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Abstract

Item response theory (IRT) plays an important role in psychological and

educational measurement. Unlike the classical testing theory, IRT models

aggregate the item level information, yielding more accurate measurements.

Most IRT models assume local independence, an assumption not likely to be

satisfied in practice, especially when the number of items is large. Results in

the literature and simulation studies in this paper reveal that misspecifying

the local independence assumption may result in inaccurate measurements

and differential item functioning. To provide more robust measurements, we

propose an integrated approach by adding a graphical component to a mul-

tidimensional IRT model that can offset the effect of unknown local depen-

dence. The new model contains a confirmatory latent variable component,

which measures the targeted latent traits, and a graphical component, which

captures the local dependence. An efficient proximal algorithm is proposed

for the parameter estimation and structure learning of the local dependence.

This approach can substantially improve the measurement, given no prior

information on the local dependence structure. The model can be applied

to measure both a unidimentional latent trait and multidimensional latent

traits.

Key words: item response theory, local dependence, robust measure-



2
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1. Introduction

Item response theory (IRT; Rasch, 1960; Lord and Novick, 1968) models play an

important role in measurement theory. Unlike classical testing theory, IRT models

integrate item level information for measurement and are regarded as being a supe-

rior measurement tool to classical test theory (Embretson and Reise, 2000). They

have become the preferred method for developing scales, especially when high-stake

decisions are involved. In particular, IRT models are used in National Assessment of

Education Progress (NAEP), Scholastic Aptitude Test (SAT), and Graduate Record

Examination (GRE). Popular IRT models include the single factor models, such as

the Rasch model (Rasch, 1960), the two-parameter logistic model, and the three-

parameter logistic model (Birnbaum, 1968), and multiple factor models, such as

the multidimensional two-parameter logistic (M2PL) model (McKinley and Reckase,

1982; Reckase, 2009).

We use the multidimensional two-parameter logistic model as a building block.

Consider an individual responding to J test items and the responses are recorded by

a vector X = (X1, ..., XJ)>. To simplify the presentation, we only consider binary

items, i.e. Xj ∈ {0, 1}, but emphasize that the proposed approach is flexible enough

to be generalized to analyzing polytomous items (Chen, 2016). Associated with each

response vector is an unobserved continuous latent vector θ ∈ RK , representing the

latent characteristics that are measured, where K is the number of latent traits. The

model becomes a unidimensional model when K = 1. The conditional distribution

of each response given the latent vector follows a logistic model

fj(θ) , P (Xj = 1|θ) =
ea

>
j θ+bj

1 + ea
>
j θ+bj

,
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where fj(θ) is known as the item response function and aj = (aj1, ..., ajK)> are

known as the factor loading parameters. When used in a confirmatory manner, the

model imposes constraints on the factor loading parameters, that is, parameter ajk

is set to be 0, if item j is not designed to measure the kth latent trait. Such design

information is characterized by a J×K item-trait relationship matrix, which we refer

to as the Λ-matrix, Λ = (λjk)J×K = (1{ajk 6=0})J×K . The Λ-matrix is usually provided

by the item designers and is often assumed to be known. When information about

the Λ-matrix is vague, data-driven approaches for learning the Λ-matrix are proposed

(Liu et al., 2012, 2013; Chen et al., 2015a; Sun et al., 2016; Chen et al., 2015b; Liu,

2017).

One common assumption of standard IRT models, including the M2PL model,

is the so-called local independence assumption, i.e. X1, X2, ..., XJ are conditionally

independent, given the value of θ. That is

P (X1 = x1, ..., XJ = xJ |θ) = P (X1 = x1|θ)P (X2 = x2|θ) · · ·P (XJ = xJ |θ), (1.1)

for each x = (x1, ..., xJ)> ∈ {0, 1}J . The local independence assumption implies that,

although the items may be highly intercorrelated in the test as a whole, it is only

caused by items sharing the common latent traits measured by the test. When the

trait levels are controlled, local independence implies that no relationship remains

between the items (Embretson and Reise, 2000).

In recent years, computer-based and mobile-app-based instruments are becoming

prevalent in educational and psychological studies, where a large number of responses

with complex dependence structure are observed. For these tests, a small number

of latent traits may not adequately capture the dependence structure among the

responses. It is known that there are many possible causes for local dependence,

including order effect where responses to early items affect the responses to subse-

quent items, and shared content effect where additional dependence is caused by a

common stimuli from shared content (Hoskens and De Boeck, 1997; Knowles and
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Condon, 2000; Schwarz, 1999; Yen, 1993). Generally speaking, the item response

process could be complicated, and affected by many external and internal factors.

Consequently, a low-dimensional latent factor model may not be adequate to capture

all the dependence structure within a test, which may explain the frequently observed

phenomenon of model lack of fit in empirical studies (Reise et al., 2011; Yen, 1984,

1993; Ferrara et al., 1999).

In this paper, we propose a Fused and Latent Graphical IRT (FLaG-IRT) model

to incorporate local dependence as well as to include the test-design information

in the Λ-matrix as a priori. The model extends the Fused and Latent Graphical

(FLaG) model proposed in Chen et al. (2016) by incorporating the loading structure

information. The proposed model adds a sparse graphical component upon a multidi-

mensional item response theory (MIRT) model to capture the local dependence. The

idea is that for a well designed test, the common dependence among responses has

been well explained by the latent traits and the remaining dependence can be char-

acterized by a sparse graphical structure. Moreover, a statistical learning approach

is proposed for data-driven learning of the unknown local dependence structure1.

In psychometrics, there is existing literature on modeling the local dependence

structure, including the bi-factor and testlet models (Gibbons and Hedeker, 1992;

Gibbons et al., 2007; Reise et al., 2007; Bradlow et al., 1999; Wainer et al., 2000; Wang

and Wilson, 2005; Li et al., 2006; Cai et al., 2011), copula based approaches (Braeken

et al., 2007; Braeken, 2011), and models with fixed interaction parameters (Hoskens

and De Boeck, 1997; Ip, 2002; Ip et al., 2004; Ip, 2010). Most of these approaches

require prior information on the local dependence structure, such as knowing the

item clusters and assuming the local independence between items clusters, while

the proposed approach handles unknown local dependence structure. The proposed

FLaG-IRT model is also closely connected to three lines of research in psychometrics:

1An R package and example code for the proposed approach can be downloaded from http:

//www.scientifichpc.com/flagirt.html.
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(1) psychometric network models and their applications (van der Maas et al., 2006;

Cramer et al., 2010, 2012; van Borkulo et al., 2014; Boschloo et al., 2015; Fried

et al., 2015; Rhemtulla et al., 2016), (2) log-multiplicative association model (Holland,

1990; Anderson and Vermunt, 2000; Anderson and Yu, 2007; Marsman et al., 2015;

Epskamp et al., 2016; Kruis and Maris, 2016), and (3) the use of graphical models for

structural violations of local independence (Epskamp et al., 2017; Pan et al., 2017).

The contribution of this paper is of two-folds. First, it provides a rich class of

locally dependent IRT models that can capture complex local dependence patterns.

