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We study the canonical problem of maximizing a stochastic submodular function subject to a cardinality

constraint, where the goal is to select a subset from a ground set of items with uncertain individual perfor-

mances to maximize their expected group value. Although near-optimal algorithms have been proposed for

this problem, practical concerns regarding scalability, compatibility with distributed implementation, and

expensive oracle queries persist in large-scale applications. Motivated by online platforms that rely on indi-

vidual item scores for content recommendation and team selection, we study a special class of algorithms that

select items based solely on individual performance measures known as test scores. The central contribution

of this work is a novel and systematic framework for designing test score based algorithms for a broad class

of naturally occurring utility functions. We introduce a new scoring mechanism that we refer to as replication

test scores and prove that as long as the objective function satisfies a diminishing returns condition, one

can leverage these scores to compute solutions that are within a constant factor of the optimum. We then

extend these scoring mechanisms to the more general stochastic submodular welfare maximization problem,

where the goal is to partition items into groups to maximize the sum of the expected group values. For

this more difficult problem, we show that replication test scores can be used to develop an algorithm that

approximates the optimum solution up to a logarithmic factor. The techniques presented in this work bridge

the gap between the rigorous theoretical work on submodular optimization and simple, scalable heuristics

that are useful in certain domains. In particular, our results establish that in many applications involving

the selection and assignment of items, one can design algorithms that are intuitive and practically relevant

with only a small loss in performance compared to the state-of-the-art approaches.
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1. Introduction

A common framework for combinatorial optimization that captures problems arising in wide-

ranging applications is that of selecting a finite set of items from a larger candidate pool and

assigning these items to one or more groups. Such problems form the core basis for online content

recommendation systems (Agarwal et al. 2008, Besbes et al. 2015), e-commerce (Li 2011), digi-

tal advertising (Mehta et al. 2013) and project portfolio selection (Chien 2002) as well as team

1



Sekar, Vojnovic, and Yun: A Test Score Based Approach to Stochastic Submodular Optimization
2 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

selection problems arising in online gaming (Herbrich et al. 2006) and traditional hiring. A crucial

feature of these environments is the intrinsic uncertainty associated with the underlying items and

consequently, sets of items. Given this uncertainty, the decision maker’s objective in these domains

is to maximize the expected group value associated with the set of items and their assignment.

As a concrete application, consider an online gaming platform where the items correspond to

players; the platform may seek to assign a subset of players to teams in order to ensure competitive

matches or to maximize the winning probability for a specific team. Other scenarios relating to

team selection—e.g., a company hiring a set of candidates or a school identifying top students

for a tournament—can also be modeled in an analogous fashion. Alternatively, these optimization

problems arise in online communities such as Stack Overflow or Reddit. Here, the items represent

topics or questions and the platform wishes to present a collection of relevant topics to an incoming

user with the goal of maximizing that user’s engagement measured via clicks or answers. Finally, in

project selection, items may refer to potential R&D efforts and the firm may be interested in green-

lighting a limited portfolio of projects. Naturally, all of these constitute stochastic environments due

to the underlying uncertainty, e.g., (i) the performance of any individual player is not deterministic

in the case of a gaming platform, (ii) there is considerable uncertainty regarding a user’s propensity

to click or respond to a topic on knowledge platforms, and (iii) R&D projects are intrinsically

risky and their precise output cannot be predicted in advance.

There are several fundamental challenges in the above applications that necessitate innovative

algorithmic approaches. First, the value derived from a set of items may not be linear in that of

the individual items and may in fact, model a more subtle relationship. For example, agents or

topics may complement or supplement each other; the efficiency of a team may grow with team

size but exhibit diminishing returns as more members are added due to coordination inefficiencies.

Second, the intrinsic uncertainty regarding the value of individual items may affect the group value

in intricate ways due to the non-linearity of the objective. As we depict later, there are situations

where a set of ‘high-risk high-reward’ items may outperform a collection of stable-value items even

when the latter type provides higher value in expectation. Finally, we also face issues relating

to computational complexity since the number of items and groups can be very large in online

platform scenarios and the underlying combinatorial optimization problems are usually NP-hard.

Despite the above challenges, a litany of sophisticated algorithmic solutions have been developed

for the problems mentioned previously. Given the intricacies of the setting, these algorithms tend

to be somewhat complex and questions remain on whether these methods are suitable for the

scenarios outlined earlier owing to issues regarding scalability, interpretability, and the difficulties

of function evaluation (Agrawal et al. 2018, Chien 2002). On the other hand, it is common practice

in many domains to select or assign items by employing algorithms that base their decisions on
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individual item scores—these represent unique statistics associated with each item that serve as a

proxy for the item’s quality or the relevance to the task at hand (Henriksen and Traynor 1999, Koç

and Morton 2014). At a high level, these algorithms only use the scores computed for individual

items—each item’s score is independent of other items—and as such, avoid the practical issues

that plague traditional algorithmic paradigms.

To expand on this thesis, consider a dynamic online portal such as Stack Overflow that hosts

over eighteen million questions and wishes to recommend the most relevant subset to each incoming

user. The platform may find it impractical to recompute the optimal recommended set of questions

every time a new batch of questions is posted and thus, many traditional optimization methods

are not scalable (Besbes et al. 2015). At the same time, content recommendation services typically

maintain relevance scores for each item and user pair that do not vary as new questions are posted

and are utilized in practice to generate recommendation sets (Agarwal et al. 2008, Manning et al.

2010). In a similar vein, online gaming platforms estimate skill ratings (scores) for individual players

based only on their past performance, which are in turn used as inputs for matchmaking (Herbrich

et al. 2006, Yuan et al. 2007). When it comes to team formation, these score based approaches may

be preferable to standard algorithms that require oracle access to the performance of every possible

team. Indeed, evaluating the expected value of every subset of players even before the teams are

formed seems prohibitively expensive. Finally, in the case of project selection, firms may prefer

to invest in R&D undertakings based on their individual risk-reward profile, which is typically

estimated via a scoring function (Chien 2002, Henriksen and Traynor 1999).

Clearly, algorithms for selecting or assigning items based solely on individual item scores are

appealing in many domains because of their conceptual and computational simplicity. However, a

natural concern is that restricting the algorithmic landscape to these simple score based approaches

may result in suboptimal solutions because they may be unable to account for complicated depen-

dencies between individual performance and the group output. Motivated by this tension, we study

the following fundamental question:

Can algorithms that assign items to groups based on individual item scores achieve near-

optimal group performance and if so, under what conditions?

We briefly touch upon our framework for stochastic combinatorial optimization. Let N =

{1,2, . . . , n} be a ground set of items and let 2N denote all possible subsets of N . Given a feasi-

ble set F ⊆ 2N of items, a value function f : 2N ×Rn→R+, and a distribution P of a random

n-dimensional vector X = (X1,X2, . . . ,Xn), our goal is to select a set S∗ ∈F that is a solution to

max
S∈F

u(S) := EX∼P [f(S,X)]. (1)
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In later sections, we generalize this formulation to consider problems where the goal is to select

multiple subsets of N and assign them to separate groups. The optimization problem (1) is further

refined as follows (see Section 2 for formal definitions):

(a) We focus primarily on the canonical problem of maximizing a stochastic monotone submodular

function subject to a cardinality constraint. This is a special case of the optimization problem

in (1) where F is defined by the cardinality constraint |S|= k for a given parameter k, and

value function f is such that the set function u : 2N →R+ is submodular.

(b) We restrict our attention to value functions f where the output of f(S,X) depends only

on the elements of X that correspond to S, i.e., {Xi}i∈S. Further, Xi denotes the random

performance of item i∈N and is distributed independently of all other Xj for j 6= i. Therefore,

P (x1, x2, . . . , xn) = P1(x1)P2(x2) · · ·Pn(xn) where Pi(xi) = Pr[Xi ≤ xi], for i= 1,2, . . . , n.

The framework outlined above captures a broad class of optimization problems arising in diverse

domains. For example, submodular functions were featured in a variety of applications such as

facility location (Ahmed and Atamtürk 2011), viral influence maximization (Kempe et al. 2015),

job scheduling (Cohen et al. 2019), content recommendation and team formation (Bhowmik et al.

2014). In particular, submodularity allows us to model positive synergies among items and capture

the natural notion of diminishing returns to scale that is prevalent in so many situations—i.e.,

the marginal value derived by adding an item to a set cannot be greater than that obtained by

adding it to any of its subsets. Moreover, in content recommendation as well as team selection,

it is natural to expect that the performance of a group of elements S would simply be a function

(albeit a non-linear one) of the individual performances of the members in S, i.e. {Xi}i∈S. This is

represented by our assumptions on the value function f .

The problem of maximizing a submodular function subject to a cardinality constraint is known

to be NP-hard and consequently, there is a rich literature on approximation algorithms for both

the deterministic (Krause and Golovin 2014) and stochastic variants (Asadpour and Nazerzadeh

2016). In a seminal paper, Nemhauser et al. (1978) established that a natural greedy algorithm

(sequentially selecting items that yield largest marginal value) guarantees a 1−1/e approximation

of the optimum value, which is tight under the value oracle model (Feige 1998). Despite the

popularity of greedy and other approaches, it is worth noting for our purposes that almost all of

the algorithms in this literature are not robust to changes in the input. That is, as the ground set N

grows, it is necessary to re-run the entire greedy algorithm to generate an approximately optimal

subset. As mentioned earlier, these methods also extensively utilize value oracle queries—access to

the objective function is through a black-box returning u(S) for any given set S.
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Test Score Algorithms We now formalize the notion of individual item scores, which we refer

to as test scores. Informally, a test score is an item-specific parameter that quantifies the suitability

of the item for the desired objective (i.e., f). To ensure scalability, it is crucial that an item’s

score depends only on the marginal distribution the item’s individual performance and the problem

specification. Formally, the test score ai ∈ [0,∞) of an item i∈N is defined as:

ai = h(f,F , Pi), (2)

where h is a mapping from the item’s marginal distribution Pi, the objective value function f and

constraint set F to a single number. Naturally, there are innumerable ways to devise a meaningful

test score mapping h. Obvious examples include: (a) mean test scores where ai = E[Xi], and (b)

quantile test scores, where ai is the θ-quantile of distribution Pi, i.e. ai = inf{x∈R | Pi(x)≥ θ}, for

a fixed value θ ∈ [0,1]. However, we prove later that algorithms that base their decisions on these

natural candidates do not always yield good solutions.

The design question studied in this paper is to identify a suitable test score mapping h such

that algorithms that leverage these scores can obtain near-optimal guarantees for the problem

defined in (1). Formally, a test score algorithm is a procedure that computes the test scores for

each item in N according to some mapping h and uses only these scores to determine a feasible

solution S for (1), e.g., by selecting the k items with the highest scores. Test score algorithms were

first introduced by Kleinberg and Raghu (2018), who developed algorithms for a team formation

problem for a specific function f . In this work, we propose a novel test score mechanism and utilize

it to retrieve improved guarantees for a large class of naturally occuring functions.

Test score algorithms are particularly salient in large-scale applications when compared to a

more traditional optimization method such as greedy or LP-based algorithms. First, as the ground

set N changes (e.g., items are added or deleted), this does not alter the scores of items still present

in the ground set since an item’s test score depends only on its own performance distribution.

This allows us to eliminate significant computational overhead in dynamic environments such as

online platforms (Agarwal et al. 2008, Besbes et al. 2015). Second, test score computations are

trivially parallelizable—implemented via distributed computation—since each item’s test score

can be computed on a separate machine. Designing algorithms that are amenable to distributed

implementation (Balkanski et al. 2019) is a major concern nowadays and it is worth noting that

standard greedy or linear programming approaches do not fulfill this criterion. Finally, test score

algorithms allow us to make fewer and simpler oracle calls (function evaluations) as we highlight

later. We now present a stylized formulation of a stochastic submodular optimization problem in

an actual application in order to better illustrate the role of test scores.
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Example 1. (Content Recommendation on Stack Overflow or Reddit) The ground set

N comprises of topics created by users on the website. The platform is interested in selecting a

set of k topics from the ground set and presenting them to an arriving user in order to maximize

satisfaction or engagement. For simplicity, the topics can be broadly classified into two categories—

set A consisting of useful but not very exciting topics and set B which encapsulates topics that are

polarizing or exciting1. Mathematically, we can capture this selection problem using our framework

by taking Xi to denote the utility that a user derives from topic i ∈ N (alternatively Xi could

denote the probability of clicking or responding to a topic). For example, Xi = a with probability

1 for i ∈ A as these topics are stable, whereas Xi = b/p with probability p for each risky topic

i ∈B. The selection problem becomes particularly interesting when b < a < b/p. Due to cognitive

limitations, one can assume that a user engages with at most r ≤ k topics from the assortment.

Therefore, the objective function is defined as follows: f(S,X) =
∑r

j=1X(j)(S), where X(j)(S) refers

to the j-th largest variable Xi for i∈ S. In the extreme case, r= 1 and each user clicks on at most

one topic. We refer to these as the top-r and best-shot functions respectively in Section 2. �

The tradeoff between ‘high-risk-high-reward’ items and more stable items arises in a large class

of selection problems in the presence of uncertainty. For example, in online gaming as in other

team selection scenarios, a natural contention occurs between high performing players who exhibit

a large variance (set B) and more consistent players (set A). In applications involving team for-

mation, it is natural to use the CES (Constant Elasticity of Substitution) utility function as the

objective, i.e., f(S,X) = (
∑

i∈SX
r
i )1/r, where the value of r indicates the degree of substitutability

of the task performed by the players (Fu et al. 2016). In this work, we design a natural test score

based algorithm that allows us to obtain constant factor approximations for stochastic submodular

optimization for all of the above objectives functions.

1.1. Main Contributions

The primary conceptual contribution of this study is the introduction of a framework for analysis of

test score based algorithms for stochastic combinatorial optimization problems involving selection

and assignment. We believe that this paradigm helps bridge the gap between theory and practice,

particularly in large-scale applications where quality or relevance scores are prominently used for

optimization. For these cases, the mechanisms developed in this work provide a rigorous framework

for computing and utilizing these scores.

Our main technical contribution is the design of a test score mapping which gives us good approx-

imation algorithms for two NP-hard problems, namely: (a) maximizing a stochastic monotone

1 For instance, Reddit identifies certain posts as controversial based on the ratio of upvotes and downvotes.
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submodular function subject to a cardinality constraint, and (b) maximizing a stochastic submod-

ular welfare function, defined as a sum of stochastic monotone submodular functions subject to

individual cardinality constraints. The welfare maximization problem is a strict generalization of

the former and is of interest in online platforms, where items are commonly assigned to multiple

groups, e.g., selection of multiple disjoint teams for an online gaming tournament.

We now highlight our results for the first problem. We identify a special type of test scores that

we refer to as replication test scores and show that under a sufficient condition on the value function

(extended diminishing returns), we achieve a constant factor approximation for the problem of

maximizing a stochastic submodular function subject to a cardinality constraint. At a high level,

replication test scores can be interpreted as a quantity that measures both an item’s individual

performance as well its marginal contribution to a team of equally skilled items—see Section 3 for

a formal treatment. Additionally, we also show the following:

• We provide an intuitive interpretation of the extended diminishing returns condition and prove

that it is satisfied by a number of naturally occuring value functions including but not limited

to the functions mentioned in our examples such as best-shot, top-r, and CES.

• We show that replication scores enjoy a special role in the family of all feasible test scores: in

particular, for any given value function, if there exist any test scores that guarantee a constant

factor approximation for the submodular maximization problem, then it is possible to obtain a

constant factor approximation using replication test scores. This has an important implication

that in order to find good approximation factors, it suffices to consider replication test scores.

• We highlight cases where natural test score measures such as mean and quantile test scores

do not yield a constant factor approximation. We provide a tight characterization of their

efficiency for the CES function—specifically, mean test scores provide only a 1/k1−1/r-

approximation to the optimum and quantile scores do not guarantee a constant-factor approx-

imation when r < r∗(k) where r∗(k) = Θ(log(k)). Recall that r denotes the degree of substi-

tutability among items.

Finally, for the more general problem of stochastic submodular welfare maximization subject

to cardinality constraints, with the value functions satisfying the extended diminishing returns

condition, we establish that replication test scores guarantee a Ω( 1
log(k)

)-approximation to the

optimum value, where k is the maximum cardinality constraint. This approximation is achieved

via a more intricate algorithm that greedily assigns items to groups based on their replication test

scores.

Our results are established by a novel framework that can be seen as approximating (sketching)

set functions using test scores. In general, a sketch of a set function is defined by two simpler

functions that lower and upper bound the original set function within given approximation factors.
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In our context, we present a novel construction of a sketch that only relies on replication test

scores to approximate a submodular function everywhere. By leveraging this sketch, we show that

selecting the k items with the highest test scores is only a constant factor smaller than the optimal

set. These results may be of independent interest.

1.2. Related Work

The problem of maximizing a stochastic submodular function subject to a cardinality constraint

by using test scores was first posed by Kleinberg and Raghu (2018) who developed constant factor

approximation algorithms for a specific value function, namely the top-r function. They introduced

the term ‘test scores’ in the context of designing algorithms for team hiring to indicate that the

relevant score for each candidate can often be measured by means of an actual test. Their work

also provides some impossibility results, namely that test score algorithms cannot yield desirable

guarantees for certain submodular functions. Our work differs in several respects. First, we show

that test scores can guarantee a constant factor approximation for a broad class of stochastic mono-

tone submodular functions, which includes different instances of value functions used in practice.

