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1 Introduction

This paper discusses switching regressions econometric modelling with imperfect

regime classification information. The econometric novelty is that misclassification

probabilities are allowed to vary endogenously over time. Standard maximum likeli-

hood estimation is infeasible in this case because each likelihood contribution requires

the evaluation of 2T terms (where T is the number of observations available). We de-

velop an algorithm that allows effi cient estimation when such imperfect information

is available, by evaluating the exact likelihood through simply T matrix multiplica-

tions (each of a 2 × 2 matrix times a 2 × 1 vector.) Our methods are shown to be

widely applicable to various areas of analysis such as to Hamilton’s work on Markov-

Switching models in Macroeconomics (1996a; 1996b; 1996c; 2001; 2002); to external

financing problems faced by firms in Corporate Finance (Hajivassiliou and Savignac

(2019)); and to game-theoretic models of price collusion in Industrial Organization.

(See Section 7 below.)

Section 2 analyzes problems of estimation when there are measurement errors in

regime-classification information. In this case, the ML estimator that treats imperfect

classifying information as perfect is inconsistent (Lee and Porter (1984)). Moreover,

ML estimators that do not use regime-classifying information are in general either

seriously ineffi cient (Goldfeld and Quandt (1975)) or not identified. The misclassifica-

tion problem is ubiquitous in all econometric applications of the switching-regression

methodology.1 I also examine estimators that incorporate appropriately imperfect

classification information in the form of (multiple) indicator variables. A major dif-

ference between my procedure and the Lee and Porter (1984) analysis is that mine

allows the probabilities of misclassification to vary over the sample period and also

be endogenously determined. These features are expected to be crucial once exoge-

nous classifying information is available, because it is normally harder to accurately

classify a market when it is closer to a transition period.2

Section 3 discusses estimation methods for switching models with imperfect clas-

sification information when switching occurs according to a Markov process. The

problem of classical errors in measuring explanatory variables is also encountered in

our empirical application and is studied in Section 4. The identification of the econo-

metric model with varying misclassification probabilities is established in Section 5.

1Early such applications include Lee and Porter (1984) for an analysis of cartel stability and Lee
(1978) for an analysis of unionization.

2The methodology is in the spirit of the Tobit model of Nelson (1977) with a stochastically
unobservable threshold.
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The indices for industry demand and for extra-cartel competition constructed for this

paper may contain serious measurement errors; hence, it is important that estimation

methods allow for this possibility.3 In Section 6 we derive a recursion relation that

makes tractable the evaluation of the likelihood functions of our general econometric

models.

We proceed in Section 7 to apply our methods to analyze price fixing by the Joint

Executive Committee railroad cartel from 1880 to 1886 and develop tests of two pro-

totypical game-theoretic models of tacit collusion. The first model, due to Abreu,

Pearce and Stacchetti (1986), predicts that price will switch across regimes according

to a Markov process. The second model, by Rotemberg and Saloner (1986), con-

cludes that price wars are more likely in periods of high industry demand. Switching

regressions are used to model the firms’shifting between collusive and punishment

behaviour. The JEC data set is expanded to include measures of grain production to

be shipped and availability of substitute transportation services. The findings cast

doubt on the applicability of the Rotemberg and Saloner model to the JEC railroad

cartel, while they confirm the Markovian prediction of the Abreu et al. model.

Section 8 concludes.

2 Imperfect Classification Information in Switching Re-

gressions

The econometric methods we present in this Section have wide applicability in vari-

ous areas of economic analysis. Examples are: Hamilton’s work on Markov-Switching

models in Macroeconomics (1996a; 1996b; 1996c; 2001; 2002); external financing

problems faced by firms in Corporate Finance (Hajivassiliou and Savignac (2019));

and game-theoretic models of price collusion in Industrial Organization (see Sec-

tion ?? below).

2.1 A Single Regime Indicator

Consider the general switching-regression model:

y∗i t = hi(Xiδi) + εit i = 0, 1; t = 1, ..., T (2.1.a)

y∗2t = h2(Ztζ) + ε2t (2.1.b)

3We show in that Section how simulation estimation methods (McFadden (1989), Pakes and
Pollard (1989)) can handle the concomitant high-dimensional integrals that arise in nonlinear errors-
in-variables models such as the switching-regression models of this paper.
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y∗3t = y∗2t + ηt. (2.1.c)

Here, y∗0t, y
∗
1t, y

∗
2t, and y∗3t are latent variables, unobservable by the econometri-

cian; X0, X1, X2, and Z are matrices of explanatory (exogenous) variables; and

(ε0t, ε1t, ε2t, ηt)
′ is multivariate normally distributed, i.i.d. over time, with zero-mean.

The functions hi(·), i = 0, 1, 2, are known to the econometrician up to the vectors of

parameters δi and ζ, which will be estimated.

The econometrician observes the (endogenous) variable Yt, which is generated as

follows:

Yt =
y∗1t iff y∗2t = 0

y∗0t otherwise
(2.2)

In standard terminology, the two equations (2.1.a), i = 0, 1, are termed the “switched"

equations and (2.1.b) the “switching" equation. Using the indicator function intro-

duced above, we define the dummy variables It ≡ 1 (y∗2t ≥ 0) and Dt ≡ 1 (y∗3t ≥ 0).

The econometrician observes Dt but not It. As long as σ2η > 0, Dt is an imperfect

measurement of It. In this sense, ηt can be thought of as coding error.

In its general form without measurement errors in regime classification, the switching-

regression model was used by Lee (1978) to study union/nonunion wage determina-

tion.4 As Lee and Porter (1984) explain, using inaccurate regime classification in-

formation in ML estimation leads to inconsistency. Moreover, Goldfeld and Quandt

(1975) show that if perfect information is not used, ML estimation is seriously ineffi -

cient. Hajivassiliou (1987) combines these results to derive Hausman (1978) tests of

accuracy of classification information.

Lee and Porter (1984) allowed for a constant probability that observations were

misclassified into the two regimes; their only explanatory variable in the switching

equation, Z, was a constant. But assuming a constant probability of misclassification

is inappropriate if one expects the probability of misclassification to vary over time,

and especially so if one has exogenous information represented by Zt, which, as theory

suggests, should affect switching.

I model the misclassification probability as a monotonic function of the (unob-

servable) propensity of the industry to be in a particular regime measured by the

latent variable y∗2t. For example, in the disequilibrium version of the switching model

(Fair and Jaffee (1972), it seems plausible to assume that the probability of misclassi-

fication is smaller the larger the level of excess demand in the system. I demonstrate

shortly that the coding error equation (2.1.c) incorporates this property into the

4Fair and Jaffee (1972), inter alia, used the model to analyze markets in disequilibrium, by letting
y∗1t denote notional demand in period t, y

∗
0t notional supply, and y

∗
2t excess demand.
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model.