Second, a statistically solid and computationally efficient procedure is developed for

learning the local dependence structure from data, for which no prior information is

needed on the way the items are locally dependent on each other. Consequently, the

proposed approach substantially generalizes the traditional methods which may not

be flexible enough to capture various types of local dependence patterns and require

prior knowledge (e.g. the specification of item clusters in using the bi-factor model).

The rest of the paper is organized as follows. In Section 2, the FLaG-IRT model

is introduced and a review of related works is provided. In Section 3, the statistical

analysis based on the model, including parameter estimation and model selection, is

presented. Results of simulation studies are reported in Section 4. Section 5 contains

an application to a real data example.

2. FLaG-IRT Model

2.1. Two Basic Models

We first describe the fused and latent graphical IRT model, which is built upon

the multidimensional 2-parameter logistic (M2PL) model and the Ising model (Ising,

1925). To begin with, we describe these two building-block models.

MIRT model. The M2PL model is one of the most popular multidimensional

IRT models for binary responses. The item response function of the M2PL model is
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given by

P (Xj = 1|θ) =
ea

>
j θ+bj

1 + ea
>
j θ+bj

.

The item-trait relationship is incorporated by constraints specified by a pre-specified

matrix Λ = (λjk)J×K , λjk ∈ {0, 1}, where λjk = 0 means that item j is not associated

with latent trait k and the corresponding loading ajk is constrained to be 0. The item

response function can be further written as

P (Xj = xj|θ) =
e(a>

j θ+bj)xj

1 + ea
>
j θ+bj

∝ exp{(a>j θ + bj)xj}.

The notation “∝” above is used to define probability density or mass functions when

the left-hand side and the right-hand side are different by a normalizing constant that

depends only on the parameters and is free of the value of the random variable/vector.

Under the M2PL model, the joint distribution of the responses X = (X1, ..., XJ)>

given θ can be further written as, due to the local independence assumption,

P (X = x|θ) =
J∏
j=1

P (Xj = xj|θ) ∝ exp{θ>A>x + b>x}, (2.1)

where A = (ajk)J×K is known as the factor loading matrix and b = (b1, ..., bJ)>. In

particular, when K = 1, the model is known as the two-parameter logistic model

(2PL; Birnbaum, 1968).

Ising model. We now present the Ising model that is used to characterize the

local dependence structure on top of the M2PL model. The Ising model is an undi-

rected graphical model (e.g. Koller and Friedman, 2009). It encodes the conditional

independence relationships among Xj’s through the topological structure of a graph

that can greatly facilitate the interpretation and understanding of the dependence

structure. This model is originated in statistical physics (Ising, 1925).

Specification of the Ising model consists of an undirected graph G = (V,E),

where V and E are the sets of vertices and edges respectively. The vertex set V =
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{1, 2, ..., J} corresponds to the random variables, X1, ..., XJ . The graph is said to be

undirected in the sense that (i, j) ∈ E, if and only if (j, i) ∈ E. The Ising model

associated with an undirected graph G = (V,E) is specified as

P (X = x) ∝ exp

{
1

2
x>Sx

}
, (2.2)

where S = (sij)J×J is a symmetric matrix such that sij 6= 0 if and only if (i, j) ∈ E.

The conditional independence relationship in the Ising model is encoded by the

topological structure of the graph. More precisely, let A,B and C be nonoverlapping

subsets of V and A ∪ B ∪ C = V . We further let XA, XB, and XC be the random

vectors associated with the sets A, B, and C, respectively, i.e., XA = (Xi : i ∈ A)

and so on. We say A and B are separated by C, if every path from a vertex in A

to a vertex in B includes at least one vertex in C, as illustrated by an example in

Figure 1. In Figure 1, A = {1, 2}, B = {4, 5}, and C = {3}, and all paths from A

to B pass through C. For example, the path (1 → 3 → 4) that connects vertices

1 and 4, passes through vertex 3. In particular, (i, j) /∈ E implies Xi and Xj are

independent given others. When C is an empty set, the separation between A and

B implies their independence.

=========================

Insert Figure 1 about here

=========================

The Ising model can be understood based on the conditional distribu-

tion of one variable given all the others. Specifically, we denote X−j =

(X1, ..., Xj−1, Xj+1, ..., XJ). Then (2.2) implies that

P (Xj = 1|X−j = x−j) =
exp

(
1
2
sjj +

∑
i 6=j sijxi

)
1 + exp

(
1
2
sjj +

∑
i 6=j sijxi

) , (2.3)

which takes a logistic regression form. The model parameters can be interpreted
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based on (2.3). Specifically, sjj/2 is the log-odds of Xj = 1 given X−j = (0, ..., 0) and

sij is the log-odds-ratio of Xj = 1 associated with Xi given all the other variables. In

particular, based on (2.3), Xi does not affect the conditional distribution (2.3) when

sij = 0 (i.e. (i, j) /∈ E). This relationship is symmetric, in the sense that sij = 0 also

implies that Xj does affect the conditional distribution P (Xi = 1|X−i), since S is a

symmetric matrix.

2.2. FLaG-IRT Model

The FLaG-IRT model combines the M2PL model (2.1) and the Ising model

(2.2) to construct a joint item response function. More precisely, the conditional

distribution is assumed to take the form

P (X = x|θ, A, S) ∝ exp

{
θ>A>x +

1

2
x>Sx

}
. (2.4)

This conditional model is an Ising model with parameter matrix S(θ), where sij(θ) =

sij for i 6= j and sjj(θ) = a>j θ + sjj. In addition, the graph of model (2.4) is the

same as that encoded by S, that is, E = {(i, j) : sij 6= 0, i 6= j}. Moreover, when the

graph is degenerate, i.e. sij = 0, for all i 6= j,

P (X = x|θ, A, S) ∝ exp

{
θ>A>x +

J∑
j=1

1

2
sjjx

2
j

}
= exp

{
θ>A>x +

J∑
j=1

1

2
sjjxj

}
,

which takes the same form as that of the M2PL model (2.1) if reparameterizing

bj = sjj/2. Note
∑

j sjjx
2
j =

∑
j sjjxj since xj ∈ {0, 1}.

Similar to (2.3), model (2.4) can be understood through the conditional distri-

bution of Xj given θ and X−j. More precisely,

P (Xj = 1|θ,X−j = x−j) =
exp(1

2
sjj +

∑K
k=1 ajkθk +

∑
i 6=j sijxi)

1 + exp(1
2
sjj +

∑K
k=1 ajkθk +

∑
i 6=j sijxi)

,

taking a logistic form. Consequently, the model parameters can be interpreted sim-
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ilarly based on the log-odds and log-odds-ratios as the ones in (2.3). In particular,

ajk is the log-odds-ratio of Xj associated with one unit increase in θk. When sij = 0

for all i 6= j,

P (Xj = 1|θ,X−j = x−j) =
exp(1

2
sjj +

∑K
k=1 ajkθk)

1 + exp(1
2
sjj +

∑K
k=1 ajkθk)

,

implying that Xj and X−j are conditionally independent given θ and the item re-

sponse function takes the same form as in the M2PL model. Moreover, given θ, the

distribution of Xis only depends on its neighbors. For example, consider K = 1,

J = 3, A = (1, 1, 1)>, and

S =


0 1 −1

1 0 0

−1 0 0

 .

