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Abstract 

A recent meta-analysis (Stanmore et al. Neurosci. Biobehav. Rev. 78:34–43, 2017) claimed that 

exergames exert medium-size positive effects on people's overall cognitive function. The present 

article critically tests this claim. We argue that the meta-analysis reported inflated effect sizes 

mainly for three reasons: (a) some effect sizes were miscalculated; (b) there was an excessive 

amount of true heterogeneity; and (c) no publication-bias-corrected estimates were provided. We 

have thus recalculated the effect sizes and reanalyzed the data using a more robust approach and 

more sophisticated techniques. Compared to Stanmore’s et al., our models show that: (a) the overall 

effect sizes are substantially smaller; (b) the amount of true heterogeneity, when any, is much 

lower; and (c) the publication-bias analyses suggest that the actual effect of exergames on overall 

cognitive function is slim to null. Therefore, the cognitive benefits of exergames are far from being 

established. 
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1. Introduction 

A recent meta-analysis (Stanmore et al., 2017) has investigated the impact of exergames on overall 

cognitive ability. The meta-analysis included 17 Randomized Control Trials (RCTs) and a total of 

926 participants. In most of the studies (n = 15), the participants were older adults (mean age > 55) 

with either no or some clinical condition (e.g., Parkinson’s disease). The cognitive performance of 

the exergames-treated participants was compared to the performance of participants involved in 

several activities (e.g., stretching and cycling) or no activity at all. The meta-analysis reported a 

medium overall effect size (�̅� = 0.436), indicating that exergames may be an effective tool to 

improve general cognition. 

However, due to methodological issues, we think that the results of this meta-analysis are 

substantially unreliable. First, due to mistakes in the effect-size calculation, some effect sizes are 

inflated. Also, it is not clear what formula was used to calculate sampling error variances. Second, 

the amount of true heterogeneity is quite high (τ2 = 0.170). Beyond making the results hard to 

interpret, such large τ2 values inflate the overall effect size when the distribution of the effects is 

asymmetrical as in Stanmore et al. (2017). Third, even though Stanmore et al. (2017) includes two 

publication-bias analyses – the rank-correlation test and fail-safe N – neither of these methods 

provides an adjusted estimate of the overall effect size. In addition, the fail-safe N has been found to 

provide uninterpretable results (Schmidt and Hunter, 2015; pp. 531-534). Based on these issues, we 

present a re-analysis of Stanmore et al.’s data (2017). 

2. Method 

2.1. Effect Size Extraction 

We included all the studies (RCTs) included in Stanmore et al.’s (2017) meta-analysis 

except one, Ackerman et al. (2010). This study investigated the effects of the Wii Big Brain 

Academy program that consists of a set of brain-training – rather than exergaming – activities. The 
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number of included studies and independent samples was 16 (N = 883). We recalculated all the 

effect sizes and sampling error variances using the formulas provided by Schmidt and Hunter 

(2015). 

2.2. Modeling Approach 

We implemented robust variance estimation (RVE) with hierarchical weights (Hedges, 

Tipton, and Johnson, 2010). RVE allows one to model statistically dependent effect sizes and 

adjusts (i.e., increases) overall standard errors. Furthermore, RVE provides estimates of within-

study and between-study true (i.e., not due to random error) heterogeneity components (ω2 and τ2, 

respectively). The effect sizes extracted from one study were thus grouped into the same cluster. 

We then ran publication-bias analyses. First, the statistically dependent effects were merged 

using Cheung and Chan’s (2014) method, and a random-effect model was run. Second, we used the 

trim-and-fill analysis with the L0 and R0 estimators (Schmidt and Hunter, 2015; pp. 538-540). 

Finally, since trim-and-fill analysis sometimes fails to fully correct for publication bias when the 

null is true, we employed the PET-PEESE method as an additional technique to assess publication 

bias. 

2.3. Sensitivity Analysis 

We controlled for potential outliers with influential-case analysis. The analysis individuated 

those studies that exerted a particularly strong influence on the model’s estimates (e.g., overall 

effect size or true heterogeneity). We then removed the influential studies and reran the same set of 

analyses as described above. 

3. Results 

3.1. Main Model 

The overall effect size of the RVE model was �̅� = 0.212, 95% CI [-0.010; 0.434], m = 16, k 

= 75, p = .058, ω2 = 0.000, τ2 = 0.039. The model thus yielded a substantially smaller effect size and 
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between-study true heterogeneity than Stanmore et al. (2017; �̅� = 0.212 vs �̅� = 0.436; τ2 = 0.039 vs 

τ2 = 0.170). After merging the effects, the overall effect size of the random-effect model was �̅� = 

0.246, p = .006, k = 16, τ2 = 0.044. The trim-and-fill estimates were �̅� = 0.076, p = .445 and �̅� = 

0.053, p = .586 with the L0 and R0 estimators, respectively. The PET and PEESE estimators were, 

�̅� = 0.002, p = .986 and �̅� = 0.079, p = .242, respectively. 

3.2. Sensitivity Analysis 

One influential study was detected. The overall effect size of the RVE model without this 

study was �̅� = 0.113, 95% CI [-0.023; 0.248], m = 15, k = 63, p = .084, ω2 = 0.000, τ2 = 0.000. 

Excluding the influential study thus explained all the observed true heterogeneity (from ω2 = 0.000, 

τ2 = 0.039 to ω2 = 0.000, τ2 = 0.000) and reduced the overall effect of approximatively by a half 

(from �̅� = 0.212 to �̅� = 0.113). The overall effect size of the random-effect model was �̅� = 0.109, p 

= .028, k = 15, τ2 = 0.000. The trim-and-fill estimates were �̅� = 0.066, p = .168 and �̅� = 0.058, p = 

.219 with the L0 and R0 estimators, respectively. The PET and PEESE estimators were, �̅� = -0.009, 

p = .889 and �̅� = 0.048, p = .331, respectively. 

4. Discussion 

The aim of the present paper was to test the reliability of the findings of Stanmore et al.’s 

meta-analysis about the effects of exergame intervention on overall cognitive ability. Contrary to 

the findings of that meta-analysis, our reanalysis of the data has shown that the impact of 

exergaming on one’s cognitive ability is very small at best and null at worst. Corrected overall 

effect sizes ranged from zero (PET estimates) to about 0.050-0.100 (all the other publication-bias 

estimates). Also, our reanalysis has yielded much more homogeneous and, hence, interpretable 

results. Finally, the methods used to model statistically dependent effect sizes (RVE and Cheung 

and Chan, 2014) do not seem to substantially affect the results (see the additional analyses). Based 

on the relatively small number of studies conducted at this point, our findings provide limited or 
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even no evidence of the effectiveness of exergames on cognition. Future studies will contribute to 

updating the present findings. 
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