Second, we extend this theoretical framework to the more general problem of stochastic submod-

ular welfare maximization, and obtain novel approximation results by using test scores. Third, we

develop a unifying and systematic framework based on approximating set functions by simpler test

score based sketches.

As we touched upon earlier, submodular functions are found in a plethora of settings and there

is a rich literature on developing approximation algorithms for different variants of the cardinality-

constrained and welfare maximization problems (Lehmann et al. 2006, Vondrak 2008). Commonly

used algorithmic paradigms for these problems include greedy, local search, and linear programming

(with rounding). Due to their reliance on these sophisticated techniques, most if not all of these

algorithms are (a) not scalable in dynamic environments as the algorithm has to be fully re-executed

every time the ground set changes, and (b) hard to implement in a parallel computing model.

More importantly, these policies are inextricably tied to the value oracle model and hence, tend to

query the oracle a large number of times; often these queries are aimed at evaluating the function

value for arbitrary subsets of the ground set. As we illustrate in Section 2.4, oracle queries can

be expensive in certain cases. On the other hand, the test score algorithm proposed in this work

makes use of much fewer oracle queries. Within the realm of submodular maximization, there are

three distinct strands of literature that seek to tackle each of the three issues mentioned above.

• Dynamic Environments: A growing body of work has sought to develop online algorithms for

submodular and welfare maximization problems in settings where the elements of the ground

set arrive sequentially (Feldman and Zenklusen 2018, Korula et al. 2018) In contrast to this
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work, the decisions made by online algorithms are irrevocable, where test score algorithms are

only aimed at reducing the computational burden when the ground set changes.

• Distributed Implementation: Following the rise of big data applications and map-reduce mod-

els, there has been a renewed focus on developing algorithms for submodular optimization

that are suitable for parallel computing. The state-of-the-art (distributed) algorithms for sub-

modular maximization are O(log(n))-adaptive—they run for O(log(n)) sequential rounds with

parallel computations in each round (Balkanski et al. 2019, Ene and Nguyen 2019). Since

each test score can be computed independently, our results can be interpreted as identifying

a well-motivated special class of submodular functions which admit 1-adaptive algorithms.

• Oracle Queries: The design of test score algorithms is well-aligned with the body of work on

maximizing submodular set functions using a small number of value oracle queries (Badani-

diyuru and Vondrák 2014, Ene and Nguyen 2019). In fact, our replication test score based

algorithms only query the function value for subsets comprising of similar or identical items.

Although there is a promising literature pertaining to each of these three challenges, our test

score based techniques represent the first attempt at addressing all of them. While many of the

above papers propose algorithms for deterministic environments, recently, there has been consider-

able focus on maximizing submodular functions in a stochastic setting (e.g., Hassidim and Singer

2017, Singla et al. 2016, Asadpour and Nazerzadeh 2016, Gotovos et al. 2015, Kempe et al. 2015,

Asadpour et al. 2008). However, the methods presented in these works do not address any of the

concerns mentioned earlier and to a large extent, focus explicitly on settings where it is feasible to

adaptively probe items of the ground set to uncover the realization of their random variables.

More generally, a powerful paradigm for solving stochastic optimization problems as defined

in (1) is the technique of Sample Average Approximation (SAA) (Kleywegt et al. 2002, Shapiro

and Nemirovski 2005, Swamy and Shmoys 2012). These methods are typically employed when the

following conditions are applicable, see e.g. Kleywegt et al. (2002): (a) the function u(S) cannot be

written in a closed form, (b) the value of the function f(S,x) can be evaluated for every given set S

and vector x, and (c) the set F of feasible solutions is large. The fundamental principle underlying

this technique is to generate samples (x(1), . . . ,x(T )) independently from the distribution P and use

these to compute the set S∗ that is the optimal solution to arg maxS∈F
1
T

∑T

i=1 f(S,x(i)).

In addition to the same drawbacks regarding scalability mentioned above, there are other situa-

tions where it may be advantageous to use a test score algorithm over SAA methods: (a) when the

function f is accessed via a value oracle, a large number of queries may be required to optimize the

sample-approximate objective, and (b) even if oracle access is not a concern and the underlying

function is rather simple (e.g., best-shot function from Example 1), computing the optimal set S∗

may be NP-hard (see Appendix H). Finally, by means of numerical simulations in Section 5.1, we
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highlight well-motivated scenarios where SAA methods may result in a higher error probability

compared to test score algorithms under the same number of samples drawn.

The techniques in our work are inspired by the theory on set function sketching (Goemans et al.

2009, Balcan and Harvey 2011, Cohavi and Dobzinski 2017), and their application to optimization

problems (Iyer and Bilmes 2013). While the Ω(1/
√
n) sketch of Goemans et al. (2009) for general

submodular functions does apply to our setting, we are able to provide tighter bounds (the loga-

rithmic bound of Lemma 9) for a special class of well-motivated submodular functions that cannot

be captured by existing frameworks such as curvature (Sviridenko et al. 2017). Our approach is

also similar in spirit to Iyer and Bilmes (2013), where upper and lower bounds in terms of so-called

surrogate functions were used for submodular optimization; the novelty in the present work stems

from our usage of test scores for function approximation, which are conceptually similar to jun-

tas (Feldman and Vondrák 2014). We believe that the intuitive and natural interpretation of test

score-based algorithms make them an appealing candidate for other problems as well.

1.3. Organization of the Paper

The paper is structured as follows. Section 2 provides a formal definition of the optimization

problems studied in this paper and introduces examples of value functions. Section 3 contains our

main results for the problem of maximizing a stochastic montotone submodular function subject

to a cardinality constraint. Section 4 contains our main results for the problem of maximizing

a stochastic monotone submodular welfare function subject to cardinality constraints. Section 5

presents a numerical evaluation of a test score algorithm for a simple illustrative example, a tight

characterization of approximation guarantees achieved by mean and quantile test scores for the

CES value function, and some discussion points. Finally, we conclude in Section 6. All the proofs

of theorems and additional discussions are provided in Appendix.

2. Model and Problem Formulation

In this section, we introduce basic definitions for submodular functions, more formal definitions of

the optimization problems that we study, and examples of various value functions.

2.1. Preliminaries: Submodular Functions

Given a ground set N = {1,2, . . . , n} of items or elements with 2N denoting the set of all possible

subsets of N , a set function u : 2N →R+ is submodular if u(S∪T )+u(S∩T )≤ u(S)+u(T ), for all

S,T ∈ 2N . This condition is equivalent to saying that u satisfies the intuitive diminishing returns

property : u(T ∪ {i})− u(T ) ≤ u(S ∪ {i})− u(S) for all i ∈N \ T and S,T ∈ 2N such that S ⊆ T .

Furthermore, we say that u is monotone if u(S)≤ u(T ) for all S,T ∈ 2N such that S ⊆ T .

We adopt the definition of a stochastic submodular function, e.g. used in (Asadpour and Naz-

erzadeh 2016), as the expected value of a submodular value function. Let g : Rn → R+ be a



Sekar, Vojnovic, and Yun: A Test Score Based Approach to Stochastic Submodular Optimization
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 11

value function (Asadpour and Nazerzadeh 2016) that maps n-dimensional vectors to non-negative

reals—g is said to be a submodular value function if for any two vectors x and y belonging to its

domain:

g(x∨y) + g(x∧y)≤ g(x) + g(y). (3)

In the above definition, x∨y denotes the component-wise maximum and x∧y the component-

wise minimum. Note that when the domain of g is the set of Boolean vectors (all elements taking

either value 0 or 1), then (3) reduces to the definition of a submodular set function. Hence, sub-

modular value functions are a strict generalization of submodular set functions. Finally, we say

that the value function g is monotone if for any two vectors x and y satisfying y≥ x (y dominates

x component-wise), we have g(y)≥ g(x).

For every S ∈ 2N , we define x 7→MS(x) to be a mapping such that MS(x)i = xi if i ∈ S and

MS(x) = φ, otherwise. Here, φ is a minimal element which does not change the function value by

adding an item of individual value φ. For example, for the value function g(x) = max{x1, x2, . . . , xn}

defined on Rn
+, we may define φ= 0. We are now ready to define stochastic submodular functions.

Suppose that each item i∈N is associated with a non-negative random variable Xi that is drawn

independently from distribution Pi. We assume that each Pi is a cumulative distribution function,

i.e. Pi(x) = Pr[Xi ≤ x]. Given a monotone submodular value function g, we define the stochastic

monotone submodular function u : 2N →R+ by

u(S) = E[g(MS(X1,X2, . . . ,Xn))]. (4)

For example, if g is the max or best-shot function, then u(S) = E[maxi∈S{Xi}].

The following result, from Lemma 3 in Asadpour and Nazerzadeh (2016), establishes that under

the prevailing assumptions, u is a submodular set function.

Lemma 1. Suppose that g is a monotone submodular value function. Then, any set function u

satisfying (4) is a monotone submodular set function.

2.2. Problem Definitions

In this work, we study the design of test score algorithms for two combinatorial optimization

problems, namely: (a) maximizing a stochastic monotone submodular function subject to a cardi-

nality constraint, and (b) maximizing a stochastic monotone submodular welfare function defined

as the sum of stochastic monotone submodular functions subject to cardinality constraints. We

begin with the first problem. Recall the optimization problem presented in (1), and suppose that

F = {S ⊆ N | |S| = k} for a given cardinality constraint 0 < k ≤ n and let X = (X1, . . . ,Xn) be

a vector of random, independently distributed item performances such that Pr[Xi ≤ x] = Pi(x).
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By recasting problem (1) in terms of the notation developed in Section 2.1, we can now define

the problem of maximizing a stochastic monotone submodular function subject to a cardinality

constraint k as follows2

arg max
S∈F

u(S) := E[f(S,X)] := E[g(MS(X))], (5)

where g is a monotone submodular value function. Additionally, we assume the function g to be

symmetric, meaning that its value is invariant to permutations of its input arguments, i.e. for every

x ∈Rn, g(x) = g(π(x)) for any permutation π(x) of the elements {x1, x2, . . . , xn}. The symmetric

nature of the function is motivated by scenarios where the group value of a set of items depends

on the individual performance values than the identity of the members who generate these values.

For example, in the case of non-hierarchical team selection, it is reasonable to argue that two

mutually exclusive teams S,T whose members yield identical performances on a given day also end

up providing the same group value. Similarity, in content recommendation, the probability that

user clicks on at least one topic can be viewed as a function of the user’s propensity to click on each

individual topic. Finally, by seeking to optimize the expected function value in (5), we implicitly

model a risk-neutral decision maker as is typically the case in online platforms.

The stochastic submodular maximization problem specified in (5) is NP-hard even when the value

function g is symmetric (in fact, Goel et al. (2006) show this is true for g(x) = max{x1, . . . , xn}),

and hence, we focus on finding approximation algorithms. Formally, given α∈ [0,1], an algorithm is

said to provide an α-approximation guarantee for (5) if for any given instance of the problem with

optimum solution set OPT, the solution S returned by the algorithm satisfies u(S)≥ αu(OPT).

Although a variety of approximation algorithms have been proposed for the submodular maxi-

mization problem, in this work, we focus on a special class of methods we refer to as test score

algorithms. Specifically, these are algorithms that take as input a vector of non-negative test scores

a1, a2, . . . , an, and use only these scores to determine a feasible solution S for the problem (5). As

defined in (2), the value of each test score ai can depend only on g, k, and Pi. Furthermore, we are

particularly interested in proposing test score algorithms that simply select the k items with the

highest test scores in {a1, a2, . . . , an}; such an approach is naturally appealing due to its intuitive

interpretation. Clearly, the main challenge in this case is to design a suitable test score mapping

rule that enables such a trivial algorithm to yield desirable guarantees.

2 We used the formulation u(S) = E[f(S,X)] in the introduction to maintain consistency with the literature on
stochastic optimization, e.g., (Kleywegt et al. 2002). For the rest of this paper, we will exclusively write u(S) =
E[g(MS(X))] for convenience and to delineate the interplay between the set S and the submodular value function g.
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Stochastic Submodular Welfare Maximization Maximizing a stochastic submodular wel-

fare function is a strict generalization of the problem of maximizing a stochastic monotone sub-

modular function subject to a cardinality constraint as defined in (5). Here, we are given a ground

set N = {1, . . . , n}, and a collection of stochastic monotone submodular set functions uj : 2N →R+

with corresponding submodular value functions gj : Rn→R+ for j ∈M := {1,2, . . . ,m}. The goal

is to find disjoint subsets S1, S2, . . . , Sm of the ground set of given cardinalities |S1|= k1, |S2|= k2,

. . ., |Sm|= km that maximize the welfare function defined as

u(S1, S2, . . . , Sm) =
m∑
j=1

uj(Sj). (6)

We refer to M as the set of partitions. Similarly as for the previous problem, we consider sym-

metric, monotone, submodular value functions gj for each partition j ∈M so that the stochastic

submodular set functions can be represented as follows:

uj(S) = E[gj(MS(X1,j,X2,j, . . . ,Xn,j))] for all j ∈M.

In the above expression, Xi,j denotes the individual performance of item i ∈ N with respect to

partition j ∈M . Each Xi,j is drawn independently from a distribution Pi,j that is the cumulative

distribution function Pi,j(x) = Pr[Xi,j ≤ x]. Our formulation allows for considerable heterogeneity

as items can have different realizations of their individual performances for different partitions.

Submodular welfare maximization problems arise naturally in domains such as team formation

where decision makers are faced with the problem of selecting agents and assigning them to projects

or teams. For example, this could model an online gaming platform seeking to choose a collection

of teams to participate in a tournament or an organization partitioning its employees to focus

on asymmetric tasks. In these situations, the objective function (6) captures the aggregate value

generated by all of the teams.

Once again, we are interested in designing test score algorithms for stochastic submodular welfare

maximization. More formally, a test score algorithm for problem (6) is a procedure whose input

only comprises of vectors of test scores (ai,j)i∈N,j∈M , where the elements of each test score vector

ai,j are a function of gj, kj, and Pi,j. Note that in this general formulation, each item i ∈N and

partition j ∈M is associated with vector-valued test scores ai,j.

2.3. Examples of Value Functions

Many functions used in the literature to model both online as well as traditional production

functions belong to the class of symmetric, stochastic monotone submodular value functions. In

this section, we introduce and discuss several well known examples.



Sekar, Vojnovic, and Yun: A Test Score Based Approach to Stochastic Submodular Optimization
14 Management Science 00(0), pp. 000–000, c© 0000 INFORMS

A common value function is defined to be an increasing function of the sum of individual values:

g(x) = ḡ (
∑n

i=1 xi), where ḡ is a non-decreasing concave function and thus exhibits diminishing

returns. Ahmed and Atamtürk (2011) illustrate how these value functions can be utilized to

model diverse applications—e.g., risk averse capital budgeting under uncertainty, and competitive

facility location. One specific example of such a function is the threshold function, i.e., g(x) =

min{
∑n

i=1 xi,B} for some B > 0, which captures the behavior of budget-constrained buyers in

markets, most prominently in online advertising (Mehta et al. 2013).

The best-shot or the max function is commonly used to aggregate multiple inputs and is defined

as g(x) = max{x1, x2, . . . , xn}. This value function allows us to model scenarios when only the

best individual output contributes to group value. For example, this arises in online crowdsourcing

systems in which solutions to a problem are solicited by an open call to the online community,

several candidate solutions are received, but eventually only the best one is used.

A natural generalization of the best-shot function is a top-r value function defined as the sum

of r highest individual values, for a given parameter 1≤ r ≤ n, i.e. g(x) = x(1) + x(2) + · · ·+ x(r),

where x(i) is the i-th largest element of input vector x. This function reduces to the best-shot value

function when r = 1. The top-r value function is of interest in a variety of applications such as

information retrieval and recommender systems, where the goal is to identify a set of most relevant

items.

A well known value function is the constant elasticity of substitution (CES) function, which is

defined by g(x) = (
∑n

i=1 x
r
i )

1/r
, for a positive value parameter r≥ 1. This value function has been

in common use to model production systems in economics and team selection (Fu et al. 2016, Dixit

and Stiglitz 1977). The family of CES value functions accommodates different types of production

by suitable choices of parameter r, including the linear production for r = 1 and the best-shot

production in the limit as the value of r goes to infinity.

Finally, we make note of the success probability value function, defined by g(x) = 1−
∏n

i=1(1−

p(xi)), where p : R→ [0,1] is an increasing function satisfying p(0) = 0. This value function is often

used as a model of tasks for which input solutions are independent and either good or bad (success

or failure), and it suffices to have at least one good solution for the task to be successfully solved,

e.g., see Kleinberg and Oren (2011).

2.4. Computation, Implementation, and the Role of Value Oracles

We conclude this section with a discussion of some practical issues surrounding test scores algo-

rithms and function evaluation. Given that submodular set functions have representations that

are exponential in size (2n), a typical modeling concession is to assume access to a value oracle

for function evaluation. Informally, a value oracle is a black-box that when queried with any set
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S ∈ 2N , returns the function value u(S) in constant time. Although value oracles are a theoretically

convenient abstraction, function evaluation can be rather expensive in applications pertaining to

online platforms. This problem is further compounded in the case of stochastic submodular func-

tions when the underlying item performance distributions (P1, P2, . . . , Pn) are unknown. Naturally,

one would expect a non-zero query-cost to be associated with evaluating g(x) even for a single

realization x of the random vector X. Under these circumstances, there is a critical need for algo-

rithms that achieve desirable guarantees using significantly fewer queries and to eschew traditional

approaches (e.g., greedy) that require polynomially many oracle calls.