S-matrix encodes a graph with three nodes: node 1 is connected to both nodes 2

and 3; nodes 2 and 3 are not connected. In this example, the joint distribution of

(X1, X2, X3) given θ1 becomes

P (X1 = x1, X2 = x2, X3 = x3|θ1)

=
exp(x1x2 − x1x3 + θ1x1 + θ1x2 + θ1x3)∑

x′1,x
′
2,x

′
3=0,1 exp(x′1x

′
2 − x′1x′3 + θ1x′1 + θ1x′2 + θ1x′3)

.

Simple calculation gives

P (X1 = 1|θ1, X2 = x2, X3 = x3) =
exp(θ1 + x2 − x3)

1 + exp(θ1 + x2 − x3)
,

P (X2 = 1|θ1, X1 = x1, X3 = x3) =
exp(θ1 + x1)

1 + exp(θ1 + x1)
,

P (X3 = 1|θ1, X1 = x1, X2 = x2) =
exp(θ1 − x1)

1 + exp(θ1 − x1)
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which allow us to interpret the relationship among X1, X2, X3, and θ1 based on

odds-ratios. For example, given X2 and X3, the log-odds-ratio of X1 associated with

one unit increase in θ1 is 1. In addition, given θ1 and X2, the log-odds-ratio of X1

associated with X3 is −1, implying a negative association between X1 and X3 when

the other variables are controlled.

To assist understanding, Figure 2 provides graphical representations of the MIRT

model and the FLaG-IRT model. The left panel shows a graphical representation of

the marginal distribution of responses, where there is an edge between each pair of

responses. Under the conditional independence assumption (1.1) of the MIRT model,

there exists a latent vector θ. If we include θ in the graph, then there is no edge

among Xjs as in the middle panel. The concern is that this conditional independence

structure may be oversimplified and there is additional dependence not attributable

to the latent traits. The FLaG-IRT model (right panel) is a natural extension of the

MIRT model (middle panel), allowing edges among Xjs even if θ is included. The

additional edges capture the dependence among Xjs not explained by θ. Due to

the presence of the latent variables, it is likely that we only need a small number of

additional edges to capture the local dependence. Furthermore, the loading structure

in Λ is reflected by the edges between θks and the responses Xjs in the middle and

right panels.

=========================

Insert Figure 2 about here

=========================

We consider the following joint distribution of (X,θ),

f(x,θ|A, S,Σ) =
1

z0(A, S,Σ)
exp

{
− 1

2
θ>Σ−1θ + θ>A>x +

1

2
x>Sx

}
, (2.5)
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where (A, S,Σ) are the model parameters and z0(A, S,Σ) is the normalizing constant,

z0(A, S,Σ) =
∑

x∈{0,1}J

∫
exp

{
− 1

2
θ>Σ−1θ + θ>A>x +

1

2
x>Sx

}
dθ.

Note that under this joint distribution, the joint item response function, i.e., the

conditional distribution of X given θ, is consistent with (2.4). Under this joint

distribution, a specific prior distribution of θ is implicitly assumed, under which the

posterior distribution of θ is Guassian. Moreover, the prior distribution of θ can be

derived from (2.5), that is,

f(θ|A, S,Σ) =
∑

x∈{0,1}J
f(x,θ|A, S,Σ)

=

∑
x∈{0,1}J exp

{
− 1

2
θ>Σ−1θ + θ>A>x + 1

2
x>Sx

}
z0(A, S,Σ)

,

taking the form of a mixture of Gaussian distributions. This prior distribution of θ

brings technical convenience in the data analysis (see equation (2.8)). More precisely,

under this model, θ given X = x follows Gaussian distribution

N(ΣA>x,Σ), (2.6)

for which the posterior variance is Σ and the posterior mean is given by

E(θ|X = x) = ΣA>x, (2.7)

a weighted sum of the responses. Once A and Σ are estimated from the data, it is

reasonable to score each individual by Σ̂Â>x.

In the specification (2.5), A, Σ, S, and the graph E induced by S (equivalently,

the nonzero pattern of matrix S) can be estimated from the data. Similar to the

M2PL model, we pre-specify a binary matrix Λ = (λjk)J×K for the confirmatory
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structure and impose constraint that ajk = 0 if λjk = 0. Since the latent vector θ is

not directly observable, parameter estimation is based on the marginal likelihood,

P (X = x|A, S,Σ) =

∫
f(x,θ|A, S,Σ)dθ,

where f(x,θ|A, S,Σ) is given in (2.5). From a straightforward integration over θ, the

marginal distribution of X still follows an Ising model, that is

P (X = x|A, S,Σ) =

∫
f(x,θ|A, S,Σ)dθ ∝ exp

{1

2
x>(AΣA> + S)x

}
. (2.8)

It is worth pointing out that this is a second-order generalized log-linear model (Hol-

land, 1990; Laird, 1991). In fact, Holland (1990) considers a special case of (2.8) for

which the graph is degenerate (i.e., S is a diagonal matrix). As shown in Corollary

1 of Holland (1990), this second-order generalized log-linear model can be obtained

under a joint distribution of X and θ, under which X given θ follows an M2PL model

and θ given X is multivariate Gaussian.

2.3. Related Works and Discussions

In what follows, we first review related works and make connections to the pro-

posed approach. Then discussions are provided on extending the proposed FLaG-IRT

model to more general response types.

FLaG exploratory analysis. The proposed model is similar to the FLaG model

considered in Chen et al. (2016) except that the loading structure Λ is prespecified

for the former. Both papers consider item response analysis in the presence of local

dependence. However, the scopes and the goals of the two papers are different, which

further lead to different analyses and computational algorithms. Chen et al. (2016)

focuses on the recovery of the major latent factors underlying an item pool under an

exploratory item factor analysis setting, where the number of major latent factors

and their loading structures, as well as the local dependence structure, are unknown.
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Chen et al. (2016) shows that by adjusting for the local dependence using a graphical

model component, the number of major latent factors and their loading structure can

be consistently recovered. On the other hand, the current paper studies the use of

the FLaG model as a measurement model, under a setting similar to confirmatory

item factor analysis but with an unknown local dependence structure. As will be

shown in the rest of the paper, the proposed approach automatically adjusts for local

dependence structure, substantially reducing the measurement bias induced by the

local dependence structure.

Bi-factor models. The bi-factor model is one of the most popular models to

incorporate dependence. This model is a special case of the M2PL model, assuming

that there is a unidimensional general factor θg associated with all items and is

the target of measurement. Besides the general factor, there exist nuisance factors

θ1, ..., θM associated with M nonoverlapping item clusters C1, C2, ..., CM , where each

item cluster has no less than two items and there may be items not belonging to any

of these item clusters. The bi-factor model based on a logistic link (e.g. Cai et al.,

2011) is a special M2PL model with

P (X = x|θ) ∝ exp{θ>A>x + b>x}, (2.9)

where θ = (θg, θ1, ..., θM), b = (b1, ..., bJ)> and A = (ag, a1, ..., aM). In particular,

the jth element of ak is zero if item j is not in the kth item cluster, i.e., j /∈ Ck.

