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SUMMARY

We consider estimating a functional graphical model from multivariate functional observa-
tions. In functional data analysis, the classical assumption is that each function has been mea-
sured over a densely sampled grid. However, in practice the functions have often been observed,
with measurement error, at a relatively small number of points. In this paper, we propose a
class of doubly functional graphical models to capture the evolving conditional dependence re-
lationship among a large number of sparsely or densely sampled functions. Our approach first
implements a nonparametric smoother to perform functional principal components analysis for
each curve, then estimates a functional covariance matrix and finally computes sparse precision
matrices, which in turn provide the doubly functional graphical model. We derive some novel
concentration bounds, uniform convergence rates and model selection properties of our estima-
tor for both sparsely and densely sampled functional data in the high-dimensional large p, small
n, regime. We demonstrate via simulations that the proposed method significantly outperforms
possible competitors. Our proposed method is also applied to a brain imaging dataset.

Some key words: Constrained ¢1-minimization; Functional principal component; Functional precision matrix; Graph-
ical model; High-dimensional data; Sparsely sampled functional data.

1. INTRODUCTION

Undirected graphical models depicting conditional dependence relationships among p random
variables, X = (X1,...,X,)", have attracted considerable attention in recent years. Let G =
(V, E)) be an undirected graph characterized by the vertex set V' = {1,...,p} and the edge set
E, which consists of all pairs (j, k) such that X; and X, are conditionally dependent given the
remaining p — 2 variables. A central question in understanding the structure of G is to recover
the edge set E. In particular for a multivariate Gaussian distributed X, recovering the structure
of an undirected graph is equivalent to locating the non-zero components in the precision matrix,
that is, the inverse covariance matrix, of X (Lauritzen, 1996).
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Table 1: Graphical models for different types of data and corresponding graph.

Graphical Model
Static Functional
Data Static Gaussian graphical model Dynamic graphical model
Functional | Static functional graphical model Doubly functional graphical model

The past several years have witnessed the development of Gaussian graphical models in large
p, small n, settings. One popular class of estimation approaches, the graphical lasso, considers
optimizing a criterion involving the Gaussian log-likelihood with a lasso-type penalty on the en-
tries of the precision matrix (Yuan & Lin, 2007; Friedman et al., 2008). For examples of recent
developments, see Zhou et al. (2010), Ravikumar et al. (2011), Witten et al. (2011), Chun et al.
(2013) and Danaher et al. (2014). Another popular class of neighborhood-based estimation ap-
proaches, first proposed by Meinshausen & Buhlmann (2006), considers recovering the support
of G by solving p lasso problems columnwise. Cai et al. (2011) proposed a Dantzig-type variant
of this approach, named constrained ¢;-minimization for inverse matrix estimation. Some recent
work along this line of research includes Cai et al. (2016) and Qiu et al. (2016).

In this paper, we consider estimating functional graphical models based on multivariate func-
tional data. Table 1 illustrates the distinction by dividing the data and corresponding network
into static vs functional categories. The first entry in the table, Gaussian graphical models, cor-
responds to the standard setting involving high dimensional, but static, data from which we es-
timate a single graphical model. One may also observe multiple samples of independent but
non-identically distributed static data, where distributions evolve over time, and wish to compute
graphical models for each sample. These dynamic graphical models often adopt a nonparametric
approach (Zhou et al., 2010; Kolar & Xing, 2011).

Our setting corresponds to the last row of Table 1, where the data can be considered functional.
Figure 1 illustrates the data structure and underlying network pattern using a simple example. Its
left-hand side plots n = 100 realizations of p = 10 random curves in &/ = [0, 1], each of which
corresponds to one underlying node. In practice, functions can be observed at either a dense grid
of points or a small subset of possible points, and may also be contaminated by measurement
error. Qiao et al. (2019) model such data using a static functional graphical model, where a
single network is constructed to encode the global conditional dependence relationship among
high-dimensional Gaussian random functions. Li et al. (2018) relax the Gaussian assumption and
explore the additive conditional dependence structure by treating p as fixed. Our goal is to present
a doubly functional graphical model where both the data and the network are functional in nature.
The right-hand side of Figure 1 provides a visualization of our model, where the network edges
evolve over U. We aim to estimate the functional network in the right-hand panel based on either
sparsely or densely observed functions in the left-hand panel.

Our motivating example is an electroencephalography, EEG, dataset, which measures signals
from 64 electrodes placed at standard brain locations over 256 time points for subjects from an
alcoholic group and from a non-alcoholic group. When the function at each location is specified
over a period of time, existing work has shown that edges will disappear and emerge over time
(Cabral et al., 2014). The objective is thus to investigate differences between the alcoholic and
control group networks in order to understand how the two populations differ. Other important
examples include different types of medical imaging data and gene expression data measured
over time (Storey et al., 2005).
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Fig. 1: Data generated from the simulation setting in Section 4. Left: The data matrix consists
of 100 random functional realizations (red line), their noisy observations at either 50 evenly
spaced points (black dots) or 10 randomly selected points (green squares), for 7 =1,...,10
nodes. Right: Visualization of true functional network at 4 selected time points.

One approach to address this sort of functional data would be to first sample each function at
a grid of points, uq, ..., ur, and then estimate 7" graphs. This could be achieved by separately
estimating 7" networks using a standard method, for example, the graphical lasso or constrained
/1-minimization, by jointly estimating 7" graphs that share certain characteristics (Chun et al.,
2013; Danaher et al., 2014; Cai et al., 2016), or by estimating the functional graph based on
the smoothed sample covariance matrix estimator (Qiu et al., 2016). However these approaches
all share one major deficiency, that is they will only work if all random functions are sampled
at a common set of grid points, whereas in practice curves are often observed at different sets
of points. Another approach is to use nonparametric smoothers to estimate the cross-covariance
function between the jth and kth functions for all j, k£ = 1, ..., p, and to use these to compute the
functional network. However, this would involve computing p(p + 1)/2 pairwise terms, which
is not computationally scalable, especially under the large p, small n, scenario.

Our proposed method consists of three steps. First, we apply a nonparametric approach to
smooth p covariance functions and represent each curve using the first M functional principal
components, with the functional principal component scores framed as conditional expectations.
Second, the finite-dimensional representations of the curves lead to the functional estimate for
the p x p covariance matrix as it varies over u € I{. Finally, we estimate the functional network
by computing the functional sparse precision matrix on a grid of points. This final step can
be easily implemented through existing approaches for estimating the sparse precision matrix.
Our theoretical results use the constrained ¢;-minimization method, because we have found that
it provides somewhat superior results in our empirical studies, but other methods, such as the
graphical lasso, could easily be applied.

Our approach has six key advantages. First, it is simple to understand and implement, making
use of existing statistical software packages. Second, it can handle noisy curves observed at an
irregular set of points. Third, it is computationally efficient relative to approaches such as non-
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parametric smoothing of p(p + 1)/2 cross-covariance functions or jointly estimating 7" networks,
since we only need to smooth p covariance functions and the networks can be computed sepa-
rately once the functional covariance matrix has been estimated. Fourth, the functional nature of
our covariance matrix tends to ensure similar graphical models for neighboring grid points, even
though the networks are fit separately. Fifth, the method enjoys desirable consistency properties.
Theoretically, we establish some novel concentration bounds and uniform convergence rates of
the estimated functional precision matrix in the large p, small n, setting, for both sparsely and
densely observed functional data. Finally, empirically we demonstrate the superiority of our pro-
posed method relative to its natural competitors.

2. METHODOLOGY
2-1.  Notation
We begin by introducing some notation. For a vector a = (ai,...,ap)", its ¢, norm is
lal, = (3, |a:|")"/". For a matrix A = (A;;) € RP*9, we define the elementwise ¢, norm by
|Alr = (X |A;;|")Y", in particular r = 2 corresponds to the Frobenius norm, ||A||r = |A|a.
We denote the matrix operator norm by ||A| = sup|,|,<|Az|2. We use # A y = min(z, y) and
x v y = max(z,y). For a bivariate function (-, -), defined on U2, we denote the Hilbert—
Schmidt norm by |[¢||s = {§ § 1 (u, v)?dudv}/?. We write f(n) = O{g(n)} if f(n) < cg(n)
for some positive constant ¢ < co. The notation f(n) = g(n) means that f(n) = O{g(n)} and

g(n) = O{f(n)}.

2-2. Doubly functional graphical models

Let X(-) = {X1(),... ,Xp(-)}T denote a p-dimensional vector of Gaussian random func-
tions, with each X;(-) in L2(U/), a Hilbert space of square integrable functions on I/, a compact
subset of the real line. Without loss of generality, we assume that X (-) has been centered to
have mean zero. Let C'(u,v) = {Cjx(u, U)}lgj,ksp be the p x p matrix whose (7, k)th element
is Cji(u,v) = cov{X;(u), Xi(v)} for (u,v) € U>.

Let G(-) = {V, E(-)} denote a functional undirected graph with a vertex set V = {1,...,p}
and corresponding functional edge set

E(u) = {(j,k) : cov[X;(u), Xi(u) | {Xi(u),l # j, k}] #0,(j. k) e V2, j # k},uell.

Standard results show that, for each u e U, X(u) follows a multivariate Gaussian dis-
tribution with covariance matrix Y (u) = C(u,u) € RP*? and ©O(u) = X(u)~!. Hence,
cov| X (u), Xi(w)|{X;(u),l # j,k}] = 0 if and only if ©;;(u) = 0 and E(u) can be equiva-
lently represented by

E(u) = {(j, k) : Ojk(u) # 0,(j,k) € V2, j # k} ,ueld. (1)

We use a three-step approach to recover F(u), that is, to identify the locations of the non-zero
entries of ©(u) in a functional fashion.

Step 1. For each j € V, we adopt a data-driven basis expansion approach through func-
tional principal component analysis. Specifically, the covariance function C};(u,v) satisfies
Su Cjj(u,v)pji(v)dv = wjpj(u) (I =1,2,...), where the eigenpairs {w;;, ¢j(-)}i>1 satisfy
wj1 = wjo = -+ = 0and §, ¢ji(u)djr(u)du = I(l = I') with I(-) being the indicator function.
The Karhunen-Loeve expansion allows us to expand each X;(-) as X;(-) = >,2; &iou(+),
where &5 = §,, X;(u)@ji(u)du ~ N(0,w;;) are the principal component scores, with &;; be-
ing independent of &, for [ # I’. Due to the infinite-dimensional nature of functional data, a
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standard approach is to approximate X(-) using the leading M principal components, that is,
Xim() = Z;\i 1&1051(-), where M is chosen large enough to provide a reasonable approxima-
tion to X;(-). Potentially one could use a separate M for each j € V. To simplify our notation
we focus on the setting where the M;’s are the same across j € V. However, our theoretical re-
sults in Section 3 extend naturally to the more general setting. In our empirical studies, we select
different M;’s, see Section 2-4 for details.

Step 2. Once Step 1 has been performed for each X(-) the M-dimensional functional rep-
resentation leads to a natural approximation for the p x p functional covariance matrix ¥z (u),
with (7, k)th entry given by:

M=
HNE

cov(&jts Ekm) Pt (W) Prm (u), u € U. )
1

Yjgm(u) =
!

Il
—_

Step 3. Our final step involves computing a functional sparse precision matrix Oy (u) =
Y (u) ! at a set of points in .

2-3.  Estimation
Let X;(-) = {Xi1(),..., Xip()}" (G = 1,...,n) be independent and identically distributed
copies of X (-). We assume that X;;(-) is observed, with measurement error, at random time
points, U;j; € U for t = 1,...,T;;, where for dense measurement schedules all T;; are larger
than some order of n, and for sparse designs all 7;; are bounded. Let Y;;; represent the observed
value of X;;(Ujjt). Then

0
Yije = Xij(Uijt) + eije = Z &0 (Uijt) + eije, 3)
I=1
where the e;;;’s are independent and identically distributed with E(e;j;) = 0 and var(e;;;) = a2,
independent of X;;(-). We provide estimation details to implement our three-step approach from
Section 2-2 as follows.

Step 1. To perform functional principal component analysis based on realizations Y;; =
(Yij1, .-, Yiyr,;)" (i = 1,...,n) for each j € V, we first compute the estimator for C';(u,v).
Let Yy, be the covariance matrix for Yj; with (¢,#')th element, (Zy;, ) = cov(Yije, Yijy) =
Cj;(Uijt, Ugjer) + 0?I(t = t'). Alocal linear surface smoother is applied to the off-diagonals of
the raw covariances, {Yi;:Yjjv }1<i#v<T;;- Denote Kp(-) = h~'K(-/h) for a univariate kernel
function K with a positive bandwidth ~. We consider minimizing
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" 2
dwij ) {YijtYijt' — Bo — B1(Uije — u) — B2(Uije — U)} K, (Uijt — ) Kp; (Uijer — v),
=1

1<t/ <Ty;

@)
with respect to (8o, 81, B2), where the weight w;; is chosen for the ith subject and jth vari-
able such that >" | T;;(7;; — 1)w;; = 1. For details on the choices of w;; under different mea-
surement schedules, we refer to Zhang & Wang (2016). The resulting covariance estimator is
obtained as éjj (u,v) = Bo.