To illustrate these challenges, consider the content recommendation application from Example 1

and suppose that both the distributions P1, P2, . . . , Pn and the value function g are unknown. In

order to (approximately) compute u(S) for any S ⊆N , it is necessary to present the set S of topics

repeatedly to a large number of users and average their response (e.g., upvotes or click behavior).

Clearly, a protracted experimentation phase brought about by too many oracle queries could lead

to customer dissatisfaction or even a loss in revenue. Alternatively, in team hiring or online gaming,

evaluating the function value for arbitrary subsets S ⊆ N may be prohibitively expensive as it

may not be possible to observe group performance before the team is even formed. The replication

test score algorithm proposed in Section 3 addresses these issues by not only making use of fewer

oracle calls but also allowing for easier implementation since each evaluation of the function g only

requires samples from a single item’s (or agent’s) performance distribution Pi.

A secondary issue concerns the noise in the function evaluation or test score computation brought

about by sampling from the distributions P1, P2, . . . , Pn. It may not be possible to precisely compute

test scores ai that represent the expected value of some function under distribution Pi—e.g., mean

test scores where ai = EXi∼Pi [Xi] or replication test scores in (7). In practice, test scores could be

defined as sample estimators with values determined by the observed data, i.e., utilize a sample

mean instead of the population mean. In our analysis, we ignore the issue of estimation noise

and assume oracle access that facilitates the precise computation of test scores that denote some

expectation with respect to distributions P1, P2, . . . , Pn. This assumption is justified provided that

the estimators are unbiased and the test scores are estimated using a sufficient number of samples.

We leave accounting for statistical estimation noise as an item for future research.

Finally, it is worth highlighting that the benefits of test score algorithms do not come without a

price. Using a test score based approach severely limits what an algorithm can do, which in turn may

affect the achievable quality of approximation. For instance, the aforementioned greedy algorithm is

able to leverage its unrestricted access to a value oracle and achieve a 1−1/e-approximation for (5)

by carefully querying the function value for many different subsets S ∈ 2N . Test score algorithms,

however, do not have this luxury—instead, they rely indirectly on approximating answers to value
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oracle queries using only limited information, namely parameters associated with individual items

i∈N evaluated separately on the function g.

3. Submodular Function Maximization

In this section we present our main result on the existence of test scores that guarantee a constant-

factor approximation for maximizing a stochastic monotone submodular function subject to a

cardinality constraint, for symmetric submodular value functions that satisfy an extended dimin-

ishing returns condition. We begin by introducing some basic terminology required for our sufficient

condition. Given a value function g : Rn
+→R+ and v ≥ 0, we say that v has a non-empty preim-

age under g if there exists at least one z ∈ Rn
+ such that g(z) = v. For simplicity, we slightly

abuse notation and ignore the φ-elements when providing the inputs to function g—e.g., given

x = (x1, x2, . . . , xd, φ, . . . , φ)∈Rn
+ and x̃ = (x1, x2, . . . , xd), we write g(x̃) instead of g(x).

Definition 1 (Extended Diminishing Returns Condition). A symmetric submodular

value function g : Rn
+→R+ is said to satisfy the extended diminishing returns condition if for every

v≥ 0 that has a non-empty preimage under g, there exists z∈Rn−1
+ such that:

(a) g(z) = v, and

(b) for all y ∈Rn−1
+ such that g(y)≤ v, g(y, x)− g(y)≥ g(z, x)− g(z) for all x∈R+.

Informally, the condition states that given that a value v such that the function evaluates to

this number at one or more points in its domain, then for at least one such point, say z, the

marginal benefit of adding an element of value x to z cannot be larger than the marginal benefit of

adding the same element to another vector y whose performance is smaller than v. The extended

submodularity condition holds for a wide range of functions. For example, the condition is satisfied

by all value functions defined and discussed in Section 2.3, which is proved in Appendix A.

We refer to this property as extended diminishing returns as it is consistent with the spirit of

‘decreasing marginal returns’ as the function value grows. Indeed, as in the case of traditional

submodular functions, adding a new element (x) provides greater marginal benefit to a vector

yielding a smaller performance (y) than to one providing a larger value (z). In other words, we have

diminishing marginal returns as the value provided by a vector z grows. Consider for example, a

team application: a new member with some potential would be expected to make a less significant

contribution to a high performing team than a low performing one. Similarly, in content recom-

mendation, the added benefit provided by a new topic would be felt more strongly by a user who

derives limited value from the original assortment than one who was highly satisfied to begin with.

The underlying mechanism in both these examples is that a new member or topic would have a

greater overlap in skills or content with a high performing group of items.

A subtle point is worth mentioning here. For any given v, if there exist multiple points in the

domain at which the function g evaluates to v, then the extended diminishing returns condition
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only guarantees the existence of a single vector z for which g(z, x)− g(z) ≥ g(y, x)− g(y) holds

for all y, x such that g(y) ≤ v. Simply put, there may be other vectors which also evaluate to v

which do not satisfy the above inequality.3 We remark that this is actually a weaker requirement

than imposing that all such vectors satisfy condition (b) in Definition 1—this allows our results to

be applicable to a broader set of functions. That being said, most of the value functions that we

specify in Section 2.3 except for top-r (r > 1) satisfy a stronger version of extended diminishing

returns where the condition g(z, x)− g(z)≥ g(y, x)− g(y) holds for every two points z,y ∈Rn−1
+

such that g(y)≤ g(z).

We next introduce the special type of test scores, we refer to as replication test scores.

Definition 2 (replication test scores). Given a symmetric submodular value function g

and cardinality parameter k, for every item i∈N , the replication test score ai is defined by

ai = E[g(X
(1)
i ,X

(2)
i , . . . ,X

(k)
i , φ, . . . , φ)] (7)

where X
(1)
i ,X

(2)
i , . . . ,X

(k)
i are independent and identically distributed random variables with dis-

tribution Pi.

The replication test score of an item can be interpreted as the expected performance of a virtual

group of items that consists of k independent replicas of this item, hence the name replication

scores. Note that a replication test score is defined for a given function g and cardinality parameter

k; we omit to indicate this in the notation ai for simplicity.

In contrast to mean or quantile test scores that simply provide some measure of an item’s

performance, replication test scores capture both the item’s individual merit as well as its con-

tribution to a group of items. To understand this distinction, consider Example 1 where g(x) =

max{x1, x2, . . . , xn} and p= 1/k. Clearly, the mean performance of stable type A items (a) is larger

than the mean performance of polarizing topics of type B (b). However, the replication score of a

type B item is (1− (1− p)k) b
p
≥ (1− 1

e
)bk which for large enough k is larger than the replication

score of a type A item which still remains a. The larger replication score of type B topics captures

the intuition that risky topics can often provide significant marginal benefits to an existing assort-

ment. Finally, in the case of content recommendation, one can employ a natural mechanism to

estimate the replication scores even when the objective function g and distributions P1, P2, . . . , Pn

are unknown. Namely, in order to compute the replication score for a topic of type A (or B), it

suffices to present k items of this type to a large number of incoming users and compute the average

response.

We next present the main result of this section.

3 Suppose that g is the top−r function defined in Section 2.3 for r= 2, x = (1,1), and v= 4. Consider vectors y1 = (2,2)
and y2 = (4) such that g(y1) = g(y2) = v = 4. It is not hard to deduce that for any 0< z ≤ 1, g(x, z)− g(x) = 0 =
g(y1, z)− g(y1)< g(y2, z)− g(y2) = z. That is y1 satisfies the conditions in Definition 1 but y2 does not.
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Theorem 2. Suppose that the utility set function is the expected value of a symmetric, monotone

submodular value function that satisfies the extended diminishing returns condition. Then, the

greedy selection of items in decreasing order of replication test scores yields the utility value that is

at least (1− 1/e)/(5− 1/e) times the optimal value.

In the remainder of this section, we prove Theorem 2. Along the way, we derive several results

that connect the underlying discrete optimization problem with approximating set functions, which

may be of independent interest.

The key mathematical concept that we use is a sketch of a set function, which is an approximation

of a potentially complicated set function using simple polynomial-time computable lower and upper

bound set functions, we refer to as a minorant and a majorant sketch function, respectively.

Majorants and minorants are functions that serve as upper and lower bounds respectively for the

given set function at all inputs.

Definition 3 (Sketch). A pair of set functions (v, v̄) is said to be a (p, q)-sketch of a set

function u : 2N →R+, if the following condition holds:

pv(S)≤ u(S)≤ qv̄(S), for all S ⊆N. (8)

The set functions v and v̄ are referred to as a minorant and a majorant sketch function, respectively.

In particular, if (v, v) is a (p, q)-sketch, we refer to v as a strong sketch function.4

Although the above definition is quite general, and subsumes many trivial sketches (for e.g,

v = 0, v̄ =∞), practically useful sketches would satisfy a few fundamental properties such as (a)

when given a set function whose description may be exponential in n, v and v̄ must be polynomially

expressible, and (b) v and v̄ must be sufficiently close to each other at points of interest for the

sketch to be meaningful. Our first result provides sufficient conditions on the sketch functions to

obtain an approximation algorithm for maximizing a monotone submodular set function subject

to a cardinality constraint.

Lemma 3. Suppose that (a) v and v̄ are minorant and majorant set functions that are a (p, q)-

sketch of a submodular set function u : 2N →R+ and (b) there exists S∗ ⊆ arg maxS:|S|=k v(S) that

satisfies v̄(S)≤ v(S∗) for every S ⊆N that has cardinality k and is completely disjoint from S∗,

i.e. S ∩S∗ = ∅. Then, the following relation holds:

u(S∗)≥ p

q+ p
u(OPT),

where OPT denotes an optimum set of cardinality k.

4 Our definition of a strong sketch is closely related to the following definition of a sketch used in literature (e.g., see
Cohavi and Dobzinski (2017)): a set function ṽ is said to be a α-sketch of u if ṽ(S)≤ u(S)≤ αṽ(S) for all S ⊆N .
Indeed, if v is a (p, q)-strong sketch of u, then ṽ(S) := pv(S) is a q/p-sketch of u.
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The proof of Lemma 3 is provided in Appendix B. The proofs follows by basic properties of

submodular set functions and conditions of the lemma.

The result in Lemma 3 tells us that if we can find a minorant set function v and a majorant set

function v̄ that are a (p, q)-sketch for a submodular set function u and that satisfy the conditions of

the lemma, then any solution of the problem of maximizing the function v subject to a cardinality

constraint is a p/(p+q)-approximation for the problem of maximizing the submodular set function

u subject to the same cardinality constraint. What remains to be done is to find such minorant

and majorant set functions, and show that for every set S ⊆N , the value of these functions can

be computed in polynomial-time by using only test scores of items in S.

We define a minorant set function v and a majorant set function v̄, for any given test scores

a1, a2, . . . , an, as, for S ⊆N ,

v(S) = min{ai | i∈ S} and v̄(S) = max{ai | i∈ S}. (9)

For the minorant set function v defined in (9), the problem of maximizing v(S) over S ⊆ N

subject to cardinality constraint |S|= k corresponds to selecting a set of k items with largest test

scores. Obviously, the set functions v and v̄ defined in (9) satisfy condition (b) in Lemma 3.

We only need to show that there exist test scores a1, a2, . . . , an such that (v, v̄) is a (p, q)-sketch

of the set function u. We say that a1, a2, . . . , an are (p, q)-good test scores if (v, v̄) is a (p, q)-sketch

of the set function u. If p/q is a constant, we refer to a1, a2, . . . , an as good test scores. In this

case, by Lemma 3, selecting a set of k items with largest test scores guarantees a constant-factor

approximation for the problem of maximizing the set function u(S) subject to the cardinality

constraint |S|= k. More generally, we have the following corollary.

Corollary 4. Suppose that test scores a1, a2, . . . , an are (p, q)-good. Then, greedy selection of

items in decreasing order of these test scores yields a utility of value that is at least p/(p+ q) times

the optimum value. Moreover, if p/q is a constant, than the greedy selection guarantees a constant-

factor approximation for maximizing the submodular set function u(S) subject to the cardinality

constraint |S|= k.

We next need to address the question whether for a given stochastic monotone submodular

function there exist good test scores. If good test scores exist, it is possible that there are different

definitions of test scores that are good test scores. The following lemma shows that replication test

scores, defined in Definition 2, are good test scores, whenever good test scores exist.

Lemma 5. Suppose that a utility function has (p, q)-good test scores. Then, for this utility func-

tion, the replication scores are (p/q, q/p)-good test scores.
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The proof of Lemma 5 is provided in Appendix C. The lemma tells us that to check whether a

utility function has good test scores, it suffices to check whether for this utility function, replication

test scores are good test scores. If replication test scores are not good test scores for a given utility

function, then there exist no good test scores for this utility function.

In the next lemma, we show that the extended diminishing returns condition, which we intro-

duced in Definition 1, is a sufficient condition for replication test scores to be good test scores.

Lemma 6. Suppose that g : Rn
+ → R+ is a symmetric, monotone submodular value function

that satisfies the extended diminishing returns condition. Then, the replication test scores are (1−

1/e,4)-good test scores, and consequently are good test scores.

The proof of Lemma 6 is provided in Appendix D. Here we briefly discuss some of the main

ideas of the proof. First, for the lower bound, we need to show that for every set S ⊆N : u(S)≥

(1−1/e)v(S) = (1−1/e)min{ai | i∈ S}, where ai is the replication test score of item i. Suppose that

S = {1,2, . . . , k} and without loss of generality, a1 = min{ai | i ∈ S}. Then, we show by induction

that for every j ∈ {1, . . . , k},

u({1,2, . . . , j})≥
(

1− 1

k

)
u({1,2, . . . , j− 1}) +

1

k
a1. (10)

The proof involves showing that the marginal contribution of adding item j to the set {1,2, . . . , j−

1} is closely tied to the marginal contribution of adding item j to a set comprising of k− 1 other

(independently drawn) copies of item j. The latter quantity is at most aj/k, which by definition is

greater than or equal to a1/k. The exact factor of 1−1/e comes from applying the above inequality

in a cascading fashion from u({1,2, . . . , k}) to u({1}).

The proof of the upper bound is somewhat more intricate. The first step involves carefully

constructing a vector z∈Rn−1
+ such that g(z) is larger than u(S) by an appropriate constant factor

(say c) for a given S. Imagine that S∗ represents some set of n−1 items such that u(S∗) = g(z). By

leveraging monotonicity and submodularity, we have that u(S)≤ u(S∗)+
∑

i∈S(u(S∗∪{i})−u(S∗)).

Let x represent a vector comprising of k− 1 independent copies of random variables drawn from

distribution Pi. Now, as per the extended diminishing returns condition, for any realization of x such

that g(x)≤ g(z), it must be true (assuming that the careful construction z leverages Definition 1)

that:

u(S∗ ∪{i})−u(S∗)) = g(z, xi)− g(z)≤ g(x, xi)− g(x) given that g(x)≤ g(z).

Moreover, one can apply Markov’s inequality to show that g(z)≥ g(x) is true with probability

at least 1/c. Taking the expectation of x conditional upon g(z)≥ g(x) gives us the desired upper

bound. The statement of Theorem 2 follows from Corollary 4 and Lemma 6.
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4. Submodular Welfare Maximization

In this section, we present our main result for the stochastic submodular welfare maximization

problem. Here, the goal is to find disjoint sets S1, S2, . . . , Sm ⊆N satisfying cardinality constraints

|Sj|= kj for j ∈ {1,2, . . . ,m} that maximize the welfare function u(S1, S2, . . . , Sm) =
∑m

j=1 uj(Sj).

The main theorem for the stochastic submodular welfare maximization problem is stated as follows.

Theorem 7. Given an instance of the submodular welfare maximization problem such that the

utility functions satisfy the extended diminishing returns condition, and the maximum cardinality

constraint is k, there exists a test score algorithm (Algorithm 1) that achieves a welfare value of at

least 1/(24(log(k) + 1)) times the optimum value.

We briefly comment on the efficacy of test score algorithms for the submodular welfare maxi-

mization problem. Unlike the constant factor approximation guarantee obtained in Theorem 2,

test score algorithms only yield a logarithmic-approximation to the optimum for this more general

problem. Although constant factor approximation algorithms are known for the submodular wel-

fare maximization problem (Calinescu et al. 2011), these approaches rely on linear programming

and other complex techniques and hence, may not be scalable or amenable to distributed imple-

mentation. On the other hand, we focus on an algorithm that is easy to implement in practice but

relies on a more restrictive computational model, leading to a worse approximation. Finally, it is

worth noting that in many actual settings, the value of the cardinality constraint k is typically

much smaller in comparison to n; e.g., in content recommendation, it is typical to display 20-25

items per page presented to a user while the total number of items is much lager. In such cases,

the loss in approximation due to the logarithmic factor would not be significant.

In the remainder of this section, we provide a proof of Theorem 7. We will present an algorithm

that uses replication test scores, which achieves the logarithmic guarantee. The proof is based on

using strong sketches of set functions.