The contribution of an (independent) observation t to the likelihood function of

the switching-regression model with coding error can be derived as follows: First

observe that

for Dt = 1 : y∗3t = 0 if y∗2t = 0, ηt = −y∗2t Yt = y∗1t (It = 1)

if y∗2t < 0, ηt = −y∗2t Yt = y∗0t (It = 0)

for Dt = 0 : y∗3t < 0 if y∗2t < 0, ηt < −y∗2t Yt = y∗0t (It = 0)

if y∗2t = 0, ηt < −y∗2t Yt = y∗1t (It = 1)

(2.3)

Let us use the notation pd|it ≡ prob(Dt = d|It = i), pdit ≡ prob(Dt = d, It = i),

pdt = prob(Dt = d), πit = prob(It = i), and fit = pdf(y∗i t), where d and i take

values 0 or 1. For simplicity assume that ε0t and ε1t are independent of ε2t and

ηt.
5 Dropping the t subscript for simplicity, this specification implies that the log-

likelihood contribution is:

prob(D, y|X) = D · ln(p1|1f1 + p1|0f0) + (1−D) · ln(p0|1f1 + p0|0f0). (2.4)

Note that the pd|i’s involve bivariate integrals of the form

pd|i =

∫ ∫
SDI

f(ε2, θ)dε2dθ /

∫
SI

f(ε2)dε2, (2.5)

where θ ≡ ε2 − η, and the regions of integration (as described in (2.3)) are the sets:
SDI = {ε2

>
<

I
− Zζ, η

>
<

D
− (Zζ + ε2)} and SI = {ε2

>
<

I
− Zζ},

where
>
<

I
≡ {≥ if I = 1, < if I = 0} and

>
<

D
≡ {≥ if D = 1, < if D = 0}.

The common distributional assumption of normality is imposed.

The coding error model with the likelihood function defined by using (2.3)—(2.5)

possesses the desired property that the misclassification probability is highest at the

borderline case when a regime switch appears most likely, and falls monotonically as

the exogenous classifying information becomes stronger. To see this, first note that

the probabilities of misclassification are:

(D = 1|I = 0) : p1|0 = prob(ηt = −y∗2t|y∗2t < 0)

(D = 0|I = 1) : p0|1 = prob(ηt < −y∗2t|y∗2t = 0)
(2.6)

Figure 1 presents probability plots for the misclassification case of D = 1 and I =

5This assumption can be relaxed at the cost of further computational complexity.
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0 as a function of the exogenous part of the switching equation, Zζ.6 Various values

of the standard deviation of the coding error η are considered. As can be seen from

Figure 1a, the conditional probability of misclassification, p1|0, is monotonic in Zζ in

the desired direction, rising when the signal Zζ tends to suggest the wrong regime

more strongly. For example, when the true state of the system is no collusion (I = 0),

higher values of Zζ are further at odds with the truth, hence Prob(D = 1|I = 0)

rises. As the standard deviation of the coding error η rises, the signal becomes less

informative; in the limit, when ση →∞, the misclassification probabilities (Prob(D =

d|I = i), d 6= i, ) approach 0.5 . Hence, we confirm that the switching model with

coding error introduced here possesses the desired property that the misclassification

probability falls as the tendency to lie in a particular regime rises. In Figure 1b we

see that the joint probability of misclassification p10 has a unique mode at the least

informative value of the signal, Zζ = 0, since in such a case it is most diffi cult to

correctly classify the particular period.

*** FIGURES 1a, 1b, 1c about HERE ***
An important caveat is that the coding-error switching-regression model allows

only a limited degree of systematic misclassification. For example, despite the pres-

ence of the coding errors, the only change in the discrete part of the model, (2.1.b),

is in the variance of the latent variable y∗2t, which is, of course, unidentified. This

is illustrated in Figure 1c. Hence, one can obtain consistent estimates for ζ up to

scale despite such misclassification.7 This, however, does not imply that the pres-

ence of the coding error is unimportant, because ML estimation of the complete

discrete/continuous switching-regression model would still yield inconsistent results

if the measurement errors were neglected.

2.2 Multiple Regime Indicators

Finally, suppose we have M multiple indicators D1, ..., DM of regime classification.

This is the nonlinear analogue of the classic MIMIC model of Goldberger (1972). We

then obtain 2M+1 categories with respect to D1, ..., DM , and I.8

The likelihood contributions will in general involve (M + 1)—fold integrals, which

can be calculated by numerical methods for M up to 2 or 3. This modelling ap-

proach, like the coding-error model with a single indicator, (2.1)—(2.2), also has the

6The corresponding plots for the case with D = 0 and I = 1 are exact mirror images with respect
to Zζ = 0 of those in Figure 1 and are not given separately.

7The importance of this restrictive feature of my measurement errors model will be investigated
in future work.

8For the purposes of the empirical implementation in Section 7.4 with two imperfect classification
indicators, I define R ≡ Zζ and give the eight possibilities in that case:
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desirable property that the misclassification probabilities vary over the sample period

depending on the true probability of switching.9

3 A Markovian Switching Model with Imperfect Classi-

fication

Because of the i.i.d. assumptions on the error vector (ε0t, ε1t, ε2t, ηt)
′, the models

of the previous section exhibit a Bernoulli switching structure, conditional on the

exogenous variables. This is characterized by a transition matrix:

. It = 1 It = 0

It−1 = 1 τ t 1− τ t Bernoulli

It−1 = 0 τ t 1− τ t
(3.1)

In (3.1) the transition probabilities τ’s depend on time only through the exogenous

variables, but not on the past state variable. Next I introduce a model that allows

the switching process to exhibit Markov dependence over time. This is necessary to

test the key prediction of Markovian switching of the game-theoretic model of Abreu

et al. (1986).

If It is a Markov process, then it has the transition structure:

. It = 1 It = 0

It−1 = 1 τ11t 1− τ11t Markov

It−1 = 0 τ01t 1− τ01t
(3.2)

where τ ijt = Prob(It = i|It−1 = j).10 Specifically, to introduce a Markov structure

D1 D2 I ε2 − η1 ε2 − η2 ε2
1 1 1 ε2 − η1 > 0 ε2 − η2 > 0 ε2 5 R
1 1 0 ε2 − η1 > 0 ε2 − η2 > 0 ε2 > R
1 0 1 ε2 − η1 > 0 ε2 − η2 5 0 ε2 5 R
1 0 0 ε2 − η1 > 0 ε2 − η2 5 0 ε2 > R
0 1 1 ε2 − η1 5 ε2 − η2 > 0 ε2 5 R
0 1 0 ε2 − η1 5 ε2 − η2 > 0 ε2 > R
0 0 1 ε2 − η1 5 ε2 − η2 5 0 ε2 5 R
0 0 0 ε2 − η1 5 ε2 − η2 5 0 ε2 > R

9Under the normality assumptions discussed above, in the empirical implementations below the
bivariate integrals are calculated through an algorithm of Divgi (1979). In the case of two indica-
tor variables in Section 7.4, the implied trivariate integrals are calculated through the method in
Steck (1958). The higher dimension integrals implied by more indicators can be accommodated by
simulation estimation methods. See Hajivassiliou (1993) for a discussion.
10One expects positive serial persistence, in the sense of τ11t > τ10t.
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of order 1, I modify the switching equation (2.1.b) so that the propensity to switch,

y∗2t, depends on the lagged state It−1, i.e.,

It =

{
1 if Ztζ + ρIt−1 + ε2t = 0

0 otherwise.
(3.3)

