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ABSTRACT

Probabilistic forecasting is common in a wide variety of fields including geoscience, social science, and finance.

It is sometimes the case that one hasmultiple probability forecasts for the same target.How is the information in

these multiple nonlinear forecast systems best ‘‘combined’’? Assuming stationarity, in the limit of a very large

forecast–outcome archive, each model-based probability density function can be weighted to form a

‘‘multimodel forecast’’ that will, in expectation, provide at least as much information as the most informative

single model forecast system. If one of the forecast systems yields a probability distribution that reflects the

distribution from which the outcome will be drawn, Bayesian model averaging will identify this forecast system

as the preferred system in the limit as the number of forecast–outcome pairs goes to infinity. In many appli-

cations, like those of seasonal weather forecasting, data are precious; the archive is often limited to fewer than

26 entries. In addition, no perfect model is in hand. It is shown that in this case forming a single ‘‘multimodel

probabilistic forecast’’ can be expected to provemisleading. These issues are investigated in the surrogatemodel

(here a forecast system) regime, where using probabilistic forecasts of a simplemathematical systemallowsmany

limiting behaviors of forecast systems to be quantified and compared with those under more realistic conditions.

1. Introduction

Forecasters are often faced with an ensemble of

model simulations that are to be incorporated into

quantitative forecast system and presented as a proba-

bilistic forecast. Indeed, ensembles of initial conditions

have been operational in weather centers in both the

United States (Kirtman et al. 2014) and Europe (Palmer

et al. 2004;Weisheimer et al. 2009) since the early 1990s,

and there is a significant literature on their interpre-

tation (Raftery et al. 2005; Hoeting et al. 1999;

Roulston and Smith 2003; Wang and Bishop 2005;

Wilks 2006; Wilks and Hamill 2007). There is signifi-

cantly less work on the design and interpretation of

ensembles over model structures, although such en-

sembles are formed on weather (TIGGE; Bougeault

et al. 2010), seasonal (ENSEMBLES; Weisheimer et al.

2009) and climate (CMIP5; Taylor et al. 2012) forecast

lead times (expansions of acronyms can be found online

at https://www.ametsoc.org/PubsAcronymList). This

paper focuses on the interpretation of multimodel en-

sembles in situations inwhich data are precious, that is, in

which the forecast–outcome archive is relatively small.

Archives for seasonal forecasts fall into this category,

typically limited to between 32 and 64 forecast–outcome

pairs.1 At times, the forecaster has only an ‘‘ensemble of
Denotes content that is immediately available upon publica-

tion as open access.
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convenience’’ composed by collecting forecasts made by

various groups for various purposes. Alternatively, mul-

timodel ensembles could be formed in collaboration using

an agreed experimental design. This paper was inspired by

the ENSEMBLES project (Weisheimer et al. 2009), in

which seven seasonal models were run in concert, with

nine initial condition simulations under each model

(Hewitt and Griggs 2004). Small-archive parameters2

(SAP) forecast systems are contrasted with large-

archive parameters (LAP) forecast systems using the

lessons learned in experimental design based on the

results originally reported by Higgins (2015).

We adopt the surrogate model context, taking rela-

tively simple models of a chaotic dynamical system, then

contrasting combinations of model to gain insight in how

to build and test multimodel ensembles in a context

where the data are not precious and a ‘‘perfect model’’

(the system) is known. In this context a robust experi-

mental design can be worked out. There is, of course, an

informal subjective judgement regarding how closely the

consideration in the surrogate experimentsmap back into

the real-world experiment. This is illustrated using a rel-

atively simple chaotic dynamical system. Specifically, the

challenges posed when evaluation data are precious are

illustrated by forecasting a simple one-dimensional sys-

tem using four imperfect models. A variety of ensemble

forecast system designs are considered: the selection of

parameters and the relative value of ‘‘more’’ ensemble

members from the ‘‘best’’ model are discussed. This

consideration is addressed in a new generalization of the

surrogate modeling framework (Smith 1992 and refer-

ences therein); it is effectively a ‘‘surrogate forecasting

system’’ approach, of value when practical constructions

rule out the use of the actual forecast systemof interest, as

is often the case. In the large forecast-archive limit, the

selection of model weights is shown to be straightforward

and the results are robust as expected; when a unique set

of weights are not well defined, the results remain robust

in terms of predictive performance. It is shown that when

the forecast–outcome archive is nontrivial but small, as it

is in seasonal forecasting, uncertainty in model weights is

large. The parameters of the individual model probabi-

listic forecasts vary widely between realizations in the

SAP case; they do not do so in the LAP case. This does

not guarantee that the forecast skill of SAP is significantly

inferior to that of LAP, but it is shown that in this case the

SAP forecast systems are significantly (several bits) less

skillful. The goal of this paper is to refocus attention on

this issue, not to claim to have resolved it. When evalu-

ating models that push the limits of computational abili-

ties of the day, one is forced to use systems simpler than

those targeted by operational models to investigate en-

semble forecasting. And whenever simplified models are

employed, there is a question as to whether the results

hold in larger (imperfect) models. This question of ‘‘even

in or only in’’ was discussed inGilmour and Smith (1997).