We follow the same general framework as for the submodular function maximization problem,

presented in Section 3, which in this case amounts to identifying a strong sketch function for each

utility set function, defined by using replication test scores, and then using a greedy algorithm for

welfare maximization that carefully leverages these replication test scores to achieve the desired

approximation guarantee. The following lemma establishes a connection between the submodular

welfare maximization problem and strong sketches.

Lemma 8. Consider an instance of the submodular welfare maximization with utility func-

tions u1, u2, . . . , um and parameters of the cardinality constraints k1, k2, . . . , km. Let OPT =

(OPT1,OPT2, . . . ,OPTm) denote an optimum partition of items. Suppose that for each j ∈M ,
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(vj, vj) is a (p, q)-sketch of uj, and that S1, S2, . . . , Sm is an α-approximation to the welfare maxi-

mization problem with utility functions v1, v2, . . . , vm and the same cardinality constraints. Then,

m∑
j=1

uj(Sj)≥ α
p

q
u(OPT1, . . . ,OPTm) = α

p

q

m∑
j=1

uj(OPTj).

The proof of Lemma 8 is provided in Appendix E.

We next define set functions that we will show to be a strong sketch for utility functions of

the welfare maximization problem that satisfy the extended diminishing returns condition. Fix an

arbitrary set S ⊆ N such that |S| = k and j ∈M . Let ari,j be the replication score of item i for

value function gj and cardinality parameter r, i.e.,

ari,j = E[gj(X
(1)
i ,X

(2)
i , . . . ,X

(r)
i , φ, . . . , φ)].

Let π(S, j) = (π1(S, j), . . . , πk(S, j)) be a permutation of items in S defined as follows:

π1(S, j) = arg maxi∈S a
1
i,j

π2(S, j) = arg maxi∈S\{π1(S,j)} a
2
i,j

...
πk(S, j) = arg maxi∈S\{π1(S,j),...,πk−1(S,j)} a

k
i,j.

(11)

We define a set function vj : 2N →Rn
+ for every set S ⊆N of cardinality k as follows:

vj(S) = a1π1(S,j),j +
1

2
a2π2(S,j),j + · · ·+ 1

k
akπk(S,j),j. (12)

The definition of set function vj in (12) can be interpreted as defining the value vj(S) for every

given set S to be additive with coefficients associated with items corresponding to their virtual

marginal values in a greedy ordering of items with respect to these virtual marginal values.

Given a partition of items in disjoint sets S1, S2, . . . , Sm, we define a welfare function

v(S1, S2, . . . , Sm) =
∑m

j=1 vj(Sj). We next show that the set functions defined in (12) are strong

sketch functions.

Lemma 9. Suppose that a set function uj is defined as the expected value of a symmetric, mono-

tone submodular value function that satisfies the extended diminishing returns condition. Then, the

set function vj given by (12) is a (1/(2(log(k) + 1)),6) strong sketch of uj.

The proof of Lemma 9 is provided in Appendix F.

We refer to the problem of maximizing the welfare function v(S1, S2, . . . , Sm) subject to the

cardinality constraints as the surrogate welfare maximization problem. By Lemma 8 and Lemma

9, for any stochastic monotone submodular welfare maximization problem with utility functions
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ALGORITHM 1: Greedy Algorithm for Submodular Welfare Maximization Problem

Initialize assignment S1 = S2 = . . .= Sm = ∅ A= {1,2, . . . , n}, P = {1,2, . . . ,m}

/* Sj and A denote the set of assigned items to partition j and the set of unassigned items

*/

while |A|> 0 and |P |> 0 do

(i∗, j∗) = arg max(i,j)∈A×P a
|Sj |+1

i,j /(|Sj|+ 1) /* with random tie break */

Sj∗← Sj∗ ∪{i∗} and A←A \ {i∗} /* assign item i∗ to partition j∗ */

if |Sj∗ | ≥ kj then
P ← P \ {j∗} /* remove partition j∗ from the list */

end
end

satisfying the extended diminishing returns condition, any α-approximate solution to the surrogate

welfare maximization problem is a cα/(log(k) + 1)-approximate solution to the original welfare

maximization problem, where c is a positive constant. It remains to show that the surrogate welfare

maximization problem admits an α-approximate solution. We next show that a natural greedy

algorithms applied to the surrogate welfare maximization problem guarantees a 1/2-approximation

for this problem.

Consider a natural greedy algorithm for the surrogate welfare maximization problem for the

case of one or more partitions. Given the replication test scores for all items and all partitions, in

each step r, the algorithm adds an unassigned item i and partition j that maximizes a
rj
i,j where

rj is the number of elements assigned to partition j in previous steps. That is, in each iteration,

an assignment of an item to a partition is made that yields the largest marginal increment of the

surrogate welfare function. The algorithm is more formally defined in Algorithm 1.

In the following lemma, we show that the greedy algorithm guarantees a 1/2-approximation for

the surrogate welfare maximization problem.

Lemma 10. The greedy algorithm defined by Algorithm 1 outputs a solution that is a 1
2
-

approximation for the submodular welfare maximization problem of maximizing v(S1, S2, . . . , Sm)

over partitions of items (S1, S2, . . . , Sm) that satisfy cardinality constraints.

The proof of Lemma 10 can be found in Appendix 1. The proof is similar in spirit to that of

the 1
2
-approximate greedy algorithm for submodular welfare maximization proposed by Lehmann

et al. (2006). Unfortunately, one cannot directly utilize the arguments in that paper since the

sketch function that we seek to optimize—vj(Sj)—may not be submodular. Instead, we present

a novel montonicity argument and leverage it to provide the following bounds: vj(Sj) ≥ vj(Sj \
{πr(Sj, j)})≥ vj(Sj)−

arπr(Sj,j),j

|r| for all Sj ⊆N and 1≤ r≤ kj. Finally, we apply these bounds in a

cascading manner to show the desired 1
2
-approximation factor claimed in Lemma 10.
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5. Discussion and Additional Results

In this section, we first illustrate the use of test scores and discuss numerical results for the simple

example introduced in Section 1. We then compare the performance of test score algorithms to

the popular sample average approximation (SAA) approach for this example. Finally, we discuss

the performance of simple scoring rules, namely mean and quantile scores, and characterize their

performance for the constant elasticity of substitution (CES) value function. We focus on this

function due to its extensive applications in other domains as highlighted earlier.

5.1. Numerical Results for a Simple Illustrative Example

We consider the example of two types of items that we introduced in Section 1. Recall, in this

example the ground set of items is partitioned in two sets A and B with set A comprising of safe

items whose individual performance is of value a with probability 1 and set B comprising of risky

items whose individual performance is of value b/p with probability p, and value 0, otherwise. Here

a, b, and p are parameters such that a, b > 0 and p∈ (0,1]. We assume that b≥ a and |A|, |B| ≥ k.

The value function is assumed to be the best-shot (max) value function.

We say that a set S of items of cardinality k is of type r if it contains exactly r risky items for

r= 0,1, . . . , k. For each r ∈ {0,1 . . . , k}, let Sr denote an arbitrary type-r set. The realized value of

set Sr is b/p if at least one risky item in Sr achieves value b/p and is equal to a, otherwise. Hence,

we have

u(Sr) = a(1− p)r +
b

p
(1− (1− p)r).

Notice that the value of u(Sr) monotonically increases in r, hence it is optimal to select a set that

comprises of k risky items, i.e. a set of type k.

In line with the practical implementation mentioned in Section 2.4, we consider an algorithm

that estimates test scores by repeated sampling and selects the items with the highest sample-

average replication scores. For a given number of samples per item replica T ≥ 1, this is defined

as:

âi =
1

T

T∑
t=1

max{X(t,1)
i ,X

(t,2)
i , . . . ,X

(t,k)
i }

where X
(t,j)
i are independent samples over i, t and j with X

(t,j)
i sampled from distribution Pi. Since

the optimum set consists only of risky items, the output of the test score algorithm results in an

error if, and only if, it contains at least one safe item. This occurs if the sample-average replication

score of a safe item exceeds that of a risky item. We now evaluate the probability of error of the

algorithm by running the test score algorithm for a number of repeated experiments.

In Figure 1, we show the probability of error versus the number of samples per item, for different

values of parameters k and p. Notice that the total number of samples per item is equal to Tk
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Figure 1 Probability of error of the test score algorithm versus the number of samples per item for (left) k= 5

and (b) k= 10, in each case for different values of parameter p= 0.025,0.05 and 0.1. Other parameters are set as

|A|= |B|= 10, a= 1 and b= 2. The results are averaged over 1000 repeated experiments.

Figure 2 Probability of error of the test score algorithm versus the value of parameter p for (left) k= 5 and

(right) k= 10, in each case for different number of samples per item replica T = 5, 10 and 20. Other parameters

are set as given in the caption of Figure 1.

where T is the number of samples per item replica. We observe that (a) the probability of error

decreases with the number of samples per item, (b) the probability of error is larger for larger set

size, and (c) the number of samples per item required to achieve a fixed value of probability of error

increases with the risk of item values, i.e. for smaller values of parameter p. In Figure 2, we show

the probability of error versus the value of the risk parameter p, for different values of parameters

k and T . This further illustrates that a larger number of samples is needed to achieve a given

probability of error as p decreases. In fact, one can prove that drawing at least O((k/p2) log(n/δ))

samples per item is sufficient to guarantee that the probability of error does not exceed δ; we

provide the corresponding details in Appendix H.

We further consider a sample averaging approach (SAA) that amounts to enumerating feasible

sets of items, for each feasible set S of items estimating the value of u(S), and selecting a set with
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Figure 3 Probability of error versus the number of samples per item for SAA and test score algorithms, for

(left) p= 0.1, (middle) p= 0.05, and (right) p= 0.025. The setting of other parameters is as in Figure 1 for k= 5.

the largest estimated value. The value of u(S) is computed using the estimator defined as

û(S) =
1

T

T∑
t=1

max{X(t)
i | i∈ S}

where X
(t)
i are independent samples over i and t with X

(t)
i sampled from distribution Pi.

In Figure 3 we show the probability of error versus the number of samples per item for the test

score algorithm and the SAA method. We observe that for a fixed number of samples, the SAA

method results in a larger error probability. Intuitively, this happens because the SAA method

requires us to bound the error probability for every set S that contains at least one safe item whereas

for the replication test score approach, it suffices to compare pairs of items i, j where i ∈ A and

j ∈B. For the example under consideration, the number of samples per item needed to guarantee

a given probability of error can be analytically characterized; we show this in Appendix H. We

remark that even if the SAA method is employed in combination with an approximation algorithm

such as greedy, it would still result in a higher error probability since these algorithms require

more oracle queries. Consequently, it may be necessary to bound the error probability for a larger

number of sets S.

In summary, our numerical results demonstrate the efficiency of the test score algorithm for

different values of parameters and in comparison with the sample averaging approach.

5.2. Mean and Quantile Test Scores

As we already mentioned, the mean test scores are defined as expected values ai = E[Xi]. The

quantile test scores are defined as ai = E[Xi | Pi(Xi)≥ θ], for a parameter θ ∈ [0,1]. For the value

of parameter θ= 0, the quantile test score corresponds to mean test score. The quantile test score

is defined as the conditional expectation of individual performance of an item conditional on it

being larger than a quantile value. Note that quantile test scores, as defined here, are not quantile

values following standard definition in statistics.

Neither mean test scores nor quantile test scores can guarantee a constant-factor approximation

for the submodular function maximization problem. We demonstrate this by two simple examples



Sekar, Vojnovic, and Yun: A Test Score Based Approach to Stochastic Submodular Optimization
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 27

that convey intuitive explanations on why these test scores can fail to provide desired guarantee.

We then present tight approximation bounds for the CES utility functions.

Example 1 (mean test scores): Suppose that the utility is according to the best-shot function

and that the selection is greedy using mean test scores. Suppose that there are two types of

items: (a) deterministic performance items whose each individual performance is of value 1 with

probability 1 and (b) random performance items whose individual performances are independent

with expected value strictly smaller than 1 and a strictly positive probability of being larger than

1. Then, the algorithm will select all items to be those with deterministic performance. This is

clearly suboptimal under the best-shot production where having selected an item with deterministic

performance, the only way to increase the performance of a set of items with a non-zero probability

is to select an item with random performance. Such an instance can be chosen such that the

algorithm yields the utility that is only factor O(1/k) of the optimum value.

Example 2 (quantile test scores): Suppose that the utility function is the sum of individual

performances and consider greedy selection with respect to quantile test scores with threshold

parameters θi = 1−1/k. Suppose there are two types of items: (a) deterministic performance items

whose individual performances are of value 1 with probability 1 and (b) random performance

items whose individual performances are independent of value a > 1 with probability p > 1/k and

otherwise equal to zero. For random performance items, the mean test score is of value ap and the

quantile test score is of value a. The algorithm will choose all items to be random performance items,

which yields the utility of value kap. On the other hand, choosing items that output deterministic

performance, yields the utility of value k. Since a and p can be chosen to be arbitrarily near to

values 1 and 1/k, respectively, we observe that the algorithm yields the utility that is O(1/k) of

the optimum value.

We next present a tight approximation bound for the CES utility function with parameter r≥ 1.

Recall that the CES utility production provides an interpolation between two extreme cases: a

linear function (for r= 1) and the best-shot function (as r→∞). Intuitively, we would expect that

mean test scores would perform well for small values of parameter r, but that the approximation

would get worse by increasing parameter r. The following result makes this intuition precise.

Proposition 11 (mean test scores). Suppose that the utility function u is according to the

CES production function with parameter r ≥ 1. For given cardinality parameter k ≥ 1, let M be a

set of k items in N with highest mean test scores. Then, we have

u(M)≥
(

1

k

)1− 1
r

u(OPT).

Moreover, this bound is tight.
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The proof of Proposition 11 is provided in Appendix I. The approximation factor decreases with

the value of parameter r from value 1 for r = 1 to value 1/k as r goes to infinity. The limit value

1/k conforms to the approximation factor obtained for the best-shot function in Kleinberg and

Raghu (2018).

Intuitively, we would expect that quantile test scores would yield a good approximation guarantee

for the CES utility function with large enough parameter r. This is because the quantile test scores

guarantee a constant-factor approximation for the best-shot utility function (Kleinberg and Raghu

2018). The following result makes this intuition precise.

Proposition 12 (quantile test scores). Suppose that the utility is according to the CES pro-

duction function with parameter r and that the selection is greedy using quantile test scores with

θ= 1− c/k and c > 0. Then, we have

(a) if r= o(log(k)) and r > 1, the quantile test scores cannot guarantee a constant-factor approx-

imation for any value of parameter c > 0;

(b) if r= Ω(log(k)), the quantile test scores with c= 1 guarantee a constant-factor approximation.

The proof of Proposition 12 is provided in Appendix J. The proposition establishes that quantile

test scores can guarantee a constant-factor approximation if, and only if, the parameter r is larger

than a threshold of value Θ(log(k)).

6. Conclusion

In this paper we presented a new algorithmic approach for the problem of stochastic submodu-

lar maximization by using test score algorithms. These algorithms are particularly appealing due

to their simplicity and natural interpretation as their decisions are contingent only on individ-

ual item scores that are computed based on the distribution that captures the uncertainty in the

respective item’s performance. Although test score based methods have been studied in previous

literature (Kleinberg and Raghu 2018), our work presents a new systematic framework for solving

a broad class of stochastic combinatorial optimization problems by approximating complex set

functions using simpler test score based sketch functions. By leveraging this framework, we show

that it is possible to obtain good approximations under a natural extended diminishing returns

condition, namely: (a) a constant factor approximation for the problem of maximizing a stochas-

tic submodular function subject to a cardinality constraint, and (b) a logarithmic-approximation

guarantee for the more general stochastic submodular welfare maximization problem. It is worth

noting that since test score algorithms represent a more restrictive computational model, the guar-

antees obtained in this paper are not as good as those of the best known algorithms for both these

problems. However, test score based approaches provide three key advantages over more traditional

algorithms that make them highly desirable in practical situations relating to online platforms:
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• Scalability : The test score of an item depends only on its own performance distribution.

Therefore, when new items are added or existing items are removed from the ground set, this

does not alter the scores of any other items. Since our algorithm selects items with the highest

test scores, its output would only require simple swaps when the ground set changes.

• Distributed Implementation: Test score algorithms can be easily parallelized as the test score

of an item can be computed independently of the performance distribution of other items.

• Fewer Oracle Calls: Test score algorithms only query the value of the function once per item—

n oracle calls in total—which is an order of magnitude smaller than the number required by

traditional approaches. Moreover, these oracle calls are simple in that they do not require

drawing samples from the distributions of multiple items, which may be expensive.

Due to the prevalence of numeric quality scores for online recommendations (e.g., Agarwal et al.

(2008), Adomavicius and Tuzhilin (2005)) and in team selection (Kleinberg and Raghu 2018), we

used these two domains as running examples to illustrate the practical applications of test score

algorithms. Although we focused specifically on these examples, there are other applications involv-

ing stochastic submodular functions that satisfy extended diminishing returns where test score

algorithms are naturally appealing. As Koç and Morton (2014) point out, in resource constrained

selection problems, practitioners prefer assigning priority scores to items and selecting the top

items instead of employing an optimal algorithm. For example, our framework in (5) could be used

to model a facility location problem with the concave objective function E[
∑

j∈M fj(
∑

i∈SXi,j)]

as in (Ahmed and Atamtürk 2011). Here, M is the set of markets and Xi,j is a random demand

that quantifies market j’s preference for location i. Alternatively, in online advertising, a firm may

seek to select a portfolio of channels or keywords to maximize the reach of its ad campaign, i.e.,

maximize E[1 −
∏
i∈S(1 −Xi)], where Xi is the indicator that channel i reaches a random tar-

geted user (Danaher et al. 2010, Paulson et al. 2018). In these scenarios, test scores measure the

importance of each location or channel and could be estimated via market surveys.