With perfect classification information, this structure is straightforward to estimate

since11

p[Y, I, I0|X] ≡ p[Y1, · · · , YT , I1, · · · , IT , I0|X1, · · · , XT ]

= p[YT , IT |IT−1, XT ]·p[YT−1, IT−1|IT−2, XT−1] · · · p[Y2, I2|I1, X2]·p[Y1, I1|I0, X1]·p[I0].
(3.4)

The likelihood function for process (3.2)—(3.3), however, becomes extremely intractable

in the presence of imperfect regime-classification information because it then requires

the evaluation of 2T terms. The reason is as follows. We can readily show that

p[Dt, It|It−1] =

Itp[Dt, It = 1|It−1] + (1− It)p[Dt, It = 0|It−1] (3.5.a)

p[Yt, Dt|It−1] =

Dt[f1Itp[1, 1|It−1]+f0(1−It)p[1, 0|It−1]]+(1−Dt)[f1Itp[0, 1|It−1]+f0(1−It)p[0, 0|It−1]],
(3.5.b)

where It is determined by (3.3). But the econometrician only observes Dt, given by

Dt =

{
1 if Ztζ + ρIt−1 + ε2t + ηt = 0

0 otherwise.
(3.6)

Since It−1 is unobserved by the econometrician for all t, the likelihood function is

p[Y,D|X] =
∑
IT

∑
IT−1

· · ·
∑
I2

∑
I1

∑
I0

p[YT , Dt, IT |IT−1] · · · p[Y1, d1, I1|I0] · p[I0]. (3.7)

Because each pair of consecutive terms involves It−1 , the likelihood p[Y,D|X] will

in general require the evaluation of 2T terms, a patently intractable task when T is

of the order of 300, as in this paper. To solve this problem I show in Section 6 that,

by extending ideas in Cosslett and Lee (1985) and Moran (1986), a recursion relation

can be derived that makes evaluation of (3.7) feasible.

11Note that it is not crucial how one treats p[I0], since this term has asymptotically vanishing
influence. This is in contrast to the longitudinal data set case.

8



Note again that the approach here differs fundamentally from that of Lee and

Porter (1984) and Cosslett and Lee (1985) in that the probability of misclassification

is not constant but varies monotonically with the magnitude of Ztζ + ρIt−1 . A

priori, this is a realistic feature. Given the dependence over time described in (3.2),

one should expect the probability of misclassification to vary over time; it should

be highest close to the boundary points when a switch occurs. These properties are

exhibited by the conditional probability expressions above.12

4 Classical Measurement Errors

At least two explanatory variables that I shall use to test the game-theoretic models

are measured with potentially serious errors. The variables most suspect are the

constructed index of grain production to be shipped and the constructed measure

of the availability and strength of extra-cartel competition. Hence, in this section I

investigate the effect of measurement errors in the explanatory variables of nonlinear

models of the type estimated here. I will show that structural ML estimation of

such models introduces high-dimensional integration problems, which can be avoided

by employing simulation estimation methods (McFadden (1989), Pakes and Pollard

(1989)).

To see how multiple integrals arise in models we analyze in this paper, consider

the general limited dependent variable (LDV) model

y∗t = z∗tβ + εt, (4.1)

where the econometrician observes yt = τ(y∗t ). The function τ(·) maps the vector of
underlying latent variables, y∗t , into the vector of observable endogenous variables, yt.

For example, in the switching-regression model of Section 2, y∗t = (y∗0t, y
∗
1t, y

∗
2t, y

∗
3t)
′,

yt = (Yt, Dt), and the τ(·) function is specified implicitly in equation (2.3). In (4.1),
z∗t is a k × 1 vector of explanatory variables that are not directly observed. Instead

we have the imperfect measurement xt, given by

xt = z∗t δ + vt. (4.2)

In terms of the observable limited dependent variable yt, the model (4.1) can be

12There is a cost, however, in terms of computational complexity because the conditional proba-
bility expressions p[Dt, It|It−1] now involve bivariate normal integrals (and in general (M + 1)—fold
integrals when M imperfect regime indicator variables are available).

9



written as:

yt = τ(z∗tβ + εt). (4.3)

Assuming that the measurement errors are of the classical form, it is plausible to

postulate that f(y|z∗, x) = f(y|z∗), which follows from mean-independence of the

measurement error vt and the true variables z∗t .
13 Hence, using basic properties

of conditional probability functions, the likelihood contribution conditional on the

observable vector x is

f(y|x) =

∫
f(y, z∗|x)dz∗ =

∫
f(y, z∗, x)/f(x)dz∗ =

∫
f(y|z∗, x) · f(z∗|x)dz∗ =

∫
f(y|z∗) · f(z∗|x)dz∗. (4.4)

Equation (4.4) illustrates that integration of order equal to the number of x

variables will be needed to evaluate the likelihood in terms of the observable variables

y and x. This is in addition to any integration required to calculate the density of

y conditional on the unobservable z∗ variables. These diffi culties arise because the

mismeasured regressors appear inside the nonlinear function τ(·). For example, in
the switching-regression models of the previous sections, one must first calculate the

likelihood assuming all explanatory variables are observed without error, f(y|z∗).
Then double numerical quadrature is required to evaluate f(y|x), given that two of

the z∗’s are observed imperfectly.14 In the estimation section below, I offer both

quadrature-based ML estimates with two mismeasured explanatory variables, as well

as estimates by simulation estimation methods. This allows a comparative evaluation

of the latter.15

13An alternative way of introducing measurement errors in the explanatory variables is through
mixture models. This approach simultaneously estimates non-parametrically the (x, z∗) relation.
Given the relatively small sample size for my complicated nonlinear model, I chose instead to pa-
rameterize explicitly the measurement errors to be of the classical type. For a general review of
measurement error models, see Fuller (1987).
14A second diffi culty that arises in nonlinear models with classical measurement errors in RHS

variables is that the covariance matrix of the f(y|z, x) distribution is a general k× k matrix Σ, even
when εt has a scalar covariance matrix. This problem is explained in the Online Extended version
of this paper.
15The method employed here is Maximum Simulated Likelihood (MSL) based on the Smooth

Recursive Conditioning simulator (SRC) of Börsch-Supan and Hajivassiliou (1993). For a more
detailed discussion of this method as well as of other simulation estimation methods for limited
dependent variable models that are continuous in the parameter vector, see Hajivassiliou (1994) and
Hajivassiliou and McFadden (1998).
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5 Identification of SwitchingModel with Imperfect Regime

Classification

In this Section I show how all the parameters of the switching-regression model with

coding error (2.1.a)—(2.1.c) are econometrically identified, subject to the normaliza-

tion that σ2 = 1. Recall the definitions

pdi ≡ Prob(D = d, I = i) (5.1.a)

pd|i ≡ Prob(D = d|I = i) (5.1.b)

pd ≡ Prob(D = d) (5.1.c)

πi ≡ Prob(I = i). (5.1.d)

Under the normality assumptions imposed and the normalization σ2 = 1

pd = D · Prob(D = 1) + (1−D) · Prob(D = 0) =

D · Φ(Zζ/
√

1 + σ2η) + (1−D) · (1− Φ(Zζ/
√

1 + σ2η)) (5.2)

πi = I ·Prob(I = 1) + (1− I) ·Prob(I = 0) = I ·Φ(Zζ) + (1− I) · (1−Φ(Zζ)) (5.3)

Using only the imperfect classification indicator D, from the marginal likelihood (5.2)

we can estimate the expression ζ/
√

1 + σ2η consistently.