In turning to the question of forming a multimodel

forecast system, it is shown that 1) the model weights

assigned given SAP are significantly inferior to those

under LAP (and, of course, to those using ideal weights),

2) estimating the best model in SAP is problematic

when the models have similar skill, and 3) multimodel

‘‘out of sample’’ performance is often degraded because

of the assignment of low (zero) weights to useful models.

Potential approaches to this challenge (other thanwaiting

for decades) are discussed. It is not possible, given the

current archive, to establish the extent to which these

results are relevant. The aim of the paper can only be to

suggest a more general experimental design in opera-

tional studies that would identify or rule out the concerns

quantified above. The paper merely raises a concern to

which no exceptions are known, it does not attempt (nor

could any paper today succeed) in showing this clear and

present challenge to multimodel forecasting that domi-

nates seasonal (or other) operational forecasts. It does, by

considering well designed surrogate forecasting systems,

provide insight into challenges likely to be faced by any

multimodel forecast system of a design similar to the real

forecast system of interest.3

2 Here the parameters refer to the parameters involved in

transforming the multimodel ensemble into the predictive dis-

tribution—for example, the model weights, dressing, and blending

parameters (see appendix), and they are estimated from an archive

that is sometimes large and sometimes small.

3 After reading this section, a reviewer asks whether these results

are relevant to readers of Monthly Weather Review. Consider the

related question: what evidence is in hand that any approach is

robust in operational models? Detailed questions of how large an

ensemble should be or how a multimodel should be weighted [or

even constructed (Du and Smith 2017)] cannot be explored with

operational models because of the extreme computational cost of

such an evaluation. One could not evaluate, say, Fig. 13 using op-

erational models. The aim of surrogate modeling is to address such

questions and demonstrate the robustness of the results for simpler

target systems. The weakness of surrogate forecast systems is in-

terpreting their relation of these results to those of operational

systems of interest. The alternative is to have nowell quantified and

evaluated insight into the robustness at all.Were the results ofHide

(1958) and Read (1992) useful to numerical weather forecasting?

Were the many systems of mathematical equations constructed by

Lorenz (1963, 1995) useful? Were the circuit studies on ensemble

size by Machete and Smith (2016) useful? Surrogate forecast sys-

tems can aid in the design of operational test beds and support their

findings. The answer in our particular case appears to be that they

are relevant.
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2. From ensemble(s) to predictive distribution

The ENSEMBLES project considered seasonal fore-

casts from seven different models; an initial condition

ensemble of nine members was made for each model

and launched four times per year (in February, May,

August, and November). The maximum lead time

was seven months, except for the November launch,

which was extended to 14 months. Details of the

project can be found in Alessandri et al. (2011),

Doblas-Reyes et al. (2010), Weigel et al. (2008),

Hewitt and Griggs (2004), Weisheimer et al. (2009),

and Smith et al. (2015).

The models are not exchangeable in terms of the per-

formance of their probabilistic forecasts. Construction of

predictive functions via kernel dressing and blending

with climatology [see Bröcker and Smith (2008) and

the appendix for mathematical details] for each initial

condition ensemble of simulations is discussed in

Smith et al. (2015) (under various levels of cross val-

idation). Note that kernel dressing is not kernel den-

sity estimation (Silverman 1986); asked to suggest a

reference that clarifies this common confusion of the

two procedures, Silverman replied ‘‘As for anything

in print, this is like asking for something in print that

says the earth is round rather than flat.’’ (B. Silverman

2018, personal communication). Kernel dressing does

aim to reproduce the imperfect-model distribution

from which it was drawn; kernel density estimation

always and only attempts to reproduce the distribu-

tion from which the ensemble members were drawn.

Throughout the current paper, skill is quantified with

I. J. Good’s logarithmic score (Good 1952; Roulston

and Smith 2002); this score is sometimes (and in this

paper) referred to as ‘‘ignorance’’ (Roulston and

Smith 2002). As noted in Smith et al. (2015) and

Du and Smith (2017), ignorance is the only proper

and local score for continuous variables (Bernardo

1979; Raftery et al. 2005; Bröcker and Smith 2007),

and it is defined by

S[p(y),Y]52log
2
[p(Y)] , (1)

whereY is the outcome and p(Y) is the probability of the

outcome Y. In practice, given K forecast–outcome pairs

{(pi, Yi)ji 5 1, . . . , K}, the empirical average ignorance

score of a forecast system is then

S
E
[p(y),Y]5

1

K
�
K

i51

2log
2
[p

i
(Y

i
)] . (2)

In practice, the skill of a forecast system can be reflected

by the ignorance of the forecast system relative a ref-

erence forecast pref:

S
rel
[p(y),Y]5

1

K
�
K

i51

2log
2
f[p

i
(Y

i
)]/p

ref
(Y

i
)g . (3)

The climatological forecast (‘‘climatology’’) is a com-

monly used reference forecast in meteorology.