One possible direction for future work is to gain a better understanding of the limits and capabil-

ities of test scores by deriving lower bounds on the performance of such algorithms. In this regard,

an important open question is whether the logarithmic-approximation guarantee for the welfare

maximization problem presented in this paper is tight for the class of test score based algorithms.

In Appendix K, we present some negative examples which suggest that it may not be possible

to obtain a constant-factor approximation for the welfare maximization problem using test score

algorithms based on function sketching. Similarly, it would be interesting to design test score algo-

rithms for set functions that do not satisfy the extended diminishing returns condition introduced

in this work. Finally, it would also be of interest to study approximation guarantees when using

statistical estimators for test scores, and not expected values as in this paper.
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Badanidiyuru A, Vondrák J (2014) Fast algorithms for maximizing submodular functions. Proceedings of the

Twenty-fifth Annual ACM-SIAM Symposium on Discrete Algorithms, 1497–1514, SODA ’14.

Balcan M, Harvey NJA (2011) Learning submodular functions. Proceedings of the 43rd ACM Symposium on

Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, 793–802.

Balkanski E, Rubinstein A, Singer Y (2019) An exponential speedup in parallel running time for submod-

ular maximization without loss in approximation. Proceedings of the Thirtieth Annual ACM-SIAM

Symposium on Discrete Algorithms, 283–302, SODA ’19.

Besbes O, Gur Y, Zeevi A (2015) Optimization in online content recommendation services: Beyond click-

through rates. Manufacturing & Service Operations Management 18(1):15–33.

Bhowmik A, Borkar V, Garg D, Pallan M (2014) Submodularity in team formation problem. Proceedings of

the 2014 SIAM International Conference on Data Mining, 893–901.
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Appendix. Proofs and Additional Results

A. Validation of the Extended Diminishing Returns Property

It is easy to verify that all the value functions defined in Section 2.3 are symmetric, monotone submodular

value functions. We next show that they also satisfy the extended diminishing returns condition, defined in

Definition 1. Formally, we need to check that a value function g is such that for any given v ∈R+ with a

non-empty preimage under g, there exists z∈Rn−1
+ such that g(z) = v and for all y ∈Rn−1

+ with g(y)≤ g(z),

the following condition holds:

g(z1, . . . , zn−1, x)− g(z1, . . . , zn−1)≤ g(y1, . . . , yn−1, x)− g(y1, . . . , yn−1), for all x∈R+. (13)

We first prove that all of the functions defined in Section 2.3 except the top-r function with r > 1 satisfy a

stronger version of the above condition. More specifically, we show that for any v ∈R+ and z such g(z) = v,

and y satisfying g(y)≤ g(z), the following is true:

g(z1, . . . , zn−1, z)− g(z1, . . . , zn−1)≤ g(y1, . . . , yd, x)− g(y1, . . . , yd), for all x∈R+. (14)

Note for any given vector z∈Rd
+ with d< n, we write g(z) in lieu of g(z,0,0, . . . ,0). We begin by proving

that all of the functions defined in Section 2.3 except top-r satisfy the stronger condition as per (14).

Total production: g(x) = ḡ(
∑n

i=1 xi). In this case, g(y)≤ g(z) implies that
∑n−1

i=1 yi ≤
∑n−1

i=1 zi by mono-

tonicity and thus, (14) is equivalent to

ḡ

(
n−1∑
i=1

yi +x

)
− ḡ

(
n−1∑
i=1

yi

)
≥ ḡ

(
n−1∑
i=1

zi +x

)
− ḡ

(
n−1∑
i=1

zi

)
, for all x∈R+.

Let y =
∑n−1

i=1 yi and z =
∑n−1

i=1 zi. With this new notation, the extended diminishing returns condition is

equivalent to saying that for all y, z ∈R+ such that y≤ z,

ḡ(y+x)− ḡ(y)≥ ḡ(z+x)− ḡ(z), for all x∈R+

which obviously holds true because ḡ is assumed to be a monotone increasing and concave function.

Best-shot: g(x) = max{x1, x2, . . . , xn}. In this case, g(y)≤ g(z) implies that

max{y1, . . . , yn−1} ≤max{z1, . . . , zn−1}

and (14) is equivalent to

max{y1, . . . , yn−1, x}−max{y1, . . . , yn−1} ≥max{z1, . . . , zn−1, x}−max{z1, . . . , zn−1} for all x∈R+.

We consider three different cases:

• Case 1: x≥max{z1, . . . , zn−1} ≥max{y1, . . . , yn−1}. In this case, max{y, x}−max{y}= x−max{y} ≥

x−max{z}= max{z, x}−max{z}. Hence, the extended diminishing returns condition holds.

• Case 2: max{y1, . . . , yn−1} ≤ z < max{z1, . . . , zn−1}. In this case, condition (14) is equivalent to x ≥

max{y1, . . . , yn−1}, which holds by assumption.

• Case 3: z <max{y1, . . . , yn−1}. In this case, condition (14) is equivalent to 0≥ 0 and thus trivially holds.
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CES: g(x) = (
∑n

i=1 x
r
i )

1/r, for parameter r≥ 1. Let y =
∑n−1

i=1 y
r
i , z =

∑r

i=1 z
r
i and w= xr. Condition

(14) is equivalent to

(y+w)1/r − y1/r ≥ (z+w)1/r − z1/r

while g(y)≤ g(z) is equivalent to y≤ z. Since r≥ 1, the function f(y) = y1/r is an increasing concave function.

Hence, it follows that condition (14) holds as long as g(y)≤ g(z).

Success-probability: g(x) = 1−
∏n

i=1(1− p(xi)). By simple algebra, condition (14) is equivalent to

n−1∏
i=1

p(yi)(1− p(x))≥
n−1∏
i=1

p(zi)(1− p(x))

while g(y)≤ g(z) is equivalent to
n−1∏
i=1

p(yi)≥
n−1∏
i=1

p(zi).

Hence, condition (14) holds as long as g(y)≤ g(z).

Finally, we prove that the top-r function satisfies (13) for r > 1. Recall that the top-1 function coincides

with the best-shot function, for which we already established that the extended diminishing returns condition

holds.

Top-r: g(x) =
∑r

i=1 x(i), where x(i) is the i–th largest element in x. Fix v ∈R+. Without loss of

generality, suppose that n− 1≥ r and define z = (z1, . . . , zn−1) ∈Rn−1 such that zj = v/r for 1≤ j ≤ r and

zj = 0 for all r < j ≤ n− 1.5 Clearly, g(z) = v.

Let y ∈Rn−1
+ be any point such that g(y)≤ g(z). We prove (13) for the following two different cases:

• Case 1: x≥ v/r: In this case, g(z, x)−g(z) = x−v/r. Since g(y)≤ g(z), it must be that the r-th largest

element in y, i.e. y(r), is smaller than or equal to g(z)/r = v/r. Thus, we have that g(y, x)− g(y) =

x− y(r) ≥ x− g(z)/r= g(z, x)− g(z) and so, the claim follows.

• Case 2: x≤ v/r: The claim trivially follows in this case because g(z, x) = g(z) and so, g(z, x)−g(z) = 0,

whereas g(y, x)− g(y)≥ 0.

B. Proof of Lemma 3

We first note the following inequalities

u(OPT)≤ u(S∗) +u(OPT \S∗)≤ u(S∗) + qv̄(OPT \S∗).

The first inequality is by the fact that all submodular functions are subadditive, i.e. for any submodular

set function u, it holds u(A∪B)≤ u(A) +u(B). The second inequality is by the sketch upper bound.

Now, consider any set T of cardinality k such that OPT \S∗ ⊆ T that is disjoint from S∗, i.e. S∗ ∩T = ∅.

By the condition of the lemma, we have that v̄(T )≤ v(S∗) and pv(S∗)≤ u(S∗). Therefore, we have

u(OPT)≤ u(S∗) + qv(T )≤ u(S∗) + qv(S∗)≤ u(S∗) +
q

p
u(S∗)

which completes the proof.

5 The proof when r > n− 1 is trivial because g(y, x)− g(y) = g(z, x)− g(z) = x.
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C. Proof of Lemma 5

Suppose that a set function u has (p, q)-good test scores a1, a2, . . . , an, i.e. for every S ⊆N such that |S|= k,

pmin{ai | i∈ S} ≤ u(S)≤ qmax{ai | i∈ S}. (15)

Let r1, r2, . . . , rn be the replication test scores, i.e.6

ri = E[g(X
(1)
i , . . . ,X

(k)
i , φ, . . . , φ)] = u({i(1), . . . , i(k)}) (16)

where X
(1)
i ,X

(2)
i , . . . ,X

(k)
i are independent random variables with distribution Pi and i(1), i(2), . . . , i(k) are

independent replicas of item i.

By assumption, a1, a2, . . . , an are (p, q)-good test scores, hence

pai ≤ u({i(1), . . . , i(k)})≤ qai. (17)

From (15), (16), and (17), for every S ⊆N such that |S|= k,

p

q
min{ri | i∈ S} ≤ pmin{ai | i∈ S} ≤ u(S)≤ qmax{ai | i∈ S} ≤

q

p
max{ri | i∈ S}

which implies that the replication test scores are (p/q, q/p)-good test scores.

D. Proof of Lemma 6

We first prove the lower bound and then the upper bound as follows.

Proof of the lower bound. Without loss of generality, let us consider the set S = {1,2, . . . , k} and assume

that a1 = min{ai | i∈ S}. We claim that

u({1, . . . , j})≥
(

1− 1

k

)
u({1, . . . , j− 1}) +

1

k
a1 for all j ∈ {1,2, . . . , k}. (18)

We prove this claim sequentially beginning with j = 1 up to j = k. From this, we can use a cascading

argument to show that u(S)≥ (1− (1− 1
k
)k)a1 ≥ (1− 1

e
)a1.

We next prove the claim in (18). For j = 1, since u is a non-negative, monotone submodular set function,

we have

u({1}) =
1

k

k∑
t=1

u({1(t)})≥ 1

k
u({1(1), . . . ,1(k)}) =

1

k
a1. (19)

For j > 1, we have

u({1, . . . , j}) = u({1, . . . , j− 1}) + [u({1, . . . , j})−u({1, . . . , j− 1})]
(a)

≥ u({1, . . . , j− 1}) +
1

k
[u({1, . . . , j− 1, j(1), . . . , j(k)})−u({1, . . . , j− 1})]

(b)

≥ u({1, . . . , j− 1}) +
1

k
[u({j(1), . . . , j(k)})−u({1, . . . , j− 1})]

=

(
1− 1

k

)
u({1, . . . , j− 1}) +

1

k
aj

≥
(

1− 1

k

)
u({1, . . . , j− 1}) +

1

k
a1 (20)

6 Hereinafter, we slightly abuse the notation by writing u(S) for a set of item i replicas S = {i(1), . . . , i(k)} while u is

defined as a set function over 2N . A proper definition would extend the definition of u over 2Ñ where Ñ includes n
instances of each item i∈N but this would be at the expense of more complex notation.
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where (a) follows by submodularity of u and (b) follows by non-negativity and monotonicity of u. This

completes the proof of (18). We now proceed with the cascading argument:

u({1, . . . , k})≥
(

1− 1

k

)
u({1, . . . , k− 1}) +

1

k
a1

≥
(

1− 1

k

)2

u({1, . . . , k− 2}) +

(
1− 1

k

)
a1
k

+
a1
k

≥ . . .

≥ a1
k

(
k−1∑
j=0

(
1− 1

k

)j)

≥ a1

(
1−

(
1− 1

k

)k)

≥
(

1− 1

e

)
a1.

For the last step, we use the fact that (1− 1/k)
k ≤ 1/e, for all k≥ 1.

Proof of the upper bound. Again, without loss of generality, assume that S = {1,2, . . . , k} and a1 ≤ a2 ≤
· · · ≤ ak. Recall that the value function g is defined on Rn. Recall that we slightly abuse the notation by

writing g(y) to denote g(y, φ, . . . , φ), for any vector y of dimension 1 ≤ d < n, where φ is some minimal-

value element defined in Section 2. Moreover, for convenience, we will assume that the value function g is

continuous on any given dimension.

Define gmaxi to be the maximum value of the submodular function g on a vector of dimension i, i.e.,

gmax
i = max

z1,z2,...,zi∈R+

g(z1, z2, . . . , zi).

Suppose that v = min{cak, gmax
k−1 }, for some constant c > 1 whose value we will determine later. We first

claim that there exists a vector z such that g(z) = v. Our proof will leverage this vector z as follows. We

consider a fictitious set of items S∗ whose individual performances correspond to z and show that the

marginal benefit of adding an item i∈N to this fictitious set is at most twice the marginal value of adding

item i to a set comprising of k− 1 replicas of item i. This allows us to establish an upper bound in terms

of the test scores. Although g(z) = v = cak is sufficient for our proof to hold, it is possible that the function

g is capped at a value smaller than cak and there does not exist any z satisfying g(z) = cak. To handle this

corner case, we define v to be the minimum of cak and gmax
k−1 .

We now prove the above claim that v has a non-empty preimage under g. When v= gmax
k−1 , the claim follows

trivially since by the definition of gmax
i , there exists a (k−1)-dimension vector for which the function value is

gmax
k−1 . On the other hand, when cak < g

max
k−1 , this comes from continuity arguments since we know that there

exist points in Rk−1
+ where g evaluates to values greater than and smaller than v respectively. In summary,

there exists at least one point where the function evaluates to v. Since g satisfies the extended diminishing

returns condition, we can abuse notation and infer from the definition that there exists a vector7 z ∈Rn−1
+

such that g(z) = v and for any y ∈Rk−1
+ having g(y)≤ g(z), it must be that

g(z, x)− g(z)≤ g(y, x)− g(y), for all x∈R+. (21)

7 Note that some elements of this vector can be φ or zero.
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It is worth pointing out that while Definition 1 guarantees that (21) holds when the vector y is of dimension

n−1, one can simply start with a (k−1)-dimension vector y and simply pad a sufficient number of φ elements

to arrive upon a (n−1)-dimension vector whose value is still g(y). Therefore, let z = (z1, z2, . . . , zn−1)> be an

arbitrary vector such that g(z) = v and that it satisfies (21) for any y ∈Rk−1
+ , x≥ 0 as long as g(y)≤ g(z).

Let S∗ = {q1, q2, . . . , qn−1} be a set of (fictitious) items such that Xqj = zj with probability 1 (performance

of each of these fictitious items is deterministic). Therefore, the performance of the set of items S∗ is given

by

u(S∗) = g(z) = min{cak, gmaxk−1 }.

Since u is a non-negative, increasing and submodular function, we have

u(S) ≤ u(S∗ ∪S) (22)

≤ u(S∗) +

k∑
i=1

(u(S∗ ∪{i})−u(S∗)) (23)

≤ cak +

k∑
i=1

(u(S∗ ∪{i})−u(S∗)) . (24)

Let X
(1)
i ,X

(2)
i , . . . ,X

(k)
i be independent random variables with distribution Pi. Let Xi = X

(k)
i and Yi =

(X
(1)
i ,X

(2)
i , . . . ,X

(k−1)
i )>. Note that

u(S∗ ∪{i})−u(S∗) = E [g(z,Xi)− g(z)] (25)

(a)
= E [g(z,Xi)− g(z) | g(Yi)≤ g(z)] (26)

(b)

≤ E [g(Yi,Xi)− g(Yi) | g(Yi)≤ g(z)] (27)

≤
u
(
{i(1), . . . , i(k)}

)
−u

(
{i(1), . . . , i(k−1)}

)
Pr
[
g(Yi)≤ g(z)

] (28)

(c)

≤ 1

Pr
[
g(Yi)≤ g(z)

] ai
k

(29)

(d)

≤
(

1− 1

c

)−1
ak
k
, (30)

where (a) comes from the fact that, by definition, Xi and Yi are independent; the inequality (b) follows

from the extended diminishing returns condition defined in (21) for y = Yi–note that for any instantiation

Yi where g(Yi)≤ g(z), extended diminishing returns tells us that g(z,Xi)− g(z)≤ g(Yi,Xi)− g(Yi) for all

Xi, thus taking the expectation over all Yi,Xi conditional upon g(Yi)≤ g(z) gives us (b); inequality (c) can

be shown using only the definition of submodularity as can be seen via the below sequence of inequalities:

u
(
{i(1), . . . , i(k)}

)
−u

(
{i(1), . . . , i(k−1)

)
≤ 1

k

k−1∑
j=0

(
u({i(1), . . . , i(j), i(k)})−u({i(1), . . . , i(j)})

)
=

1

k

k−1∑
j=0

(
u({i(1), . . . , i(j), i(j+1)})−u({i(1), . . . , i(j)})

)
=

1

k
u({i(1), . . . , i(k)})

=
ai
k
.
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It remains to prove (d) in (30), which follows by the fact ai ≥ ak for all i ∈ {1,2 . . . , k} and showing that

Pr
[
g(Yi)≤ g(z)

]
≥ 1−1/c. Recall that g(z) = min{cak, gmaxk−1 }. Let us proceed by separately considering two

cases depending on the value of g(z). If g(z) = gmaxk−1 , then Pr
[
g(Yi)≤ g(z)

]
= 1 trivially. This is because by

definition gmaxk−1 is the maximum value that the function can take for any vector of dimension k− 1. On the

other hand, when g(z) = cak, we can apply Markov’s inequality to obtain

Pr[g(Yi)≥ cak]≤
E[g(Yi)]

cak
≤ E[g(Yi,Xi)]

cak
≤ 1

c
.