Now consider the marginal likelihood for the observed endogenous variable y,

neglecting any classification information, i.e., consider the marginal likelihood

f(y) = f1 · π1 + f0 · π0 = f1 · Φ(Zζ) + f0 · (1− Φ(Zζ)). (5.4)

From this, we can obtain consistent estimates for the parameters δ1, δ0, σ1, σ0, and ζ,

provided either the functions h0(·) and h1(·) are not the same, or further restrictions
on δ1 and δ0 are imposed.

Finally, consider the conditional likelihood

f(y|D = 1) = f1 ·
p11
p1

+ f0 ·
p10
p1
, (5.5)

which uses separately the observations classified by the (imperfect) indicator D to

be in collusion. We see immediately that in such a case the expressions p11/p1 and
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p10/p1 are consistently estimable. But

p11/p1 = p1|1 · π1/p1 = p1|1 · Φ(Zζ)/Φ(Zζ/
√

1 + σ2η); (5.6)

hence, p1|1 can also be identified. The identification of the remaining term p0|0 follows

from exactly analogous arguments.

6 A Recursion Algorithm for the Markovian Switching-

Regression Model with Coding Error

The aim is to facilitate evaluation of the likelihood function of Section 3, which is

given by:

p[y,D|X] =
∑
IT

∑
IT−1

· · ·
∑
I2

∑
I1

∑
I0

p[yT , Dt, IT |IT−1] · · · p[y1, d1, I1|I0].p[I0]. (6.1)

The diffi culty in evaluating (6.1) directly is that each pair of consecutive terms in-

volves It−1; hence, each likelihood evaluation will require calculating 2T terms, which

is a computationally prohibitive task.

The following arguments generalize ideas in Cosslett and Lee (1985) and Moran

(1986) and show how (6.1) can be evaluated recursively through T matrix multi-

plications. Define the set of available endogenous information at time t by St, i.e.,

St ≡ (y1, D1, y2, D2, ..., yt, Dt). Further define Qt(It) ≡ p[St, It]. Since we can always
write

Qt(It) = p[St−1, yt, Dt, It] =
∑
It−1

p[St−1, It−1, yt, Dt, It], (6.2)

it follows that

Qt(It) =
∑
It−1

p[yt, Dt, It|It−1, St−1].p[It−1, St−1] =
∑
It−1

p[yt, Dt, It|It−1] ·Qt−1(It−1),

(6.3)

where we have used the Markov structure p[yt, Dt, It|It−1, St−1] = p[yt, Dt, It|It−1]
and the definition Qt−1(It−1) ≡ p[It−1, St−1]. But calculation of (6.3) only requires

information up to t, as the following matrix equation shows:(
QT (0)

QT (1)

)
=
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(
p[yt, Dt, It = 0|It−1 = 0] p[yt, Dt, It = 0|It−1 = 1]

p[yt, Dt, It = 1|It−1 = 0] p[yt, Dt, It = 1|It−1 = 1]

)
·
(
QT−1(0)

QT−1(1)

)
(6.4)

or,

Qt = Mt ·Qt−1.

The likelihood (6.1) can thus be calculated recursively from (6.4) and

p[y,D|X] =
∑
IT

QT (IT ) = QT (0) +QT (1). (6.1′)

7 Empirical Application: Testing Prototypical Models

of Price Fixing

We now use the methods developed above to test two prototypical game-theoretic

models of cartel behaviour. The first model, due to Abreu, Pearce, and Stacchetti

(1986), predicts that behaviour switches across collusive/price-warfare regimes ac-

cording to a Markov process. The second model, due to Rotemberg and Saloner

(1986), predicts that the probability of a price war is higher in periods of high in-

dustry demand. Maximum likelihood (ML) and simulation estimation methods that

allow for measurement errors in switching-regression models are presented and applied

to test these models using data on the Joint Executive Committee (JEC) railroad

cartel for the period 1880-1886.

Subsection 7.1 discusses the Abreu, Pearce, and Stacchetti (1986) model [APS]

and the Rotemberg and Saloner (1986) model [RS]. It should be noted that the first

game-theoretic model of tacit collusion to predict switching behaviour across collusive

and price-warfare regimes was the model of Green and Porter (1984), which has

already been tested elsewhere. (See Lee and Porter (1984) and Porter (1983b)). We

then present a simple model of a symmetric oligopoly which nests the basic predictions

of APS and RS. This second prediction seems counter to the conventional view of

the classical industrial organization literature (see for example Stigler (1964)). The

econometric framework developed in subsection 7.2 allows one to employ imperfect

regime-classification information, which is available from several sources. The use of

regime-classification information is a novel feature of the paper that distinguishes it

from Berry and Briggs (1988), who tested the Markovian prediction of the Abreu et

al. model, but did not exploit such information.

The JEC data used in this study are discussed in subsection 7.3. The data set,

originally developed by Porter (1983b) and Lee and Porter (1984), is expanded to

include measures of grain production to be shipped and the availability of substitute

13



transportation services. The construction of these measures is described in Data

Appendix.

Section 7.4 presents the empirical implementation. We find that the predictions

of the RS model are not borne out by this data set. The evidence favours instead the

Markovian prediction of the APS theory.

7.1 Prototypical Game-Theoretic Models of Price Fixing Behaviour

Lee and Porter (1984) and Porter (1983b) used switching-regression methodology to

test the game-theoretic models of Porter (1983a) and Green and Porter (1984). In

this paper I consider two other models of price fixing, one by Rotemberg and Saloner

(1986) and the second by Abreu et al. (1986).

I first summarize the Rotemberg and Saloner (1986) model.16 Consider a sym-

metric n-firm, price-setting cartel facing stochastic demand. At each period the level

of demand is a random variable independently and identically distributed (i.i.d.) over

time. The firms learn the realized state of demand before making (simultaneously)

their price choices. When demand is high, each firm feels a temptation to undercut

its competitors in order to take advantage of high demand now, because it does not

expect it to persist. The i.i.d. assumption leads firms to expect that demand will be

lower next period. Hence, a punishment by the competitors would appear less severe

than if firms believed it likely that high demand would persist in the next period.

As a result, Rotemberg and Saloner (1986) predict that in the presence of observable

demand shocks, price wars (in the sense of less collusion) will occur mostly during

industry booms.17 This prediction is contrary to the conventional wisdom of the

traditional industrial organization literature, which holds that it is generally more

diffi cult to collude successfully during industry recessions when each firm is possibly

preoccupied with its own survival. Rotemberg and Saloner (1986), pp.395-396, de-

scribe how modification of their basic model yields behaviour that fluctuates between

periods of cooperation and non-cooperation. This arises when the strategy space

is restricted so that the oligopoly can choose only between the joint monopoly and

the competitive prices. They believe this version of their model is “intuitively more

appealing,”and they show that the basic prediction that price wars are more likely

to occur in demand booms is preserved.