We next perform eigen-decomposition on éjj (u,v) and obtain the estimated eigen-
pairs {@Wjy, qgjl(‘)}lglg M- A natural estimate for the principal component score, &;j;, is
Su )A(ij(u)g’zb\jl(u)du, which, for very dense data, can be well approximated by numerical inte-
gration based on observations {Uj;, Yijt, g’b\jl (Uijt) h1<t<T;; - However, this numerical integration
approach fails in settings with sparse designs or dense designs with missing values. Instead, we
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propose to use the best linear unbiased predictors {Nijl = CZ.T].ZZ;,:]_ Y;; (Rice & Wu, 2001), where
Giji is a T;j-dimensional vector with ¢th component '

Cz]lt = Cov(éz]l’ th {JXZJ ¢]l( )dUXz] ijt } J‘C]j ijty )Qb]l( )

Although we do not place any distributional assumptions on the errors here, when e;;; and ;j; are
jointly Gaussian, ;;; reduces to the conditional expectation of §;;; given Y;; (Yao et al., 2005).
We then obtain the estimator for §;;; as

gzﬂ = nglz szp (5)

where Ciji = § Cij(Uije, v)éji(v)dv and (v, ) = Cyi(Usje, Uijer) + 321 (t = t'). See Yao
et al. (2005) for details on the estimate 52 of o

Step 2. Once the functional principal components analysis has been performed, we substitute
the terms in (2) by their estimated values and thus obtain i( ) with its (j, k)th entry given by
Sjk(u) = n~t S0 S S Eiji€ikm it (1) B (1)

Step 3. Finally, for a set of points v € U, we estimate O ;;(u). One of the advantages of our
approach is that a variety of standard sparse precision matrix methods can be used to implement
this step. Our empirical results suggest that the constrained ¢;-minimization (Cai et al., 2011)
provides the most accurate results so we use that approach here. To be specific, we solve the
following constrained optimization problem

O(u) = argmin|O|; subject to [S(u)O — I]o < An(u), (6)
OeRP*P
where I € RP*P is the identity matrix and A, (u) > 0 is a tuning parameter which controls the

sparsity level of é(u) The convex problem (6) can be further decomposed into p separate opti-
mization problems. For each j € V, we solve

@(u) — argmin|g[; subjectto [S(u)8 — ejloo < An(u), (7)
BERP

where e; € R? is the unit vector with jth coordinate being 1 and Bj(u) corresponds to the jth
column of O(u).

Our target estimator (:)(u) is attained by the final step of symmetrizing (:)(u) whose (7, k) and
(k, j)-th entries are obtained by

Ok (u) = Opj(u) = O3 (W) I{|O;x(w)| < |Ok; ()|} + Oy (W) I{|O;x ()| > |Ok;(w)|}. (8)

This symmetrization procedure guarantees that (:)(u) achieves the same elementwise ¢, estima-
tion error rate as ©(u). We obtain the final estimated functional edge set as

Blw) = {(. k) : [B0(w)] > 7ulu), (G, k) € V2, j # k} ueld, ©)

where 7, (u) > 0 is a threshold parameter. Empirical results suggest that 7, («) can be set to zero
or a very small value, so we include this term merely for establishing the graph support recovery
consistency in Section 3.

2-4.  Selection of tuning parameters

To fit our proposed method, we must choose optimal values for the tuning parameters, h;, M;
(j=1,...,p) and A\, (u).
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We adopt leave-one-curve-out cross validation (Rice & Silverman, 1991) to select optimal
values for h; in (4). See Zhang & Wang (2016) for a discussion of two advantages of using this
method. Typical approaches to choose the M;’s include leave-one-curve-out cross validation
and the Akaike Information Criterion (Yao et al., 2005). We take the later approach since it
is computationally less intensive while numerical performance is similar to that obtained from
cross-validation.

Popular approaches, such as cross-validation and the information criterion, for the selection
of \,,(u) have been broadly studied in the static graphical models literature (Yuan & Lin, 2007,
Cai et al., 2011). We adopt the more computationally efficient Bayesian Information Criterion
approach, which chooses an optimal \,,(u) by minimizing

BIC{\,(u)} = ntr{éAn(u) (u)i(u)} — nlogdet {é,\n(u) (u)} + log(n)\@(u)], (10)

over a series of A, (u) values, where e An(u) () is the regularized estimator corresponding to
An(u) and |E(u)| is the number of non-zero components in ©)  (,,)(u). It is worth noting that

f](u) is obtained in Step 2 of the estimation, so is a fixed quantity in terms of (10). Hence, the
effective sample size in the BIC is n, which is independent of the 7;;’s.

2-5.  Relationship to relevant work

We compare the doubly functional graphical model with the static functional graphical model
of Qiao et al. (2019), To illustrate the difference, we consider a simplified setting, where, for each
J eV, X;(-) =& () belongs to an M-dimensional Gaussian process. The static functional
graphical model generates a single network by recovering the block sparsity pattern in Q! €
RMP*Mp whose (4, k)th block is €25 = cov(&;, ). By contrast, the doubly functional graphical
model constructs a separate network for each value of u by estimating the sparsity structure
in O(u) = {@(u)TQqD(u)}*l, where ®(u) € RMP*P is block-diagonal with jth block given by
¢j(u) € RM>1 Each approach has different pros and cons. The static functional graphical model
provides a single global network, an advantage which aids interpretation. However, the network
will exhibit an edge if two functions are conditionally related at even very distinct time points, so
may end up with an overly dense set of edges. By comparison, the doubly functional graphical
model provides a cross-sectional view of the graphical model which has the potential to illustrate
structural changes in the network as a function of u, a detail that the static model may miss.

Two other papers with similarities to our approach are Zhou et al. (2010) and Qiu et al. (2016),
which both fit dynamic graphical models. As with our work, the data in these papers consists of
Xi(ug) = (Xl(ut), e ,Xp(ut))T (i=1,...,n;t=1,...,T) and both approaches fit a sepa-
rate graphical model at a given set of values for u € &/. However, Zhou et al. (2010) assumes
only one observation at each wuy, that is, n = 1, and models the X;(u;)’s as independent over u,
so their data structure is a special case of that in our work and Qiu et al. (2016). Alternatively, Qiu
et al. (2016) models {X;(u¢)}!" ; as following a lag-one stationary vector autoregressive model,
that is X; () is correlated with X;_1 (u;). By contrast, we treat {X;(u)}"_; as independent real-
izations of an underlying multivariate Gaussian process, with each X;;(u) observed, with error,
at an irregular set of points, as described in (3). All three methods generate graphical models at
a specified set of values for u, but are designed to tackle rather different situations. In addition,
as mentioned previously, both Zhou et al. (2010) and Qiu et al. (2016) require that the data be
sampled on a common grid of values for u so can not be implemented in the more realistic setting
we consider where functions are observed at different points.
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3. THEORY

In this section, we investigate the theoretical properties of our proposed approach for both the
sparse and dense measurement schedules. We begin by introducing parameter spaces of func-
tional approximately sparse precision matrices

p
Cla, so(p), K;U} = {{@(U),u €U} |sup||O(u)][1 < K, supmax PNCIAIEES 80(19)},
ue k=1

ueU
(11
for 0 < ¢ < 1. In the special case of ¢ = 0, then C(0, so(p), K;U) corresponds to the functional
truly sparse situation, where even the densest ©(u) over u € U has at most so(p) non-zero entries
on each row. Similar classes were used in estimating static covariance models (Bickel & Levina,
2008) and its generalization to the dynamic setting (Chen & Leng, 2016). We extend the class
of static approximately sparse precision matrices (Cai et al., 2011) to the functional version via
(11), uniformly over which Theorems 1-2 hold.
To present the main theorems, we need the following regularity conditions. We relegate some
standard conditions to the Supplementary Material.

Condition 1. In the sparse measurement design 7;; < Tp < ooforalli =1,...,n,7 € V,and
in the dense design T;; = T" — oo with the U;;;’s independent of i.

Condition 2. For each j € V, there exist some positive constants ¢y, c2, c3 and v < 1/2 such
that forany 0 < 6 < 1,

pr(“@j — Cjils = 5) < ep exp(—e1n®16?), (12)
pr{ sup |C;(u,v) = Cyy(u,v)| > 8} < can exp(—cin6?), (13)
(u,v)eUd?

where Cj;(u,v) is a deterministic covariance function which converges to Cj;(u,v) as h; =
h — 0. See (B.9) in the Supplementary Material for the exact form of C};(u, v).

To simplify notation, we assume 7;; = T" for the dense case in Condition 1 and h; = h in
Condition 2. We also assume in Condition 2, for each j € V, a single value of ~, which depends
on h and possibly 7" for the dense design. Condition 2 is satisfied by a large class of measurement
designs with larger values of ~ corresponding to a more frequent measurement schedule. For
sparsely sampled functional data, we have proved in Lemma 4 in the Supplementary Material
that (12)—(13) hold by choosing v = 1/2 — a and ¢3 = 1 + 2a with h = n~® for some positive
constant a < 1/2. Lemma 4 also results in Ly and uniform convergence rates of n~/2h~! and
(log n)Y/2n=1/2p =1 respectively for C;;(u, v) to C;;j(u, v), which are consistent with results for
the sparse case in Zhang & Wang (2016). Under dense measurement designs, we have proved in
Lemma 5 in the Supplementary Material that Condition 2 holds with v = 1/2 A (1/3 —€/2 +
b/6 — 2a/3) > 0 for fixed small constant ¢ > 0 as long as h = n~% and T’ = n” for some positive
constants a, b. Provided that T" grows fast enough, the resulting L, and uniform convergence rates
become n~ /2 and (log n)'/2n~1/2, respectively, belonging to the ultra-dense class in Zhang &
Wang (2016). We also have proved that, for fully observed functional data with é'jj(u, v) =
Cj;(u,v), Condition 2 holds with v = 1/2 and c3 = 1. See Lemmas 1-2 in the Supplementary
Material for details.

Condition 3. (i) The truncated dimension of the functional data, M, satisfies M = n® for
some constant « > 0; (ii) The principal component functions are continuous on the compact
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set U and satisfy max;eysup,eSup;>1|¢;i(u)] = O(1); (iii) The eigenvalues satisfy w;; >
Wj2 >+ > win > wWi41) = -+ and there exists some constant 5 > 2 with a(26+1) <
1/2, such that, for each [ =1,..., M, wj = 15, djiw; = O(1) uniformly in j € V, where
dji = max {(wjg-1) —wj) "', (Wit —wjee)) " Hifl > 2and djy = (wj1 — wj2) 7 (iv) There
exists some constant > 0 such that maxjey >~y wj < O(M 7).

The parameter o in Condition 3 (i) determines the number of leading principal components
used to approximate the infinite dimensional process, with larger values providing better ap-
proximations. Condition 3 (iii) provides decay rates for the strictly decreasing sequence of
wj1, - - -, wjn and gaps between adjacent eigenvalues, dfll ’s, both of which are used to derive the
convergence rates of estimated eigenpairs (Qiao et al., 2019). Condition 3 (iv) guarantees that,
for each j € V, Cj;(u, v) has finite trace, with v controlling the rate at which the approximation
error decreases with M.

Now we are ready to establish the uniform convergence rate and graph recovery consistency
of the proposed estimator as stated in Theorems 1 and 2, respectively. Define i(u) with its
(4, k)th entry given by X (u) = Zjil Z;‘g:LCOV(&jl, Eikm) D1 (W) Prm (w). We can prove that
Y(u) is a consistent estimator for 3 (u), but ¥(u) fails to converge to X (u) unless 7" diverges
to co. Therefore, for the sparse design, we denote the population functional precision matrix
by O(u) = (u)~! and the corresponding edge set by E(u) = {(. k) : @jk(u) #0,(j,k) €
V2,5 # k}, both of which are conditional on the random locations {U;j; : i =1,...,n,j €
V,t =1,...,T;;}. For the dense design, we use ©(u) and E(u) as the true functional preci-
sion matrix and edge set, respectively.

THEOREM 1. Suppose that Conditions 1-3 and 5-6 in the Supplementary Material hold.

(i) For the sparse design, suppose that {©O(u),u € U} belongs to C(q, so(p), K;U). If \p,(u) =
cK'(u){(log p/n®—30B~4))1/2 1 (logp/na”)l/Q} with ¢ sufficiently large, K'(u) satisfying
sup, e K' (1) < K, log p/n?*7—3e8=4a 0, log p/n® — 0 and h*>n" — 0, then we have

K20=9 4 (p) {(72271_62%7_4()()1/2 N (12§f)1/2}1_q

(ii) For the dense design, suppose that {O(u),u € U} belongs to C(q, so(p), K;U) and let
Kn,T = nY~aB242) \ T=3pY A TY21n~% Furthermore, if the (Xij,eij)’s are jointly Gaus-
sian and A\, (u) = cK’(u){(logp/,«ai,T)l/2 + (log p/n™) Y2} with ¢ sufficiently large, K'(u)
satisfying sup, oK' (u) < K, log p/Hi’T — 0, log p/n® — 0 and h?nY — 0, then we have

1—¢q
~ 1 1/2 1 1/2
SUEHG(U) —O(u)| = 0, | K> Vs4(p) {( Ofp) + < ng) } . (15

av
T n

sggué(u) ~O(u)| =0, (14)

We observe that the uniform convergence rates in (14) and (15) are governed by two sets of
parameters: (i) dimensionality parameters: n, p and 1" (ii) internal parameters: «, (3, v, v, q, K
and so(p). When T is bounded, the rate in (15) reduces to that in (14). We provide two remarks
for the sparse case. First, the rate in (14) consists of two terms, which reflect our familiar bias-
variance tradeoff as commonly considered in the nonparametric setting. Under the functional
graphical model setting with ¢ = 0, the bias term is bounded by O{K2sy(p)(logp/n*")'/?}
and the variance is of the order Op{KQSO(p)(10gp/n27_3a5_4°‘)1/2}. It is easy to see that
larger values of a or [ or smaller values of ~ yield a larger variance, while enlarging
« or v results in a smaller bias. To balance both terms, we choose a = 2v/(35 + v + 4),
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which provides a truncated dimension of M = n?"/ (36+v+4) and the optimal rate in (14)
becomes Op{Kz(l_q)so( )(logp/nQW/ 35*"*4)) (1=q /2} When v diverges to infinity with
n~Y =n12p1 implied from Lemma 4, M approaches a fixed dimension and the optimal
rate goes to O, [ K279 s(p){log p/(nh?)}1=9/2]. In functional data analysis, one often only
needs to consider the first several principal components as it is usually the case that the trunca-
tion errors decay to zero fast, so assuming a very small « and a large v is generally appropriate.
Second, we can relax Conditions 2 and 3 by allowing parameters -, «, 5, v to depend on j € V.
Then, for example, the variance term in (14) will be determined by the least smooth component
with the tightest eigen-gaps, that is the smallest h; and the largest M, 3;.