Hence, it follows Pr[g(Yi)≤ cak]≥ 1−Pr[g(Yi)≥ cak]≥ 1− 1/c. Combining this with (24) and (30), we

obtain u(S) ≤ cak + (1− 1/c)−1ak = (c2/(c− 1))ak. Since we can choose c arbitrarily, by taking c = 2, we

obtain u(S)≤ 4ak, which proves the upper bound.

E. Proof of Lemma 8

Suppose that S∗ is the optimum solution to the submodular welfare maximization problem with the utility

functions v1, v2, . . . , vm, and S is such that v(S)≥ αv(S∗). Then,

u(OPT) =

m∑
j=1

uj(OPTj)

≤ q
m∑
j=1

vj(OPTj)

≤ q
m∑
j=1

vj(S
∗
j ) (by definition of S∗)

≤ 1

α
q

m∑
j=1

vj(Sj)

≤ 1

pα
q

m∑
j=1

uj(Sj).

F. Proof of Lemma 9

It suffices to consider an arbitrary partition j. To simplify the presentation, with a slight abuse of notation,

we omit the index j in our notation.

Let ar1, a
r
2, . . . , a

r
n denote replication test scores for parameter r. For any set S ⊆N such that |S|= k, let

π(S) = (π1(S), π2(S), . . . , πk(S)) be a permutation of the elements of S defined in (11).

Let v be a set function, which for any S ⊆N such that |S|= k is defined by

v(S) =

k∑
r=1

1

r
arπr(S). (31)

We need to establish the following relations, for every S ⊆N ,

u(S)≥ 1

2(log(k) + 1)
v(S) (32)

and

u(S)≤ 6v(S). (33)



Sekar, Vojnovic, and Yun: A Test Score Based Approach to Stochastic Submodular Optimization
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 39

Proof of lower bound (32) Suppose that S is of cardinality k and define

τ := arg max
t

atπt(S).

We begin by noting the following basic property of replication test scores.

Lemma 13. For replication test scores ar1, a
r
2, . . . , a

r
n for 1 ≤ r ≤ k, for every item i ∈ {1,2, . . . , k}, the

following relations hold:
asi
s
≥ ati

t
, for 1≤ s≤ t≤ k.

The assertion in Lemma 13 follows easily by the diminishing increments property of replication test scores

ari with respect to parameter r.

In our proof, we will also need the following lemma:

Lemma 14. For every set S ⊆ N such that |S| = k and ordering of items of this set π(S) =

(π1(S), π2(S), . . . , πk(S)), the following relation holds:

1

τ

τ∑
r=1

arπr(S) ≥
1

2
aτπτ (S).

The proof of the lemma is as follows. For every r ∈ {1,2, . . . , τ}, we have

arπr(S)
r
≥
arπτ (S)
r
≥
aτπτ (S)
τ

where the first inequality is by definition of π(S) and the second inequality is by Lemma 13. Hence, we have

τ∑
r=1

arπr(S) ≥
aτπτ (S)
τ

τ∑
r=1

r≥
aτπτ (S)
τ

τ(τ + 1)

2
≥ aτπτ (S)

τ

2

which corresponds to the claim of the lemma.

Lemma 15. For every S ⊆N , the following holds:

u(S)≥ 1

τ

τ∑
r=1

arπr(S).

The proof of Lemma 15 is by induction as we show next. The inductive statement is u({π1(S), . . . , πr(S)})≥
1
r

∑r

s=1 a
s
πs(S)

for every r ∈ {1,2, . . . , τ}. Base case: r = 1. The base case indeed holds because by definition

of replication test scores u({π1(S)}) = a1π1(S)
. Inductive step: assume that the statement is true up to r− 1

and we need to show that it holds for r. We have the following relations:

u({π1(S), . . . , πr(S)})−u({π1(S), . . . , πr−1(S)})

=
1

r

(
u({π1(S), . . . , πr−1(S), πr(S)(1)}) + · · ·+u({π1(S), . . . , πr−1(S), πr(S)(r)})− ru({π1(S), . . . , πr−1(S)})

)
≥ 1

r

(
u({π1(S), . . . , πr−1(S), πr(S)(1), . . . , πr(S)(r)})−u({π1(S), . . . , πr−1(S)})

)
≥ 1

r

(
u({πr(S)(1), . . . , πr(S)(r)})−u({π1(S), . . . , πr−1(S)})

)
=
arπr(S)
r
− u({π1(S), . . . , πr−1(S)})

r
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where the first and second inequality is by submodularity and monotonicity of the set function u, respectively.

From the inductive hypothesis, we know that u({π1(S), . . . , πr−1(S)}) ≥ 1
r−1

∑r−1
s=1 a

s
πs(S)

, so we add

u({π1(S), . . . , πr−1(S)}) to both sides of the above equation and obtain

u({π1(S), . . . , πr(S)})≥
arπr(S)
r

+
r− 1

r
u({π1(S), . . . , πr−1(S)})≥ 1

r

r∑
s=1

asπs(S)

which proves the claim of Lemma 15.

Now, combining Lemma 14 and Lemma 15, we obtain u(S)≥ aτπτ (S)/2.

Finally, we conclude the lower bound as follows:

u(S)≥ 1

2
aτπτ (S) =

aτπτ (S)
2

1 + 1
2

+ . . .+ 1
k

1 + 1
2

+ . . .+ 1
k

≥
a1π1(S)

+
a2π2(S)

2
+ . . .+

akπk(S)

k

2(log(k) + 1)
= v(S)

where in the last inequality we use the facts that aτπτ (S) ≥ a
r
πr(S)

for all r, and 1+1/2+ · · ·+1/k≤ log(k)+1,

for all k≥ 1.

Proof of the upper bound (33) The proof of the upper bound is almost identical to the upper bound

proof of Lemma 6. Once again, we will abuse notation by writing g(y) instead of g(y, φ, . . . , φ) for any vector

y of dimension r < n, where φ is some minimal-value element as defined in Section 2.

Analogous (but slightly different) than in the proof of Lemma 6, consider a deterministic vector z =

(z1, z2, . . . , zn−1) such that g(z) = min{caτπτ (S), g
max
k−1 }, for a positive constant c > 1 whose value will be deter-

mined later. In choosing this vector, we will apply the definition of the extended diminishing returns condition

so that for any y satisfying g(y)≤ g(z) and x≥ 0, Equation (21) is satisfied.

Let S∗ = {v1, v2, . . . , vn−1} be a set of (fictitious) items such that Xvj = zj with probability 1 (the perfor-

mance of each of these fictitious items is deterministic). Therefore, the performance of the set of items S∗ is

given by u(S∗) = g(z) = min{caτπτ (S), g
max
k−1 }.

By definition, we know that arπr(S) ≤ a
τ
πτ (S)

for all r. Moreover, we can upper bound u(S) as follows,

u(S)≤ u(S ∪S∗)≤ u(S∗) +

k∑
r=1

[u(S∗ ∪{πr(S)})−u(S∗)]. (34)

Let X
(1)
πr(S)

,X
(2)
πr(S)

, . . . ,X
(r)
πr(S)

be independent random variables with distribution Pπr(S). Let X =X
(r)
πr(S)

and

Y = (X
(1)
πr(S)

,X
(2)
πr(S)

, . . . ,X
(r−1)
πr(S)

). Note that

u(S∗ ∪{πr(S)})−u(S∗) = E[g(z,X)− g(z)]

= E [g(z,X)− g(z) | g(Y)≤ g(z)]

(a)

≤ E
[
g(Y,X)− g(Y) | g(Y)≤ g(z)

]
≤ E[g(Y,X)− g(Y)]

Pr[g(Y)≤ g(z)]
(b)

≤ 1

Pr[g(Y)≤ g(z)]

arπr(S)
r

.

Inequality (a) follows from the extended diminishing returns property defined in Definition 1. Note that

from our definition of z, for any instantiation Y where g(Y)≤ g(z), extended diminishing returns tells us

that g(z,X) − g(z) ≤ g(Y,X) − g(Y) for all X. Taking the expectation over all Y,X conditional upon

g(Y)≤ g(z) gives us (a).
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Inequality (b) can be shown using only the definition of submodularity as can be seen via the below

sequence of inequalities: suppose that i= πr(S).

E[g(Y,X)− g(Y)]≤ 1

r

r−1∑
s=0

(
u({i(1), . . . , i(s), i(r)})−u({i(1), . . . , i(s)})

)
=

1

r

r−1∑
s=0

(
u({i(1), . . . , i(s), i(s+1)})−u({i(1), . . . , i(s)})

)
=

1

r
u({i(1), . . . , i(r)})

=
ari
r

=
arπr(S)
r

.

All that remains is to prove that Pr
[
g(Y)≤ g(z)

]
≥ 1− 1/c.

Recall that g(z) = min{caτπτ (S), g
max
k−1 }. Let us proceed by considering two cases depending on the value of

g(z). If g(z) = gmaxk−1 , then Pr
[
g(Y)≤ g(z)

]
= 1 trivially. This is because by definition gmaxk−1 is the maximum

value that the function can take on any vector of length k− 1, and by monotonicity, any vector of size r− 1

such as Y since r≤ k. On the other hand, when g(z) = caτπτ (S), we can apply Markov’s inequality and bound

the desired probability, i.e.,

Pr
[
g(Y)≥ caτπτ (S)

]
≤ E [g(Y)]

caτ
πτ (S)

≤ 1

c

where we used E[g(Y)] = ar−1
πr(S)

≤ arπr(S) ≤ a
τ
πτ (S)

. Since Pr
[
g(Y)≤ caτπτ (S)

]
≥ 1−Pr

[
g(Y)≥ caτπτ (S)

]
, it

follows that Pr
[
g(Y)≤ caτπτ (S)

]
≥ 1− 1/c, as desired.

We have shown that u(S∗ ∪{πr(S)})−u(S∗)≤ (1− 1/c)−1arπr(S)/r.

Combining with (34), we obtain

u(S)≤ caτπτ (S) +

(
1− 1

c

)−1(a1π1(S)

1
+
a2π2(S)

2
+ · · ·+

akπk(S)
k

)
.

Applying Lemma 14 to aτπτ (S), we obtain that

u(S)≤ 2c
1

τ

τ∑
r=1

arπr(S) +

(
1− 1

c

)−1(
a1π1(S)

+
a2π2(S)

2
+ · · ·+

akπk(S)
k

)

≤

(
2c+

(
1− 1

c

)−1)(
a1π1(S)

+
a2π2(S)

2
+ · · ·+

akπk(S)
k

)
which completes the proof by taking c= 2.

G. Proof of Lemma 10

Before proving Lemma 10, we prove that our sketch function vj as defined in (12) satisfies a simple mono-

tonicity property. This property will be useful in the proof of Lemma 10.

Proposition 16. Suppose vj is a sketch function for a stochastic monotone submodular function uj as

defined in (12) and let S = {i1, i2, . . . , i|S|} ⊆N such that for all r ∈ {1,2, . . . , |S|}, πr(S, j) = ir. Then, the

following inequalities hold for all r ∈ {1,2, . . . , |S|}:

vj(S)≥ vj(S \ {ir})≥ vj(S)−
arir,j
r
.
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Proof of Proposition 16 Fix some r ∈ {1,2, . . . , |S|}, and for all t 6= r, define νt such that πνt(S \{ir}, j) =

it. That is, νt denotes item it’s new ‘rank’ in the set S \ {ir}. Note that 1≤ νt ≤ |S| − 1 and that:

vj(S \ {ir}) =
∑
t6=r

aνtit,j
νt

. (35)

We show via induction on t that for all t 6= r, νt ≤ t, i.e., removal of an item cannot hurt the ‘rank’ of

another item. The claim is trivially true when νt = 1 since t≥ 1. Consider an arbitrary vt > 1, and suppose

that the inductive hypothesis is true up to νt−1. Let us consider two cases: first, if νt < r, then by definition

πt(S, j) = πt(S \ {ir}, j) = it and so the inductive claim holds since νt = t. Second, suppose that νt ≥ r:

assume by contradiction that νt > t. By the inductive hypothesis, it must be the case that πt(S \ {ir}, j) ∈

{it, it+1, . . . , i|S|}—indeed, for all t′ < t, we have that νt′ ≤ t′. However, we know by definition of π that for

all i∈ {it+1, . . . , i|S|}, it must be true that:

atit,j >a
t
i,j .

Therefore, if νt > t, then πt(S \ {ir}, j) ∈ {it+1, . . . , i|S|}—this would be a violation of the definition of π.

Hence, the inductive hypothesis follows.

Now, in order to prove the proposition, we go back to (35),

vj(S \ {ir}) =
∑
t6=r

aνtit,j
νt

≤
∑
t6=r

aνtiνt ,j

νt

=

|S|−1∑
t=1

atit,j
t

≤ v(S).

The crucial step above is the second inequality. There, we used the fact that νt ≤ t, and therefore, if νt = q,

then aqiq,j ≥ a
q
it,j

by definition of iq for all 1≤ q= νt ≤ |S|− 1. The third inequality comes from changing the

index from νt to t. In summary, we have shown that v(S)≥ v(S \ {ir}) which is one half the proposition.

In order to prove the other half, that is v(S \ {ir})≥ v(S)− arir,j/r, we utilize the result from Lemma 13,

namely that:
aνtit,j
νt
≥
atit,j
t
,

which is true because νt ≤ t. To conclude the proposition, we have that:

v(S) =

|S|∑
t=1

atit,j
t

=
∑
t6=r

atit,j
t

+
arir,j
r

≤
∑
t6=r

aνtit,j
νt

+
arir,j
r

= v(S \ {ir}) +
arir,j
r
. �

We are now ready to prove the main lemma.
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(Proof of Lemma 10) We need to show that the greedy algorithm described in Algorithm 1 returns an

assignment S = (S1, S2, . . . , Sm) that is a 1
2
-approximation to the optimum assignment O = (O1,O2, . . . ,Om)

that maximizes v(S′) =
∑m

j=1 vj(S
′
j) where the function vj is as defined in (12). If the sketch function vj is

submodular, then one can simply apply the well-known result by Lehmann et al. (2006) for the submodular

welfare maximization problem to show that the greedy algorithm yields the desired approximation factor.

However, despite its simplicity, the sketch function vj is not necessarily submodular, so we cannot directly

use the existing proof for submodular welfare maximization as a black-box.

Before proving the result, we introduce some pertinent notation. Recall that our algorithm proceeds in

rounds such that at each time step t, exactly one item i ∈ A is added to a partition j ∈M . Let S(t) =

(S1(t), S2(t), . . . , Sm(t)) denote the assignment at the end of time step t, i.e., Sj(t) is the set of items assigned

to partition j ∈M at the end of t unique assignments. For notational convenience, let S(0) = (∅,∅, . . . ,∅).
Suppose that O(t) = (O1(t),O2(t), . . . ,Om(t)) denotes the optimal (constrained) assignment such that for

every j ∈M , Sj(t)⊆Oj(t), i.e., this assignment deviates from S only in the set of items that are unassigned

at the end of time step t. Finally, suppose that at round t+1, if our algorithm assigns item i∈N to partition

j ∈M , then the added welfare is ∆(t+ 1) := a
|Sj(t)|+1
i,j /(|Sj(t)|+ 1).

The basic idea behind our proof is similar to that of Theorem 12 in (Lehmann et al. 2006). Namely, we

show that v(O(t))≤ v(O(t+ 1)) + ∆(t+ 1) for all t∈ {0,1, . . . , `− 1}, where ` is the total number of rounds

the algorithm proceeds for. By cascading this argument, we can show the desired approximation guarantee,

i.e.,

v(O(0))≤ v(O(1)) + ∆(1) (36)

≤ · · ·

≤ v(O(t)) +

t∑
r=1

∆(r)

≤ · · ·

≤ v(O(`)) +

`∑
r=1

∆(r)

= v(O(`)) + v(S(`))

= 2v(S). (37)

The first five equations above come from an application of the claimed inequality v(O(t))≤ v(O(t+ 1)) +

∆(t+ 1) for all t∈ {0,1, . . . , `− 1}. The penultimate and final equations follow from: (a) O(`) = S(`) = S by

definition, and (b) the total welfare generated by the solution S is simply the sum of welfare added in each

round, i.e.,
∑`

r=1 ∆(r). Finally, this argument can be used to conclude the proof since O(0) is the same as

the unconstrained optimum assignment O by definition.

All that remains for us is to prove the claim v(O(t))≤ v(O(t+ 1)) + ∆(t+ 1) for all t ∈ {0,1, . . . , `− 1}.
In (Lehmann et al. 2006), this claim followed from submodularity. However, since this is no longer a valid

approach in our setting, we use a more subtle argument based on the monotonicity result from Proposition 16.