Such a bi-factor model structure can be captured by the proposed FLaG-IRT

model. Specifically, if we use the specific joint distribution of (X,θ) as in the FLaG-

IRT model and further assume Σ to be an identity matrix, i.e.

f(x,θ) ∝ exp

{
−1

2
θ>θ + θ>A>x + b>x

}
,
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then the marginal distribution of X becomes

P (X = x) ∝ exp

{
1

2
x>aga

>
g x +

1

2
x>Sx

}
, (2.10)

where sjj = 2bj, and sij = sji = 0 when items i and j do not belong to the same

item cluster and sij = sji = aikajk when both items belong to the kth cluster, which

admits the same form as the marginal FLaG-IRT model in (2.8). In other words,

the graphical model component of the FLaG-IRT model can take the place of the

specific factors in the bi-factor model. The corresponding graph encoded by the S

matrix in (2.10) is sparse, when each item cluster has only a small number of items.

For example, if each item cluster has only two items, then the sparsity level of the

graph, defined as the ratio between the number of edges in the graph and the total

number of item pairs, is 1/(J − 1), which can be as small as 3% with J = 30 items.

Figure 3 presents an example of the a bi-factor model, the corresponding FLaG-IRT

model, and the local dependence graph. In other words, when the specific prior for θ

is assumed, the bi-factor model becomes a special case of the FLaG-IRT model with

one latent trait and a sparse local dependence graph. One of the advantages of the

FLaG-IRT model is that there is no need to specify a priori item clusters and they

are learned from the data.

=========================

Insert Figure 3 about here

=========================

Psychometric network models. The proposed method is also connected to, but

different from, network modeling of psychometric problems (van der Maas et al.,

2006; Cramer et al., 2010, 2012; van Borkulo et al., 2014; Boschloo et al., 2015; Fried

et al., 2015; Rhemtulla et al., 2016), where no latent variable is considered. In these

models, psychometric item responses are conceived of as proxies for variables that

directly interact with each other, instead of being dominated by a few latent factors.
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In particular, the Ising model is used as a psychometric network model when the

item responses are binary. The key difference between the proposed model and the

psychometric network models is that the proposed one maintains a latent variable

component that can be used for measurement. In addition, upon the existence of

latent factors whose effects spread out to the item responses, one typically needs a

network model with a dense graph (e.g. the left panel of Figure 2) to fit the data

well, resulting in lack of visualizability and interpretability.

Log-multiplicative association model. The proposed FLaG-IRT model, accord-

ing to the joint distribution of (X,θ) in (2.5), is also closely related to the log-

multiplicative association model. That is, when the graphical component is degener-

ate, i.e. sij = 0, for all i 6= j, the joint model (2.5) of X and θ is a log-multiplicative

association model, whose use as an IRT model has been discussed in Holland (1990);

Anderson and Vermunt (2000); Anderson and Yu (2007); Marsman et al. (2015);

Epskamp et al. (2016); Kruis and Maris (2016). Empirical evidences show that the

log-multiplicative association model and traditional IRT models perform similarly

(e.g. Anderson and Yu, 2007).

Graphical modeling in structural equation models. Recent works on structural

equation modeling, including Epskamp et al. (2017) and Pan et al. (2017), consider

a similar idea of capturing local dependence structure by a sparse graphical model.

In these works, the observed variables are continuous and are assumed to follow a

multivariate Gaussian model with latent variables. Such a model assumes that given

the latent variables, the observed variables, instead of being conditionally indepen-

dent, follows a sparse Gaussian graphical model (e.g. Koller and Friedman, 2009).

Statistical procedures for learning the sparse graphical component are also developed

in Epskamp et al. (2017) and Pan et al. (2017). The developments in the current

paper are independent of and parallel to that of Epskamp et al. (2017) and Pan et al.

(2017), under the context of item response analysis where the observed variables are

binary.
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Extension to more general response types. The proposed FLaG-IRT model can

be extended to analyzing responses of mixed types, under an exponential family

model framework (Chen, 2016; Lee and Hastie, 2015). Let X be the response vec-

tor, containing discrete variables or a combination of both continuous and discrete

variables. Then the joint distribution of X and θ can be specified as

f(x,θ) ∝ exp

{
−1

2
θ>Σ−1θ + θ>A>s(x) +

1

2
t(x)>St(x)

}
, (2.11)

where s(x) = (s1(x1), ..., sJ(xJ))> and t(x) = (t1(x1), ..., tJ(xJ))> are transforma-

tions of the original data, where sj(xj) and tj(xj) can be vectors. For example,

if Xj ∈ {0, 1, ..., cj} is a discrete variable, we can set sj(xj) and/or tj(xj) to be

(1{xj=1}, ..., 1{xj=cj}) and if Xj is continuous, we set sj(·) and tj(·) to be identity

functions. The dimensions of matrices A and S depend on the choices of s(·) and

t(·). The S matrix may contain constraints, depending the data types. Specifically,

when all items are binary, model (2.11) becomes the same as (2.5). When all item

responses are ordinal, model (2.11) can be viewed as a combination of a multidi-

mensional partial credit model (Yao and Schwarz, 2006) and an undirected graphical

model for categorical variables. When all the responses are continuous, the model

above becomes the same Gaussian model considered in Epskamp et al. (2017). The

statistical inference and computation procedures described below can be adapted to

this generalized FLaG-IRT model.

3. FLaG-IRT Analysis

3.1. Regularized Pseudo-likelihood Estimation

In this section, we discuss estimation and dimension reduction of the FLaG-

IRT model. The most natural approach would be the maximum marginal likelihood

function of responses given in (2.8). Unfortunately, the evaluation of (2.8) involves
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computing the normalizing constant,

z(A, S,Σ) =
∑

x∈{0,1}J
exp

{
1

2
x>(AΣA> + S)x

}
,

which requires a summation over 2J all possible response patterns and thus is com-

putationally infeasible for even a relatively small J . To bypass this, we propose a

pseudo-likelihood as a surrogate (Besag, 1974), which is based on the conditional

distribution of Xj given the rest X−j = (X1, ..., Xj−1, Xj+1, ..., XJ),

P (Xj = 1|X−j = x−j, A, S,Σ) =
exp{1

2
(ljj + sjj) +

∑
i 6=j(lij + sij)xi}

1 + exp{1
2
(ljj + sjj) +

∑
i 6=j(lij + sij)xi}

,

where L = (lij)J×J = AΣA>. Note that the above conditional distribution takes

a logistic regression form. Following Besag (1974), we let Lj(A, S,Σ;x) = P (Xj =

xj|X−j = x−j, A, S,Σ) and define the pseudo-likelihood function

L(A, S,Σ) =
N∏
i=1

J∏
j=1

Lj(A, S,Σ;xi), (3.1)

where xi is the responses from individual i.