We provide two remarks for the dense case. First, in comparison with (14), the variance in
(15) is additionally determined by the second and third terms of ~, 7, which are due to the
convergence of n=1 Y @jl@km and n= 1Y g,jl@km (j,keV,l,m=1,..., M), respec-
tively. See Lemmas 14-15 in the Supplementary Material for details. Second, to discuss how
the convergence rate depends on 7', we focus on a practical scenario where ¢ = 0 and M ap-
proaches a fixed dimension. (i) When 7' grows at a relatively slow speed with T" = o(nQW/ N,
then k, 7 = T%? so the variance becomes Op{K230(p)(logp/T)1/2}; (i) When T' grows
moderately fast with 7—! = o(n=27/7), then K, 7 = T~3n7 so the variance is of the order
Op{K?50(p)(T%log p/n®')"/2}. In this sense, our proposed method can not effectively handle
very dense measurement schedules. This is because (5) requires multiplying a 7'-dimensional
vector by the inverse of a I’ by 1" matrix, which provides a poor estimate of the conditional ex-
pectation, EW, when 7" is large. However, the dense setting is actually relatively easy to handle
because in this setting we can calculate a direct estimate of §;;; via approximate numerical inte-
gration, resulting in improved convergence rates and empirical performance. In all other respects
our basic methodology follows through. See Section C in the Supplementary Material for further
details.

Next we introduce Condition 4, which is crucial to develop the graph selection consistency
result in Theorem 2.

Condition 4. (i) For the sparse design, let S {E v (1,1),..., (p,p)} be the aug-
mented set for u € U, then min,, ) ]@jk( u)| > 2Tn( ). (i) For the dense design, let S(u) =
{E(u) u(L,1),...,(p,p } for u € U, then min; y)e5(u ]@Jk( w)| > 27, (u).

Condition 4 requires the minimum signal strength on the augmented set be large enough to
ensure that non-zero components are correctly retained. We can understand this condition as
bounding the minimum strength of the strong signal when ©(u) varies smoothly. See Chen &
Leng (2016) and Qiu et al. (2016) for analogous functional minimum signal strength conditions.

THEOREM 2. Suppose that Conditions 1-6 hold. N

(i) For the sparse design, if it is further assumed that {©(u),u €U} belongs to
C(0, s0(p), K;U) and 7, (u) = 4K’ (u)\,(u), then the event {E’( — E(u) )} holds with proba-
bility tending to 1 uniformly for v € U;

(ii) For the dense design, if it is further assumed that {©(u),u €U} belongs to
C(0,s0(p), K;U) and 7, (u) = 4K’ (u)\p(u), then the event {E’(u) = E(u)} holds with proba-
bility tending to 1 uniformly for u e U.
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4. SIMULATIONS
4-1.  Setup

We assess the finite-sample performance of the doubly functional graphical model, using both
the constrained ¢;-minimization and graphical lasso approaches. Sections 4-2 and 4-3 respec-
tively consider scenarios where functions are observed at common, or irregular, sets of points.

In each simulated scenario, we generate functional variables using X;;(-) = s(-)"0;; (j =
1,...,p), where s(-) is a 5-dimensional Fourier basis function and ¢; = (J;3, ... ,61-Tp)T e R
follows a multivariate Gaussian distribution with mean zero and covariance matrix ) € R9P*P,
whose (7, k)th block is 25, (j, k = 1,..., p). The observed values, Y;;;, are then generated, with
error, from

sz'jt = S(U,,‘jt)T(Sij‘ + €ijt (’L =1,...,200; y=1,...,p; t = 1,--'7Tij>a (16)

where p = 50 or 100, and the u;;;’s and €;;;’s are randomly sampled from Uniform[0, 1] and
N(0,0.5), respectively.

Since functional conditional dependence relationships are fully characterized by the corre-
sponding functional sparsity pattern in ©(u) = ¥ (u)~! we consider a setting, generalized from
Zhou et al. (2010), to simulate a ©(u) corresponding to a slow graph evolution over [0, 1].
When u = 0, the initial diagonal elements in ©(0) are set to 0.25. For p = 50, we randomly
select nipitial = 40 out of 50 x (50 — 1)/2 potential edges, with edge strengths generated from
Uniform[—0.3, —0.1]. To create dynamic graphs, we choose u = 0,0.1, ..., 0.9 as change points
and at each point randomly choose ngrow = 7decay = 10 edges, which will simultaneously appear
and vanish, respectively, over [u,u + 0.5). For Ngrow €dges, we set the strengths to be 0 at u
and the underlying components grow linearly to values generated from Uniform|[—0.3, —0.1] at
u + 0.5. Analogously, among the non-zero entries at u, each decaying edge linearly decays to O
in [u, u + 0.5). Over the evolution where edges emerge and disappear, when we subtract a value
from O ;4 (u) and ©y;(u) for j # k, we can always add the same value on ©;;(u) and O (u) to
guarantee positive definiteness of ©(u). For p = 100, we set ninitial = 160, Ngrow = Ndecay = 40
and functional precision matrices are generated in the same manor.

We develop an approach using ideas from linear models of coregionalization (Genton &
Kleiber, 2015) to generate our data from ¥(u) = ©(u)~!. See the appendix for details.

4.2, Common set of time points

When curves are measured at a common set of points ug,...,ur, that is, u;j; = u; with
T;; =T for all 7, j,t in (16), we compare two versions of our method by computing the pre-
cision matrix using either constrained ¢;-minimization or the graphical lasso with three other
types of competitors. The first type, dynamic graphical models, is based on applying the con-
strained ¢1-minimization or the graphical lasso on the smoothed estimate of the sample co-
variance matrix S(u¢) of (Yiie,...,Yip)™ (i =1,...,n), that is, Sp(u) = {Zz;l K (uy —
u)S(u) H{ ST Ky (us — u)}fl, u € [0,1]. We use a Gaussian kernel with the optimal band-
width proportional to {log p/(nT)}'/? v T=%° (Qiu et al., 2016), so for the empirical work in
this paper we choose the proportionality constant in the range (0, 3], which gives good results in
all the settings we considered. The second joint type of method, can simultaneously estimate 7T’
precision matrices that share similar sparsity patterns or edge values. The group graphical lasso
(Danaher et al., 2014) is implemented in our numerical comparison. We also attempted to fit the
fused graphical lasso (Danaher et al., 2014) and joint constrained ¢;-minimization (Cai et al.,
2016). However, neither approach is scalable especially when 7' is large, so we do not report
their results here. The third type is the naive approach which simply applies the constrained ¢;
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Table 2: Average (standard error) means of operator, Frobenius losses and areas under the re-
ceiver operating characteristic curves (AUROC) at uy,...,ur over 100 simulation runs. All
entries have been multiplied by 10 for formatting reasons.

Operator norm Frobenius norm AUROC
T  Method p =50 p =100 p =50 p =100 p=50 p=100
DFGM-C | 14.1(0.02) 17.6(0.02) 65.9(0.09) 107.5(0.11) 8.2(0.02) 7.0(0.01)
DFGM-G | 14.2(0.03) 18.0(0.01)  68.1(0.09) 114.6(0.11) 8.1(0.02) 6.9(0.02)
DGM-C | 18.2(0.03) 21.9(0.03) 86.7(0.14) 141.0(0.21) 8.1(0.02) 6.5(0.01)
10 DGM-G | 18.4(0.03) 22.7(0.02) 90.9(0.17) 153.6(0.26) 8.1(0.02) 6.4(0.02)
GGL 19.0(0.14)  28.3(0.27)  95.6(0.14)  148.7(0.27) 7.9(0.03) 6.3(0.01)
Naive-C | 18.9(0.04) 35.0(0.05)  88.5(0.10) 187.9(0.77) 7.9(0.02) 6.0(0.01)
Naive-G | 19.1(0.08) 34.8(0.08)  95.6(0.21) 194.7(0.85) 7.5(0.02) 6.3(0.01)
DFGM-C | 14.0(0.03) 17.3(0.02) 64.0(0.12) 105.7(0.12) 8.4(0.02) 7.5(0.01)
DFGM-G | 14.1(0.03) 17.3(0.02) 64.2(0.12) 106.5(0.12) 8.4(0.02) 7.3(0.01)
DGM-C | 17.8(0.04) 21.5(0.03) 83.4(0.17) 138.9(0.20) 8.1(0.02) 6.8(0.01)
25 DGM-G | 17.8(0.04) 21.7(0.03) 83.9(0.17) 141.1(0.20) 8.2(0.02) 6.7(0.01)
GGL 18.3(0.16)  27.3(0.21)  94.7(0.16)  142.4(0.89) 8.0(0.02) 6.7(0.01)
Naive-C | 22.4(0.13) 36.5(0.21) 93.1(0.42) 180.8(0.96) 7.8(0.02) 6.2(0.01)
Naive-G | 23.6(0.33) 37.5(0.50) 103.1(0.85) 184.8(0.98) 8.0(0.02) 6.2(0.01)
DFGM-C | 13.3(0.03) 16.5(0.02) 60.8(0.11)  98.2(0.16) 8.8(0.02) 7.7(0.01)
DFGM-G | 13.4(0.03) 16.7(0.02) 62.4(0.12) 102.6(0.17) 8.8(0.02) 7.6(0.01)
DGM-C | 16.9(0.04) 20.1(0.03) 78.9(0.15) 127.0(0.27) 8.5(0.02) 7.2(0.01)
50 DGM-G | 17.1(0.04) 20.7(0.03) 80.2(0.17) 135.4(0.30) 8.7(0.02) 7.1(0.01)
GGL 18.2(0.16) 24.9(0.28)  93.7(0.14)  137.0(0.65) 8.4(0.03) 7.1(0.01)
Naive-C | 22.8(0.15) 31.8(0.21) 97.8(0.41) 186.0(1.00) 8.1(0.02) 6.7(0.01)
Naive-G | 26.1(0.49) 40.0(0.57) 105.7(1.06) 189.4(1.19) 8.3(0.02) 6.5(0.01)

DFGM, doubly functional graphical model; DGM, dynamic graphical model; GGL, group graphical lasso; Naive,

naive approach; C, constrained ¢;-minimization; G, graphical lasso.

minimization or graphical lasso on S(u;) fort = 1,...,T. To ensure these competitors work for
sparse designs we split [0, 1] into five equal subintervals, with [T"/5] points randomly sampled
from each interval.

We examine the performance of seven approaches based on estimation accuracy and
graph recovery consistency. In terms of the estimation accuracy, we calculate the mean
of the operator and Frobenius losses for the estimated precision matrices, respectively de-
fined as ||@(u)—@(u)|| and ||@(u)—®(u)||p, at uy,...,ur. In terms of the model
selection consistency, we plot the true positive rates against false positive rates, re-

spectively defined as #{(j, k) : @ézn)(u) # 0and O (u) # 0}/#{(j, k) : ©j1(u) # 0} and

#(7. k) 1 O () # 0 and © 4 (u) = 0} /#{(j. k) : ©x() = O}, over a grid of A, (u) values
to produce the receiver operating characteristic curve at each u;. For each comparison approach,
we compute the average area under the curve at uy, . . ., ur, with values closer to one indicating
better performance in recovering the graph support.

Table 2 reports numerical summaries to compare different approaches over six simulation set-
tings, corresponding to p = 50, 100 and T" = 10, 25, 50. Several conclusions can be drawn from
Table 2. First, in all scenarios, our proposed approach is superior to the competing methods
in both estimation accuracy and model selection consistency, and in many cases the improve-
ments are highly statistically significant. Among the others, dynamic-graphical-model-based ap-
proaches perform better than the remaining methods and the naive methods, which do not borrow
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Table 3: Average (standard error) means of operator, Frobenius losses and AUROCs at
v1,...,v21 over 100 simulation runs. All entries have been multiplied by 10 for formatting rea-
sons.

Operator norm Frobenius norm AUROC
Tii Method p =50 p =100 p =50 p =100 p=>50 p=100
DFGM-C | 25.9(0.15) 38.8(0.11) 122.4(0.59) 192.3(0.73) 7.6(0.02) 6.3(0.01)

6-9 DFGM-G | 26.0(0.16) 39.5(0.10) 128.5(0.49) 199.4(0.61) 7.6(0.02) 6.2(0.01)
20-30 DFGM-C | 20.1(0.11) 22.6(0.03) 94.0(0.21) 152.8(0.29) 8.0(0.02) 6.6(0.01)
DFGM-G | 21.1(0.21) 22.1(0.08)  95.9(0.35)  152.9(0.25) 8.0(0.02) 6.5(0.01)

50 DFGM-C | 17.0(0.05) 21.3(0.06) 74.3(0.13) 137.2(0.20) 8.3(0.02) 6.9(0.01)

DFGM-G | 16.9(0.08) 21.9(0.10) 74.8(0.21)  138.6(0.32) 8.2(0.02) 6.8(0.01)

strength across adjacent points, provide the worst performance. Second, we observe that imple-
menting the constrained ¢;-minimization and the graphical lasso give comparable results in many
scenarios with the former type providing large improvements in a couple of cases. Third, the best
results are obtained for the more densely sampled case, with a smaller number of functional vari-
ables.

4.3.  Irregular set of time points

When functions are observed at irregular sets of points, none of the three types of competitors
described in Section 4-2 are applicable. Hence, in this section we compare the sample perfor-
mance of our doubly-functional-graphical-model based constrained ¢; minimization and graph-
ical lasso methods to each other. We consider six scenarios, corresponding to p = 50,100 and
different 7;;’s generated from the discrete uniform distribution with sets {6, . .., 9}, {20, ..., 30}
and {50}. The measurement times are randomly sampled from Uniform[0, 1] for each pair of
(i,7). We average the operator, Frobenius losses and the areas under the curves at 21 evenly-
spaced time points, 0 = v1,...,v9; = 1. Table 3 presents numerical results for all six simu-
lations. We observe similar trends to those in Table 2 with results deteriorating somewhat for
smaller values of T;; and larger values of p. In general the constrained ¢; minimization approach
outperforms the graphical lasso on the estimation accuracy, but the methods are comparable in
terms of graph selection consistency.

