmidt, F. L. (2017). Beyond questionable research methods: The role of omitted relevant 

research in the credibility of research. Archives of Scientific Psychology, 5, 32-41. 

doi:10.1037/arc0000033 

Schmidt, F. L., & Hunter, J. E. (2015). Methods of meta-analysis: Correcting error and 

bias in research findings (3rd ed.). Newbury Park, CA: Sage. 

Shipstead, Z., Hicks, K. L., & Engle, R. W. (2012). Cogmed Working Memory Training: 

Does the evidence support the claims? Journal of Applied Research in Memory and 

Cognition, 1, 185-193. doi:10.1016/j.jarmac.2012.06.003 

Shipstead, Z., Redick, T. S., & Engle, R. W. (2012). Is working memory training effective? 

Psychological Bulletin, 138, 628-654. doi:10.1037/a0027473 

Simons, D. J., Boot, W. R., Charness, N., Gathercole, S.E., Chabris, C. F., Hambrick, D. Z., 

& Stine-Morrow, E. A. L. (2016). Do “brain-training” programs work? 



WORKING MEMORY TRAINING IN CHILDREN 

36 
 

Psychological Science in the Public Interest, 17, 103-186. 

doi:10.1177/1529100616661983 

Strobach, T., & Karbach, J. (Eds.) (2016). Cognitive training: An overview of features and 

applications. New York: Springer. 

Süß, H. M., Oberauer, K., Wittmann, W. W., Wilhelm, O., & Schulze, R. (2002). Working-

memory capacity explains reasoning ability - and a little bit more. Intelligence, 30, 

261-288. doi:10.1016/S0160-2896(01)00100-3 

Taatgen, N. A. (2013). The nature and transfer of cognitive skills. Psychological Review, 

120, 439-471. doi:10.1037/a0033138 

Taatgen, N. A. (2016). Theoretical models of training and transfer effects. In T. Strobach & 

J. Karbach (Eds.), Cognitive training: An overview of features and applications (pp. 

19-29). 

Tanner-Smith, E. E., & Tipton, E. (2014). Robust variance estimation with dependent effect 

sizes: Practical considerations including a software tutorial in Stata and SPSS. 

Research Synthesis Methods, 5, 13-30. doi:10.1002/jrsm.1091 

Tanner-Smith, E. E., Tipton, E., & Polanin, J. R. (2016). Handling complex meta-analytic 

data structures using robust variance estimates: A tutorial in R. Journal of 

Developmental and Life-Course Criminology, 2, 85-112. doi:10.1007/s40865-016-

0026-5 

Vevea, J. L. & Woods, C. M. (2005). Publication bias in research synthesis: Sensitivity 

analysis using a priori weight functions. Psychological Methods, 10, 428-443. 

doi:10.1037/1082-989X.10.4.428 



WORKING MEMORY TRAINING IN CHILDREN 

37 
 

Viechtbauer, W. (2010). Conducting meta-analysis in R with the metafor package. Journal 

of Statistical Software, 36, 1-48. Retrieved from 

http://brieger.esalq.usp.br/CRAN/web/packages/metafor/vignettes/metafor.pdf 

Viechtbauer, W., & Cheung, M. W. L. (2010). Outlier and influence diagnostics for meta-

analysis. Research Synthesis Methods, 1, 112-125. doi:10.1002/jrsm.11 

Wai, J., Brown, M. I., & Chabris, C. F. (2018). Using standardized test scores to include 

general cognitive ability in education research and policy. Journal of Intelligence, 6, 

37. doi:10.3390/jintelligence6030037 

Westerberg, H., Hirvikoski, T., Forssberg, H., & Klingberg, T. (2004). Visuo-spatial 

working memory span: A sensitive measure of cognitive deficits in children with 

ADHD. Child Neuropsychology, 10, 155-161. doi:10.1080/09297040490911014 



WORKING MEMORY TRAINING IN CHILDREN 

38 
 

 

Figure 1. Flow diagram of the search strategy. 
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Table 1 

Number of Studies and Post-Test Effect Sizes by Categorical Moderators 

Categorical Moderators No. of Studies No. of Effect Sizes 
Far-Transfer Outcome   
Fluid intelligence 14 27 
Processing speed 8 37 
Mathematics 19 38 
Language 14 44 

Type of Near Transfer   
Nearest 20 76 
Less near 20 47 
Control Group   
Non-Active 22 135 
Active 23 134 
Type of Training   
Updating 7 26 
Span 24 163 
Mixed 5 62 
Other 4 18 

 

Table 2 

Number of Studies and Follow-up Effect Sizes by Categorical Moderators 

Categorical Moderators No. of Studies No. of Effect Sizes 
Far-Transfer Outcome   
Fluid intelligence 4 6 
Processing speed 5 22 
Mathematics 8 17 
Language 8 21 

Type of Near Transfer   
Nearest 7 30 
Less near 9 28 
Control Group   
Non-Active 8 74 
Active 8 50 
Type of Training   
Updating 2 10 
Span 10 63 
Mixed 3 51 
Other 0 0 
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Table 3 

Overall Effects in the Two Meta-Analyses Sorted by Significant Moderators 

Model 

(1) 

𝒈ഥ (RVE) 

(2) 

Adj. 𝒈ഥ 

(range) 

(3) 

Heterogeneity 

(4) 

Residual 

Heterogeneity 

(5) 

RE τ2 

(6) 

Present Meta-Analysis 

Far 0.092 – ω2 = 0.000, τ2 = 0.000 ω2 = 0.000, τ2 = 0.000 τ2 = 0.005 (n.s.) 

Non-Active 0.139 0.097 – 0.150 ω2 = 0.000, τ2 = 0.005 ω2 = 0.000, τ2 = 0.000 τ2 = 0.000 (n.s.) 

Active 0.032 -0.002 – 0.001 ω2 = 0.000, τ2 = 0.000 ω2 = 0.000, τ2 = 0.000 τ2 = 0.000 (n.s.) 

Near 0.389 – ω2 = 0.006, τ2 = 0.059 ω2 = 0.001, τ2 = 0.058 τ2 = 0.036 

Nearest 0.468 0.356 – 0.391 ω2 = 0.011, τ2 = 0.054 ω2 = 0.000, τ2 = 0.052 τ2 = 0.015 (n.s.) 

Less-near 0.261 0.196 – 0.292 ω2 = 0.000, τ2 = 0.051 ω2 = 0.000, τ2 = 0.039 τ2 = 0.010 (n.s.) 

Note. (1) The meta-analytic model; (2) The overall RVE effect size; (3) The range of the 
publication bias adjusted estimates; (4) The amount of true heterogeneity of the model; (5) 
The true heterogeneity after excluding influential cases and running meta-regression; (6) 
The random-effect between-study true heterogeneity after merging the statistically 
dependent effect sizes. 

 