The alternative game-theoretic model of collusion I shall test is due to Abreu et al.

16For an excellent review of game-theoretic models of tacit collusion see Chapter 6 in Tirole (1988).
17These are not necessarily price wars in the usual sense of periods of maximal punishment of

Bertrand (competitive) behaviour, because the price may actually be higher during booms than
during recessions.
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(1986). In this model, firms do not observe their competitors’quantities but rather

the market price whose distribution is determined by industry output and realized

demand. Demand shocks are i.i.d. over time but are not observed by the firms. In this

supergame, the firms have concave objective functions, and the distribution of the

market price pt conditional on aggregate output Qt is assumed to have the property

that a low price is more likely to have arisen from a high Qt than from a low one.

Abreu et al. (1986) are able to show that under these assumptions price wars will

result; the behaviour of firms will be characterized by a trigger scheme, usually a

“tail test." During periods of successful collusion, each firm will be producing q+ and

earning payoff V +. A trigger-price level p+ will be determined such that observation

of a price lower than p+ will trigger a punishment phase in which firms will each

produce a (higher) output q− and earn a lower payoff V −. This provides incentives

for firms to restrict output. A second trigger p− will determine whether a punishment

phase will persist or whether the industry will revert to successful collusion. Since a

harsh punishment requires a high output, reversion to successful collusion will involve

an “inverse tail test": if a high price (greater than p−) is observed, the game remains

in the punishment phase. Conversely, successful collusion resumes when a price lower

than the p− threshold is observed; again, this provides incentives for high output.

*** FIGURE 2 about HERE ***
Figure 2 shows two examples of the distribution of price given total output

f(pt|Qt), one when aggregate output is collusive (Q+) and one when the industry

is producing high output (Q−); the trigger prices p+ and p− also appear in the fig-

ure. Define the successful collusion indicator It such that It = 1 indicates collusive

output is produced in period t and It = 0 indicates that this is a punishment period.

The Abreu et al. model predicts that industry behaviour switches between periods of

successful collusion and punishment phases (of endogenous duration) according to a

Markov process. If period t− 1 was one of successful collusion, then with probability

B = Prob(pt < p+|It−1 = 1) a punishment phase will begin in period t. On the other

hand, if a punishment phase began in period t− 1 (It−1 = 0), the cartel will continue

its high output/low price punishment with probability C = Prob(pt ≥ p−|It−1 = 0)

and will resume successful collusion with probability D = Prob(pt < p−|It−1 = 0).18

If the industry has been in the punishment state for more than one period, these

18One of the key additional conditions required for the trigger scheme to have the a simple “tail
test" described here is the monotone likelihood ratio property (MLRP), defined as

∂

∂pt

(
∂f/∂Q

f
t

)
< 0,

where f ≡ f(pt|Qt) .
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probabilities will be Prob(pt ≥ p−|pt−1 ≥ p−) and Prob(pt < p−|pt−1 ≥ p−) respec-

tively.19 For a variant of a model with similar qualitative implications, consider the

price-secrecy model of Tirole (1988), section 6.7, which predicts price wars as trig-

gered by recessions. In Tirole’s model, the firms produce a differentiated product but

do not observe their competitors’prices; instead, they try to infer these prices from

their own demand. This assumption is in line with Stigler (1964). This model also

predicts that the industry switches between collusion and punishment (in this case

Bertrand) phases. Hence, in this theory, price wars can be involuntary, in that they

may be triggered by an unobservable negative demand shock and not necessarily be

attributable to secret undercutting by a cartel member.

7.2 Econometric Testing Framework Adapted to Models of Collu-
sion

For econometric purposes, the following simple model of a symmetric oligopoly nests

in a simple way the Rotemberg and Saloner (1986) and the Abreu et al. (1986)

game-theoretic models of price fixing outlined in the previous subsection. Suppose

that an n-firm price-setting cartel switches between collusive and punishment (or

non-collusive) behaviour, according to the collusion indicator function

It = Rt(Ωt), (7.2.1)

where Ωt is the relevant information set available to the firms at time t, and It takes

the value 0 if punishment (or non-collusive) behaviour occurs in period t, and the

value 1 if collusion occurs then.

Further suppose that the industry is characterized by a marginal cost function

MCt = MC(zt, εct) and a demand function qt = q(pt, xt, εdt), where zt and xt are

vectors of exogenous variables, and εct and εdt are random shocks. Whether or

not the realizations of εc and εd are observed by the firms at the time of the de-

cision depends on the model under analysis; they are always unobservable by the

econometrician. The functions f(·) and q(·) and the exogenous variables are known
to the firms. In competitive periods price equals marginal cost, while in collu-

sive periods marginal revenue equals marginal cost. Hence, in the latter periods,

19Pursuing the implications of this theory further, a positive shift in the distribution of demand due
to some exogenous factor would increase the persistence in the Markov process: Imagine a rightward
shift of the f(pt|Qt) family of distributions, which the firms do not perceive and hence continue
employing the same p+, p− thresholds. It is straightforward to see that both A = Prob(It = 1|It−1 =
1) ≡ Prob(pt ≤ p+|pt−1 ≤ p+) and C = Prob(It = 0|It−1 = 0) ≡ Prob(pt ≥ p−|pt < p+) will rise
under such a scenario.
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pt = MC(zt, εct) − qt(pt, xt, εdt)/q′t(pt, xt, εdt), where q′t(pt, xt, εdt) ≡ ∂
∂pt
qt(pt, xt, εdt).

Let 1(A) be the indicator function, taking the value 1 if logical condition A is true,
0 otherwise. In this notation, It ≡ 1(collusion is effective in period t). The evolution
of pt can thus be summarized by

pt = MC(zt, εct)− It · q(pt, xt, εdt)/q′(pt, xt, εdt). (7.2.2)

For the econometric implementations I assume the following parameterization of

the demand function:20

qt = ae−pt/g(xt,εdt). (7.2.3)

This functional form is chosen so that price will be independent of xt in competitive

periods but will vary positively with g(xt) in collusive ones, since qt/q′t = −g(xt, εdt) .

For tractability, assume further that g(xt, εdt) = exp(xtβ)+εdt andMCt = MC(zt)+

εct . I also assume that εc and εd are independent of one another, independent over

time, and independent of xt and zt. The price and (log) quantity equations for

observation t in the two regimes can then be shown to be:

Non-Collusive Behaviour:

It = 0
pt = MC(zt) + εp0t

ln qt = ln a−MC(zt)/ exp(xtβ) + εq0t
(7.2.4a)

Collusive Behaviour:

It = 1
pt = MC(zt) + exp(xtβ) + εp1t

ln qt = ln a− (1 +MC(zt))/ exp(xtβ) + εq1t
(7.2.4b)

The two sets of price and quantity equation errors, εp0, εq0, εp1, and εq1, are nonlinear

functions of the demand and supply errors εd and εc, and have the property that

E(εp0|X,Z) = E(εp1|X,Z) = E(εq0|X,Z) = E(εq1|X,Z) = 0.21

The game-theoretic models under study differ primarily in their implications

20See Roth (1988) for a variant of this model that also allows parametrically different degrees of
collusion. The model presented here possesses the property that expected output under collusion is
1/e times the competitive one.
21Equations (7.2.4a) and (7.2.4b) assume implicitly that

E

(
f(z) + εc

exp(xβ) + εd

∣∣ z, x) ≈ f(z)

exp(xβ)
+ εq.