5. REAL DATA

In this section, we apply our proposed approach to the EEG data set, available at https:
//archive.ics.uci.edu/ml/datasets/EEG+Database, from an alcoholism study
(Zhang et al., 1995). The data consists of measurements on 77 alcoholic and 45 control subjects.
Each subject, exposed to either a single stimulus or two stimuli, completed 120 trials. EEG
signals were measured at 256 time points over a one second time interval at 64 electrodes/nodes,
placed at standard locations. Following the approach taken in Zhu et al. (2016) and Qiao et al.
(2019), we averaged EEG signals, filtered at a-band (Hayden et al., 2006), across all trials under
the single stimulus. The a-band filtering was performed using the eegfilt function in MATLAB.
Existing research has shown that the networks embedded in EEG data evolve over time, where
edges are bound to emerge and disappear (Cabral et al., 2014). In this study, our target is to
estimate functional networks involving p = 64 nodes based on n, = 77 and n. = 45 functional
observations for alcoholic and control groups respectively and to explore the differences in their
brain connectivity patterns.
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Since the graphical structures for alcoholic and non-alcoholic groups share some common
edges, it is advantageous to jointly estimate two networks. Hence, we used the joint constrained
¢1-minimization approach (Cai et al., 2016) to simultaneously estimate two functional preci-
sion matrices. In addition, to stabilize the functional graph selection, at each time point, we
bootstrapped each group by randomly selecting n, and n. samples with replacement from the
alcoholic and control groups respectively, performed functional principal components analysis,
implemented joint constrained ¢;-minimization to obtain two estimated networks and repeated
the above procedure 100 times. Those edges, which were chosen more than 50 times out of 100
bootstrap samples, were finally selected as important edges. See Cai et al. (2016) for details on
the selection of relevant regularization parameters.

Figure 2 plots the estimated graphs for the alcoholic and control groups at approximately
u = 0.2, v =0.5 and v = 0.8 seconds respectively. To visualize and interpret the functional
network we set the functional sparsity to 5% and only displayed the top 101 most important edges
in Figure 2, where three anatomical landmarked electrodes, X, Y and nd, were removed. The
node names are provided in Table 4 in the Supplementary Material. We observe a few interesting
patterns. First, the alcoholic and control groups share very similar block patterns, which reveals
the existence of some regional effects for brain connectivity. Second, our estimated networks
indicate clear dynamic structure. The edge values within each block gradually change with edges
emerging and vanishing over the evolution, for example in Figure 2, electrodes FC6 and T8 in the
control group are connected at v = 0.2 and 0.8, but disconnected at v = 0.5. Third, the dynamic
networks differ between the two groups especially in certain regions, for example in Figure 2,
electrodes from the left part of the brain are more connected in the alcoholic group.
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Supplementary material available at Biometrika online includes additional regularity condi-
tions, all the technical proofs, further discussion and additional empirical results.

A. APPENDIX

A-1.  Procedure to generate simulated functional data
By the definition of Cjj,(u,v) = cov{X;;(u), Xix(v)} = s(u)"Qj,s(v) and orthonormality of s(u),
we can easily show that

Qji = J s(u)Cjg(u,v)s(v)" dudv. (A1)
(u,v)eu?

To generate multivariate functional observations, we first need to construct a valid matrix of cross-
covariance operators {Cjk(m v)}1 <jh<p (Guhaniyogi et al., 2013) and then obtain €2, from (Al), by
approximating the integral using the discretized sums, We take the idea of linear models of coregion-
alization (Genton & Kleiber, 2015) to represent the p-dimensional multivariate random field as a linear
combination of p independent univariate random fields by

Cik(u,v) = Z p(u—v)Aj(u) A (v), (A2)
=1
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Fig. 2: Left and right graphs plot the estimated dynamic networks at approximately u = 0.2,
u = 0.5 and u = 0.8, for the alcoholic and control groups, respectively.

where the correlation function p(u — v) is independent of € V. Specially, for u = v, X(u) = C(u,u) =
p(0)A(u)A(u)™, where we can set A(u) = {Aj )a

to be the Cholesky factor of ¥(u)/p(0) and

(u)}1<j,k<p
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hence {C}(u,v)} can be generated from (A2) by letting p(u — v) = exp{—(u — v)?/207}, a univariate
Gaussian kernel with o, = 1.
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Supplementary Material to ‘“Doubly Functional Graphical Models in High
Dimensions”

Xinghao Qiao, Cheng Qian, Gareth M. James and Shaojun Guo

This supplementary material contains some standard regularity conditions and the technical proofs
supporting Section 3 in Appendix B, discussion of the approximate numerical integration approach under
very dense measurement schedules in Appendix C and additional empirical results in Appendix D.

B. TECHNICAL PROOFS

We present several regularity conditions in Section B-1. In Sections B-2, B-3 and B-4, we prove that
the concentration bounds in (12)—(13) of Condition 2 hold for fully observed functional data, sparsely
observed functional data and densely observed functional data, respectively. In Sections B-5 and B-6, we
provide proofs of Theorems 1 and 2, respectively. For convenient presentation in our proofs, we will use
c1,C2,. .. as positive constants.

B-1.  Regularity conditions

To investigate the theoretical properties of the proposed method in Theorems 1 and 2, we also need
Conditions 5 and 6 below. They are standard in functional data analysis literature.

Condition 5. (i) Let {Uijt i=1,...,n,jeVit=1,... ,Tij} be independent and identically dis-
tributed copies of a random variable U with density fi/(-) defined on the compact set ¢/, with the T};’s
fixed. There exist some constants m s, M, such that 0 < m; < infy, fy(u) < supy, fu(u) < My < oo;
(i1) X, e and U are independent.

Condition 6. For each j € V, 0°Cj;(u,v)/ou?, 0*C;;(u,v)/0udv and 0*C};(u,v)/dv? are bounded
onU?.

To prove Condition 2, we need Conditions 8-9 below. We first assume the one-dimensional kernel K
to satisfy the following condition.

Condition 7. (i) K(-) is symmetric probability density function on [—1,1] with §u?K (u) < o0 and
§ K (u)?du < . (i) K(-) is Lipschitz continuous: there exists some positive constant L such that

|K(u) — K(v)| < Llu —v|, foranyu,v e [0,1].
Condition 8. For each j € V, Cj;(u,v) is in the trace class with max ey Y- wj; < 0.

Condition 9. For each j € V, the eigenfunctions, ¢;1(-), ¢j2(-), ... are Lipschitz-continuous, that is,
there exists some positive constant L such that

|pj1(u) — ¢j1(v)| < Llu — |, forany (u,v) eU*andl=1,2,....

B-2.  Concentration bounds for fully observed functional data

LEMMA 1. Suppose that Conditions 3 (ii) and 8 hold, then there exists some positive constants c1 and
co such that for any 0 < 0 < 1 and each j € V, we have

pr (Héﬂ - ij HS = 6) < C2 eXp(—clnéz),

Proof. This lemma can be found in Lemma 6 in the supplementary material of Qiao et al. (2018) and
hence the proof is omitted. o
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LEMMA 2. Suppose Conditions 3 (ii), 8 and 9 hold, then there exists some positive constants ¢y and c
such that for any 0 < § < 1 and each j € V, we have

pr{ sup |ajj(u,v) — Cjj(u,v)| = (5} < canexp(—ciné?).
(u,v)eU?

Proof. Without loss of generality, let/ = [0, 1]. We first reduce the problem from supremum over product
of interval [0, 1]? to the maximum over a grid of pairs on the product interval. We partition the interval
[0,1] into N subintervals By, (k = 1,..., N) of equal length. Let uy, vs be the centers of By, and By,
respectively. For each (u,v) € By x By, by the Lipschitz-continuity of ¢;;(-)’s and the expansion of

o Xj(u) = Y7 &jbji(u), we have
1y (u,v) — Cjj (e, v )|
= |n7t Z { X5 (u) Xi5(v) — X5 (ug) Xij (vir) }|

n

< ‘n’l D75 (1) = X (ue)} X5 (v) + X (ur){ X5 (v) — Xij(vk')}])

=1
_1; \;fzngu v)|max | (u) - ¢jl(“k)|+‘;fijlxij(uk”mlaXWﬂ(v)_¢jl(vk)|}

~1 2 | Z & Xij(v)|er|u — ug| + | 2 & Xij(ur)|crlv — vie|}
i—1

=1 =1

8

B{| Y &nXiy ()} + )N

on the event Q= {n’l S I Gin X ()] < BYI D2, X (W)} + 1}. By the
Cauchy-Schwarz inequality, Conditions 3(ii) and 8, we have [E{|X2, & Xi; (u)|}]2 <
E{(X2 &) E{ X (w)?} < (32 wi) (X121 wji)O(1) < 0. Combing the above results and
some specific calculations yields

‘ — Cyj(ur,ver) } — {Cj (u,v) — ij(uk,vk/)}‘

‘ Cjj(u,v)| = |Cy; (un, vir) — Cij (up, vpe)

< QCQ(E{‘ Z fileij(u)|} + 1)N_1 < Cg]\f—l7
=1

which implies that

sup  [Cj(u,v) = Cj(u,v)| < max |Cy;(ug, vgr) — Cjj(ur, vps)| + CasN
(u,v)EB x By, 1<k<N

Let N = c30~!. Under the Gaussian assumption for X;;(u) and 3, | &;;; with finite variance by Con-
dition 8, it follows from the Bernstein inequality (Boucheron et al., 2014) that there exist positive con-

stants ¢4 and ¢5 such that for any 0 < 6 < 1, pr{léjj(Uk,Uk/) — Cjj(up, v )| = 5} < c5 exp(—cynd?)

and pr(Q%) < ¢ exp(—cyn). Combing the above results and applying the union bound of probability,
we obtain that

pr{ sup |6’jj(u,v) —Cji(u,v)] = 5} < 0t exp(—cqnd?).
(u,v)€[1,1]2
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If 6 > n~!, the right hand side of the above inequality is reduced to cgn exp(—cqnd?). If § <n~!, we s
can choose cg and n > c7, such that cg exp(—csc; ') = 1 and hence the bound cgn exp(—c4nd?) can still

be used. We complete the proof for this lemma. o.

B-3.  Concentration bounds for sparsely observed functional data

In Lemma 4, we prove the concentration bounds for sparsely observed functional data. The proof of
Lemma 4 replies on the concentration result for the second-order U-statistics in Lemma 3. 590

LEMMA 3. Let Z;; = (X;5,Y3)" (i=1,...,n,5 =1,...,m). Suppose that {Z;;} are independent
and identically distributed random vectors. Consider the U-statistics S,, = m Z?Zl Z;’; e XijYik.
If there exist two positive constants v and c such that for each q = 2,3, ...,

q q! g—2
sup sup EXinik—E(Xinik)‘ < 51}0 , (B.1)

I<isn 1<j#k<m

then for any 6 > 0, we have

o

Proof. Let J = [m/2], the largest integer smaller than or equal to m,/2 and define

n(m — 1)4§2
25) <28Xp{_4(v+c§)}' (B.2)

1
W(Zis . Zim) = *{XuYzQ +oe Xi(QJfl)Yi(ZI)}-

J

Let 3, denote the sum of all m! permutations (j1, ..., jm) of (1,...,m). We can show that S,, can be
expressed as

1 n
”_leﬁZ Zijis -+ Zij :m;Z ZZ ij(2k—1)J2k’
(p) =1

11k1

where X :‘h 2 = X, Y, forl1 <i<nand1l < j; # j» < m. The above expression represents S,, as an  ses
average of m! terms, each of Wthh 1tself is an average of n.J independent random variables.
Let ¢(x) = exp(x) — = — 1. Hence, for A\ > 0, by monotone convergence theorem and (B.1), we have

that

2 NE{|X) . — EX} A2
Sllp E{qb()\X:;lh )‘EX:;ljg)} < Z J1Jj2 ' J1J2 Z )\ch 2 1 - C)\)
1,172 q=2 q:

for 0 < A\ < ¢~ 1. Using the above result and the fact that log(z) < x — 1 for x > 0, we have that for
A >0,

log [E exp {)\(Sn — ESn)}]

A
Eexp lE IOgEeXp{ J(X:;'Zk 172k EX:;% 1]2k)}]

N
ip-
5}

0}

n —2 2
<Zlog 'Eexp[ZIOg{1+ Ci_lz})\l)\)}

B n=tJlu)?
©2(1—entJIN)’

0<A<nde !

Applying Bernstein inequality in Corollary 2.11 of Boucheron et al. (2014), we obtain that for any § > 0,

pr ()Sn — ESn‘ = 5) < 2exp {Q(ZJ-;S;)} .
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Note that J > (m — 1)/2 and hence the concentration inequality in (B.2) follows. o

LEMMA 4. Suppose that Conditions 3(ii), 5, 7 and 8 hold, h; = h and T;; < Ty < o0 for all i =

1,...,n and j € V. Then there exist a deterministic covariance function 6’jj (u,v) defined in (B.9) and
some positive constants ¢, c¢o such that for any ¢ € (0, 1] and each j € V, we have

pr{Héjj — 6’jo5 > 5} < cgexp (—clnh252) (B.3)

and

~

CA’jj (u,v) — ij(u,v)) > 5} < conh ™% exp (—einh?6?) . (B.4)

pri sup
(u,v)eU?

If h = n~® for some positive constant a < 1/2, there exist some positive constants cs and cy such that
(B.3) and (B.4) reduce to

pr{”éjj — CN’joS > 5} < cpexp (—egn' 7240%) (B.5)

and

~ ~

i (u,v) — ij(u,v)‘ > 5} < euntTexp (—03n1_2a(52) , (B.6)

pr{ sup
(u,v)eU?

respectively.