The above pseudo-likelihood function is related to, but different from the vertex-

wise sparse logistic regression approach for learning a sparse Ising graphical model

(e.g. van Borkulo et al., 2014). Under the sparse Ising graphical model, the condi-

tional distribution of each variable Xj given the rest X−j follows a sparse logistic

regression model. Consequently, the neighbors of each vertex j can be learned by

regressing Xj on all the other variables X−j and selecting the variables with nonzero

regression coefficients (van Borkulo et al., 2014; Ravikumar et al., 2010; Barber and

Drton, 2015). The entire graph is constructed by aggregating vertex-wise informa-

tion. In the FLaG-IRT model, learning the graphical component requires knowledge

about the latent factor component parameterized by A and Σ, which has to be learned
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from the entire data. Consequently, the learning of the FLaG-IRT model cannot be

decomposed into solving vertex-wise regression problems separately. By aggregat-

ing the likelihood functions of vertex-wise logistic regressions, the pseudo-likelihood

function (3.1) contains information about S, A, and Σ simultaneously and thus can

be used for the model selection and parameter estimation.

To incorporate the knowledge of the test items, the factor loading matrix A is

constrained such that ajk = 0 when λjk = 0, noting that the matrix Λ = (λjk) is

pre-specified. Therefore, the unknown parameters in A are {ajk : λjk = 1}. Since

A and Σ appear in the pseudo-likelihood function in the form of AΣA>, additional

constraints are needed to ensure their identifiability. This is because, for example,

scaling A by a constant ω can be offset by the corresponding scaling of Σ by ω−2. To

identify the scale of latent factors, we impose constraints Σkk = 1, k = 1, ..., K. To

avoid rotational indeterminacy, we assume that with appropriate column swapping,

the Λ matrix contains a K × K identity submatrix. It means that for each latent

factor, there is at least one item that only measures that factor.

When the graph for local dependence is known, we estimate A, S, and Σ using

a maximum pseudo-likelihood function

(Â, Ŝ, Σ̂) = arg min
A,S,Σ

{
− 1

N
logL(A, S,Σ)

}
s.t. ajk = 0 if λjk = 0, j = 1, ..., J, k = 1, ..., K,

S = S>, sij = 0 if (i, j) /∈ E,

and Σ is positive semidefinite, Σkk = 1, k = 1, ..., K,

(3.2)

where E is the set of edges of the known graph.

When the graph for local dependence is unknown, which is typically the case

in practice, we impose an assumption that the graph is sparse, that is, the number

of edges in E = {(i, j) : sij 6= 0} is relatively small. The rationale is that most of

the dependence among responses has been captured by the common latent traits,
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leaving the local dependence structure sparse. This assumption is incorporated in

the analysis through selecting a sparse graphical model component based on the

data. We’d like to point out that even for a sparse local dependence structure (i.e.

a local dependence graph with a relatively small number of edges), if ignored in the

measurement, can result in measurement bias, as illustrated by simulated examples.

In addition, the sparse local dependence graph, once learned from the data, facilitates

the understanding of the measurement and may be used to improve the test design.

For example, patterns (e.g. item clusters) identified from the graph may help the

test designers to review the items and improve the wording.

We propose to use the regularized pseudo-likelihood for simultaneous estimation

and model selection

(Âγ, Ŝγ, Σ̂γ) = arg min
A,S,Σ

{
− 1

N
logL(A, S,Σ) + γ

∑
i 6=j

|sij|

}

s.t. ajk = 0 if λjk = 0, j = 1, ..., J, k = 1, ..., K,

S = S>, and Σ is positive semidefinite, σkk = 1, k = 1, ..., K,

(3.3)

where γ is a tuning parameter that controls the sparsity level of the estimated graph

Êγ = {(i, j) : ŝγij 6= 0, i 6= j}. At one extreme, when γ is sufficiently large, the

estimated graph becomes degenerate, i.e., no edge, and the responses are conditionally

independent given the latent variables that are measured. The graph becomes more

and more dense as γ decreases.

The optimization problem (3.3) is nonconvex and nonsmooth, and thus is compu-

tationally nontrivial. An efficient and stable algorithm is developed, which alternates

between minimizing A, S, and Σ. In particular, an proximal gradient based method

(Parikh and Boyd, 2014) is used in updating S, which avoids the issues due to the

nonsmoothness of the function that may occur in standard gradient based optimiza-

tion approaches. Details of the algorithm are provided in the appendix in the online

supplementary material.
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3.2. Choice of Tuning Parameters

In the estimation, we construct a solution path of (Âγ, Ŝγ, Σ̂γ) for a sequence of

γ values. We then choose γ based on an extended Bayes information criterion (EBIC;

Chen and Chen, 2008; Foygel and Drton, 2010; Barber and Drton, 2015), which takes

the form

EBICρ(M) = −2 logL(β̂(M)) + |M|(logN + 4ρ log(J)),

where M is the model under consideration, L(β̂(M)) is the maximal likelihood for

model M, |M| is the number of free parameters, and ρ ∈ [0, 1] is a parameter that

indexes the criterion and has a Bayesian interpretation (Chen and Chen, 2008). When

ρ = 0, the criterion becomes the classical Bayes information criterion (Schwarz, 1978).

Positive ρ leads to stronger penalization when the model space is large (i.e. when J

is large). In this study, we replace the likelihood function with the pseudo-likelihood

function. Specifically, let

Mγ =
{

(A, S,Σ) : ajk = 0 if λjk = 0, S = S>, sij=0 if ŝij = 0,

and Σ is positive semidefinite, σkk = 1, k = 1, ..., K}

be the model selected by tuning parameter γ, containing all models having the same

support as Ŝγ. We select the tuning parameter γ, such that the corresponding model

minimizes the pseudo-likelihood-based EBIC

EBICρ(Mγ) = −2 max
(A,S,Σ)∈Mγ

{logL(A, S,Σ)}+ |Mγ|(logN + 4ρ log(J)), (3.4)

where the number of parameters in Mγ is

|Mγ| =
∑
j,k

λjk + J +
∑
i<j

1{ŝγij 6=0} +
(K − 1)K

2
.

Here,
∑

j,k λjk counts the number of free parameters in the loading matrix A, J and∑
i<j 1{ŝγij 6=0} are the numbers of diagonal and off-diagonal parameters in Ŝγ, and
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K(K − 1)/2 is the number of parameters in Σ.

The tuning parameter is finally selected by

γ̂ρ = arg min
γ

EBICρ(Mγ). (3.5)

In addition, the corresponding maximal pseudo-likelihood estimates of A, S, and Σ

are used as the final estimate of A, S, and Σ:

(Â, Ŝ, Σ̂)ρ = arg max
(A,S,Σ)∈Mγ̂ρ

{L(A, S,Σ)}. (3.6)

In the rest of the paper, following Barber and Drton (2015), ρ = 0, 0.25, and 0.5

are used.