Under these conditions, the main requirement for consistency of the ML procedures is satisfied. This
specification also implies a specific contemporaneous covariance structure between εp0, εp1, εq0, and
εq1 in (7.2.4), since, for example, εp0 ≡ εc + εd and εp1 ≡ εc. In this paper I neglect the particular
form of this covariance structure; ignoring it affects only the effi ciency of the estimation procedures.
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about the collusion indicator function (7.2.1). Let Wt denote the subset of Ωt ob-

served by the econometrician, i.e., the set of all relevant exogenous variables in the

model. Rotemberg and Saloner (1986) predict that the extent of collusion in some

variants of their model, or the probability of a switch into a collusive regime in oth-

ers, falls as the level of industry demand increases. A simple parameterization of this

prediction is

It =

{
1 if Wtγ + ut = 0

0 otherwise
(7.2.5.a)

Here Wt includes the demand variables xt in the model, and each element of γ cor-

responding to one of these variables has the opposite sign that the coeffi cient of that

variable has in the demand function (βjγj < 0). For example, a variable with a

positive demand effect (β > 0) should have a negative effect on the probability of

successful collusion (γ < 0). The error ut is i.i.d. and (weakly) exogenous with

respect to Wt, i.e., E{ut|Wt} = 0.

On the other hand, the key prediction of Abreu et al. (1986) is that switching

between regimes will evolve according to a Markov process. This theory can be

parameterized by

It =

{
1 if Wtγ + ρIt−1 + ut = 0

0 otherwise
(7.2.5.b)

again with ut i.i.d. and E{ut|Wt = 0}. The Abreu et al. prediction is that the
coeffi cient of ρ should be positive and statistically significant.

7.3 The JEC Data

The data analyzed in this study are 328 weekly observations, from week 1, 1880 to

week 16, 1886, of the operation of the Joint Executive Committee (JEC) railroad

cartel. As documented by Ulen (1979), the cartel, which primarily shipped grain

from Chicago to the East Coast, had extremely varied success in setting price and

sharing the market. The effective price charged by each cartel member was not per-

fectly observable by its rivals because special shipping rates were sometimes secretly

arranged with selected customers. The offi cial price of shipping grain, labeled as

series ShipRate, is plotted in Figure 3. According to MacAvoy (1965), there were

two critical periods of non-adherence to the offi cial price: most of 1881 and most

of 1884-1885. For detailed historical discussions of the events, see MacAvoy (1965),

Ulen (1979), and Roth (1988).

*** FIGURE 3 about HERE ***
The only exogenous information used in the Porter (1983b) and Lee and Porter
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(1984) studies was whether or not the lakes were open for navigation. This infor-

mation is important because lake traffi c was the leading substitute for shipping by

railway. The dummy variable providing this information is also plotted in Figure 3

as series LakesOpen.

Other important exogenous determinants were left out, however. To remedy

this, I compiled and used two additional pieces of exogenous information: an index of

extra-cartel railroad competition and an index of total grain produced in the Midwest

that might be shipped to the East Coast. For details on the construction of these

indices, see Data Appendix. The index of extra-cartel competition, which is plotted

in Figure 4a, is based on the simple assumption that the strength of such competition

was positively related to the number of railroads that were shipping grain to the East

Coast but were operating outside the cartel. The index of total grain production in

the Midwest is a value-weighted annual total of the three largest grain crops produced

in eight midwestern states, linearly interpolated to obtain weekly values for the index.

The total Midwestern grain production index appears in Figure 4b.

***FIGURES 4a and 4b about HERE ***
Various other sources of information about regime classification are available.

Ulen (1983) and MacAvoy (1965) constructed such indicators by relying on percep-

tions of the effectiveness of the JEC cartel as reported in contemporaneous weekly

trade periodicals. A second index of cartel adherence was compiled by Ulen (1979).

Porter (1983b) constructed a third index based on the predictions from his econo-

metric model, according to the criterion of maximum estimated probability.22 These

regime-classification indicators are incorporated in the econometric implementation

of the tests in Section 7.4, using the multiple dummy indicator models developed

above.23

Lack of good technological variables forces me to adopt the further simplifying

assumption that, apart from stochastic shocks, marginal cost is constant, or MCt =

α0 + εct . This implies we have only demand variables to treat as exogenous, i.e.,

Wt = xt.24 Four such exogenous variables comprise xt: a vector of ones, the dummy

variable indicating whether or not the lakes were open, the index of extra-cartel

railway competition, and the index of grain available to be shipped. Ceteris paribus,

one expects higher demand for the shipping services of the cartel in periods when the
22Consider an event with J exhaustive outcomes indexed by j = 1, · · · , J , outcome j occurring

with probability pj ,
∑

j pj = 1. Denote the predicted probabilities estimated by some model by p̂j .
Then the criterion of maximum estimated probability corresponds to predicting outcome l will occur
if p̂l = maxj(p̂1, · · · , p̂J).
23These three indices are plotted in Figure 5 of the Online extended version of this paper.
24A simple alternative I plan to explore is that there are seasonal effects in the marginal cost

function.
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lakes were closed to navigation, when competition from railways outside the cartel

was not vigorous, and when there was a big grain crop in the Midwest.

7.4 Empirical Implementation

7.4.1 Estimation Models

To summarize, I use the econometric framework of the switching model of cartel

behaviour, presented in Section 2, to test the two game-theoretic models under the

additional assumption that marginal cost does not depend on any exogenous infor-

mation and is constant apart from a random error, i.e., MC = α0 + εct:

Non-Collusive Behaviour:

It = 0

{
pt = α0 + εp0t

ln(qt) = ln(a)− α0/ exp(xtβ) + εq0t

}
(7.1.0)

Collusive Behaviour:

It = 1

{
pt = α0 + exp(xtβ) + εp1t

ln(qt) = ln(a)− (1 + α0/ exp(xtβ)) + εq1t

}
(7.1.1)

Switching Equation:

It =

{
1 if y∗2t = Wtγ + ρIt−1 + ut = 0

0 otherwise
(7.1.2)

Coding Error Equation:

Dt =

{
1 if y∗3t = y∗2t + ηt = 0

0 otherwise

}
(7.1.3)

In this specification, the parameter α0 denotes the deterministic part of marginal

cost; ln a and β are demand function parameters (see equation 7.2.3); and γ denotes

the effect of the variables Wt on the likelihood of successful collusion in period t.

If a variable xj appears with a positive coeffi cient βj , this means that variable xj
has a positive demand impact, ceteris paribus. Similarly, a variable wj which makes

collusion more likely should have a positive γ coeffi cient.