Proof. Denote Uy jp (u,v) = {1, (Usje — u)/h, (Usje —v)/h}", eo = (1,0,0)",

[

Jv) =n T Y w0 U (u,0) U0 (u,0) K (Ui — ) K (Usje — ),
=1

1§t¢t/STij

" (B.7)
Ej(u,v) =n! Z Wy Z ﬁz‘jtt'(U,U)Y;jtyijt’Kh(Uijt —u)Kp(Uijer —v).
=1 1St¢t/STij
Then we express CA’jj(u7 v) as
Cij(u,v) = eg{Z;(w,v) ) Zj(u,v). (B.8)

For k,¢ = 1,2,3, denote éjkg(u, v) and ij(u, v) be the (k, £)th entry of éj(u, v) and the kth element
of Z;(u,v), respectively. We define a deterministic covariance function by

~

Cjj(u,v) = eg [E{éj(u,v)}]_l [E{éj(u,v)}] . (B.9)

We next prove that there exists two positive constants ¢; and co such that for any 6 > 0 and each j € V
m, 0 =1,2,3and (u,v) € U?,

2 ~ c1nh?62
PT{ Ejme(u,v) — E{‘:jmé(uav)}‘ = 5} < 2Zexp <_1+6) (B.10)
and
~ ~ c1nh?62
pr{‘ij(u,v) - E{ij(u,v)}‘ > 5} < cgexp <1+6> . (B.11)
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It follows from Conditions 5 and 7 that for integer ¢ = 2, 3,... and s, s’ = 0, 1,2, we have

E‘Kh(Uijt —u) Ky, (Uije — ”U)(Uijth_ U)S(Uijth_ U)S' q

1 t—u ' —o\ |t —usqt —vsa
- ra q
<ffh24K<h)K<h)‘h 7
1 1 1 ,
< WJ 1J qu(x)Kq(x')|z|Sq\x|S ®fy(ha + u) fu(ha' + v)deds’

< e3(egh™2) (esh™2) 172, (B.12)

sq

fu @) fu)dtdt

By (B.12), the concentration result for the U-statistics in Lemma 3, T;; < Ty < o0 and the first line of
(B.7), we can prove that the concentration bound in (B.10) holds for m, ¢ = 1,2, 3.
Then we turn to prove (B.11). Consider m = 1 first. Define

Xij1(u,v) = Z YiiYij Kp(Uije — w) Ky (Ui — v).
1=t#t’<Tij

Then 2]1(u v) =n"t Zz 1 Wi Xij1(u,v). If follows from the fact Z?C 1 &iji and e; 5, are Gaussian with
finite variance, Y, = Zl 1&i1041(Uiji) + eiji, Conditions 3 (ii) and 8 that for g = 2, 3,.

e 2q
E Z ijidj1(Uije)|  + Eleije|*

=1

B(|Yije*7) < 2%07

,5,t

0 2q
_ 1
< 22!] 1 E (Z fijl) SupE‘d)ﬂ( th)| 4 + E‘Gijt|2q S iq'cg
=1

Combing the above results implies that for ¢ = 2,3, ...,

1
Elxiji (u,0)[* < egh™*2 31 B|YipYie|' < Sqleth™ 42, (B.13)
1<t#t'<T;j;

It then follows from the Bernstein inequality that (B.11) holds. Similar techniques used in proving (B.12)
and (B.13) can be dlrectly applied to other terms, Z jm(u v) for m = 2, 3 and hence (B.11) holds.

We next decompose C;; (u, v) — Cj; (u, v) as

A~ ~

3ius0) = Cysu) = Byt 0)} ™ = [BE w0} ) Zitwow "

+ e[ B{ES (. v)}]A |Z;(u,0) = B{Z;(u0)}].

By Conditions 3(ii), 5 and 7, some calculations and similar developments used in Zhang & Wang (2016)
that E{_j (u,v)} is positive definite and E{Z (u,v)} is bounded. These results together with (B.14),
concentration inequalities in (B.10)—(B.11) and some calculations imply that there exist some positive
constants cg and cg such that for any § > 0 and each j € V, (u,v) € U?,

cgnh?62 )

(B.15)

pr{|6'jj(u,v) _éjj(u7v)| = 5} < cg exp (— o

We then derive the concentration bound for |C;; — Cj; | 5. It follows from (B.15) and the first part of
Lemma 2 in Guo & Qiao (2018) that for any (u,v) € U? and integer ¢ > 1,

~

E|Cy;(u,v) — Cjy(u,v)[* < glely(n™ h™2)7 + (2g)!cly (= h=2)2.
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This result together with the fact EHCA‘M - éjj H‘ng < |Z/{|2qE‘CA‘jj(u, v) — C’J] (u,v)| 2 implies that
E|Cy; — Gyl < P1elo{ (n'h=2)7 + (20)!(n~ %)%},

Applying the second part of Lemma 2 in Guo & Qiao (2018), we can show that, for each ¢ € (0, 1), the
Lo concentration bound for HC’jj —Cjj Hs in (B.3) holds.

We finally derive the uniform concentration bound for sup,, ,)cy2 |6'jj (u,v) — C~’jj(u, v)|. Let U =
[0, 1]. We partition the interval ¢/ into N subintervals By, of equal length. Let uy, vi be the centers of By,
and By, respectively. Then we have

sup  [Cjj(u,v) — Cjj(u,v)| < max |C’j] (ug, vpr) — Cjj (g, vir)|
(u,v)EBK X Bys 1<k<N

+‘{@j(u,v) — Cjj(ur, o)} = {Cyj(u,v) — C'jj(ukwk,)}‘.

We then need to bound ‘{éjj(u,v) —éjj(uk,vk/)} - {6‘jj(u,v) —CN'jj(ukmk/)}‘. By (B.8), (B.9)
(B.14) and some calculations, it suffices to bound ‘{zjm(um) — 2jm(uk,vk/)} - [E{éjm(um)} -
E{éjm(uk,vk,)}]] and ]{éjmg(u,v)—éjmf(uk,vk,)} - [E{éjmg(um)}—E{éjmg(uk,vk/)}]) for

m, € =1,2,3, which means we need to bound [{Zj(u,v) — Zjm(ug,vp)}| and |{Zme(u,v) —

éjmé(ukavk')ﬂ form, £ =1,2,3.
Let (u,v) € By, x By. Consider m = 1 first, it follows from Condition 7 that

|{2j1(u,v) — Zjl(ukmk/)ﬂ

< fn”t Z Wij Z YijiYiju [{Kh(Uijt —u) — Kp(Uije — up) } Kp(Uije — v) +

1<t#t/<Tij

+ K5 (Uije — we) {Kp(Uijer — v) — Kp(Uije — 'Uk’)}]

T Y wgl Y] ijjtflcuh‘2{Kh(Uijt/ = v)|u = ug| + Kp(Usjr — ug)|v — vk/|}

1<t#t'<Tyj

< c12 E(wiﬂ D YiYie{ Kn(Uije — v) + Kn(Uijs — uze)l}) +1| RNt
1§t7ﬁt/§Tij

= 012{E()zij1) + 1}(Nh2)71 < 013(Nh3)71, (B.16)

on the event Qz ;1 ={n"'X, )?”1 E ()?Zjl +1}. The last inequality follows from the
Cauchy-Schwartz inequality and E{Y2 K72 (Usje —ur)} = 22, E{2,05 (Uije) K (Uije — ui)} +
E{em 2(Uijt — uk)} < Coh™!, implied from Conditions 3(ii), 5, 7, 8 and some calculations similar
to the proof of (B.12). Applying similar techniques to obtain (B.16), we can define events Q7 jp,, Q= jme
for m, ¢ =1,2,3, respectively, and show that, on the above events, |[{Z;1(u,v) — Zj1 (up,vp)}| <
c12(Nh?)~1 form = 2,3 and |{§jmg(u, v) — Hjmg(uk,vk, )} < c1a(Nh3) =t form, £ = 1,2, 3. Comb-
ing the above results, we have
sup  |Cj(u,v) = Cjj(u,v)| < max |Cyj(ur, vie) — G (un, v)| + Crs(NB*) ™!
(u,’u)GBk XBk/ I<ksN

Let N = 015(h35)_1. It follows from (B.15), techniques used in the proof of (B.12), moment inequal-
ities similar to (B.13) and the Bernstein inequality that there exists positive constants cig and cy7 such
that for any 0 € (0, 1], pr{|6’jj(uk,vk/) - CN’jj(uk,vk/)\ > 5} < cyrexp(—cignh?6?), p (ngm) <

c17 exp(—cignh?) and pr(Q€ ;) < 17 exp(—cignh?) for m, ¢ = 1,2,3. Combing the above results
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and by the union bound of probability, we have that for each § € (0, 1],

pr{ sup |6’jj(u,v) — C~’jj(u,v)| > (5} < cro(h30)texp ( — clgnh2(52>.
(u,v)€e[1,1]?
If § > (nh)~!, the right side of the above inequality is reduced to cjonh~2exp ( — clgnhzdg). It

§ < (nh)~1, we can choose c19 and n > cog such that cig exp(—clgcgol) > 1 and hence the bound
cronh ™2 exp ( — c13nh?6?) can still be used. We complete our proof for concentration inequalities in
(B.3)and (B.4). o

B-4. Concentration bounds for densely observed functional data

LEMMA 5. Suppose that Conditions 1, 3 (ii), 5, 7 and 8 hold. Let d; be dimensionality of X;(-) such
that wjq; > 0 and wj(q, +1) = 0. Suppose that dj = d < o0, h; = h for j € V. Then there exist a deter-

ministic covariance function Cj;(u,v) defined in (B.9), some positive constants ¢, and cz, a fixed small
constant € > 0 such that for any ¢ € (0, 1] and each j € V,

pr{[Cy; = Cijlls = 8} < caexp { = c1 min(m, 710 4%)52 | (B.17)
and

pr{ sup 2|6’jj(u,v) — 5’jj(u,v)| > (5}
(u,v)eld (B.18)
<co max(n, n2/375T71/3h74/3) exp { — ¢1 min(n, n2/376T1/3h4/3)52}.

If h=n"%and T = n® for some positive constants a,b with 4a/3 —b/3 < 2/3 — ¢, there exist some
positive constants c3 and c4 such that (B.17) and (B.18) reduce to

pr{”é’jj — 6'jj Hs > 5} < ¢ exp{ — 03nmi“{1’(2/376“’/3*4“/3)}52} (B.19)
and
pr{ sup 2|CA’jj(u,v) - CN'jj(u,v)| > 6}
(u,v)eld (B.20)
<ean@{1,(2/3=c=b/3+4a/3)} exp{ - cgnmin{l,(2/376+b/374a/3)}52}’
respectively.

Proof. We will show that there exist two positive constants ¢; and ¢ such that for any 0 < < 1 and each
jeV,m,£=1,23and (u,v) € U?,

pr {‘éjmg(u,v) - E{éjmg(u, v)}‘ > 5} < cpexp (—einTh?6?) (B.21)
and
pr {)Ejm(u, ) = B{Zjm(u, v)}) > (5} < cpexp { — ¢y min(n, n2/3_€T1/3h4/3)(52}. (B.22)

Then combing results in (B.14), (B.21), (B.22) and following the same developments to prove (B.15), we
can obtain that there exist two positive constants c¢s and ¢4 such that for any 0 < § < 1, and each j € V
and (u,v) € U?,

pr {‘éjj(u,v) — éjj(u, v)‘ > 5} <y exp{ —c3 min(n,n2/3*6T1/3h4/3)52}. (B.23)

It follows from (B.7), Condition 1, (B.12) and Lemma 3 that the concentration bound in (B.21) holds
form, ¢ =1,2,3.
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Now we turn to prove (B.22). Similar to the proof of (B.11), it suffices to derive the concentration
bound for Z;q (u, v). For each pair (¢,7) (i = 1,...,n,j = 1,...,p), denote

Xij(u,v) = Z Y5 Yijw Kp(Uije — w) Ky (Uijp — v),
L=t£t'<T

ess which can be further decomposed as

Xij (U, v) = Z eijteije Kn(Usjt — u) Kp(Ugjer — v)

I<t#t'<T

d
+ > G Y eiudi(Uige) Kn(Uije — w) Ky (Usje — v)

=1 1<t#t'<T

d
2 z]l Z ez]t¢]l( 7.jt’)Kh(Uijt - U)Kh(Uijt’ - 'U)

=1 1<t#t'<T

d

Z &g Z ¢51(Usje) g (Usjer ) K (Usje — u) Kp(Usjer — v)
=1 1<tAU'<T

—xE?( ) + X4 () + X6 (,0) + x5 (u,v).
Therefore, we have

n

4
2 1(“’31}) = Z Z ”XU
=1 i=1

In the following, we will prove the concentration bound for each of the four terms.
(1). Consider the first term. Note that Xz(;) (u,v) is a U-statistics. For each integer ¢ = 2,3, ..., by the
fact that e;;;’s are Gaussian and similar techniques used to prove (B.12), we have

e o ol < L e 2 (e 2y
Eel]teljt/Kh(U’th U)Kh(Umt’ U) < D) (C5h )(C5h )

It then follows from Lemma 3 that for each 6 > 0,

pr Un_l i wij{xgjl-)(u,v) - Exgjl-)(u,v)}’ > (5] < 2exp ( — %) (B.24)
i—1

(i1). Consider the second term. To derive its concentration bound, we implement a truncation technique.
1 2
Leta;j; = w {m ~ N(0,1), fﬂ) = a;jil(lai] <n %) and a( l) = ajil(|ai] >n %) for some 6 > 0.

Then we have X( )( v) = X(JQ )(u v) + XEJ’ )( v), where

X,(JZ M) U U Z lel/zagfl) Z el]tld)jl( zjt)Kh(Uijt - U)Kh(Uijt’ - ”U), m=1,2.
1<t#t'<T

Note that, similar to the proof for Lemma 3, w;; Zt#, eijv ®je(Uijt) Kn(Uiji — w) Ky, (Usjr — v) can be
expressed as an average of T'! terms, each of which is itself an average of [T'/2] independent random vari-
ables. For each integer ¢ = 2, 3, ..., by the facts ¢;;;’s are Gaussian, T" > 24/T for T > 4, Condition 3(ii)
and techniques used to prove (B.12), we have

q
Elwy Y eudaUng) Kn(Usi — u)Kn(Ujy —v)| < gledT 927200,

I<t#t'<T
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Combing the above results and some specific calculations yield that

d q
Bl < (S ate-ngr-omnosen
/=1

< %Q!(cgh‘ZT_l)(09n9h_2T_1/2)q_2- (B.25)

Applying the Bernstein inequality, we obtain that for each § > 0,
h2T5?
{ -1 2 w”X(Q D ,U)| = 5} < 2exp (_cmn) . (B.26)

14+ nfT1/2§
Note that {sup; <<, 1<i<qlaii] <n’} {XE?’Z)(u,v) = 0}. Applying the Bernstein inequality for
a;i;;’s and the union bound of probability, we obtain that for each 6 > 0,

pr{ n~t Z wijxg’m(u, v)| # 0} < 2ndexp ( — c11n20). (B.27)
i=1
(iii) Consider the third term. Similar to the development in (ii), we can write X( )( v) = XS 1)(u7 v) +
XS’ 2)( v), where
3,k) 1/2
XEJ Z wj[/ a”l Z ezgt’(b]l( ljt)Kh(Uijt - U)Kh(Uijt' - ’U,), k= 1,2

I<t#£U'<T

Following the same developments in proving (B.28) and (B.27), we can obtain that for each § > 0,

v (3,1) c1onTh2 8>
pr{ n ;winij (u,v)| = 5} < 2exp ( - m) (B.28)
and
pr { nt Z wijxg’?)(u, v)| # 0} < 2ndexp ( — (3137120). (B.29)
i=1

(iv). Consider the fourth term. For any (i, j,{,l') fori =1,...,n,7 € V,1,I' =1,...,d, denote

Yijar(w,0) = Y u(Uije)bjur (Uije ) Kn(Uije — w) Kn(Usjr — ).
I<t#t'<T

We can further decompose X( )(u, v) as

XEJ) Z Eiji&iju Eijar (u,v) Z Eiji€igu {Wijuw (u,v) — Eij v (u,v)}

Lir=1 Lr=1
= X7 (w0) + x5 ().
Applying the fact that ), &;;; is Gaussian, Conditions 3(ii), 8, techniques used to prove (B.12) and some
specific calculations yields that for¢g = 2,3, ...,

q
E{wiﬂ/)ll/(u, v)}‘ < ¢f,q.