3.3. Summary

We summarize the procedure of FLaG-IRT analysis, when the graph for local

dependence is unknown.

1. Select a sequence of γ values, denoted by Γ.

2. Obtain a sequence of models indexed by γ ∈ Γ, based on the regularized esti-

mates (Âγ, Ŝγ, Σ̂γ) from (3.3).

3. Among the sequence of models above, select the best fitted model in terms of

EBICρ value, using (3.5).

4. Report (Â, Ŝ, Σ̂)ρ from the selected model given by (3.6), as well as the local

dependence graph given by Êρ = {(i, j) : (ŝij)ρ 6= 0}.

The default values ρ are chosen as 0, 0.25, and 0.5, reflecting different prior beliefs on

the size of the model space. In practice, the sequence of γ values in step 1 is chosen

in two stages. First, coarse grid points (e.g. γ = 10−3, 10−2.5, 10−2, ...) are used to

anchor a reasonable range, for which the sparsity level of the estimated graph is of
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interest (e.g. from below 5% to above 40%). Then finer grids are placed in this range

for more refined analysis. We also remark that the regularized estimator is mainly

used to produce a short list of candidate models, which are further compared and

selected by the EBIC. Unregularized parameter estimate is reported for the selected

model, which has the advantage of a smaller bias comparing to the regularized one

(e.g. Belloni and Chernozhukov, 2013).

4. Simulation Studies

In this section, we report two simulation studies. First, we provide a study

exploring the consequence of ignoring local dependence and the effectiveness of the

proposed FLaG-IRT model. Second, we evaluate the performance of the FLaG-IRT

analysis, when data are generated from a FLaG-IRT model. An additional simulation

study is reported in the supplementary material that assesses the performance of

FLaG-IRT analysis under model misspecification.

4.1. Study 1

Data generation. We generate data from the bi-factor model (2.9), with N =

1000, J = 15, and only one item cluster C1 = {1, 2, 3, 4, 5}. Note that the general

factor θg and the nuisance factor θ1 are assumed to be independent and follow the

standard normal distribution. The setting mimics a test that aims at measuring

the general factor θg, and thus every item is designed to be associated with this

dimension. In addition, θ1 is a nuisance dimension that is only associated with five

items and is not included in the design. For ease of exposition, we set ajg = 1.5,

j = 1, 2, ..., J and aj1 = c, j = 1, ..., 5. The value of c is positive and will be varied

to account for different local dependence levels. In addition, bjs are sampled from

uniform distribution over interval [−2, 2]. For each value of c, 100 independent data

sets are generated.
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Comparison. In this study, we compare three models, including (1) the unidi-

mensional 2PL model, (2) the bi-factor model with known nuisance factor, and (3)

the proposed FLaG-IRT model with known local dependence graph. Specifically, the

graph of the FLaG-IRT model is set to be E = {(i, j) : i, j ≤ 5} and the specific val-

ues of sij remain to be estimated. Note that this FLaG-IRT model is a misspecified

model that approximates the generating one.

The measurement of the general factor is compared for the three models above.

For a given model, a two-stage procedure is adopted. In the first stage, the model

parameters are estimated, and then in the second stage, each person i is measured

by the expected a posteriori (EAP) score θ̂i computed under the estimated model.

Note that for the bi-factor model, θ̂i refers to the EAP score of the general factor.

We investigate the measurement accuracy based on sample correlation between θ̂i

and the true general factor score θigs. In addition, measurement bias is investigated

based on the sample correlation between θ̂i and the nuisance factor score θi1. For

better comparison, we consider three correlation measures, including Kendall’s tau

rank correlation, Spearman’s rho rank correlation, and Pearson’s correlation. We

point out that as Kendall’s tau and Spearman’s rho are both rank-based measures

that do no rely on specific distribution assumptions, they may be more objective

measures for the comparison than Pearson’s correlation.

Results. Results are shown in Figure 4, where the left and right panels reflect the

measurement accuracy (correlations between θ̂is and θigs) and the measurement bias

(correlations between θ̂is and θi1s), respectively. In each panel, the x-axis records the

value of c, where the level of local dependence increases as c increases. Each point is

an average over 100 independent data sets. From Figure 4, under all local dependence

levels, the proposed FLaG-IRT model with a known graph performs similarly as the

bi-factor model, in terms of both measurement accuracy and bias. Moreover, the 2PL

model that ignores the local dependence structure performs poorly. Specifically, when

local dependence becomes severe, the Kendall’s tau, Spearman’s rho, and Pearson’s
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correlations between θ̂is and θigs based on the 2PL model can drop to 0.3, 0.4, and

0.4, respectively, while they remain to be 0.7, 0.9, and 0.9, respectively, for both the

bi-factor and FLaG-IRT models. In addition, when local dependence becomes more

severe, the three correlation measures between θ̂is and θi1s based on the 2PL model

increase and can be as high as 0.6, 0.8, and 0.8, respectively, while the ones based on

the bi-factor and FLaG-IRT models are all below 0.1. In other words, the latent trait

being measured under the 2PL model deviates from what is designed to measure.

This could lead to the issue of test fairness that could especially be of concern in

educational testing. That is, for two examinees with the same θg value, the one with

a higher nuisance trait level tends to be scored higher. This phenomenon is known

as differential item functioning (Holland and Wainer, 2012).

=========================

Insert Figure 4 about here

=========================

4.2. Study 2

In this study, we evaluate the performance of the FLaG-IRT analysis in Section 3,

under the settings that data are generated from a FLaG-IRT model. In this FLaG-

IRT analysis, the local dependence structure is completely unspecified and learned

from data.

Data generation. We consider the following model settings.

S1. We consider J = 45, K = 3 and the local dependence graph E = {(i, j) :

|i − j| ≤ 1}. For the loading structure, items 1-15, 16-30, and 31-45 measure

the three latent traits, respectively. If particular, we set ajk = 0.4 for qjk 6= 0,

sjj = −4, j = 1, ..., J , sij = 0.5 for (i, j) ∈ E, and σkk = 1, k = 1, ..., K and

σkl = 0.1, k 6= l.

S2. We consider J = 100, K = 5 and the local dependence graph E = {(i, j) :
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|i− j| ≤ 1}. For the loading structure, items 1-20, 21-40, 41-60, 61-80, and 81-

100 measure the five latent traits, respectively. If particular, we set ajk = 0.35

for qjk 6= 0, sjj = −4.5, j = 1, ..., J , sij = 1 for (i, j) ∈ E, and σkk = 1,

k = 1, ..., K and σkl = 0.1, k 6= l.

For each setting, sample sizes N = 500, 1000, and 3000 are considered. For each

setting and each sample size, 100 independent data sets are generated.

Evaluation criteria. For each data set, model selection results are obtained from

the FLaG-IRT analysis under the extended Bayesian criterion with ρ = 0, 0.25, 0.5.

The selected models are evaluated based on the following criteria.

1. The Kendall’s tau correlation between the EAP score θ̂iks and the corresponding

true factor score, θiks, k = 1, ..., K. An average of the Kendall’s tau correlations

over K latent traits is reported.