Note that there are two errors for the collusive regime, ε1 = (ε1p, ε1q)
′, and two

for the punishment regime, ε0 = (ε0p, ε0q)
′. We will be neglecting the correlations

between price and quantity errors for a given regime, ρ(εrp, εrq), r = 1, 0 (i.e., ρ01 =
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0). Moreover, the correlations of errors across regimes cannot be identified, hence

ρ(ε0i, ε1j) will be set to 0, i, j = p, q. Finally, also for identification, σ2 is normalized

to 1.

7.4.2 Estimation Results

The estimation results appear in Tables 1—3. The basic model 1NL uses the Ulen

(1979) classification of regimes (1 =successful collusion, 0 =price war) and allows

for neither a Markov structure nor measurement errors. Model 2NL also uses Ulen’s

classification but employs the appropriate methodology of Section 2 to model it as

an imperfect scheme. Note that ML estimation of Model 2NL requires the evaluation

of bivariate normal integrals.

*** TABLES 1, 2, 3 about HERE ***
The main conclusion that can be drawn from Table 1 is that the decision to treat

Ulen’s classification as perfect or imperfect has a serious impact on the estimates.

The effect is summarized by a strongly significant variance for the coding error η.

Although no coeffi cient estimate switches sign when imperfections in the regime in-

formation are recognized, the predicted regime classifications change substantially.

According to the criterion of maximum probability, Model 2NL predicts that 218 out

of 328 periods involved collusion, while Model 1NL predicts that in 233 periods the

JEC cartel was effective. See Table 4 for the predicted counts from each model and

Figure 5 of the Online extended version of this paper for a representation of these

predictions.25

The cost parameter is statistically better determined once imperfections in the

regime indicators are admitted. My two new exogenous variables are very significant

both on the demand side (β coeffi cients) and in the switching equation (γ’s). Demand

for railroad shipping by the cartel is higher when the lakes are closed, extra-cartel

competition is ineffective, and more total grain is available to be shipped. In par-

ticular, the importance of lake traffi c as a substitute is confirmed as its coeffi cient

is negative and statistically significant. Moreover, contrary to the Rotemberg and

Saloner (1986) predictions, the variables that have positive demand effects raise the

probability that the cartel is colluding effectively. Recall that in the (7.2.5a) pa-

rameterization of the Rotemberg and Saloner model, each coeffi cient corresponding

to one of the demand variables entered in the switching equation should have the
25A third version was also estimated, model 3NL, which combined two sources of regime classifying

information using the multiple indicator models developed above. The second regime indicator I tried
was the one constructed by Porter (1983b), which employs the predictions from his estimated model.
The results from the two-indicator model were very similar to those from the one-indicator model
2NL and are not reported.
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opposite sign that the coeffi cient of that variable has in the demand function. In

contrast to this, in all specifications estimated in this paper every demand variable is

found to have an effect with the same sign when entered as an exogenous variable in

the switching equation. Specifically, the probability of collusion rises with the level

of grain available for shipping and falls with effective outside competition and the

lakes being open. In his detailed study of the JEC, Ulen (1983) also believes that

cartel adherence was strongly positively correlated with cyclical demand conditions;

for example, demand upturns appeared to have been enough to extricate the cartel

from its 1884-85 price-warfare phase.26

Table 2 shows that the construction of the exogenous variables is probably not

inducing serious measurement errors. Allowing for normal errors in the extra-cartel

competition index does not affect results substantially, in terms of either the coeffi -

cient estimates or the predicted regime classifications.27 An interesting by-product

of Table 2 is a comparative evaluation of simulation-based estimation, in particular

MSL based on the SRC/GHK simulator. The ML results obtained by numerical

quadrature are very close to the MSL estimates when 100 replications were used for

MSL.

Table 3 presents the results of estimating the cartel model with Markov structure

in the switching equation. The findings in Table 3 lend strong support to the Abreu

et al. (1986) model since the coeffi cient ρ1 that allows for the first-order Markov

structure is very strongly significant. The other parameters are substantially differ-

ent from those of the (conditional) Bernoulli model, which suggests that coeffi cient

estimates under the (apparently untenable) assumption of Bernoulli switching should

not be trusted. Moreover, the models with a Markov structure predict that collusion

was effective in fewer periods than suggested by the corresponding models estimated

with ρ1 and ρ2 set to 0; this finding is more in line with Ulen’s regime classification.
28

Longer lag structures were tried, but most of the time dependence does not seem to

extend beyond two weeks. Some evidence against the optimal one-period punishment

26The cross-country analysis of Suslow (1988) using hazard modelling provides independent con-
firmation of the finding that successful collusion is more likely to occur in demand booms.
27An issue that remains unanswered is whether incorporating classical measurement errors in the

explanatory variables through the approach of Section 4 is too restrictive. As already mentioned,
one way to test for this possibility is through nonparametric mixture models. No such attempts are
made in this paper, because of the high data requirements of such estimation approaches.
28 It is possible that the finding of a strongly significant Markov structure may be caused by residual

serial correlation in the unobservables. Unfortunately, even in linear models it is very diffi cult in
practice to differentiate, through the implied common-factor restrictions, the presence of lagged
dependent variables as regressors from residual serial correlation. Moreover, given the nonlinearity
of the models of this paper, explicit allowance for serial correlation is not feasible with ML methods,
because integration of order T = 328 would be required.
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story can be seen (the asymptotic t-statistic of the coeffi cient of the second lag being

1.82), but a caveat to be borne in mind is that a week may not be the economically

relevant decision-making interval for this cartel.29

It is important to note that other game-theoretic models of oligopolistic behaviour

and tacit collusion relax the key assumption made by both Abreu et al. and by

Rotemberg and Saloner that demand shocks be i.i.d. over time. These models, due

to Riordan (1985) and Haltiwanger and Harrington (1988), allow instead for serially

correlated demand shocks. It would be interesting to test econometrically whether

the two strong findings of this paper, namely existence of a Markov structure in the

switching behaviour and the greater likelihood of price warfare in recessions than in

booms, would survive such a generalization.

8 Conclusion

This paper discusses switching regressions econometric modelling with imperfect

regime classification information. Its econometric novelty is that misclassification

probabilities are allowed to vary endogenously over time. Standard maximum likeli-

hood estimation is infeasible in this case because each likelihood contribution requires

the evaluation of 2T terms (where T is the number of observations available). We de-

veloped an algorithm that allows effi cient estimation when such imperfect information

is available, by evaluating the exact likelihood through simply T matrix multiplica-

tions (each of a 2 × 2 matrix times a 2 × 1 vector.) Our methods were shown to be

widely applicable to various areas of analysis such as to Markov-Switching models in

Macroeconomics; to external financing problems faced by firms in Corporate Finance;

and to game-theoretic models of price collusion in Industrial Organization.

We applied our methods to analyze and test two prototypical game-theoretic

models of price fixing and tacit collusion. Switching regressions were used to model

the firms’shifting between collusive and punishment behaviour. Our findings cast

doubt on the applicability of the Rotemberg and Saloner model to the JEC railroad

cartel, while they confirmed the Markovian prediction of the Abreu et al. model of

price-fixing behaviour.

29The evidence in Ulen (1979) suggests that all price changes occurred on a Monday. But important
time-aggregation issues, of course, remain.
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Data Appendix
Constructed Data Series

More details on the construction of these two series can be found in Roth (1988).