2q
‘E{wUXU U, v } ‘ < |E (Zﬁ,ﬂ> sup

i,9,0,0"

670

675
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Applying the Bernstein inequality, we obtain that for each § > 0,
518>
pr l = 51 < 2exp (— asn ) . (B.30)
1 (6)

149
Now we turn to the term Y ; n~ tw;;x; y (u,v). To derive its concentration bound, we use the trun-

cation technique again. Observe that a;j1a,;1 = afjll) aE;l), + aszl) agjl-l), + aSl) a,gf-l),. Similar to the procedure
in (ii), we can write XE?)(U, v) = XE?’U (u,v) + X,E?’Q)

" i wiy { X5 () = BX (.0) |
i=1

(u,v), where

d
6,1 1/2 1/2 (1 1
X ) = 3 wifPwj az('jl)’agjl)’{qpij-,ll’(ua v) — Eiﬁij,w(uvv)}-
=1

It follows from the proof of Lemma 3 that w; ;405 eer (u, v) can be expressed as an average of T'! terms, each
of which is itself an average of [T'/2] independent random variables. Following the similar developments
to prove (B.25), we can show that

a 1
E‘wijagl)ag;l),{wij,”/(u, v) — Evija (U»U)}‘ < iq!(C%Tﬁlffz)(ClGnGT*Uzh*z)H-

Applying the Bernstein inequality again, we obtain that for each 6 > 0,

|

On the other hand, we can also show that
n
_ 6,2
pf{ n! 2 winz(‘j )(Uav)
i=1

Choosing n? = (nT*/?h?)1/3 and combing the concentration inequalities in (B.24), (B.26)~(B.31), we
obtain that there exist two positive constants ¢19 and coq such that for any ¢ € (0,1],

cl7nTh2 (52 )

N (6,1)
n Z wlez] ('LL, U) - 1 + n9T1/25
=1

251 <2exp(

” 0} < 2ndexp ( - c18n29). (B.31)

pr {‘27‘1(%“) - E{Ejl(%v)}) = 5} < Cg0 €xXp { — C19 min(n,n2/3_€T1/3h4/3)52}7 (B.32)

where ¢ is obtained from log(n) < n¢ for any small constant ¢ > 0. We can apply the same procedure and
prove that the concentration bound in (B.22) also holds for m = 2, 3.

Next, given the pointwise concentration bound in (B.23), it follows from the same procedure to prove
(B.15) that we can derive the L, concentration bound for |C;; — C};| s in (B.17). Finally, applying the
partition technique and then following the similar developments to prove Lemma 2 and (B.4), we can
derive the uniform concentration bound for sup(u,v)eu2|0jj(u, v) — Cjj(u,v)| in (B.18). We complete
the proof for this lemma. o

In Lemma 5, it is worthy noting that we assume that d; < oo for each j € V. We leave the development

of concentration results for C;; (u, v) under the infinite dimensional setting as our future work.

B-5.  Proof of Theorem 1
To prove Theorem 1, we will use Lemmas 6-25 with proofs as follows.

LEMMA 6. {él(u)} be the solution to (6) and é(u) = {Bl (u),... ,Bp(u)} with Bj (u)’s being solu-
tions to (7), then we have {©1 (u)} = {B(u)}.

Proof. We can follow exactly the same steps in Lemma 1 of Cai et al. (2011), thus the proof here is
omitted.o
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LEMMA 7. Suppose that Conditions 2 and 6 hold. Then there exists some positive constants cy,Ca,C3 700
such that for any § with h?> « § < 1 and each j € V, we have

pr (H@'M — ij”s > 5) < ey exp(—cin?76%), (B.33)

pr{ sup |6’jj(u,v) - Cjj(u,v)| = 6} < con® exp(—c1n?76?). (B.34)
(u,v)eU?

Proof. It follows from the proofs for Theorems 3.2 and 4.2 of Zhang & Wang (2016) that, under Condi-
tion 6, | Cj; — Cjj| g = O(h?). By the triangular inequality with

~

ICsi = Chslls <1Csi = Cislls + |Css — Cisl s

§» h? and (12) in Condition 2, we have P(Héjj - ijHS > 5) < P(HCA’jj — éjoS > 5/2) <
o exp(—cyn?762/4) with ¢; = ¢, /4. Finally, it follows from (13), Condition 6, Theorem 5.2 of of Zhang
& Wang (2016) with sup ,, ez |C~’jj(u, v) — Cj;(u,v)| = O(h?) and similar developments that (B.34) s
follows. o N

For a random variable Z and some norm | - ||, we define | Z| = O,(d,,), if and only if the probability
measure is equipped with generalized sub-Gaussian type of concentration inequality, that is, there ex-
ists some positive constants ¢y, ¢z such that for any § € (0, 1], pr(|Z] = 6) < c2 exp(—c16,26%). Fora
random variable W, we define |W|| = ép{(log n)/26,}, if and only if there exists some positive con- 710
stants ¢z, ¢4 and ¢ such that for any 6 € (0, 1], pr(|W| = 6) < can®s exp(—c30,,%6%). For this type of
convergence rate, we present the following lemma, which will be widely used in our proofs.

LEMMA 8. Let Zy,...,Zk be K random variables such that for each k=1,... K, |Zk| =
Op(6nr). Then we have: (i) provided that |Y| < ¢ for some constant ¢, |Z1||Y| = Op(6n1); (ii)

S 1 Zil = Op{(log K)'/2 33, S} s

Proof. By choosing suitable constants, ¢; and ¢y, we can prove (i). Moreover, since pr(Y,, | Zx| =
30 0ukt) < 3 pr(1Zel = bunt) < Kezexp(—rt?). Let ¢ = Y, St then pr(Y), |24l > #) <
K ey exp{—c1 (Y 0r) "2t} Tt is worthy noting that, || Z ||| Za|| # Op(8,10n2), but if any of | Z, | and
| Z2| is bounded, then (i) can be applied. When K is finite, (ii) reduces to Zszl | Zk| = 5p{ Zkl,il Ok }-

LEMMA 9. Suppose that Lemma 7 holds, then for each j € V, we have |0;; — wji| = Op(n~7). 720

Proof. By (4.43) of Bosq (2000) and Lemma 7, we have sup;~,|@;; — wj;| < ||6’jj —Cjjlls = 5P(n’7),
which completes the our proof. o

LEMMA 10. Denote ngl = sign<$jl, ®j1)Pj1. Then
|31 = diull < dinlCj5 — Cills,
where dj; = 2v/2max (wj—1) — wji) ", (Wit — wigen)) "t if 1=2 and dj; = 2v2(wj1 —wjz) L
Moreover; suppose that Lemma 7 and Condition 3 hold, then for each j € V and | =1,2,..., we have
|60 — djul = Op(17+1n=7). 725

Proof. The first part can be found in Lemma 4.3 of Bosq (2000). By Condition 3, wj; = =, d;jw;; = O(l)
and hence dj; < c11' 8 which completes our proof. o

To simplify notation, we will use ¢;; rather than QVS in our proofs.

LEMMA 11. Suppose that Condition 3 holds, then max; xevsup(y, ez |Cjk (u, v)| = O(1).
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0 Proof. Observe that X (u) Xx(v) = 332, 327 | £51€km®ii(w) drm (v). By the Cauchy-Schwartz inequal-
ity, E(§&0) =0 forl # 1" and Condition 3, we have

2

18
ﬁMs

C; 2 <
;I}ng(usl})lguzl (1w, 0)|* < max {

E(&1€km) SUP dji(u) Sup Prm (V) }

1

<.

s

1

{E(fmsup@l ?} max Z {E(&m) SUp G (v )2}

MSN

< max
Jjev i

= O(I]naxZwﬂmax i;: wkm) =

This completes our proof for this lemma. o

1

LEMMA 12. Suppose that Lemma 7 and Condition 3 hold, then for each j € V andl = 1,2, ...,

su5|$jl(u) — ¢i(u)] = 6p{l5(10g n)lpn_'Y + l25+1n_7}.
UE

Proof. For each (j,1), it follows from eigen-decompositions wji¢;i(u) = §,, Cj;(u, v)¢ji(v)dv and
@jl(gﬂ(u) = Su CA'jj(u, v)qgjl(v)dv that we can decompose qASjl(u) — ¢ji(u) as

= —wji' (@ = wir) Si(w) = wii! @ —wj) (ia(w) = i (w)

e f {Cusl0) = Gt )} (0)do + o [ {Cs5(u,0) = Co50,0)} (B (0) = 51(0) o

+wyt fcjj(u, 0){dj1(v) — b (v)}dv
= S1(u) + Sa(u) + Ss(u) + Sy(u) + Ss(u).
(i) It follows from Condition 3 and Lemma 9 that

supl 1 (u)] < w251 — wytlsupl ()] = O (177).
(i1) It follows from Condition 3 and Lemma 7 that
sup|Sa()] < w5 supIC; 1, 0) = Ci )] [ 6(0)ldo = O 17 logn) 20,

(iii) It follows from Condition 3, the Cauchy—Schwartz inequality and Lemmas 10-11 that

sup|Ss ()| < wyy'supl (o, )| - 650 = ial = Op(117+ 10 ™).

735 Since the above three terms can dominate the others, we combine convergence rates in (i), (ii), (iii) and
obtain the uniform convergence rate as stated in the lemma. o

LEMMA 13. Suppose that Lemma 7 and Condition 3 hold. Then for each 1 =1,...,n and j =
1,...,p, we have

[Gist = Gl = Op (T3 *1n ), (B.35)

155 = S31 | = Op{Ti;(logn)*n 7} (B.36)
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Proof. We have ||(;;1 — Gijil] < T sup\(mlt — Ciji¢| and 740

supl j Gy (Usjer 0) B (w)dv — j Cyi Usjer 0)byu(v)do]

:SUP‘WJI%I( wt) wﬂ¢ﬂ( wt)|

Slszijlt — Gijit|

N

SUE\ (@ — wjl)(gjl(u)dm + SUZI;| le(%jl(u) — ¢j1(u))dul
UE VE

< [@je = wilsup(|@u(w)] + |@50(w) — dju(w)]) + wg'zsggll@z(U) — ¢ (u)l|

= (3p{n77 + liﬁlﬁﬂn*”},

where the fourth line follows from the Cauchy—Schwartz inequality and the last line follows from Condi-
tion 3 and Lemmas 9-10. This completes our proof for (B.35).

From the definition of Xy, = Xx,, +0%Ip,,, where X;; = {X;;( ngl) o Xij(Uiyr,;)}", we
have HZ’I_ | < o=2. Applying Lemma 1 of Dai et al. (2018), we have ||E D vy i, I < 610'_4H§:y” -
Sy, | < coo™ Ty sup, t/|(2y“)tt/ — (By,, )ew|. Moreover, sup, t/‘(ZyLJ)tt/ — (Zy”)tt/| |62 — 02|+ s
Supu’v|C’j j(u,v) = Cjj(u,v)|, where the first term is dominated by the second term, see Corollary 1

of Yao et al. (2015) for details. We apply (B.34) in Lemma 7 and hence can obtain the convergence rate
in (B.36). o

LEMMA 14. Suppose that Conditions 1, 3 and 5 hold. First consider the dense measurement design.
For each j, ke Vandl,m = 1,..., M, we have 750

‘% Z(éjlﬁ-km — éjlékm)‘ = 5P{T2(lm75 + l*ﬁm)nfv + Tslfﬁm*ﬁ(log n)1/2n*7}. (B.37)
i=1

Furthermore, for sparse measurement design with time points U, ;s possibly depending on i and T' <
Ty < o0, we have

‘% Z(ajlakm — Eijlékm)‘ = ap{(lm_ﬁ +17Pm)n™" + 17Pm =P (logn) 1/2 } (B.38)
i=1
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Proof. We write &iji&ikm — &ijibikm = Gy Sy Vi Chom Sy Yig — I 2
further be decomposed as
= (Giji — Gij1)™ 2 y RSy Cikm + (Cijt — Cijl)Tz;/;Yij (7L — 27 ikm
(Cz]l - Ca]l) Y T Yir (CLkﬂn Czkm)

Xy Ym which can

zkm

+(Cigt = Cist) "2, Yw (E;M — 271 ) (Gikm — Cikm)

JF(Cle CZJI)T( Y~ EY;))/M 1';21_/;@16771

+(Cigr = Gi) " (55 = SR YL YRS — 29 )Gk

+(Cigt = Gigt)" (8 17 )Y Yk v (Giom — Gotm)
+(Gijt = Gi) " (B3, = SyYa YRSy = 5v0) Gikm — Gikm)

”l(z i EYU)Y” ik Dy, Gikm + C;;l(i;filj - Xy, )Yw zk(z;filk — By, )ik
+ ul(iil, Z;/;)Yij iiz;/i (Citm — Cikm)
+<ijl(2i,- — 550V TEFE =21 Cikm — Cikm)
JrCile_vl‘ Y;jYiiz{/fk(akm Gikm) + G2y, Yszsz(Z;/k E;ilk)(gikm ~ Cikm)
+Cin v, Yii YT(E;; — 25 )Gikm
=5+ 1 + -+ I5.