3. Simple chaotic system models pair

Without any suggestion that probabilistic forecasting

of a one-dimensional chaotic map reflects the complexity

or the dynamics of seasonal forecasting of the Earth sys-

tem, this paper draws parallels. Parallels between chal-

lenges to probabilistic forecasting of scalar outcomes using

multiple models with different structural model errors

and a small forecast–outcome archive in low-dimensional

systems and those in high-dimensional systems. These

challenges occur both in low-dimensional systems and in

high-dimensional systems. Whether or not suggestions in-

spired by the low-dimensional case below generalize to

high-dimensional cases (or other low-dimensional cases,

for that matter), would have to be evaluated on a case-by-

case basis. The argument below is that the challenges

themselves can be expected in high-dimensional cases,

leading to the suggestion that they should be considered in

the design of all multimodel forecast experiments.

The system to be forecast throughout this paper is the

Moran–Ricker map (Moran 1950; Ricker 1954) given in

Eq. (4) below. Selection of a simple, mathematically de-

fined system allows the option of examining the challenges

of a small forecast–outcome archive in the context of re-

sults based on very large archives. This is rarely possible

for a physical system (see, however, Machete 2007; Smith

et al. 2015). In this section themathematical structure of the

system and four imperfect models of it are specified. The

specific structure of these models reflects a refined exper-

imental design in light of the results of Higgins (2015).

Let ~xt be the state of the Moran–Ricker map at time

t 2 Z. The evolution of the system state ~x is given by

~x
t11

5 ~x
t
exp[l(12 ~x

t
)] . (4)

In the experiments presented in this paper we use l5 3,

where the system is somewhat ‘‘less chaotic,’’ rather

than using the value adopted in Sprott (2003) [Fig. 1

shows the Lyapunov exponent as a function of system

parameter l (Glendinning and Smith 2013)] in order to

ease the construction of models with comparable fore-

cast skill. We define the observation at time t to be

st 5 ~xt 1ht, where the observational noise ht is inde-

pendent and normally distributed [ht ;N(0, s2
noise)].

4

4 Observations are restricted to positive values.

JUNE 2020 SM I TH ET AL . 2235

Unauthenticated | Downloaded 06/10/21 03:02 PM UTC



Four one-dimensional deterministic models are con-

structed, each one being an imperfect model of the

Moran–Ricker system. In the experiments presented

here, the focus is on designing a multimodel ensemble

scheme and effective parameter selection for producing

predictive distribution from multiple models. Therefore

the imperfect models as well as their parameter values

are fixed. These four models share the same state space

as the system, and the observations are complete. Note

in practice, it is almost always the case that the model

state x lies in a different space from the system state ~x.

The models are as follows:

Model I, G1(x), is built by first expanding the expo-

nential term in Eq. (4) to the 12th order:

x
t11

5 x

�
11 l(12 x)1

1

2!
[l(12 x)]2 1 � � �

1
1

12!
[l(12 x)]12

�
. (5)

The coefficient of each polynomial term is then trun-

cated at the third decimal place:

x
t11

5 x[11 3(12 x)1 4:5(12 x)2 1 � � �
1 0:004(12 x)11 1 0:001(12 x)12]. (6)

Model II, G2(x), is derived by first taking the logarithm

of Eq. (4) and expanding to the eighth order:

logx
t11

5 logx1 l2 lx5 logx1 l2 lelogx , (7)

logx
t11

522 logx2
3

2!
(logx)22

3

3!
(logx)3

2 � � �2 3

8!
(logx)8. (8)

The coefficient of each polynomial term is then trun-

cated at the fourth decimal place:

logx
t11

522 logx2 1:5(logx)2 2 0:5(logx)3 2 � � �
2 0:0006(logx)7 2 0:0001(logx)8 . (9)

Model III, G3(x), is obtained by expanding the right-

hand side of Eq. (4) in a Fourier series over the range

0# ~x#p. This series is then truncated at the 10th order

to yield

x
t11

5
a
0

2
1�

10

i51

[a
i
cos(2ix

t
)1b

i
sin(2ix

t
)] ,

where the coefficients ai and bi are obtained by

a
i
5

2

p

ðp
0

xe l(12x) cos(2ix) dx and (10)

b
i
5

2

p

ðp
0

xe l(12x) sin(2ix) dx . (11)

Model IV, G4(x), is obtained by expanding the right-

hand side of Eq. (4) by Laguerre polynomials truncated

at the 20th term:

x
t11

5�
20

i50

c
i
L

i
(x) ,

where

L
i
(x)5 �

i

k50

[(21)k/k!]

�
N

k

�
xk

are the Laguerre polynomials and the coefficients ci are

obtained by

FIG. 1. Estimates of the global Lyapunov exponent plotted as a function of l: (a) 4096 values of l uniformly random

sampled between 2.95 and 3.05 and (b) 4096 values of l uniformly random sampled between 2.999 and 3.001.
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c
i
5

ð‘
0

w(x)L
i
(x)xe l(12x) dx , (12)

with the weighting function w(x) 5 e2x. Laguerre

polynomials are orthogonal and orthonormal.

Notice that the order of the truncation for models I,

II, III, and IV differ. These are chosen so that each

model represents the system dynamics well and the

scales of their forecast skill are comparable. Figure 2

plots the dynamical function of each model together

with the system dynamics. Figure 3 presents the histo-

gram of the one-step model error over 2048 different

initial conditions that are uniformly sampled between

the minimum and maximum of the Moran–Ricker

system. It appears that model I simulates the system

dynamics well except when the initial condition is near

the maximum value of the system. For model II, a large

difference between the model dynamics and the system

dynamics appears only when the initial condition is

near theminimum value obtained by the system.Model

III does not match the system dynamics well where

x* 1:5 and where the forward model reaches the

maximum value of the map. Model IV matches the

system less well for initial conditions near the maxi-

mum value of the map.
Figure 4 plots the two-step model error for each

model, and Fig. 5 presents the histogram of the two-step

model error. In general, the structure of the model error

is different. Different models have different scales of

model error in different local state space.
Again, there is, of course, no suggestion that the

Moran–Ricker system resembles the dynamics of Earth.

Rather, the framework presented here [and in (Higgins

(2015)] provides probabilistic forecasts from structur-

ally flawed models; the model-based forecasts (and

ideal probabilistic forecasts formed using the perfect

model) differ nontrivially from each other, and as the

models are nonlinear the forecast distributions are non-

Gaussian. It is these challenges to multimodel forecast

system development that are illustrated in this paper,

which should (of course) not be taken to present an

actual geophysical forecast system; indeed the verifica-

tions in the observational record rules out examination

of LAP in geophysical systems, while computational

FIG. 2. Graphical presentation of the dynamics of four different models; the blue line represents model dynamics as

a function of initial conditions, and the red line represents the system dynamics.
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requirements rule out extensive examination of SAP

in ‘‘state of the art’’ geophysical models.

4. Ensemble formation

a. Initial condition ensembles for each model

In the experiments presented in this paper, each

model produces ensemble forecasts by iterating an en-

semble of initial conditions (IC). The initial condition

ensemble is formed by perturbing the observation with

random draws from a Normal distribution, N(0, k2
t). If

the model were perfect and the observation were exact,

kt would be zero; because neither of these conditions is

met one does not expect kt to be zero. Such a perturba-

tion parameter kt is chosen to minimize the ignorance

score at lead time t. When making medium-range fore-

casts, the European Centre for Medium-Range Weather

Forecasts (ECMWF) selects a perturbation size such that

the RMS error between the ensemble members and the

ensemble mean at a lead time of two days is roughly

equal to the RMS of the ensemble mean and the out-

come at two days.

In the experiments presented below, each initial con-

dition ensemble will contain Ne 5 9 members, following

the ENSEMBLES protocol. Consider first the case of a

large archive, withNa5 2048. For a given k and lead time

t, the kernel dressing and climatology-blend parame-

ter values are fitted using a training forecast–outcome

archive that contains Nl 5 2048 forecast–outcome pairs.

The ignorance score is then calculated using an inde-

pendent testing forecast–outcome set that contains

Nt 5 2048 forecast–outcome pairs. Figure 6a shows the

optimal perturbation parameter k for each model var-

ies with lead time.5 The ignorance score for each model

at different lead time, using the values of k in Fig. 6a, is

shown in Fig. 6b. The sampling uncertainty across

forecast launches is represented by a bootstrap resam-

pling procedure, which resamples the set of forecast ig-

norance scores for each model, with replacement. The

bootstrap resampling intervals are shown as vertical bars

in Fig. 6 as a 5%–95% interval. As seen in Fig. 6a, for

each model, the preferred value of k varies significantly

FIG. 3. Histogram of the one-step model errors, given 2048 different initial conditions with respect to natural

measure.

5 As noted by a reviewer, there is uncertainty in the k values

reported in Fig. 6a. To quantify this uncertainty, the estimate of

kwas bootstrap resampled. The results (not shown) show variation

in k, at lead time 1 being always less than 50%, but very little

variation in the corresponding ignorance value for each model.
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(by about a factor of 2) between different forecast lead

times. Defining a Ne-member forecast system requires

selecting a specific value of k for each model. In this

paper, the value of k for each model is chosen by opti-

mizing the forecast ignorance score at lead time 1.

Sensitivity tests have been conducted and the ignorance

score at other lead times is much less sensitive to k than

that at lead time 1. Bias correction in the dressing

blending approach is another concern. Hodyss et al.

(2016) discussed bias in a real-world context. The

dressing blending approach can be generalized by

including a shifting parameter (see Bröcker and Smith

2008) to account for model bias. Including the shifting

parameter does, in fact, improve the ignorance score

out-of-sample (in each model at almost all lead times) in

this case. As the improvement is typically less than one

20th of a bit (sometimes zero), such shifting parameter is

not included in the dressing blending throughout the

experiments presented in the current paper.

b. On the number of IC simulations in each ensemble

Forecast system design relies on the knowledge of the

relationship between the size of the forecast ensemble

and the information content of the forecast (Smith et al.

2015). Usually, the cost of developing a brand new

model is tremendously larger than the cost of increasing

the number of ensemble members.6 Furthermore, the

cost of increasing the ensemble size increases only

(nearly) linearly and decreases as technology improves.

As the number of ensemble members increases, the

true limitation due to structural model error becomes

more apparent. Figure 7 shows that forecast igno-

rance varies as ensemble size increases. Improvement

from the additional ensemble members can be noted,

especially at shorter lead times.

5. Forecast system design and model weighting
when data are precious

a. Forecasts with a large forecast–outcome archive

As Na, the size of the forecast–outcome archive, in-

creases, one expects robust results since large training

FIG. 4. Graphical presentation of the two-step evolution of four different models; the blue line represents the two-step

model evolution as a function of initial conditions, and the red line represents the two-step evolution under the system.

6 In financial terms, the cost falls on the current account and not

on the capital account.
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sets and large testing sets are considered. To examine

this, 512 different training sets are produced, each con-

tains 2048 forecast–outcome pairs. For each archive, the

kernel width s and climatology-blend weight a are fitted

for each model’s forecasts at lead time. Figures 8a and

8b show the fitted values of the dressing parameters and

climatology-blend weights. The error bars reflect the

central 90th percentile over 512 samples. The variation

of the weight assigned to the model appears small. The

variation of the fitted kernel width is small at short lead

times and large at long lead times. Especially at lead

time 5, the fitted value for Model IV has relatively large

FIG. 5. As in Fig. 3, but for the two-step model.

FIG. 6. (a) The best found perturbation parameter values k as a function of lead time for each model; the dashed

black line reflects the standard deviation of the noisemodel. (b) Ignorance score of eachmodel as a function of lead

time; the dashed black line reflects skill of climatology, which defines zero skill.
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variation. This, however, does not indicate that the es-

timate is not robust but suggests the ignorance score

function in the parameter space is relatively flat near the

minimum. To demonstrate this, the empirical ignorance

is calculated for each archive of kernel width and

climatology-blend weight based on the same testing set

(which contains another 2048 forecast–outcome pairs).

Figure 8c plots the ignorance score and its 90th per-

centile as a function of lead time. Notice that the

90th-percentile ranges are always very narrow.

The next two paragraphs echo Smith et al. (2015).

There are many ways to combine multiple single model

forecast distributions into a single probabilistic (multi-

model) forecast distribution (Hagedorn et al. 2005;

Bröcker and Smith 2008). A simple approach is to treat

each model equally and therefore apply equal weight to

each individual model (see e.g., Weisheimer et al.

2009). In general, different models perform differ-

ently in terms of forecasts, for example, the ECMWF

model significantly outperforms other models in sea-

sonal forecasts (Smith et al. 2015). Therefore, applying

nonequal weights to all contributing models might

provide more skillful multimodel forecast distribution

(see e.g., Rajagopalan et al. 2002). Following Doblas-

Reyes et al. (2005) and Smith et al. (2015), define the

combined multimodel forecast distribution to be the

weighted linear sum of the constituent distributions:

p
mm

5�
i

v
i
p
i
, (13)

where pi is the individual forecast distribution from the

ith model and vi

�
�ivi 5 1

�
is the corresponding weight.

The weighting parameters vi may be determined ac-

cording to their performance in a past forecast–outcome

archive. The weights of individual models are expected

to vary as a function of lead time.