1. Construction of Extra-Cartel Railroad Competition Index
The strength of extra-cartel competition as a threat to the JEC cartel is as-

sumed to be directly related to the number of railroads that were outside the cartel

and shipping grain to the East Coast. MacAvoy (1965) documents the existence of

extra-cartel competing railroads and specifies the exact periods when the JEC cartel

responded to the existence of such firms in each case. According to this information,

the first extra-cartel competitor was acknowledged by the JEC in week 210 of the

sample (January 4, 1884); a second extra-cartel railroad appeared as a competitor

on August 15, 1884, which is week 242; finally, a third railroad firm withdrew from

the JEC cartel following an unfavourable ruling by a JEC arbitrator and started

competing with the cartel in February 6, 1885 (week 267). I follow Roth (1988) and

assume that the strength of extra-cartel competition varied with the square-root of

the number of railroads operating outside the cartel.

2. Construction of Total Midwest Grain Production Index
Annual data were collected on the largest grain crops (corn, wheat, and oats)

from eight Midwestern states. The quantities were weighted according to the av-

erage U.S. price for each grain over the period, to generate an annual value index

of midwestern grain output. Considerations of a lag between harvest and shipping

suggested assigning the annual grain production value to January 1 of the following

year. Finally, simple linear interpolation was used to construct weekly values for this

index.
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Figure 1a: Conditional Probabilities
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Figure 1b: Total Probabilities
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Figure 1c: Joint Probabilities
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Figure 2: Punishment/Collusion Phases
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Figure 3: Prices, Lakes, and Collusion
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Figure 4a: Extra cartel competition index

Figure 4b: Midwest Grain Production Index
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TABLE 1
BERNOULLI MODELS, NO MEASUREMENT ERRORS IN REGRESSORS

Regime Classification Variable Used: CAUlen (1 = Collusion)
(Asymptotic t-statistics in parentheses)

Variable Parameter Model 1NL1 Model 2NL2

σ20p 6.13 5.63
(2.59) (2.88)

σ21p 5.44 4.27
(2.37) (2.25)

σ20q 0.27 0.32
(2.02) (1.76)

σ21q 0.17 0.23
(2.01) (2.11)

Coding Error σ2η – 1.63
(3.59)

Marginal Cost Equation: α0 16.63 8.21
(0.29) (2.40)

Demand Equation:
ln(a) 10.96 11.96

(0.13) (0.68)
β0 2.78 3.92

(0.11) (2.27)
Lakes open dummy β1 -0.40 -0.91

(-10.72) (-12.81)
Midwestern Grain Output β2 0.86 0.921

(11.12) (9.812)
Extra JEC Competition β3 -0.44 -0.34

(-15.53) (-11.43)
Switching Equation:

γ0 -0.52 -0.72
(0.32) (-1.95)

Lakes open dummy γ1 -0.76 -0.93
(-2.77) (-4.83)

Midwestern Grain Output γ2 5.01 3.78
(4.95) (7.23)

Extra JEC Competition γ3 -2.40 -3.71
(-5.36) (-7.87)

Loglikelihood -444.414 -437.342

1 No lags, no measurement errors
2 No lags, one imperfect regime indicator
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TABLE 2
BERNOULLI MODELS, ERRORS IN EXPLANATORY VARIABLES

Regime Classification Variable Used: CAUlen (1 = Collusion)
(Asymptotic t-statistics in parentheses)

Variable Parameter Model 4NL1,2 Model 5NL1,3

σ20p 5.23 5.29
(3.66) (3.06)

σ21p 5.01 4.84
(2.58) (2.63)

σ20q 0.27 0.44
(2.91) (3.32)

σ21q 0.21 0.36
(2.72) (2.89)

Marginal Cost Equation: α0 14.63 14.01
( 0.72) ( 0.63)

Demand Equation:
ln(a) 9.23 9.88

(0.27) (0.42)
β0 2.97 3.21

(0.28) (0.33)
Lakes open dummy β1 -0.77 -0.88

(-11.25) (-12.38)
Midwestern Grain Output β2 1.27 0.71

(9.21) (8.99)
Extra JEC Competition β3 -0.22 -0.23

(-11.83) (-10.35)
Switching Equation:

γ0 -0.76 -0.82
(-0.99) ( 1.22)

Lakes open dummy γ1 -0.53 -0.59
(-3.67) (-3.17)

Midwestern Grain Output γ2 4.83 4.61
(3.67) (4.81)

Extra JEC Competition γ3 -1.83 -2.01
(-7.48) (-7.12)

Loglikelihood -456.397 -453.231

1 Normal measurement errors in Extra Cartel Competition variable
2 MSM with 100 replications
3 ML Quadrature
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TABLE 3
MARKOV SWITCHING STRUCTURE,
Regime Classification Variable Used: CAUlen (1 = Collusion)
(Asymptotic t-statistics in parentheses)

Variable Parameter Model 6L1 Model 7L2 Model 8L3

σ20p 6.97 6.78 6.32
(2.18) (2.38) (2.42)

σ21p 5.43 5.11 4.37
(3.36) (3.46) (2.12)

σ20q 0.97 0.89 0.78
(3.18) (3.27) (2.95)

σ21q 0.78 0.81 0.64
(3.72) (3.82) (3.47)

Marginal Cost Equation: α0 12.63 12.52 10.43
(0.96) (0.95) (2.77)

Demand Equation:
ln(a) 7.93 7.83 7.42

(1.23) (1.35) (1.08)
β0 4.22 4.17 4.12

(0.74) (0.81) (0.72)
Lakes open dummy β1 -0.23 -0.28 -0.35

(-12.78) (-11.81) (-8.42)
Midwestern Grain Output β2 0.72 0.77 0.81

(7.24) (7.38) (8.15)
Extra JEC Competition β3 -0.33 -0.41 -0.32

(-12.35) (-11.92) (-9.93)
Switching Equation:

γ0 -0.50 -0.51 -0.47
(0.78) (0.82) (0.58)

Lakes open dummy γ1 -0.66 -0.75 -0.49
(-3.23) (-3.27) (-3.59)

Midwestern Grain Output γ2 3.37 3.42 3.75
(2.88) (2.94) (2.73)

Extra JEC Competition γ3 -2.93 -2.74 -3.02
(-6.72) (-6.84) (-6.32)

Regime Lagged Once ρ1 0.78 0.56 0.58
(6.23) (5.72) (6.52)

Regime Lagged Twice ρ2 – 0.25 –
(1.82)

Loglikelihood -423.773 -422.661 -418.524

1 No errors, Markov structure with one lag
2 No errors, Markov structure with two lags
3 One imperfect dummy, Markov structure with one lag
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TABLE 4
Regime Classifications:
Indicator Variables and Model Predictions

Number of Periods Number of Periods
in Collusive Regime in Competitive Regime

Ulen Indicator 203 125

Porter Indicator 238 90

Model 1NL 233 95

Model 2NL 218 110

Model 4NL 231 97

Model 5NL 230 98

Model 6L 208 120

Model 7L 206 122

Model 8L 204 124

Note: All model predictions are according to the criterion of maximum proba-
bility defined above.
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