755 We first list several results that can be used in our proof. Note that the time points U,j;;’s do
not depend on i and Tj; = T — 0. (i) (i < TY2sup,|Gijue| = TY?sup,| § Cj; (Usje, v)pj1(v)do| <
TY2sup ey § Cji(w, v)pji(v)dv| = TV 2supy,| Swiidii(uw)| = O(TY2175), where the last equality fol-
lows from Condition 3; (ii) From the definition of Yy, , we have |y ! H 2 (iii) By Lemma 11,
[n™t 201 Vi Vil < Tsup, po [(n ™ 300, Yij Vi) ew| < T'sup(, e \Cgk(u,v)l =0(T).

Applying the above results in (i), (ii), (iii) and (B.35), (B.36) in Lemma 13, we have

D I < G = Gl 125 Hn’lZngszll |Gkl IZ5,5 | = Op(Ttm~Fn=7),

1219 Gl 1E5;, ’123%1%” Gkl 15,0, | = Op{T1Pm=" (log n)"/*n ™7},

In’IZhaII < |Gl 15551 I\n*IZYuszH [Gikom = Gt [Z54 ] = Op(T?1Pmn ™),

=t Y Dus < Gl IZ52 1 1n ™ 20 Y Yael [Gowm | 125, = Syt = Op{T?1Pm =P (logn)/*n 7},

760 Since these four terms can dominate the other |[n~! >}, I;|| terms, we combine the above convergence
rates and obtain (B.37). For the sparse case with T;; < Tj < o0, following the same developments to
derive (B.37) without requiring U;;;’s depending on %, we can obtain (B.38). We complete our proof for
this lemma. o

LEMMA 15. Suppose that conditions for the dense case in Lemma 14 hold, then for each j, k € V and
I,m=1,..., M, we have

1> ~ ~
|~ 2 Esionm — Eige€iam)| = Op{(logm) 2T =12(2 4 m=0/2)}
i=1
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Proof. We can write
gijlgikm — &iji&ikm = {(gijl - &jz)gz‘km} - E{(gijl - &jl)gikm} + E{(Eijz - fijl)gikm}
H{&j1 Eikm — &ikm)} — E{&ij1(Eikom — &ikom) } + E{&iji(Cim — Eikm )}
=L+ 1L+ Is+ 14
Consider I first. Under joint Gaussian assumption for &;;; and e, it follows from Section 2.4 of Yao
et al. (2005) that §;;; — &1 ~ N(O7 var(&;51) — Var(fijl)). For each integer ¢ = 2, 3, .. ., by Condition 3,

(33) of Dai et al. (2018) and the fact that both &;;; — &;;; and &, are Gaussian with variances O(T‘l)
and O(m "), respectively, we have

B|(Eji — Eijt)Eirm|? < c1g!(coT ™ m ™) (eoT ™Y 2m=P/2)a=2,
Applying the Bernstein inequality, we can obtain that for each 0 < § < 3T~ /2m=5/2
pr(|Ii] = 6) < csexp (— esTmP6?).
Similar developments are applied to I3, we have pr(|I3] > §) < crexp (— ¢6T1°6%). By the Cauchy-

Schwartz inequality, I5 and I, are of the order O (T ~'/2m~5/2 4 T—=1/2]=F/2), Combing the above results
and the techniques used in the proofs of Lemmas 7 and 8 with & » T~'/2m=F/2 4 T=1/2]=8/2 e have

1, >
pr (‘n D (Eiikm — fijlfikm)’ > 5) < conexp (— csTm?6%) + conexp (— csT1°67),
=1

which completes our proof for this lemma. o

LEMMA 16. Suppose that Condition 3 holds, then for each j,k € V andl,m = 1,..., M, we have
1 ¢ N
‘E Z fz]lfzkm - E(gljlglkm)‘ = Op(lfﬁ/Qm*B/anl/Q).
i=1

Proof. Let &j = wjl.l/Qaijl, where a;j; ~ N(0,1). Then n-! Z?:l Eij1€ikm — E(&iji&ikm) =
w;l/Qwiﬁ{n*I S @iji@ikm — E(aijiaigm)}. Applying the Bernstein inequality again, we can
obtain [{n~' 3" | aijiikm — E(aijiaikm)| = Op(n~%/?). By Condition 3, we complete our proof for
this lemma. o

LEMMA 17. Suppose that conditions for the dense case in Lemma 14 hold, then for each j, k € V and
l,m=1,..., M, we have

I~ -
‘* 2 Eiji&ikm — E(&iji&ikm)
iz
= 51) {T2lm7ﬁn77 + T2 Pmn™ + T3 Pm=P (logn)/?n=7

+T V21782 (log n) V2 + T=YV2m =82 (log n) /% + l_’B/Qm_’B/Qn_l/z} .
Proof. By the expansion of n~! Z?:l gijlgikm - E(fz‘jz&km) = nil{(é\ijlé\ikm - gijlgikm) +
(&iji&ikm — Eiji€ikm) + (Eijiikm — E(giﬂgikm)} and the results in Lemmas 14-16, we can im-
mediately obtain the convergence rate, which completes our proof for this lemma. o

Our next lemma presents the uniform convergence rate for the bias term due to M-dimensional trun-
cated approximation.

LEMMA 18. Suppose that the dense case in Condition 5 and Condition 3 hold, then for each j, k =

1,...,p, we have

sup| Sk (u) — S, ar (w)| = O(n=/2).

765

770

775



16 X. Q1A0, C. QIAN, G. M. JAMES AND S. GUO

Proof. By the Cauchy-Schwartz inequality, the uncorrelatedness between &;; and & for [ # I’ and Con-
dition 3, we have

sup| Sk (u) — Sje,ar (w)]?

Il
Q
M=
L8

T
3

E(&1&km) sup ¢ji(w) sup ¢pm (1) }2]
u u

+
[

{B(&) sup du(u)?) > (B up g (1)} |

m=M+1

—

Il

o
A~ — —
Mz D=

I
)

liﬁwkm)

—Qav
)

T
o
3
+
=

£

N
2
£
=
s

where the last line comes from the fact that

M
1
B < —B + Bdr = _ M (B-1)
Zz ZJ dx—J da:—ﬂ_l(l M ).
780 This completes our proof for this lemma. o
Let 0jikm = E(&jikm)s jikm = E(&i&km) and Gjipm = n~ 1 D00 &ji&ikm-

LEMMA 19. Suppose that conditions for the dense case in Lemma 14 hold, then there exist some posi-
tive constants c1, co, c3 such that for any § with0 < § < ¢y and each j, k = 1,...,p, we have

pr{sup|S5(u) — Sy, (w)| > o}
ueld

< con® eXp{ - cln277a(3ﬁ+4)62} + con® eXp{ - 01T76n2752} + con® exp { - clTn72a52}.

Proof. Observe that
M M

ijk(u) ik Z Z {¢jl Ujlkm(gkm(u) — ¢1(W) 0 j1km Orm (w) }- (B.39)

=1m=1

785 We can express

(gjl(u)ajlkmﬁgkm(u) — ¢1(W) Ttk Prem (W)

- $jl(u)ajlkm{$km(u) — b (u) } + $jl(“)(3jlkm — Ojikm) Phm ()
+{$jl(u) — $51(u) } o j1km Prem (w)

= I (u) + Inx(u) + I3(u).

We first bound I;(u). It follows from Cauchy-Schwartz the inequality on |0y, |, Condition 3 and
Lemma 12 that

sup|I1 {sup|¢gz )|+ sgp@jz(u) = ¢ (W Hlojtem| + Gjukm — O'jlkm|}Sl’ip|($km(u) — b ()]
= 0, [(772m=72) i (ogm) V2n = 4 2+ )]
= 6,, {Z_B/Qmﬁp(log )20 4 5—5/2m36/2+1n—7} _
We next bound I (u). It follows from Condition 3 and Lemma 16 that
suplfz )< {sup\qb;l( )|+ sx;plajz(u) — d0(w) |} juem — o'jlkm|slip|¢km(u)|
= Op {TZZm*ﬁn*'y + T2 Bmn= + Tglfﬁmfﬁ(log n)l/anfy

+TY21782 (logn) V2 + T~ Y2m =P/ (log n) Y2 + l_ﬂmm_ﬂ/Qn_l/Q} .
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Applying the similar technique used to bound I; (u), we obtain

sup| ()| = Op{17/2m=P2(log n)Y2n =" + 138/2F Ly =027},
Combing bound results for I1 (u), I2(u) and I3(u), we have

sup|§jk(u) S ()]

M M R
Z Z sup|¢jz )Ujlkm¢km,(u) - ¢jl(u)0jlkm¢km,(u)|
I=1m=1 "
LM M
< Op[z Z {l_ﬁ/zmﬁ/z(log n) Y2 4 1B Y L T2 B
l=1m=1

+ Tgli’@mfﬁ(log n)l/anW + l*ﬁ/2T71/2(10g n)1/2 + l—ﬁ/2mfﬁ/2n71/2}]
= 6P{Mﬁ/2+1(10g Mn)1/2n*"/ + M3ﬁ/2+2(10g M'I’L)l/2n7V + T2M2(10g Mn)l/an»y
+ Tg(log Mﬂ)l/zni'y + MTY? (log Mn) 1/2}. (B.40)

where the last line comes from

M M M+1
SN 182 f 824y J Y2y — O(MP/2+1)
1

[=2m=1

and other similar inequalities. It is worthy noting that the (log Mn)/? terms in (B.40) are due to the

definition of generalized sub-Gaussian type of convergence rate 5p(~) and similar developments in the
proof of Lemma 8 (ii). Moreover, with M = n®, we can obtain the following concentration inequality
with suitable choices of ¢, co, c3 as

pr{sup|ijk(u) = Zje,m ()] > 5}
uel

< con® exp{ — clnh_aw”)(SZ} + con® exp { — cln27_a(36+4)52}

con® exp{ — clT_4n2'Y_4°‘(52} + can exp { — clT_6n2762} + con exp{ — clTn_M(SQ}.

Since T' = n2® and n2¥ = T can imply n2y—do > T4, the third term on the right hand side of the con-
centration bound above is dominated by the last two terms. Furthermore, the second term dominates the
first term. It remains to keep the second, fourth and fifth terms in the right side of the concentration bound.
This completes our proof for this lemma. o

LEMMA 20. Suppose that the conditions for the dense case in Lemma 14 hold. Let
Ko p = nV"OGB2FD) T3y A TV20= For sufficiently large M', if § = M'{(logp/,%i’T)l/2 +
(logp/na”)1/2}, logp/ﬁcij — 0, logp/n® — 0 and h®>n” — 0, then under high dimensional setting
with p 2 n, we have

logp) " (logp)"?
supmax | (u) — Xk (u)| = Op (Kzgp) + ( n§f> . (B41)

ueld J:k n,T

Proof. It follows from the triangular inequality, supueuﬁjk(u) —3jp(u)] < supueu@jk(u) -
S inar (W] + sup ey | S imar (w) — Xk (u)], 6 » n=°%/2 Lemmas 18 and 19 that there exist some pos-
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itive constants c1, ¢, c3 such that
pr{sup|2jk(u) —3jk(u)| > (5}
ueld
< pr{sup|ju(w) = Sy ()] > 6/2]
ueld
< con® exp{ — en? BB §2 4 s exp{ — clT*6n2752} + con exp{ — clTn*20‘62}

805 Applying the union bound of probability, we obtain

pr{supmaX\E]k( ) — S (w)] >5}
ueld J

< con®p exp{ — cln2770‘(33+4)52}
+cop?n exp{ - c1T76n2752} + canp? exp { - clTn72a52}.

This exponential concentration inequality under the p = n setting leads to the (log p) 1/2 term in the

uniform convergence rate in (B.41). The uniform convergence rate in (B.41) follows with the choice of
kn,7 and ¢ as stated in the lemma. o
We next turn to the sparse situation with T;; < Ty < o0 uniformly iné = 1,...,n,j € V, and prove
a0 Lemmas 21-23 as follows.

LEMMA 21. Suppose the sparse case in Condition 1 and Condition 3 hold, then for each j,k =

1 , D, we have

P

sup|Zjp(u) — X ar(u)] = O(n="/2).

Proof. By the joint Gaussian property of &;;; — &, with variance F(¢2 ) —F (?] 1), the Cauchy-Schwartz

inequality, (gﬂgjl,) = E(&u&r) — E{E(&i&1)|Yi;} = 0 for I # I’, Condition 3, and the same devel-
opments in the proof of Lemma 18, we can bound the truncation error by

sup| 2k (u) — Sjpar(u [{Z Z E(€j1€km) Sup%l( ) $up G ()}
“ l=1m=M+1 u
- [Z {E ]l Sup¢7l } Z {E gkm Sup¢km( ) }]
=1 m=M+1
M 0
=0 X 1) <O ) =0,
l=1m=M+1

which completes our proof. o

815 LEMMA 22. Suppose the sparse case in Condition 1 and Conditions 2-3 hold. Then for each j, k =
1,....,pandl,m=1,..., M,

P

‘ ngglkm — B(Einm)| = Op {Im™n= 4 17 mn™7 4+ 1-Fm =" (log n) /0™
+ Z_B/Zm_B/Qn_1/2}.