It is computationally costly and potentially results in

ill-fitted model weights if all of the weights are fitted

simultaneously. To avoid both issues, a simple iterative

approach (Du and Smith 2017) is adopted. For each lead

time, the best (in terms of ignorance) model is first

combined with the second-best model to form a com-

bined forecast distribution (by assigning weights to both

models that optimize the ignorance of the combined

FIG. 7. The ignorance score; it varies as the ensemble size increases for each model.
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forecast). The combined forecast distribution is then

combined with the third-best model to update the

combined forecast distribution. This process is re-

peated until inclusion of the ‘‘worst’’ model is con-

sidered. Note each time a new model is included in the

combined model, only two weights need to be as-

signed. Figure 8d shows the weights assigned to each

model as a function of lead time. The cyan line in

Fig. 8c shows the variation of the ignorance score for

the multimodel forecast given those estimated model

weights is very small.

b. Forecast with a small forecast–outcome archive

When given a small forecast–outcome archive (e.g.,

from an ;40-yr seasonal forecast–outcome archive),

one does not have the luxury of exploring a large

collection of independent training and testing sets.

Cross validation is often approached by adopting a

leave-one-out approach. The robustness of parameter

fitting in such cases is of concern. To examine such

robustness, a large number of forecast–outcome ar-

chives are considered. Each archive contains the same

numbers of forecast–outcome pairs. For each archive,

the parameter values are fitted via leave-one-out cross

validation. The distribution of fitted values over these

small forecast–outcome archives is then compared with

the fitted value from the Na 5 2048 forecast–outcome

archives above. Figure 9 plots the histograms of the

fitted climatology-blend weights given 512 forecast–

outcome archives each containing Na 5 40 forecast–

outcome pairs. Notice that, in most cases, the distributions

are very wide although they cover the value fitted given

the large training set. There are some cases in which

about 90%of the estimates are larger or smaller than the

values fitted by the large archive (e.g., lead time 1 of

model I and model II and lead time 4 of model III and

model IV). It therefore appears that the robustness of

fitting varies with lead time and the model. For shorter

lead times, however, the weights are more likely to be

overfitted and, for longer lead times, the weights are

more likely to be underfitted. This is because at short

lead times the model forecasts are relatively good;

only a few forecast systems yield predictions that are

worse than the climatological forecast. Small forecast–

outcome archives, on the other hand, may not contain

any model busts and so often overestimate the weights.

FIG. 8. (a) Climatology-blendweight assigned to themodel, (b) kernel width, (c) forecast ignorance, and (d) weights

assigned to each individual model are plotted as a function of lead time.
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The longer lead time case can be explained similarly.

Figure 10 plots the histogram of fitted kernel widths.

Again, observe that there is much larger variation of the

estimates here than when fitting with large forecast–

outcome archives.

Poor estimation of the kernel width and climatology-

blend weight will cause the forecast to lose skill and

appear to underperform out-of-sample (due to inap-

propriately high expectations). This could, of course,

be misinterpreted as climate change. For each of the

512 fitted kernel widths and climatology-blend weights,

the ignorance scores are calculated over the same

testing set of 2048 forecast–outcome pairs. Figure 11

plots the histogram of the ignorance score for each

model. Using parameters fitted with small archives

often results in significant degrading (;1 bit) of the

ignorance score of the forecasts. Correctly blend-

ing with the climatological distribution would yield a

forecast score that, in expectation, is never worse than

the climatology. When the blending parameter is de-

termined using the small archive, however, the aver-

age relative ignorance can be worse than climatology

out-of-sample at long lead times (see e.g., in Fig. 11).

Figure 12 plots the histogram of multimodel weights.

Clearly the variation of the model weights based on a

small archive are much larger. Weights of zero are

often assigned to model forecasts that contain useful

information, for example.

6. Multimodel versus single best model

As noted in Smith et al. (2015),7 it is sometimes said

that a multimodel ensemble forecast is more skillful

than any of its constituent single-model ensemble fore-

casts (see e.g., Palmer et al. 2004; Hagedorn et al. 2005;

Bowler et al. 2008; Weigel et al. 2008; Weisheimer et al.

2009;Alessandri et al. 2011).One common ‘‘explanation’’

(Weigel et al. 2008; Weisheimer et al. 2009; Alessandri

et al. 2011) for this is that individual model tends to

be overconfident with its forecast and a multimodel

forecast reduces such overconfidence, which leads

FIG. 9. Climatology-blend weights assigned to eachmodel. The red bars are the 95th percentile range of the fitted

weights based on 512 forecast–outcome archives. Each contains 2048 forecast–outcome pairs. The blue crosses

represent the histogram of the fitted weights based on 512 forecast–outcome archives. Each of these contains only

40 forecast–outcome pairs.

7 These first two sentences are taken from Smith et al. (2015).
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to a more skillful forecast performance. As shown in

section 6, single model SAP forecast systems are typi-

cally between half a bit and two bits less skillful than an

LAP system based on the same model. Can a SAP

multimodel forecast system regain some of this potential

skill? Fig. 12 shows that this is unlikely, as the determi-

nation of model weights given SAP varies tremendously

relative to their LAP values. Again, it is the perfor-

mance of the combination of weights that determine the

skill of the forecasts, so this variation need not always

be deadly.

Figure 13 shows the skill of the multimodel forecast

system relative to the forecast system based on the

single best model. Both the SAP and the LAP forecast

systems show that the multimodel system usually out-

performs the single model. Comparing SAP multi-

model systems with the single best model SAP system

(Fig. 13b), the advantage of themultimodel system(s) is

stronger when the best model (as well as all the pa-

rameters: model weights and dressing and climatology-

blended parameters) are ill identified. Comparing SAP

multimodel systems with the single best model LAP

system (Fig. 13c), however, the advantage of the multi-

model system(s) is weaker. Multimodel systems do not

always outperform the single best model, especially at

longer lead times.

At this point, one faces questions of resource dis-

tribution. A fair comparison of an N-model forecast

system would be against a single model with n-times-

larger ensemble. (This, of course, ignores the opera-

tional fact that it is much more demanding to maintain

an ensemble of models than to maintain a large en-

semble under one model.) Second, note that for each

model, k was a function of lead time. At the cost

of making ensemble members nonexchangeable, one

could draw ensembles from distinct groups, and weight

these members differently for each lead time. One also

could develop methods that treat the raw ensemble

members from each of the models as nonexchangeable

and use a more complex interpretation to form the

forecast. While the simple forecast framework of this

paper is an ideal place to explore such questions, they

lie beyond the scope of this paper. Instead, the ex-

tent to which the multimodel forecast system is more

FIG. 10. Kernel width of each model’s forecasts. The red bars are the 95th percentile range of the fitted kernel

width based on 512 forecast–outcome archives. Each contains 2048 forecast–outcome pairs. The blue crosses

represent the histogram of the fitted kernel width based on 512 forecast–outcome archives. Each of these contains

only 40 forecast–outcome pairs.
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misleading than the single model systems concludes the

discussion in the next section.

7. Discussion and conclusions

A significant challenge to the design of seasonal

probabilistic forecasting has been discussed and illus-

trated in a simple system where multiple models can

easily be explored in long time limits. The challenge has

been addressed within the surrogate modeling para-

digm. In the actual system of interest, empirical data

are precious: we have very few relevant out-of-sample

forecasts, and doubling the current sample size will take

decades. For these reasons we consider surrogate sys-

tems with sufficient similarity given the questions we

wish to ask. We are forced to assume that the results

obtained are general enough to make them informative

for design in the real-world system; in this particular case

we believe that they are: the challenges of interpreting

small ensembles in any multimodel context are arguably

very similar. Similarly, the convergence to a clear con-

clusion in the limit of large ensembles is also arguably

quite similar. The details of the rate at which information

increases as the ensemble size increaseswill depend on the

details of the dynamics of the system, the quality of the

models, and so on. That said, there is sufficient evidence

from the study above to show that some current multi-

model ensemble studies do not employ initial condition

ensembles of sufficient size to achieve robust results.

There is no statistical fix to the challenges of ‘‘lucky

strikes’’ when a generally poor model places an en-

semble member near an outcome ‘‘by chance’’, and that

particular outcome was not well predicted by the other

forecast systems. Similarly ‘‘hard busts’’ in a small ar-

chive can distort the parameters of the forecast systems,

when an outcome occurs relatively far from each en-

semble member. In this case, wider kernels and/or

heavier weighting on the climatology results. This may

be due to structural model failure or merely to a ‘‘rare’’

event, where rare is related to the ensemble size. Given a

FIG. 11. Ignorance score of each model’s forecasts. The red bars are the 95th percentile range of ignorance score

calculated based on a testing set containing 2048 forecast–outcome pairs, using the climatology-blend weights and

kernel widths fitted based on 512 forecast–outcome archives. Each contains 2048 forecast–outcome pairs. The blue

crosses represent the histogram of ignorance score calculated based on the same testing set but using the

climatology-blend weights and kernel widths based on 512 forecast–outcome archives. Each contains only

40 forecast–outcome pairs.
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sufficiently large ensemble, the forecast system could

have assigned an (appropriately low) probability to the

observed ‘‘bust’’ event.

In short, the brief duration of the forecast–outcome

archive, typically less than 40 years in seasonal fore-

casting, limits the clarity both with which probability

distributions can be derived from individual models and

with which model weights can be determined. No clear

solution to this challenge has been proposed, and while

improvements on current practice can be made, it is not

clear that this challenge can be met. Over long periods,

like 512 years, the climatemay not be well approximated

as stationary. In any event, both observational systems

and the models themselves can evolve significantly on

much shorter time scales, perhaps beyond recognition.

One avenue open to progress is in determining the

relative skill of ‘‘the best model’’ (or a small subset)

and the full diversity of models. Following Bröcker and

Smith (2008) it is argued that a forecast system under the

best model with a large ensemble may well outperform

the multimodel ensemble forecast system when both

systems are given the same computer power. To test

this in practice requires access to larger ensembles

under the best model. This paper argues future studies,

such as ENSEMBLES, could profitably adjust their

experimental design to take this into account (see also

Machete and Smith 2016).

A second avenue is to reduce the statistical uncer-

tainty of model fidelity within the available archive. This

can be done by running large ensembles (much greater

than ‘‘9’’, indeed greater than might be operation-

ally feasible) under each model. This would allow

identification of which models have significantly differ-

ent probability distributions, and the extent to which

they are (sometimes) complementary. Tests with large

ensembles also reveal the ‘‘bad busts’’ that are due to

FIG. 12. Multimodel weights for each set of model forecasts. The red bars are the 95th percentile range of model

weights calculated based on a testing set containing 2048 forecast–outcome pairs, using the climatology-blend

weights and kernel widths fitted based on 512 forecast–outcome archives. Each contains 2048 forecast–outcome

pairs. The blue crosses represent the histogram of model weights calculated based on the same testing set but using

the climatology-blend weights and kernel widths based on 512 forecast–outcome archives. Each contains only

40 forecast–outcome pairs.
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small ensemble size to be what they are. It can also

suggest that those that remain are indeed due to struc-

tural model error.

In closing, it is suggested that perhaps the most

promising way forward is to step away from the statistics

of the ensembles and to consider the physical realism

of the individual trajectories. One can look for shad-

owing trajectories in each model and attempt to see

what phenomena limit the model’s ability to shadow.

Identifying these phenomena, and the phenomena

that cause them, would allow model improvement in-

dependent of the probabilistic skill of ensemble systems.

This approach is not new, of course, but is the traditional

physical approach to model improvement that dates

back to Charney. Modern forecasting methods do offer

some new tools (Judd et al. 2008), and the focus on

probabilistic forecasting is well placed in terms of pre-

diction. The point here is merely that probabilistic

forecast skill, while a sharp tool for decision support,

may prove a blunt tool formodel improvement when the

data are precious.
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APPENDIX

From Simulation to a Predictive Distribution

This appendix is taken from Smith et al. (2015)

appendix A.

An ensemble of simulations is transformed into a

probabilistic distribution function by a combination

of kernel dressing and blending with climatology

(Bröcker and Smith 2008). AnN-member ensemble at

time t is given as Xt 5 (x1t , . . . , x
N
t ), where xit is the

value of an observable quantity for the ith ensemble

member. For simplicity, ensemble members given a

model are considered to be exchangeable. Kernel

dressing defines the model-based component of the

density as

p(y:X,s)5
1

Ns
�
N

i

K

�
y2 (xi)

s

	
, (A1)

where y is a random variable (the correspondent of the

density function p) and K is the kernel, taken here to be

K(z)5
1ffiffiffiffiffiffi
2p

p exp

�
2
1

2
z2
�
. (A2)

Thus, each ensemble member contributes a Gaussian

kernel centered at xi. For a Gaussian kernel, the kernel

width s is simply the standard deviation determined

empirically as discussed below.

FIG. 13. Ignorance of multimodel ensemble relative to the single best model. The blue crosses represent the histogram of the ignorance

of the multimodel ensemble relative to the single best model (black dashed line). (a) Model weights and dressing and climatology-blend

parameters are fitted based on 512 large archives. Each contains 2048 forecast–outcome pairs. (b) Model weights and dressing and

climatology-blend parameters are fitted based on 512 small archives. Each contains 40 forecast–outcome pairs. (c) The ignorance of the

multimodel ensemble is calculated using model weights and dressing and climatology-blend parameter that are fitted based on 512 small

archives, whereas the ignorance of the single best model is calculated based on 512 large archives.
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Even for an ensemble drawn from the the same dis-

tribution as the outcome, there remains the chance of

;2/N that the outcome lies outside the range of the

ensemble. Given the nonlinearity of the model, such

outcomes can be very far outside the range of the en-

semble members. In addition to N being finite, the

simulations are not drawn from the same distribution as

the outcome, because the forecast system is never per-

fect in practice. To improve the skill of the probabilistic

forecasts, the kernel dressed ensemble may be blended

with an estimate of the climatological distribution of the

system obtained by dressing the historical observa-

tions [see Bröcker and Smith (2008) for more details,

Roulston and Smith (2003) for alternative kernels, and

Raftery et al. (2005) for a Bayesian approach]. The

blended forecast distribution is then written as

p( )5ap
m
( )1 (12a)p

c
( ) , (A3)

where pm is the density function generated by dressing

the model ensemble and pc is the estimate of the clima-

tological density. The blending parameter a determines

howmuch weight is placed on the model. Specifying both

values (kernel width s and climatology blended param-

eter a) at each lead time defines the forecast distribution.

Both parameters are fitted simultaneously by optimizing

the empirical ignorance score over the training set.
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