Suppose that in round t+ 1, our algorithm assigns item i to partition j and let |Sj(t+ 1)| = r so that

∆(t + 1) = ari,j/r. Moreover, suppose that in the constrained optimum solution O(t), item i is assigned
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to partition j′ and integer parameter r′ is such that πr′(Oj′(t), j
′) = i. A crucial observation here is that

r′ > |Sj′(t)|. This is because Algorithm 1 greedily assigns the item with the maximum marginal benefit at

each round and we know that item i was still unassigned at the end of round t. Consider the assignment

O(t+ 1), we have that:

v(O(t+ 1))≥ v(O(t)) +
(
vj(Oj(t)∪{i})− vj(Oj(t))

)
−
(
vj′(Oj′(t))− vj′(Oj′(t) \ {i})

)
. (38)

Starting with the assignment O(t), if we move item i from partition j′ to partition j, the resulting assignment

has a welfare that is denoted by the right hand side of the above inequality. Now, since the resulting

assignment also subsumes S(t+ 1), its welfare cannot be larger than O(t+ 1). Consider the term, vj(Oj(t)∪

{i}) − vj(Oj(t)) from the RHS of (38)—this is non-negative by the monotonicity argument laid out in

Proposition 16. Similarly, consider the other term from the RHS, namely vj′(Oj′(t))− vj′(Oj′(t) \ {i})—this

is upper bounded by ar
′

i,j′/r
′ as per Proposition 16 and our definition of r′. Further, according to Lemma 13,

we have that:
ar
′

i,j′

r′
≤

a
|Sj′ (t)|+1

i,j′

|Sj′(t)|+ 1
,

since we proved earlier that r′ > Sj′(t). Putting all these ingredients together, we arrive upon the desired

claim that v(O(t))≤ v(O(t+ 1)) + ∆(t+ 1) for all t∈ {0,1, . . . , `− 1}:

v(O(t+ 1))≥ v(O(t)) +
(
vj(Oj(t)∪{i})− vj(Oj(t))

)
−
(
vj′(Oj′(t))− vj′(Oj′(t) \ {i})

)
≥ v(O(t)) + (0)−

ar
′

i,j′

r′
(39)

≥ v(O(t))−
a
|Sj′ (t)|+1

i,j′

|Sj′(t)|+ 1
(40)

≥ v(O(t))−
ari,j
r

(41)

= v(O(t))−∆(t+ 1).

Equation (39) is a product of the monotonicity claims from Proposition 16. Equation (40) is due to the fact

that r′ > |Sj′(t)| and due to Lemma 13. Finally, the penultimate inequality (41) comes from the property of

the greedy algorithm. At round t+ 1, since the greedy algorithm assigned item i to partition j as opposed to

partition j′, it must have been the case that a
|Sj′ (t)|+1

i,j′ /(|Sj′(t)|+ 1)≤ ari,j/r. This concludes our proof. �

H. Sample Average Approximation Algorithms

H.1. NP-Hardness of Sample-Based Stochastic Optimization

We now present an example of a stochastic submodular optimization instance with a rather simple utility

function where employing sample based algorithms may subsequently result in a discrete optimization prob-

lem that is NP-Hard. On the other hand, test score algorithms avoid the additional overhead brought about

by solving secondary optimization problems. More concretely, consider the problem of maximizing a stochas-

tic monotone submodular function subject to a cardinality constraint where g(x) = max{x1, x2, . . . , xn}. For

every i ∈ N , the distribution Pi is defined as follows: let Xi be a random variable such that Xi = 1 with

probability pi and Xi = 0 with probability 1− pi for some sufficiently small probabilities (pi)i∈N .
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Consider the sample average approximation approach which first computes a collection of T independent

sample vectors (X
(t)
1 ,X

(t)
2 , . . . ,X(t)

n )Tt=1, where X
(t)
i ∼ Pi. For a given cardinality parameter k, the SAA

method would look to compute a subset S∗ ⊆ N in order to maximize the number of ‘covered indices’ t,

i.e., arg maxS⊆N
∑T

t=1 1{∃i ∈ S : X
(t)
i = 1}, where 1 is the indicator function that evaluates to one when

the condition inside is true and is zero otherwise. However, this is equivalent to the well-studied maximum

coverage problem which is known to be NP-Hard. Note that for the same instance, a test score algorithm

based on replication scores would return the optimum solution with high probability since the test scores

would be monotonically increasing in the probability pi. In the following section, we delve deeper into the

sample errors due to test score and SAA methods

H.2. Error Probability for Finite Samples

We discuss the use of sample averages for estimating test scores for the simple instance introduced in Exam-

ple 1 and the numerical results provided in Section 5.1. Our goal is to characterize the probability of error

in identifying an optimal set of items due to use of sample averages for approximating replication test scores

for the aforementioned simple example. The simplicity of this example allows us to derive tight characteri-

zations of the required number of samples for the probability of error to be within a prescribed bound. We

also conduct a similar analysis for the sample averaging approach (SAA) that amounts to enumerating and

estimating value of each feasible set of items, and compare with the test score based approach.

Recall that we consider a ground set of items N that consists of type-A and type-B items that reside in two

disjoint nonempty sets A and B, respectively, such that N =A∪B. For each i∈A, Xi = a with probability

1, and for each i ∈ B, Xi = b/p with probability p, and Xi = 0 otherwise, where a, b > 0 and p ∈ (0,1] are

parameters. We assume that b/p > a so that individual performance of a type-B item is larger than that of

any type-A item conditional on the type-B item achieving performance b/p. We may think of type-B items

as of high-risk, high-return items when p is small. We assume that for given k, |A| ≥ k and |B| ≥ k.

We consider the best-shot utility function u(S) = E[max{xi | i ∈ S}], which want to maximize over sets

S ∈ 2N of cardinality |S| = k. Clearly, we can distinguish k + 1 equivalence cases for sets S with respect

to the value of the utility function: class r defined by having r type-B items and k − r type-A items, for

r ∈ {0,1, . . . , k}. Let Ck,r denote all sets of cardinality k that are of class r.

For each S ∈Ck,r, we have

u(S) = E[max{X(r), a}]

where X(r) is the largest order statistic of individual performance of type-B items,

Pr[X(r) = b/p] = 1−Pr[X(r) = 0] = 1− (1− p)r.

Indeed, we have

u(S) = a(1− p)r +
b

p
(1− (1− p)r).

Since we assumed that b/p > a, we have that u(S) is increasing in the class of set S, achieving the largest

value for r= k, i.e. when all items are of type B.

In our analysis, we will make use of the well-known Hoeffding’s inequality (Hoeffding 1963) to bound the

probability of the event that a sum of independent random variables with bounded supports deviates from

its expected value by more than a given amount.
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Proposition 17 (Hoeffding’s inequality). Let X1,X2, . . . ,XT be independent random variables such

that Xi ∈ [αi, βi] with probability 1 for all i∈ {1,2, . . . , T}. Then, for every x≥ 0,

Pr[X1 +X2 + · · ·+XT −E[X1 +X2 + · · ·+XT ]≥ x]≤ exp

(
− 2x2T 2∑T

i=1(βi−αi)2

)
.

Test scores Consider sample average estimators of replication test scores defined as follows:

âi =
1

T

T∑
t=1

max{X(1,t)
i ,X

(2,t)
i , . . . ,X

(k,t)
i }

where X
(j,t)
i are independent over i, j, and t and X

(j,t)
i has distribution Pi. Indeed, by denoting X

((k),t)
i the

largest order statistic of Pi, we can write

âi =
1

T

T∑
t=1

X
((k),t)
i .

Indeed, for our example, for every i ∈A, we have âi = a. On the other hand, for every i ∈B, we have that

X
((k),t)
i is equal to b/p with probability 1 − (1 − p)k and is equal to 0 otherwise. Thus, for every i ∈ B,

ai = E[âi] = (b/p)(1− (1− p)k). In what follows, we assume that (b/p)(1− (1− p)k) > a, i.e. E[âi] < E[âj ]

for every i ∈ A and j ∈ B. In this case, in absence of estimation noise, the replication test score based

algorithm correctly identifies an optimum set of items to be a set k type-B items. We declare an error event

to occur if âj < âi for some items i ∈ A and j ∈ B, and denote with pe the probability of this event, i.e.

pe := Pr[∪i∈A,j∈B{âj < âi}].

By the Hoeffding’s inequality, for any type-A item i and type-B item j, we have

Pr[âj < âi] = Pr

[
1

T

T∑
t=1

X
((k),t)
i <a

]
≤ exp(−2(1− (1− p)k− ap/b)2T ).

By the union bound, we have

pe ≤ |A||B| exp
(
−2p2

(
(1− (1− p)k)/p− a/b

)2
T
)
.

Hence, for pe ≤ δ to hold, for given δ ∈ (0,1], it suffices that the total number of samples m := nkT is such

that

m≥ nk

2p2 ((1− (1− p)k)/p− a/b)2
log

(
|A||B|
δ

)
. (42)

Under given assumptions |A|+ |B|= n and |A|, |B| ≥ k, we have |A||B| ≤ n2/4, so in (42), we can replace

log(|A||B|/δ) with 2 log(n/2)+log(1/δ) to obtain a sufficient number of samples. Note that ((1−(1−p)k)/p−

a/b)2 = (k− a/b)2(1 + o(1)) for small p. Hence, we have m= Ω(1/p2).

SAA approach Consider now a stochastic average approximation method that amounts to enumerating

all feasible sets and then choosing the one that has the best estimated value: for each S ⊆ N such that

|S|= k, estimating u(S) with the sample average û(S) defined as

û(S) =
1

T

T∑
t=1

max{X(t)
i | i∈ S}

where X
(t)
i are independent random variables over i and t and X

(t)
i ∼ Pi for all S ∈ 2N and t∈ {1,2 . . . , T}.
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For every class-0 set S, whose all elements are of type A, we have û(S) = a with probability 1. For every

class-r set S, with 1≤ r < k, we have û(S)≥ a. For every class-r set S, with 0≤ r≤ k, we have

û(S) = a

(
1− XS

T

)
+
b

p

XS

T

where XS ∼Bin(T,1− (1− p)r).

Comparing û(S)> û(S′) for any two sets S and S′ is equivalent to XS >XS′ . By the Hoeffding’s inequality,

for an two sets S and S′ such that E[XS]>E[XS′ ], we have

Pr[XS ≤XS′ ]≤ exp

(
−1

2
(E[XS]−E[XS′ ])

2T

)
. (43)

We declare an error event to occur if û(S)< û(S′) for every class k set S and some class r < k set S′ and

denote with pe the probability of this event. Then, by the union bound, we have

pe = Pr[XS <XS′ for every S ∈Ck,k and some S′ ∈∪0≤r<kCk,r]

≤ Pr[∪S′∈∪0≤r<kCk,r{XSk <XS′}]

≤
k−1∑
r=0

|Ck,r|Pr[XSk ≤XSr ]

≤

(
k−1∑
r=0

|Ck,r|

)
Pr[XSk ≤XSk−1

]

=

((
n

k

)
−
(
|B|
k

))
Pr[XSk ≤XSk−1

]

where Si denotes an arbitrarily fixed set in Ck,i.

Combining with (43), we have

pe ≤
((

n

k

)
−
(
|B|
k

))
exp

(
−1

2
p2(1− p)2(k−1)T

)
. (44)

Note that the error exponent in (44) is due to discriminating a class k set from a class k− 1 set. In order

to have pe ≤ δ, for given δ ∈ (0,1], it suffices for the total number of samples m := nT to be such that

m≥ 2n

p2(1− p)2(k−1)
log

((
n

k

)
−
(|B|
k

)
δ

)
. (45)

Note that in (45) we can replace
(
n

k

)
−
(|B|
k

)
with

(
n

k

)
, which is tight for |B|= Θ(k). Furthermore, we can

use the well known inequalities k
(
log
(
n
k

))
≤ log

((
n

k

))
≤ k

(
log
(
n
k

)
+ 1
)
. Thus, the logarithmic term in (45)

contributes a factor of k to the sufficient number of samples. Note also that m= Ω(1/p2).

Summary The analysis of the estimation error for the SAA approach requires to consider discrimination

of a set with all type-B items and a set that has at least one type-A item. On the other hand, for the

approach based on using replication test scores, we only need to consider discrimination of a set with all

type-B items and a set with all type-A items. For both approaches, we obtain that the error exponent scales

as Θ(p2) for small p. The SAA approach can require a larger number of samples than the replication test

score approach, which is demonstrated by numerical results in Section 5.1.
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I. Proof of Proposition 11

Let X1,X2, . . . ,Xn be independent random variables with distributions P1, P2, . . . , Pn, respectively, and let

X := (X1,X2, . . . ,Xn). Without loss of generality, assume that items are enumerated in decreasing order of

mean test scores, i.e. E[X1]≥E[X2]≥ · · · ≥E[Xn]. Let S = {i1, i2, . . . , ik} be an arbitrary subset of items in

N . Then, we have

u(S) = E[g(MS(X))]

= E[[g(MS(X))− g(MS\{ik}(X))] + [g(MS\{ik}(X))− g(MS\{ik−1,ik}(X))] + · · ·+ [g(M{i1}(X))− g(φ, . . . , φ)]]

= [u(S)−u(S \ {ik})] + [u(S \ {ik})−u(S \ {ik−1, ik})] + · · ·+ [u({i1})−u(∅)]

≤ u({ik}) +u({ik−1}) + · · ·+u({i1})

=
∑
i∈S

E[Xi]

≤
k∑
i=1

E[Xi] (46)

where the first inequality follows by the submodularity of function u, the second inequality is by the assump-

tion that items are enumerated in decreasing order of their mean test scores.

By Jensen’s inequality, for every (x1, x2, . . . , xk)∈Rk
+, we have

1

k

k∑
i=1

xi =
1

k

k∑
i=1

(xri )
1/r ≤

(
1

k

k∑
i=1

xri

)1/r

.

Hence, we have
k∑
i=1

E[Xi]≤ k1−1/rE

( k∑
i=1

Xr
i

)1/r
 . (47)

From (46) and (47), for every S ⊆N such that |S|= k,

u(M) = E

( k∑
i=1

Xr
i

)1/r
≥ 1

k1−1/r
E

(∑
i∈S

Xr
i

)1/r
=

1

k1−1/r
u(S).

The tightness can be established as follows. Let N consist of two disjoint subsets of items M and R, where

M is a set of k items whose each individual performance is of value 1 + ε with probability 1, for parameter

ε > 0, and R is a set of k items whose each individual performance is of value a with probability 1/a and of

value 0 otherwise, for parameter a≥ 1. Then, we note that

u(M) = k1/r(1 + ε)

and

u(OPT)≥ u(R) = E

(∑
i∈R

Xr
i

)1/r


≥ aPr

[∑
i∈R

Xi > 0

]

= a

(
1−

(
1− 1

a

)k)
≥ a

(
1− e−k/a

)
.
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Hence, it follows that
u(M)

u(OPT)
≤ (1 + ε)

1

k1−1/r
k/a

1− e−k/a
.

The tightness claim follows by taking a such that k= o(a), in which case (k/a)/(1− e−k/a) = 1 + o(1).

J. Proof of Proposition 12

Proof of Claim (a) If k is a constant, then there is no r satisfying both conditions r = o(1) and r > 1.

Hence, it suffices to consider k = ω(1) and show that the following statement holds: for any given θ > 0,

there exists an instance for which greedy selection in decreasing order of quantile test scores cannot give a

constant-factor approximation.

Consider the distributions of random variables Xi defined as follows:

1. Let Xi be equal to a with probability 1 for 1≤ i≤ k. For each of these items, the quantile test score is

equal to a and the replication score is equal to ak1/r.

2. Let Xi be equal to 0 with probability 1−1/n, and equal to bθn/k with probability 1/n for k+1≤ i≤ 2k.

Note that in the limit as n grows large, each of these items has quantile test score of value b and

replication score of value bθ.

3. Let Xi be equal to 0 with probability 1− θ/k and equal to c with probability θ/k for 2k+ 1≤ i≤ 3k.

For each of these items, the quantile test score is equal to c and the replication test score is less than

or equal to cθ1/r.

4. Let Xi be equal to 0 for 3k+ 1≤ i≤ n.

If θ is a constant, i.e., θ =O(1), we can easily check that greedy selection in decreasing order of quantile

test scores cannot give a constant-factor approximation with a= b= 1 and c= 2. Under this condition, the

selected set of items is {2k+ 1, . . . ,3k}. However, we have

E

[(∑3k
i=2k+1X

r
i

)1/r]
E

[(∑k

i=1X
r
i

)1/r] =

E

[(∑3k
i=2k+1X

r
i

)1/r]
k1/r

≤

(∑3k
i=2k+1 E [Xr

i ]
)1/r

k1/r

= 2

(
θ

k

)1/r

= o(1),

which is because k= ω(1), θ=O(1), and r= o(log(k)).

Since r > 1, if θ goes to infinity as n goes to infinity, i.e. for θ= ω(1), we have

E

[(∑3k
i=2k+1X

r
i

)1/r]
E

[(∑2k
i=k+1X

r
i

)1/r] ≤
(∑3k

i=2k+1 E [Xr
i ]
)1/r

θ

= 2θ(1−r)/r

= o(1).

Therefore, the greedy selection in decreasing order of quantile test scores has a vanishing utility compared

to the optimal value.
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Proof of Claim (b) Let T (X,S) be a subset of S such that i∈ T (X,S) if, and only if, Xi ≥ P−1i (1−1/k),

for i ∈ S. Let amax = maxi∈S ai and amin = mini∈S ai. We will show that there exist constants q and p such

that

pamin ≤E

(∑
i∈S

Xr
i

)1/r
≤ qamax.