Proof. Observe that ENZ ;1 is Gaussian with var(gijl) < var(§;;1) = wj;. Following the same techniques used
in the proofs of Lemmas 15—-16 and applying the Bernstein inequality again, we have

Iy o
|~ 3 Eitinm — E(€inm)| = Oy 2m=/2071/2). (B.42)
=1
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By the expansion of n~! Z?:l{Widehatfijlé;km — E(éﬂékm)} =n 'Y, {(éjlé\ik:,n —
&iji&iem) + (Eiji&ikm —E(fiﬂ&km))}, (B.38) in Lemma 14 and (B.42), we can obtain the con- s
vergence rate as stated in the lemma. o

LEMMA 23. Suppose that the sparse case in Condition 1 and Conditions 2-3 hold. Then there exist
some positive constants ¢y, s, c3 such that for any 6 with 0 < § < ¢y and each j, k = 1, ..., p, we have

pr{sup\ijk(u) — ijk,M(U” > 5} < ¢con® exp{ _ clnz'y—a(36+4)52}
ueld

Proof. Observe that

M M

ijk( ) — JkM Z Z {¢gz O'jlkm(gkm(u) — 51 (W) e Phom (1) }

I=1m=1
We can write
( )O'jlkm(gkm (’LL) - Qsjl(u)a'jlkm(bkm (’LL)
(u )Ujlkm{(gkm (u) = Prm(u)} + G31(1) (B jtkm — & jikm) Orom (1)

{Aj — &51(w) }3jtkm Prom (w)
Ji(u )+J2( ) + J3(u).

b
= 6

We first bound J; (). It follows from the Cauchy-Schwartz inequality on |5xm | var(fm) var(&;j1), ees
Condition 3 and Lemma 12 that

sup|J1 {sup|¢gl )+ Sup‘qgjl( ) — dj(u ‘}{|Ujlkm| + G jtkm — 5jlkm|}sup|ggkm(u) — Gpemn (1)
= 5p [(l*ﬁ/Qm*ﬁQ){mﬁ (log n)1/2n77 I m25+1 77}]
= 61, {l_ﬁ/Qmﬁ/Z(log n)l/Qn—v + l—6/2m3,3/2+1n_,y} .

We next bound J2 (). It follows from Condition 3 and Lemma 22 that

SUP|I2 {Supldbl( )| + sup|ei(u) — ¢ji(u |}‘Uylkm_ajlkm|511p|¢km( )l

)<
= Op{lm = + 1 Bmn™ + 1 Pm~ (10gn)1/2n V4 B2 B nfl/g}'
Applying the similar technique used to bound .J; (u), we obtain

sup|Js(u)| = Op{lﬁ/Qm_ﬁ/Q(log71)1/271_'Y + lw/z“m_ﬁ/zn_'y}.
u

Combing bound results for J; (u), J2(u) and J3(u), we have

~

— kM (u)]

wn
=
=l
™D
.
ko
<
~

SUP|$jl(U)5jzkm$km(u) - @f)jl(u)&jzkmébkm(uﬂ

N
Mz =
=

Il
-
S
3
Il
—_

{Z_B/Qmﬁ/Q(logn)l/zn_“’ N e Y P e O

—
—

i
v'mN
[

N
e
he}
M=

= ipe

~Blogn) 2 + 1702mh/ —1/2}]

= 6P{M3'8/2+2(10g Mn)1/2n*7},
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where the last line is due to the similar developments in the proof of Lemma 19. By M = n® and our
definition for generalized sub-Gaussian type convergence rate O,(-), we can obtain the concentration
inequality with suitable choices of ¢, ¢, c3. This completes our proof for this lemma. o

LEMMA 24. Suppose that the sparse case in Condition 1 and Conditions 2-3 hold. For sufficiently
large M, if § = M’{(log])/712”*_3‘15_4“))1/2 + (1ogp/nm’)1/2}, logp/nz"y_“(?’ﬁ“) — 0, logp/n* —
0 and h*n” — 0, then under high dimensional setting with p = n, we have

R R log p 1/2 log p\ /2
supmax| X (u) — Xji.(u)| = Op <n27_3aﬁ_4a> + < - ) : (B.43)

ueld J»

Proof. It follows from the triangular inequality with supueu@jk(u) - ijk(u)| < Supueu@jk(u) -
Y inear (W)] + supyey [ Zimar (w) — Xk (u)|, § » n=/2) Lemmas 21-23 that there exist some positive
constants ¢y, co, c3 such that

pr{sup\ijk(u) — ijk(u)\ > (5}
ueU

< pr{sup@jk(u) — S (u)| > 5/2} con® exp { — en?1 BN §2Y
ueUd

Applying the union bound of probability, we obtain

pr{supmax|2]]k( ) — Xjk(u)| > 5} < cop®n exp{ _ clnm*a(w*“)ﬁ}

ueld

and hence the uniform convergence rate in (B.43) follows when p = n. o
LEMMA 25. If A (u) = HG)(u)Hﬂf)(u) — X(u)|s for each u € U, then we have
©1(u) — O(u)]o < 4[O(w)]1An(u).
Proof. We will use the following property that, for two matrices A and B
|AB|o < [Aleo | Bl (B.44)
in our proofs. For each u € U, by (B.44) and bound condition for A, (u) we have
1= SO = [{S(u) - (@)}O(u)|e < [Z(u) = S(w)l|O@)|1 < An(u).  (B4S5)
By (B.45) and the optimization problem considered in (7), we obtain
w) {01 (1) — O(w)} oo < |Z(w)O1 (1) — I]o + [T — S(w)O(u)]op < 27 (w). (B.46)

By (B.45) and the definition of Bj (u), j €V, we have |,§j(u)|1 < ||©(u)]|1. By Lemma 6 we have
[©1(u)|1 < ||©(w)|1. This result together with (B.44), (B.46) and the lower bound condition for A, (u)
yield

1) — O(w)]or < [O(w)]1[S(w) (81 (u > O(u))lo
< 101 | £ {O1(w) = O} + {Z(w) = S()}{O1(w) — O(w)}o]
< 1O {27n(w) + (1) = S(w) 181 (w) — O] }
< 1O {20 (w) + [S(w) = £w)|210(w) |1} = /0|1 An (u),

which completes our proof for this lemma. o
Proof of Theorem 1: In our following proof, we will use the following property that, for any symmetric
matrix A € RP*P

p
1Al < [[Ally = max 3 [Aju. (B.A7)
k=1
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Let maX1<j’k<p|éjk(u) — Oi(u)] = 7 (u). From (6) and (8), we have |éjk(u)\ < |@1jk(u)\ <
|©,(w)|. This together with the fact that

161 ()] = 11 (w)| = 105 () I{|4(w)| > 27 (u)} = Osie(w)] + 180 () I{|O1(w)] < 27 (w)}]-

leads to |0, 1{[6;4(u)| < 27 (u)}] < \@jk(u)l{\@)jk(uﬂ > 27, (u)} — O, (u)]. Using this result and  eso
(B.47), we can bound

sup]|©(u) — O(u)|

161 (u) — ©;x ()]

=

< supmax

u J

k=1

161(u)I{|6;1(u)| = 27 (u)} — O (u)]

=

< supmax
u J k

P
+Supma 2 I{|93k: )| < 27, (u)}|
u h—1

1

P
< 2supmjax Z 16k (W) I{|©(w)] = 27 (u)} — Ok (u)|
“ k=1

P

ZSupmjax Z 19,k (u)I{|O 1 (u)| < 27, (u)}|
k=1

+2supmax Z 105 (W) I{|0;1(u)] = 27, (1)} — Ok (W) {0 (w)| = 27, (u)}]

u

k=1
< 2{2sup7'n(u)}17 supmax 2 |©k(u)]? + ZSuan( )supmax 2 I{|6J;c > 27, (u)}
u = =
—I-QSupmJaX 2 105 (w)] - [1{1O;(u)] = 27, (u)} — I{|0x ()| = 27, ()}

It follows from the assumption {©(u), u € U} € C(q, so(p), K;U) that the expression above can be further
bounded by

< 2{2sup7'n(u)}lquo(p) + 2supT, (u )supmax Z I{|@]k 2Tn(u)}
“ u T ok=

+2SUpmaX 2 105 ()| T{]|©1 ()] — 27 (w)] < |6k (1) — Ok (w)]}

< 2{2sup7n(u)}17qso(p) + 2{sup7'n(u)}17 suprmax 2 1©,k(w)|?
u u J 1

+2supmjax 2 101 (w) | I{]0k (w)] < 37, (uw)}
k=1

<2(1+2177 4 317q){sup7'n(u)}1_qso(p).

Then we can use (B.41) in Lemma 19, K’ (u) = ||©(u)|1 and Lemma 25 with the choice of A\, (u) =

cK’(u){ (logp/k2 1) vz (log p/n*) 1/2} to obtain the uniform convergence rate in (15), which com- &5
pletes the proof for the dense design.
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For the sparse case, we substitute ©(u) and X(u) by ©(u) and S(u), respectively, and simi-
larly can use (B.43) in Lemma 23, K'(u) = |©(u)|; and Lemma 25 with the choice of X\, (u) =

cK’(u){(log;p/7127""(2ﬁ+4))1/2 + (logp/n4°‘”)1/2} to obtain the uniform convergence rate in (14),
which completes the proof for the sparse design. o

B-6.  Proof of Theorem 2
For each u € U, by (9), we have

(G, k) : (. k) € Blu) — 0} = {(G k) : 16,4 (u)] > 7 (w), Osx(u) = 0}
< {(, k) 1850 (w) — Ok (u)] = 7 (u)}.
Hence
pr[ZI“@jk(uﬂ > 7 (u) - o}] [HjlaXbup|@jk( u) — O1(u)| = i%frn(u)], (B.48)
3.k o

We can set 7,(u) = 4K'(u)\,(u). This together with Lemmas 20, 25 and the choice of A, (u) =
cK’(u){(logp/,L@%,T)l/2 + (logp/na”)l/z} imply that the probability in (B.48) is bounded by
caexp{2logp — c1k7 pinf, 7, (u)?} = ca exp{2logp — c1inf, K'(u)? logp}. Hence we can choose
inf, K’ (u) sufficiently large such that the probability bound goes to zero and hence E(u) is a subset

of the true edge set F/(u) with probability tending to 1.
Moreover, it follows from Condition 4 (ii) and (9) that for each u € U, the event

{G,k) : Op(w) < T(w), ©5(u) > 0 0or O (u) > —7(u), ©4(u) < 0}
< {(, k) : [0k () — Oy (w)| = 27 (u) — 70 (u) }.

Then using the above argument again, we obtain the same probability bound tending to zero, which
implies that { F¥(u) € E(u)} holds with probability tending to 1 . We can see that the thresholded estimator
u)I{|©,(u)| = 7, (u)} recovers not only the true sparsity pattern, but also the signs of nonzero
elements (sign consistency). Hence for each u € U we have that P(E(u) = E’(u)) =1—0(1), which
completes our proof for the dense design.
For the sparse case, we organize our proof in a similar way to the dense case. We first re-
place ©(u) by O(u) in (B.48). This fact together with Lemmas 24, 25 and the choice of A, (u) =
cK’(u){ ( logp/nQ“/*Oé(35+4)) vz (10gp/n“”)1/2} imply that the probability in (B.48) is bounded by

caexp{2logp — c;n? =G inf, 7 ()%} = ¢z exp{2log p — c1inf, K’(u)? log p}. Then by the sim-
ilar argument to the dense case using Condition 4 (i), we can show that both {F(u) € FE(u)} and
{E(u) € E(u)} hold with probability tending to 1, which completes our proof for the sparse design.

C. ESTIMATION OF §Z-jl UNDER VERY DENSE MEASUREMENT DESIGNS
In Step 1 of the estimation, for each i =1,...,n, and j €V, a natural estimate for &;;; is
§i; Xij(w)@ji(u)du. This approach requires the estimated trajectories X;;(-), which are unavailable for
the sparse case with TZ J To < 0. As discussed previously, in this setting we estimate conditional ex-

pectations, &, by 5”1 = ”12 'Y;;. However, for the dense case with T;; — oo, Su Xij(u )(Zjl( )du

can be well approximated via numerlcal integration based on observations {Uljt, quﬁ]l( 2J,g)}1<,g<T77
Specifically, we implement a Trapezoid rule-based numerical integration with the non-uniform grid as
follows.

Ty y-

ij(t— 1¢l( it 1)+th¢z( Uijt)

@(JQZ)_Z ]( ) Pit\Vig( 2) JjtPj J |Uijt_Uij(t 1)‘. (C.1)
t=2
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This numerical integration approach is also used to estimate functional principal component scores under

dense measurement schedules in the R package fdapace (Dai et al., 2019).

Let O (u) and 0@ (u) be the estimators for ©(u) formed by Egz) and Eff}, respectively. Intuitively,
both Egl) — &5 and O©® (u) — ©(u) converge in probability to 0 under certain norms as T;; — oo. For
the very dense case with the T;;’s growing fast enough, 0® (u) converges to ©(u) at a faster rate than
©W (u), so we can rely on (C.1) to calculate é;(?l) and O (v). For the sparse case or the slightly dense

case with the 73;’s growing slowly, the numerical integration approach does not work well, so we imple-
ment the conditional-expectation-based approach to obtain g.;l) and ©1) (u), the theoretical properties of
which are presented in Theorem 1 (ii). We leave the theoretical investigations of (:)(2)(u) and the phase

transition phenomena from sparse to dense functional data in oW (u) and oM@ (u) under high dimensional
scaling for future work.

D. ADDITIONAL EMPIRICAL RESULTS
D-1. Simulations

In Section 4-1, the animated heat map of absolute off-diagonal elements in O (u) at, for example 50
equally spaced points, is available from http://personal.lse.ac.uk/giaox/sim.eqg.gif,
where the darker color corresponds to the stronger conditional dependence relationship.

D-2. Real data

__ We provide electrode/node names for j = 1,...,64 in Table 4. The animated adjacency matrices for
O(u) at 16 evenly spaced time points is available from http://personal.lse.ac.uk/giaox/
eeg_net.gif.

Table 4: Electrode/node names for j = 1,2, ..., 64.

Index 1 2 3 4 5 6 7 8 9 10 11 12 13
Name FPl FP2 F7 F8 AFl AF2 FZ F4 F3 FC6 FC5 FC2 FCl

Index 14 15 16 17 18 19 20 21 22 23 24 25 26
Name T8 T7 CZ C3 C4 CP5S CP6 CPI CP2 P3 P4 PZ P8

Index 27 28 29 30 31 32 33 34 35 36 37 38 39
Name P7 PO2 POl 0O2 Ol X AF7 AF8 F5 F6  FI7 FI8 FPZ

Index 40 41 42 43 44 45 46 47 48 49 50 51 52
Name FC4 FC3 C6 C4 F2 F1 TP8 TP7 AFZ CP3 CP4 PS5 P6

Index 53 54 55 56 57 58 59 60 61 62 63 64
Name Cl1 C2 PO7 PO8 FCZ POZ OZ P2 P1 CPZ nd Y
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