2. The true positive rate of graph estimation, defined as

TPR =

∑
i<j 1{(i,j)∈Ê,(i,j)∈E}∑

i<j 1{(i,j)∈E}
.

3. The false positive rate of graph estimation, defined as

FPR =

∑
i<j 1{(i,j)∈Ê,(i,j)/∈E}∑

i<j 1{(i,j)/∈E}
.

4. The accuracy in parameter estimation is also evaluated for the selected model

based on the mean square error (MSE).

Results. Results are presented in Tables 1 and 2. In Table 1, the column “Ora-

cle” gives the values of Kendall’s tau, TPR, and FPR when the true model and its

parameters are known. Given the true model, the oracle values of TPR and FPR are

1 and 0, respectively. The oracle value of Kendall’s tau is the correlation between

the EAP scores under the true model and the true scores. According to Table 1,
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under both settings, all sample sizes, and all values of ρ in the EBIC, the models

selected by the FLaG-IRT analysis has high measurement accuracy. The Kendall’s

tau correlation between the EAP scores under the selected model and the true fac-

tor scores is very close to the oracle one. In addition, it is observed that a larger

value of ρ in the EBIC yields both lower TPR and lower FPR. This is because a

larger value of ρ penalizes more on the model complexity, resulting in a more sparse

graph. Furthermore, as sample size increases, the TPR and FPR tend to increase

and decrease, respectively. When the sample size is as large as 3000, under both

settings, the TPR and FPR are close to 1 and 0, respectively, implying that the true

model is accurately selected. Table 2 shows the results on parameter estimation. In

particular, we show the MSE for the estimation of a11, s11, and σ12, calculated based

on the 100 independent replications. According to the data generation model, these

results are representative of those of nonzero ajks, sjjs, and σkls, respectively, which

are freely estimated and are not under model selection. According to Table 2, we

see that the MSEs become smaller when the sample size increases. In addition, the

models selected by the EBIC (ρ = 0.25, 0.5) tend to have smaller MSEs than the ones

selected by the BIC (ρ = 0) and thus have more accurate estimates. Finally, we point

out that even under the setting S2 where J = 100, K = 5, and under the sample

size N = 3000, the proposed algorithm solves the optimization problem (3.3) for the

regularized estimator efficiently. For a given tuning parameter, (16) can be solved

within three minutes on an Intel(R) machine (Core(TM) i5-5300U CPU @ 2.30GHz),

with code written in R. The algorithm can be further speeded up by writing the code

in a more efficient language such as C++ and by parallel computing.

=========================

Insert Table 1 about here

=========================

=========================

Insert Table 2 about here
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=========================

5. Real Data Analysis

We illustrate the use of FLaG-IRT analysis through an application to the Ex-

troversion short scale of the Eysenck’s Personality Questionnaire-Revised (EPQ-R;

Eysenck et al., 1985; Eysenck and Barrett, 2013). The data set contains the responses

to 12 items from 842 females in the United States. All these items are designed to

measure a single personality trait Extroversion, characterized by personality patterns

such as sociability, talkativeness, and assertiveness. The items are shown in Table 3,

and the data are preprocessed so that the responses to the reversely worded items

are flipped.

=========================

Insert Table 3 about here

=========================

We start with fitting the unidimensional 2PL model whose unidimensional latent

trait follows a standard Gaussian distribution and then check the model fit. The

estimated 2PL parameters are shown in Table 4. Under the fitted model, the expected

two-by-two tables for item pairs can be evaluated by

Exixj = N × P̂ (Xi = xi, Xj = xj) = N

∫
exp (âiθ + b̂i)xi

1 + exp (âiθ + b̂i)

exp (âjθ + b̂j)xj

1 + exp (âjθ + b̂j)
φ(θ)dθ,

where φ(θ) is the density function of a standard normal distribution. We first check

the fit of item pairs by comparing the expected two-by-two tables with the observed

ones, using the X2 local dependence index (Chen and Thissen, 1997) as a descriptive

statistic. For each item pair i and j, the X2 statistic is defined as

X2
ij =

1∑
xi=0

1∑
xj=0

(Oxixj − Exixj)2

Exixj
,
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where Oxixj is the observed number of (xi, xj) pairs. A large value of X2
ij indicates a

lack of fit. In addition, based on simulation studies, Chen and Thissen (1997) suggest

that the marginal distribution of each X2
ij is roughly a chi-square distribution with

one degree of freedom when data are generated from the 2PL model. We visualize

(X2
ij)J×J using a heat map in the left panel of Figure 5. For a better visualization,

we plot a monotone transformation of X2
ij,

Tij = X2
ij/(Q

Chi
1,95% +X2

ij),

where QChi
1,95% is the 95% quantile of the chi-square distribution with one degree of

freedom. Thus, Tij > 1/2 suggests that item pair (i, j) is not fitted well. In the heat

map, the value of Tij is presented according to the color key above the heat map.

The top four item pairs with highest levels of Tij are shown in Table 5, where items

within a pair tend to share common content/stimuli. To further assess the overall

fit of the 2PL model and to compare it with that of the selected FLaG-IRT model,

we consider a parametric bootstrap test, using the total sum of the X2 statistics

as the test statistic SX2PL =
∑

i<j X
2
ij. That is, we generate 500 bootstrap data

sets, each of which has 842 samples drawn from the estimated 2PL model. For each

bootstrap data set, we fit the 2PL model again and compute the corresponding total

sum of X2s, denoted by SX
(b)
2PL. The empirical distribution of SX

(b)
2PL is used as the

reference distribution. The histogram of SX
(1)
2PL, ..., SX

(500)
2PL is shown in the left panel

of Figure 6. The observed value of SX2PL based on the fitted model is 192, much

larger than the ones from bootstrap data. Consequently, the p-value of this bootstrap

test is 0, indicating the lack-of-fit of the 2PL model.

=========================

Insert Figure 5 about here

=========================

=========================



29

Insert Figure 6 about here

=========================

We apply the FLaG-IRT analysis. Using the BIC for model selection, the local

dependence graph of the selected model has 12 edges, as shown in Figure 7, where

the positive and negative edges are in black and red, respectively. In particular,

the most locally dependent item pairs also correspond to the most positive edges in

Figure 7. Similar to the analysis above, we compute the local independence indices

for all the items pairs and visualize them in the right panel of Figure 5, where no

X2
ij is found to exceed QChi

1,95%. Moreover, 500 bootstrap data sets are generated from

the selected FLaG-IRT model and the bootstrap distribution of SXFLaG is shown in

the right panel of Figure 6. As we can see, the observed value of SXFLaG for the

selected model is within the range of the bootstrap distribution with a p-value 9%,

which does not show strong evidence of model lack-of-fit.

=========================

Insert Figure 7 about here

=========================

Based on the above analysis, we see that even a well designed 12-item EPQ-R

short form displays significant level of local dependence, which, if not adjusted, may

result in measurement bias. The proposed FLaG-IRT model automatically adjusts for

the local dependence based on the data, while maintaining the unidimensional latent

trait as the key source of dependence among responses. As a result, the FLaG-IRT

model learned from data fits well, at both the item pair level and the test level.
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Figure 1.
The set C separates A from B. All paths from A to B pass through C.

Figure 2.
Graphical illustration of the MIRT model and the FLaG-IRT model.

Figure 3.
Graphical representation of a bi-factor model, the corresponding FLaG-IRT model, and the local
dependence graph.
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Figure 4.
Study 1: (a) Kendall’ tau correlation between θ̂is and θigs. (b) Kendall’ tau correlation between

θ̂is and θi1s. (c) Spearman’ rho correlation between θ̂is and θigs. (d) Spearman’ rho correlation

between θ̂is and θi1s. (e) Pearson’ correlation between θ̂is and θigs. (f) Pearson’ correlation be-

tween θ̂is and θi1s.
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Figure 5.
Real data: The heat maps for visualizing the fit of all item pairs under the 2PL model (left) and
selected FLaG-IRT model (right).

Figure 6.
Real data: The results of a parametric bootstrap test for the 2PL model (left) and the selected
FLaG-IRT model (right)
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Figure 7.
Real data: The local dependence graph of the selected FLaG-IRT model.
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S1 ρ = 0 ρ = 0.25 ρ = 0.5 Oracle

Kendall’s tau 0.61 (0.001) 0.61 (0.001) 0.61 (0.001) 0.63

N = 500 TPR 0.61 (0.007) 0.44 (0.007) 0.30 (0.008) 1

FPR 0.08 (0.002) 0.02 (0.001) 0.01 (0.000) 0

Kendall’s tau 0.62 (0.001) 0.62 (0.001) 0.62 (0.001) 0.63

N = 1000 TPR 0.86 (0.006) 0.73 (0.007) 0.62 (0.007) 1

FPR 0.06 (0.002) 0.02 (0.001) 0.01 (0.000) 0

Kendall’s tau 0.62 (0.000) 0.62 (0.001) 0.62 (0.001) 0.63

N = 3000 TPR 1.00 (0.000) 0.99 (0.001) 0.98 (0.002) 1

FPR 0.04 (0.001) 0.01 (0.000) 0.00 (0.000) 0

S2 ρ = 0 ρ = 0.25 ρ = 0.5 Oracle

Kendall’s tau 0.67 (0.001) 0.67 (0.001) 0.67 (0.001) 0.68

N = 500 TPR 0.63 (0.005) 0.39 (0.004) 0.24 (0.004) 1

FPR 0.08 (0.000) 0.02 (0.000) 0.00 (0.000) 0

Kendall’s tau 0.67 (0.001) 0.68 (0.001) 0.68 (0.001) 0.68

N = 1000 TPR 0.87 (0.003) 0.70 (0.005) 0.58 (0.006) 1

FPR 0.06 (0.000) 0.01 (0.000) 0.01 (0.000) 0

Kendall’s tau 0.68 (0.000) 0.68 (0.000) 0.68 (0.000) 0.68

N = 3000 TPR 1.00 (0.000) 0.99 (0.001) 0.98 (0.001) 1

FPR 0.03 (0.000) 0.01 (0.000) 0.00 (0.000) 0

Table 1.
Study 2: Performance of FLaG-IRT analysis when data are generated from a FLaG-IRT model.
The average of each evaluation measure and its standard error over 100 independent replications
are reported.
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S1

ρ = 0 N = 500 N = 1000 N = 3000

a11 = 0.4 1.4× 10−2 8.4× 10−3 1.7× 10−3

s11 = −4 3.5× 10−1 2.2× 10−1 4.8× 10−2

σ12 = 0.1 2.6× 10−3 1.6× 10−3 3.9× 10−4

ρ = 0.25 N = 500 N = 1000 N = 3000

a11 = 0.4 1.2× 10−2 5.6× 10−3 1.5× 10−3

s11 = −4 2.9× 10−1 1.8× 10−1 4.5× 10−2

σ12 = 0.1 1.8× 10−3 8.9× 10−4 1.8× 10−4

ρ = 0.5 N = 500 N = 1000 N = 3000

a11 = 0.4 9.2× 10−3 5.5× 10−3 1.3× 10−3

s11 = −4 2.6× 10−1 1.6× 10−1 4.6× 10−2

σ12 = 0.1 1.6× 10−3 7.6× 10−4 1.3× 10−4

S2

ρ = 0 N = 500 N = 1000 N = 3000

a11 = 0.35 1.2× 10−2 6.5× 10−3 1.6× 10−3

s11 = −4.5 4.8× 10−1 2.3× 10−1 4.6× 10−2

σ12 = 0.1 2.5× 10−3 9.8× 10−4 3.2× 10−4

ρ = 0.25 N = 500 N = 1000 N = 3000

a11 = 0.35 7.2× 10−3 4.9× 10−3 9.6× 10−4

s11 = −4.5 3.4× 10−1 1.8× 10−1 4.5× 10−2

σ12 = 0.1 1.7× 10−3 6.8× 10−4 2.0× 10−4

ρ = 0.5 N = 500 N = 1000 N = 3000

a11 = 0.35 4.8× 10−3 3.8× 10−3 7.0× 10−4

s11 = −4.5 3.1× 10−1 1.7× 10−1 4.3× 10−2

σ12 = 0.1 1.3× 10−3 6.0× 10−4 1.4× 10−4

Table 2.
Study 2: Performance of FLaG-IRT analysis when data are generated from a FLaG-IRT model.
The MSEs for the estimation of a11, s11, and σ12 calculated based on 100 independent replica-
tions are reported.
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1 Are you a talkative person?

2 Are you rather lively?

3 Can you usually let yourself go and enjoy yourself at a lively party?

4 Do you enjoy meeting new people?

5 Do you usually take the initiative in making new friends?

6 Can you easily get some life into a rather dull party?

7 Do you like mixing with people?

8 Can you get a patty going?

9 Do you like plenty of bustle and excitement around you?

10 Do other people think of you as being very lively?

11(R) Do you tend to keep in the background on social occasions?

12(R) Are you mostly quiet when you are with other people?

Table 3.
Real data: The revised Eysenck Personality Questionnaire short form of Extroversion scale.

1 2 3 4 5 6 7 8 9 10 11 12

âj 1.90 2.13 1.82 1.67 1.53 2.48 2.27 2.25 0.85 2.49 1.74 2.05

b̂j 1.16 2.35 1.71 3.13 0.66 -0.51 2.80 0.53 0.91 1.81 0.60 1.13

Table 4.
Real data: The estimated 2PL model for the EPQ-R data.

Tij X2
ij

1 0.89 32 6. Can you easily get some life into a rather dull party?

8. Can you get a patty going?

2 0.88 28 4. Do you enjoy meeting new people?

7. Do you like mixing with people?

3 0.83 18 2. Are you rather lively?

10. Do other people think of you as being very lively?

4 0.83 18 1. Are you a talkative person?

12. Are you mostly quiet when you are with other people?

Table 5.
Real data: Item pairs with largest values of local dependence indices.