Since (x+ y)1/r ≤ x1/r + y1/r for all x, y≥ 0 and r > 1, we have

E

(∑
i∈S

Xr
i

)1/r
 = E


 ∑
i∈T (X,S)

Xr
i +

∑
i∈S\T (X,S)

Xr
i

1/r


≤ E


 ∑
i∈T (X,S)

Xr
i

1/r

+

 ∑
i∈S\T (X,S)

Xr
i

1/r


≤ E

 ∑
i∈T (X,S)

Xi +

 ∑
i∈S\T (X,S)

Xr
i

1/r


≤ E

 ∑
i∈T (X,S)

Xi +

 ∑
i∈S\T (X,S)

(amax)r

1/r


≤
(
E [|T (X,S)|] + k1/r

)
amax

= (1 + k1/r)amax.

By the Minkowski inequality,
(∑

i∈AE [Xi]
p
)1/p ≤E

[(∑
i∈AX

p
i

)1/p]
for all A⊆ S. Thus, we have

E

(∑
i∈S

Xp
i

)1/p
 = E


 ∑
i∈T (X,S)

Xp
i +

∑
i∈S\T (X,S)

Xp
i

1/p


≥ E


 ∑
i∈T (X,S)

Xp
i

1/p


=
∑
A⊆S

Pr{T (X,S) =A}E

∑
i∈A

Xp
i

)1/p
∣∣∣∣∣∣T (X,S) =A


≥
∑
A⊆S

Pr[T (X,S) =A]

(∑
i∈A

E[Xi|i∈ T (X,S)]p

)1/p

≥
∑
A⊆S

Pr{T (X,S) =A}|A|1/pamin

≥
(
1− (1− 1/k)k

)
amin

≥ (1− 1/e)amin.

Therefore, the greedy selection in decreasing order of quantile test scores gives a constant-factor approxi-

mation of the optimal value.

K. Sketch Functions Based Lower Bounds for Submodular Welfare Maximization

In Section 4 we established a logarithmic approximation guarantee for the stochastic monotone submodular

welfare maximization problem by designing a strong sketch function v(S) that only used test scores to



Sekar, Vojnovic, and Yun: A Test Score Based Approach to Stochastic Submodular Optimization
Management Science 00(0), pp. 000–000, c© 0000 INFORMS 51

approximate the original utility function u(S). In particular, in Lemma 9, we showed that there exist positive

constants c1 and c2 such that for every S ⊆N of cardinality k, we have

c2
v(S)

log(k)
≤ u(S)≤ c1v(S). (48)

This allowed us to approximate the optimum solution to the submodular welfare maximization prob-

lem up to a Ω( 1
log(k)

)-factor by selecting an assignment that optimizes the aggregate sketch function, i.e.,∑m

j=1 vj(Sj). As can be gleaned from Lemma 8, the approximation factor obtained using such an approach is

closely tied to the fidelity of the sketch function, i.e., how well it approximates the original utility function.

This raises a natural question: is it possible to obtain a constant factor approximation for this problem by

identifying a better strong sketch function? Note that by definition, such a sketch function would have to

approximate the utility function u(S) up to a constant factor at every input set S. In this section, we present

negative examples indicating that such a strong sketch function, depending only on replication scores, may

not exist. Taking into account this evidence, it seems plausible that if at all a constant factor approximation

exists for this problem, then it would involve techniques other than sketching which are beyond the scope of

this paper. While it would certainly be interesting to identify such techniques, we believe the sketch functions

presented in this work provide additional value due to their broader applicability. For example, if the decision

maker seeks to maximize a different objective or wishes to (approximately) evaluate the function value at

some arbitrary input when oracle queries are costly, one could utilize score based sketch functions to achieve

these tasks. For this reason, function sketching—even for submodular functions—has received considerable

attention in the literature in the context of other problems (Goemans et al. 2009, Iyer and Bilmes 2013).

Given that our objective is to illustrate how test score based methods can be applied to yield good solutions

for different selection and assignment problems, our usage of sketch functions is rather pertinent.

Recall that for any given set S of cardinality k, the sketch function that was proposed in Section 4 used

as inputs the following test scores a1π1(S)
, a2π2(S)

, . . . , akπk(S), whose definitions can be found in (11). Note that

in this section, we ignore the index j that is present in (11) and use π(S) instead of π(S, j) since we only

consider a single utility function u(S).

Our first result highlights the difficulty of using test scores to obtain strong sketches by showing that there

exist two separate instances with the same objective function where the set of test scores is identical but the

function value can be greatly different.

Claim 18. For any set S = {1,2, . . . , k} of items and the value function g(x) = max{xi | i ∈ S},
there exist two product-form distributions P (x1, x2, . . . , xk) = P1(x1)P2(x2) · · ·Pk(xk) and P̃ (x1, x2, . . . , xk) =

P̃1(x1)P̃2(x2) · · · P̃k(xk) such that

1. The test scores are identical for the two distributions:

arπr(S) = ãrπ̃r(S) for all r ∈ {1,2, . . . , k},

where arπr(S) and ãrπ̃r(S) are the test scores with respect to distributions P and P̃ respectively, and

2. The expected utility value for the first instance is a logarithmic factor larger than for the second instance:

EX∼P [max{Xi | i∈ S}] =O(log(k))EX∼P̃ [max{Xi | i∈ S}] .
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In simple terms, this claim states that there are multiple instances across which the test scores are identical

but the utility function value can differ by a logarithmic factor. As a consequence, any sketch function that

relies on these test scores cannot approximate the original function by a factor better than O(log(k)) for both

these instances. This is due to the fact that the sketch function v(S) depends only on test scores and must

output an identical value for both these instances. To conclude, algorithms that optimize replication score

based sketch functions may end up selecting or assigning sets that are sub-optimal by a logarithmic factor

and thus this approach cannot be used to get an approximation factor better than Ω( 1
log(k)

) for submodular

welfare maximization. Following the proof of the above claim, we depict a concrete example of an instance

of stochastic submodular welfare maximization, where optimizing the sketch function leads to an assignment

that is only a Θ( 1
log(k)

)-approximation to the true optimum.

Proof of Claim 18 Consider a set of items S = {1,2, . . . , k}. Our goal is to define two instances in terms

of their item performance distributions P1(x), P2(x), . . . , Pk(x) and P̃1(x), P̃2(x), . . . , P̃k(x) such that the

conditions specified in the claim are satisfied for the set S. We define these distributions as follows:

PrXi∼Pi [Xi = 1] = 1−PrXi∼Pi [Xi = 0] = qi = 1−
(

1− 1

log(k)

) 1
i

(49)

and

PrXi∼P̃i

[
Xi =

1

log(k)

]
= 1. (50)

Next, we introduce the test scores for the two instances in the same manner as done in Section 4.

Specifically, for all i ∈ S and r ∈ {1,2 . . . , k}, we have ari = E
X

(j)
i
∼Pi

[max{X(1)
i ,X

(2)
i , . . . ,X

(r)
i }] and ãri =

E
X

(j)
i
∼P̃i

[max{X(1)
i ,X

(2)
i , . . . ,X

(r)
i }]. Similar to our notation in Section 4, we define πr(S) and π̃r(S) in a

recursive fashion as follows

π1(S) = arg max
i∈S

a1i ; πr(S) = arg max
i∈S\{π1(S),...,πr−1(S)}

ari for 1< r≤ k

π̃1(S) = arg max
i∈S

ã1i ; π̃r(S) = arg max
i∈S\{π̃1(S),...,π̃r−1(S)}

ãri for 1< r≤ k.

Informally, (π1(S), . . . , πk(S)) and (π̃1(S), . . . , π̃k(S)) are permutations of the items in the set S such that the

r–th element maximizes the test scores ari , ã
r
i respectively among the items not assigned to previous indices.

The test score equality is easy to prove. First we note that as per the definitions, πr(S) = r for all 1≤ r≤ k.

Indeed, for the first instance, we have that q1 ≥ q2 ≥ . . .≥ qk. Next, for any given r, we have that arπr(S) is

the expected performance of a group composed of r copies of item πr(S) and therefore,

arπr(S) = 1− (1− qπr(S))r = 1−
(

1− 1

log(k)

)
=

1

log(k)
.

In the case of the second instance, the items are identical and so, the permutation is irrelevant. For all r,

we have that ãrπ̃r(S) = 1
log(k)

. Clearly, the test scores are identical.

In the case of the first instance under distribution P , the objective function can be calculated using the

following steps:

EX∼P [max{Xi | i∈ S}] = 1−
n∏
r=1

(1− qr)
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= 1−
n∏
r=1

(
1− 1

log(k)

) 1
r

= 1−
(

1− 1

log(k)

)∑k
r=1

1
r

≥ 1−
(

1− 1

log(k)

)log(k)

≥ 1− 1

e
.

In the penultimate inequality, we used the fact that
∑k

r=1
1
r
≥ log(k) and in the final step, we applied the

inequality (1− 1
x
)x ≤ 1

e
for all x> 1.

Now, evaluating the objective function for the second instance under distribution P̃ is rather straightfor-

ward; since all of the items are deterministic and identical, we have that:

EX∼P̃ [max{Xi | i∈ S}] =
1

log(k)
.

This completes the proof. �

As a corollary, we can now infer that both the lower bound and the upper bound in (48) are tight up to a

constant factor for the same utility function. Note that the tightness of the bounds holds not just for the sketch

functions devised in Section 4 but for every possible sketch function that is based solely on replication test

scores. To see this, assume that the ground set N contains two disjoint sets S1 and S2 of items of cardinality

n such that S1 = {i1, i2, . . . , in} and Pr[Xij = 1] = 1−Pr[Xij = 0] = qj where qj = 1− (1− 1/ log(n))1/j and

for every i ∈ S2, Xi = 1/ log(n) with probability 1. Suppose that for any strong sketch function v(S) that

depends on a1π1(S)
, a2π2(S)

, . . . , a|S|
π1(S)

, we have that:

u(S1)≤ c′1v(S1) and u(S2)≥ c′2v(S2).

Since v(S1) = v(S2) and u(S1)≥ (1− 1
e
) log(n)u(S2) by Claim 18, this implies that

c′1
c′2
≥ (1− 1

e
) log(n). In

other words, if v(S) is any strong sketch function based on replication scores that satisfies c′1v(S)≥ u(S)≥

c′2v(S) for all S and c′1, c
′
2 are tight, then it is necessary that

c′1
c′2

= Ω(log(n)).

We now tie this back to stochastic submodular welfare maximization by illustrating how the gap in repli-

cation score based sketch functions implies the non-existence of a constant factor approximation algorithm.

First, suppose that OPT = (OPT1, . . . ,OPTm) denotes the optimal solution to an instance of the stochastic

submodular welfare maximization problem and let (S1, . . . , Sm) be the assignment that maximizes the sum

of the sketch functions. Then, by Lemma 8, it follows that

m∑
j=1

uj(Sj)
(a)

≥
m∑
j=1

c′2vj(Sj)≥
m∑
j=1

c′2vj(OPTj)
(b)

≥ c′2
c′1

m∑
j=1

uj(OPTj).

Since both inequalities (a) and (b) can hold with equality and
c′1
c′2

= Ω(log(n)), one cannot use a sketch

function v(S) that depends only on replication scores to obtain a constant approximation factor. To illustrate

this point in a more concrete sense, we briefly describe an example where optimizing a replication score

based sketch function can lead to a sub-optimal solution for the welfare maximization problem.
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Negative Example for Stochastic Submodular Welfare Maximization: Consider a ground set N

composed of 2k items and the case of two partitions, i.e., |M |= 2. The 2k items are defined based on the two

instances that we constructed in the proof of Claim 18. Specifically, N = S1∪S2 where S1 and S2 are disjoint

sets of cardinality k such that for every type-1 item i ∈ S1 its performance is 1 with probability qi and 0

otherwise (where qi is defined in (49)), and for every type-2 item i ∈ S2, its performance is 1/ log(k) with

probability 1. The first partition has utility function u1(S) = E[max{Xi | i ∈ S}] and the second partition

has utility function u2(S) = E[ε
∑

i∈SXi] for a sufficiently small constant ε > 0. The two partitions are of

cardinalities k1 = k2 = k.

It is easy to see that by assigning the type-1 items to the first partition, we can achieve a welfare that is

at least of value 1− 1/e. Now, let us consider an algorithm that optimizes an arbitrary sketch function v(S)

which only depends on the scores a1π1(S)
, a2π2(S)

, . . . , a|S|
π|S|(S)

for any given set S. Without loss of generality,

suppose that any ties while deciding on the permutation πr(S) are broken in favor of type-1 items. We claim

that the sketch function based algorithm would always assign the type-2 items to the first partition and

achieve a welfare that is Θ(1/ log(k)). To see why, first observe that from Claim 18, the sketch function

should have the same value for v1(S1) and v1(S2) since the underlying test scores are identical. Second, for

any 1≤ r ≤ k, if at all the (optimal) algorithm assigns set S comprising of 1≤ r ≤ k items of type 1 to the

first partition, this would be the r items from set S1 that have the highest probabilities of success. However,

these r items would appear first in the permutation π(S,1). This would lead to all test scores being equal,

i.e., arπr(S,1) = 1/ log(k) for all 1 ≤ r ≤ |S|. Therefore, v1(S) = v1(S1) = v1(S2). Since the algorithm cannot

distinguish between the sets S1 and S2 in the context of the first partition but the type-1 items have larger

test scores under the second partition, the sum-of-sketch-functions is maximized by assigning S1 to partition

2 and S2 to partition 1. However, this only results in a social welfare of value Θ(1/ log(k)).

Good Test Scores: Claim 18 implies that strong sketch functions based on replication scores cannot

be used to guarantee a constant-factor approximation for submodular welfare maximization. Given this

(partial) impossibility result, it is natural to consider whether the theory of good test scores developed for

submodular function maximization could be used to obtain better algorithms for the more general problem.

In this section, we study this question and provide negative examples that highlight why the good test

scores identified in Lemma 6 cannot be leveraged to obtain constant-factor approximations for the welfare

maximization problem.8

First, let us recall the upper and lower bounds developed in the proof of Lemma 6, namely, for all S ⊆N ,(
1− 1

e

)
v(S)≤ u(S)≤ 4v̄(S)

where v(S) = min{a|S|i | i ∈ S} and v̄(S) = max{a|S|i | i ∈ S}. In simple terms, the largest and smallest test

scores of the items serve as upper and lower bounds for the function value respectively, up to a constant

factor. A natural possibility is to examine whether computing allocations (assignments of items to partitions)

that maximize the sum of (either) the maximum or minimum test scores would come close to the optimal

allocation over all feasible assignments. However, as we show next, such approaches can lead to highly

sub-optimal assignments even for simple instances.

8 These are based on the (p, q)-sketches from Definition 3.
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Claim 19. There exist instances of the submodular welfare maximization problem where the allocations

that maximize v(S1, S2, . . . , Sm) =
∑m

j=1 min{a|Sj |i | i ∈ Sj} and v̄(S1, S2, . . . , Sm) =
∑m

j=1 max{a|Sj |i | i ∈

Sj}, respectively, are O(1/
√
n)-approximations to the welfare-maximizing allocations for the corresponding

instances.

Proof of Claim 19 First we show that maximizing the sum of the minimum test scores results in welfare

that is only a 1/
√
n-approximation to the optimum.

Example 1: Consider a problem instance with n= r2 items and m= r partitions with each partition having

a cardinality constraint with kj = r for all j. All items are assumed to exhibit deterministic performance:

r items (referred to as heavy items) have performance of value 1, i.e., Xi = 1 with probability 1, while the

remaining items have performance of zero value. Assume that objective functions are best-shot functions,

i.e., gj(S) = max{xi | i∈ S} for each partition j.

The optimum solution for the given problem instance is when each of the heavy items is assigned

to a different partition, leading to the welfare of value r. On the contrary, the solution that maximizes

v(S1, S2, . . . , Sm) =
∑m

j=1 min{a|Sj |i | i∈ Sj} assigns all heavy items to same partition, which yields a welfare

of value 1. Hence, this approach achieves a welfare that is 1/
√
n factor of the optimum, which can be made

arbitrarily small by choosing large enough number of items n.

Next, we present an example where maximizing the sum of the maximum test scores also results in a poor

approximation.

Example 2: Consider a problem instance with n= 2r items and m= r+ 1 partitions, where partition 1 has

a cardinality constraint with k1 = r, and each partition 1< j ≤m has kj = 1. All items are assumed to have

deterministic performance once again: one heavy item with performance of value
√
r, r− 1 medium items

with performance of value of 1, and, finally, the remaining items with zero-valued performance. Assume that

value functions are g1(x) =
∑k1

i=1 xi and gj(x) = (1/
√
r) max{xi | i= 1,2, . . . , kj} for partitions 1< j ≤m.

The optimum solution assigns all items to partition 1, which yields a welfare of value r+
√
r− 1, whereas

the algorithm assigns the heavy item to partition 1 and the medium items spread across, which yields a

welfare of value less than 2
√
r. Hence, the algorithm achieves welfare which is less than 2

√
2/
√
n of the

optimum welfare, which can be made arbitrarily small by taking large enough number of items n. �


