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Abstract

We introduce a unified framework for solving first passage times of time-

homogeneous diffusion processes. According to the potential theory and the

perturbation theory, we are able to deduce closed-form truncated probability

densities, as asymptotics or approximations to the original first passage time

densities, for the single-side level crossing problems. The framework is

applicable to diffusion processes with continuous drift functions; especially,

for bounded drift functions, we show that the perturbation series converges.

In the present paper, we demonstrate examples of applying our framework to

the Ornstein-Uhlenbeck, Bessel, exponential-Shiryaev (studied in [13]), and the

hypergeometric diffusion [8] processes. The purpose of this paper is to provide

a fast and accurate approach to estimate first passage time densities of various

diffusion processes.

Keywords: First Passage Time; Diffusion Process; Perturbation Theory;

Ornstein-Uhlenbeck Process; Bessel Process; Exponential-Shiryaev Process;

Hypergeometric Diffusion; Special Functions

2010 Mathematics Subject Classification: Primary 91G60

Secondary 60G40; 62E17; 91G80

∗ Postal address: Department of Statistics, London School of Economics, Houghton Street, London

WC2A 2AE, UK, Email address: a.dassios@lse.ac.uk
∗∗ Postal address: Department of Statistics, London School of Economics, Houghton Street, London

WC2A 2AE, UK, Email address: l.li27@lse.ac.uk

1



2 Angelos Dassios and Luting Li

1. Introduction

The interest of understanding the first passage time (FPT) could be traced back to

the early 20th century [4, 46]. Known also as the first hitting time, the FPT defines a

random time that a stochastic process would visit a predefined state. The phenomenon

of uncertainty in time is often observed from natural or social science. Therefore,

within a century the FPT has been actively studied in economics, physics, biology, etc.

[14, 37, 43, 45].

Depending on various types of underlying processes and hitting boundaries, the FPT

itself consists of a large cluster of different research. We refer to [3, 7, 38, 51] for a

non-conclusive review. Among those research, especially in the area of mathematical

finance and insurance, single-side constant-barrier crossing problem is one of the most

commonly studied, e.g. [5, 17]. A general approach for solving such problem starts

with finding the Laplace transform (LT) of the FPT density (FPTD). The LT usually

comes from a unique solution to a second order non-homogeneous ODE with Dirichlet-

type boundary values [18, 26]. For many familiar diffusion processes, the LTs have

been solved and are listed in [9]. However, those LTs usually are expressed in terms of

special functions and only a few of them have explicit inverse transforms. Therefore,

many efforts have been made on the numerical inverse side. We refer to [1] for more

details. Alternatively, using spectral theorem on linear operators [27, 30, 31], one can

simplify the original LT. Under certain circumstances, closed-form FPTDs could be

acquired through series representations [2, 34]. But people may find that the spectral

decomposition approach has convergence issue for small t. In the present paper, our

object is to apply the perturbation theory and solve explicit FPTD approximations for

general single-side level crossing problems.

Consider a filtered probability space
(

Ω,F , {Ft}t≥0 ,P
)

which satisfies the usual

conditions and is generated by a standard Brownian motion. Let I be an open interval

on R and h(·) be a real-valued continuous function defined on I. Our underlying process

is from a class of SDEs which have at least weak solutions and are strong Markov:

Xt = εh(Xt)dt+ dWt, X0 = x ∈ I. (1)

Under our settings, ε ∈ R and it should properly define {Xt}t≥0 on its domain. For the

convenience of deduction, we set the volatility to be constant. If a time-homogeneous
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diffusion coefficient σ(x) is given, one may refer to [44, Theorem 1.6] to retrieve an

SDE in (1) by using a time-changed Brownian motion. Also, consider a hitting level

a ∈ R, we specify two types of boundaries on I:

∂Iua := {a,+∞} , ∂I la := {−∞, a} ,

namely boundaries for upper- and lower-regions. For shorthand, we use ∂Ia to represent

single-side boundaries without labelling the direction. By suppressing x and a, we

define the FPT of {Xt}t≥0 from x to a through

τ := inf {t > 0 : Xt ∈ ∂Ia} .

Note that the Brownian filtration {Ft}t≥0 is continuous. Therefore according to [42],

τ is well defined (i.e. regular at ∂Ia). In addition, for x ∈ I, it is guaranteed that

Px (τ > 0) = 1.

For those FPTs which are almost surely (a.s.) finite, i.e. Px (τ < +∞) = 1, we

are interested in acquiring their explicit distributions. Clearly, when h(x) ≡ 0 (a

standard Brownian motion) the distribution of τ is given by inverse Gaussian (or

inverse Gamma, equivalently) [9]. However, for most of non-trivial drifts, there is no

closed-form solution. An example is h(x) = x and which corresponds to the Ornstein-

Uhlenbeck (OU) process. In this case, the explicit density is only available by restricting

a = 0 [20].

In this paper, we apply the perturbation technique [24] to solve Dirichlet-type

boundary value problems (BVPs). By inverting the perturbed LTs from the frequency

domain, where those LTs usually have much simpler forms, we then are able to derive

closed-form asymptotic densities in the time domain. The main contribution of this

paper is to provide a unified recursive framework for solving the single-side barrier

hitting problem. By using the Green’s function representation and the potential theory

[42], we prove the convergence of the perturbation series and demonstrate the error

of a truncated series, respectively. As illustrations, we show the perturbed FPTDs of

the OU, the Bessel, the exponential-Shiryaev [13], and the hypergeometric diffusion

processes [8] in this paper, alongside their numerical comparisons with inverse Laplace

transform algorithms [1] and Monte Carlo simulations.

The rest of the paper is organised as follows: Section 2 introduces our main results;
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Section 3 demonstrates applications on various diffusion processes; in Section 4 we

provide numerical comparisons; Section 5 concludes. Apart from where it is mentioned

in the main body, all proofs can be found in [33] or the appendix of this paper.

2. Main Results

2.1. Perturbed Dirichlet Problem

We follow our previous settings. Further denote by C2 := C2(I). For any f ∈ C2,

we also assume that the infinitesimal generator Af(x) of {Xt}t≥0 exists for all x ∈ I:

Af(x) = εh(x)f
′
(x) + Gf(x),

where G· is the infinitesimal generator for a standard Brownian motion:

Gf(x) =
1

2
f
′′
(x). (2)

Consider β ∈ C+ (i.e. β ∈ C with Real(β) > 0), define,

f(x, β) := Ex
[
e−βτV (Xτ )

]
, (3)

where V (·) is a finite function. The first step of our work is to find a proper BVP

which is satisfied by f(x, β). To see this, note that {Xt}t≥0 is continuous over all

stopping times; on the other hand, by our assumption {Xt}t≥0 is a strong Markov

process. According to the potential theory [42], f(x, β) is the unique solution to the

following Dirichlet problem:

Af(x) = βf(x), x ∈ I. (4)

Moreover, the corresponding boundary conditions are given by

f(∂Ia) = V . (5)

In the notation above, V := [V (a), V (±∞)]
T

is a vector of the boundary values

depending on the direction of crossing. Refer to (3), by setting V (a) = 1 and V (±∞) =

0, we immediately find that the solution to the BVP (4) and (5) is the LT for the density

of τ :

f(x, β) = Ex
[
e−βτ

]
.



Explicit Asymptotics on FPTs of Diffusion Processes 5

In the second step, we apply perturbations on ε and find perturbed BVPs accord-

ingly. The perturbation approach is a common technique in solving asymptotics for

complex systems. It has been successfully applied in quantum physics and mathemat-

ical finance [16, 19, 47]. Traditionally, it is required that the perturbation parameter

should be small. However, we will show later this is not necessary in our case.

For abbreviation, we ignore the function arguments in following contents. By default

all operations are w.r.t. x. Consider a sequence of C2-functions {fi}i≥0 such that f

can be expressed as

f =

∞∑
i=0

εifi. (6)

Substituting (6) into (4) yields

∞∑
i=0

εi
(
εhf

′

i + Gfi
)

=

∞∑
i=0

εiβfi, ∀x ∈ I. (7)

Rearranging terms in (7), we further get

Gf0 − βf0 +

∞∑
i=1

εi
(
hf
′

i−1 + Gfi − βfi
)

= 0, ∀x ∈ I.

Note that, by extracting the 0-th order and assigning proper boundary conditions we

can have the BVP for the standard Brownian motion (where the LT inverse is already

known). Higher order BVPs can be solved via a recursive system which accumulates

information from f0 and the drift function h.

Denote the BVP with i = 0 by o(1) term, by assigning the same boundary conditions

as in the initial problem, we have

o(1) : Gf0 = βf0, x ∈ I

f0(∂Ia) = [1, 0]T .

For i ≥ 1, we use the notation o(εi) and define

o
(
εi
)

: Gfi = βfi − h · f
′

i−1, x ∈ I

fi(∂Ia) = [0, 0]T .

In practice, it is not realistic of having infinite order solutions. We are more

interested in knowing if the series (6) converges; or, given a truncation order N ∈ N,

what exactly the error terms are in the remained higher order ODEs. These two

questions are answered, respectively, by the following two subsections.
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2.2. Convergence of the Perturbation Series

Proposition 2.1. (Sufficient Conditions for the Convergence of the Perturbation.)

Let β ∈ C+ and h be the real-valued continuous drift function defined on I. If both

h and h
′

are bounded on I and β is large enough, then the perturbation series (6) is

convergent.

Proof. W.l.o.g., we consider the domain I = (0,+∞) (this requirement is only for

the simplicity of presenting; depending on the hitting direction the domain can be

chosen as (a,+∞) or (−∞, a)).

Define Gβ to be the Green’s operator of β − G (cf. Eq. (2)) in I such that

Gβu(x) :=

∫ +∞

0

Gβ(x, y)u(y)dy,

where Gβ(x, y) is the Green’s function of the linear operator β − G. By the definition

of the Green’s function, we can show that Gβ(x, y) is of the following explicit form:

Gβ(x, y) =


√

2
β sinh(

√
2βy)e−

√
2βx, y ≤ x,√

2
β sinh(

√
2βx)e−

√
2βy, y > x.

We further introduce the multiplication operator Hu(x) := h(x)u(x) and the derivative

operator Du(x) := u
′
(x). By considering the solution of o(εi)-ODE and using the

Green’s function, one can check that

fi = (GβHD)if0. (8)

Substituting (8) into (6) further yields

f =

∞∑
i=0

(εGβHD)if0. (9)

As a sufficient condition for (9) converges, we only need to show that the norm of

the operator εGβHD defined on a proper function space is less than one. To see this,

consider the Banach space L∞(I) and u ∈ L∞(I). By definition,

||εGβHDu||∞ =||ε
√

2

β

( ∫ x

0

sinh(
√

2βy)e−
√
2βxh(y)u

′
(y)dy (10)

+

∫ ∞
x

sinh(
√

2βx)e−
√
2βyh(y)u

′
(y)dy

)
||∞. (11)
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Using integration by parts, the integral in the right-hand side of (10) becomes∫ x

0

sinh(
√

2βy)e−
√
2βxh(y)u

′
(y)dy

=e−
√
2βx

∫ x

0

(u(x)− u(z))
√

2β cosh(
√

2βz)h(z)dz (12)

+ e−
√
2βx

∫ x

0

(u(x)− u(z)) sinh(
√

2βz)h
′
(z)dz. (13)

Similarly, the integral in (11) becomes∫ ∞
x

sinh(
√

2βx)e−
√
2βyh(y)u

′
(y)dy

= sinh(
√

2βx)

∫ ∞
x

(u(z)− u(x))
√

2βe−
√
2βzh(z)dz (14)

− sinh(
√

2βx)

∫ ∞
x

(u(z)− u(x))e−
√
2βyh

′
(y)dy. (15)

We observe that (12) is bounded by

1− e−2
√
2βx

2
(||u||∞ − u(x))||h||∞, (16)

(13) is bounded by

1 + e−2
√
2βx − 2e−

√
2βx

2
√

2β
(||u||∞ − u(x))||h

′
||∞, (17)

(14) is bounded by

1− e−2
√
2βx

2
(||u||∞ − u(x))||h||∞, (18)

and (15) is bounded by

1− e−2
√
2βx

2
√

2β
(||u||∞ − u(x))||h

′
||∞. (19)

Now (16) and (18) together are bounded by(
1− e−2

√
2βx
)

(||u||∞ − u(x))||h||∞ ≤ ||u||∞||h||∞

and (17) and (19) together are bounded by

2− 2e−
√
2βx

2
√

2β
(||u||∞ − u(x))||h

′
||∞ ≤

1√
2β
||u||∞||h

′
||∞.

Hence,

||εGβHDu||∞ ≤ ε
(√

2

β
||h||∞ +

1

β
||h
′
||∞
)
||u||∞,
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and as long as h and h
′

are bounded on I and β is large enough, the norm of the

operator is guaranteed to be less than one. This concludes our proof.

�

Remark 2.1. Using the operator representation, Eq. (8) produces the solution to the

o(εi)-ODE. Alternatively, the solution can also be written recursively as

fi = f0

[∫ x

0

2e2
√
2βy

(∫ y

0

h(z)ki(z, β)e−2
√
2βzdz + C1

)
dy + C2

]
,

where

ki(z, β) :=
√

2βf−10 (z, β)fi−1(z, β)− ∂z
(
f−10 (z, β)fi−1(z, β)

)
.

C1 and C2 are constants subject to fi(∂I, β) = [0, 0]T . We refer the reader to [33,

Lemma 3.4.2, p. 38] for more details of the recursive representation.

2.3. Error Function

In this subsection, we provide an error function to the perturbed density function

with a truncation order N ∈ N.

Denote the N -th order truncated LT by

f (N) :=

N∑
i=0

εifi.

We further assume that the inverse LTs of f , f (N), and ∂xfN (x, β) exist, and which are

denoted by pτ (t), p
(N)
τ (t), and ηN (x, t), respectively. Define the difference (absolute

error) between the original and the perturbed FPTDs by

qτ (t) := pτ (t)− p(N)
τ (t). (20)

Then we have the following result.

Proposition 2.2. (Probabilistic Representation of the Truncation Error.) For all

t ∈ (0,+∞) and all β ∈ C+, if∫ +∞

0

e−βtEx
[∫ τ∧t

0

|h(Xu)ηN (Xu, t− u)| du
]
dt < +∞, (21)

then

qτ (t) = εN+1Ex
[∫ τ∧t

0

h(Xu)ηN (Xu, t− u) du

]
. (22)
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Proof. Please refer to the proof of Proposition 3.3.1, pp. 35-37 of [33]. �

Remark 2.2. The error function (22) relies on the L1-condition given by (21). Our

practices later show that the L1-condition is easy to be justified. On the other hand,

by referring to the proof in [33], we can also derive an operator representation of Eq.

(22). But the corresponding Green’s function is for the operator β−A and given which

it is very difficult to find a unified sufficient condition satisfying (21).

3. Applications

In this section, we use five diffusion processes to illustrate the applications of our

perturbation framework. In the examples below, some of the closed-form density

functions may already be found, but due to the complexity of the FPT problem,

those densities may either be valid only for special cases (e.g. the OU FPTD under

special case θ = 0 [20]) or suffer computational efficiency issues (e.g. Bessel FPTDs

in [21]). For these well-studied diffusion processes, in this section and the following

numerical illustration part, we will show that the perturbation could provide accurate

density asymptotics while maintain a much faster computing speed. On the other

hand, considering the fact that there are still many diffusion processes whose closed-

form FPTDs have not been found yet, therefore, another more important purpose of

this section is to demonstrate that the perturbation framework can be applied to a

wide branch of diffusion processes.

In order to keep a concise paper, in the contents below we only provide the perturbed

density functions and comment on wherever necessary. More details of discussions and

proofs of the results can be found in [33, Chapters 4-6] or the appendix of this paper.

3.1. Ornstein-Uhlenbeck Process

The OU process was first introduced to describe the velocity of a particle that follows

a Brownian motion movement [52]. Later the process appears widely in neural science

[32, 54] and mathematical finance [23, 28, 48, 53]. The FPT of the OU process is

studied extensively (see [40] for a brief review), and the LT of the FPT can be found

in [9, Eq. 2.0.1, p. 542]. Based on our settings, the drift function of the OU process is
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given by

h(x) = θ − x, θ ∈ R, x ∈ R. (23)

Refer to [52, 55], the OU process has a unique strong solution and it is recurrent in R.

Our framework therefore can be applied. For a = 0 and x > 0, we consider the hitting

from above problem, i.e. I = (0,+∞).

Proposition 3.1. (N -th Order Perturbed FPTD of the OU Process.) Let N ∈ N, the

N -th order perturbed downward FPTD of the OU process is given by

p(N)
τ (t) =

e−
x2

4t

√
2π

2N−1∑
n=0

hnt
n
2−1D−n+1

(
x√
t

)
,

where D·(·) is the parabolic cylinder function,

hn :=
∑
i,j,k;

2i−j−k=n

εic
(i,j)
k θkxj ,

and {c(i,j)k } is a triple-indexed real sequence:

{c(i,j)k : 0 ≤ i ≤ N, 0 ≤ j ≤ 2i, 0 ≤ k ≤ (2i− j) ∧ i}

with its recursion representation given in Appendix A.

Proof. Please refer to [33, Proposition 4.1.3, p. 46]. �

Remark 3.1. Recall in Proposition 2.1, a sufficient condition for the perturbation to

converge is that h should be bounded in I. However, refer to (23), apparently, this

is not the case. In fact, according to [33, Proposition 4.1.4, p. 47], the right-tail

asymptotic of the perturbed FPTD is tN−
3
2 . Therefore, when N ≥ 2 the perturbed

density diverges when t ↑ +∞.

Remark 3.2. On the other hand, when N = 1, the right-tail asymptotic converges to

0 at the rate of t−
1
2 . In this case, even though h is not bounded, by using Proposition

2.2, we have shown in [33, Proposition 4.2.2, p. 52] that the perturbed density converges

in t ∈ [0, T ] for any T > 0 at the rate of O(ε2). Moreover, the error representation in

Eq. (22) is valid and the error function η1(x, t) is given by [33, Lemma 4.1.5, p. 49].

Note that, the generalised case a < x and hitting from below problem (I = (−∞, a)) can be

retrieved by using the affine transformation and the reflecting process, respectively.
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Back to Proposition 3.1, in view of the close relation between the D-functions and

the Hermite polynomials [35, Sections 12.7.1, 12.7.2], given N = 1, we can further

write p
(N)
τ (t) explicitly in the following way:

p(1)τ (t) =

(
1 + ε(

1

2
x2 − θx+

1

2
t)

)
x√
2πt3

e−
x2

2t . (24)

3.2. Bessel Process with 0 < n < 2

Bessel process was introduced in [36] as the norm of a n-dimensional Brownian

motion. Denoted by BES(n) (sometimes by BES(ν) with ν = n−2
2 ), the basic

properties of the process have been discussed in [44, Chapter XI]. In mathematical

finance, the family of Bessel processes is closely related to models of short rates and

stochastic volatilities [10, 11, 12, 15, 23]. Similar to the OU process, the FPT of the

Bessel process has been studied extensively. One can find the LTs for n ≥ 2 in [9]; in

[21], the LTs of 0 < n < 2 (and other general n) and some explicit FPTDs are given.

We consider the class of Bessel processes with orders n = 1 + ε and −1 < ε < 1. For

BES(1 + ε), the h-function is specified by

h(x) =
1

2x
, x ∈ (0,+∞). (25)

Let I = (a,+∞) with 0 < a < x. Refer to [29] (also see [21, Eq. (2.5)]), the

initial LT is given by the ratio of modified Bessel functions of the second kind. In fact,

according to [21, Eq. (2), Theorem 2.2], the explicit FPTD of the downward hitting is

given by (note that ν < 0 in our case)

pτ (t) =

(
1− (

a

x
)
ε−1
2

∫ +∞

0

L 1−ε
2 , xa

(y)

y
e−

y(x−a)
a dy

)
x− a√

2πt3
e−

(x−a)2
2t

+ (
a

x
)
ε−1
2

∫ t

0

x− a√
2πs3

e−
(x−a)2

2s

∫ +∞

0

L 1−ε
2 , xa

(y)e
− y(x−a)

√
t

a
√
s

(x− a)

2a
√
st
dydt, (26)

where

Lµ,c(y) =
cos(πµ) (Iµ(cy)Kµ(y)− Iµ(y)Kµ(cy))

K2
µ(y) + π2I2µ(y) + 2π sin(πµ)Kµ(y)Iµ(y)

,

and I·(·), K·(·) are the modified Bessel functions.

From (26) above we can see that the density involves a convolution of Bessel

functionals. Therefore, the computing speed might be limited in practice (assuming

there is no M.C. simulation/importance sampling or parallel computation used).
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As an alternative, we provide the perturbed FPTD in the next proposition. Note

that, in the case I = (a,+∞), the drift function in (25) and its derivative are bounded

on I. According to Proposition 2.1, the perturbation series converges. But for the

simplicity of calculations (actually, our numerical tests show the first order perturba-

tion is accurate enough in providing density asymptotics), the result in the following

proposition is only calculated up to the first order. Higher order results are left in the

future work.

Proposition 3.2. (First Order Perturbed FPTD of BES(1 + ε).) The first order

perturbed downward FPTD of BES(1 + ε) is given by

p(1)τ (t) =
(

1 +
ε

2
ln(

a

x
)
) x− a√

2πt3
e−

(x−a)2
2t

+
ε(x− a)√

2πt

∫ ∞
(x−a)2

1

2t(
√
y − x+ 3a)(

√
y + x+ a)

e−
y
2t dy. (27)

Proof. Please refer to the proof of Proposition 5.1.3, pp. 72-73 of [33]. �

Remark 3.3. The perturbed FPTD (27) maintains the inverse Gamma part as in

the original density function (Eq. (26)). From the proposition above, we can clearly

see that the first order truncation indeed is a simplification to higher orders and which

originally are represented using the Bessel functionals. In terms of the truncation error,

we have shown in [33, Proposition 5.2.2, p. 77] that p
(1)
τ converges at the rate of O(ε2),

and the error function η1(x, t) can be found therein.

3.3. Exponential-Shiryaev Process

In this subsection, we consider a newly introduced three-parameter diffusion process:

dXt = ε
(
e−2αXt − c

)
dt+ dWt, X0 = x, (28)

with ε ≥ 0, α ≥ 0, 0 ≤ c ≤ 1, and x ∈ R. The process is occasionally found by us

during this research. The motivation of studying such a process is due to its special drift

function properties. Note that the exponential function is closed under differentiation

and integration, therefore, by applying the perturbation mechanism we expected a neat

mathematical function form in the perturbed density. We have conducted fundamental

analysis of the process and realised that the sample path of {Xt}t≥0 can be used to

describe the log-price of economic bubbles (cf. [13] and [33, Chapter 6, p. 87]).
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The Shiryaev process [49, 50] refers to the following SDE which was derived by A.N.

Shiryaev in the context of sequential analysis:

dZt = (1 + µZt)dt+ σdWt, µ ∈ R, σ > 0.

Later, in a paper of G. Peskir [41], he has named the process above to be the Shiryaev

process and analysed the transition density of the process. The transition density of

the Shiryaev process is linked to the Hartman-Watson distribution [22] and which is

further involved in the Asian-option pricing problem. The reason being of naming

SDE (28) as the exponential-Shiryaev process is due to the fact that the exponential

transform of {Xt}t≥0
Yt := e2αXt

is a scaled version of {Zt}t≥0, i.e.

Yt = 2αεZt (29)

with µ = α
ε − c and σ = 1

ε .

Our present paper focuses on illustrating the perturbed FPTD of the exponential-

Shiryaev process (SDE (28)) (in fact, based on (29) and using the FPTD of {Xt}t≥0,

the FPTD of the Shiryaev process can be found accordingly). We have shown in [33,

Chapter 6, p. 87] that {Xt}t≥0 has a unique strong solution, is strong Markov, and

its FPT is finite a.s. The unique solution of the BVP therefore exists. Refer to [33,

Section 6.4.1, pp. 105-107], for a hitting level a ∈ R, the original LTs are given by

f(x, β) =

e
λ(x)−λ(a)M (m,n, ψ(x)) /M (m,n, ψ(a)) , x > a

eλ(x)−λ(a)U(m,n, ψ(x))/U(m,n, ψ̂(a)), x < a

, (30)

where M(·, ·, ·) and U(·, ·, ·) are the Kummer’s functions and

m := (
√
c2ε2 + 2β − εc)/(2α)

n := (
√
c2ε2 + 2β + α)/α

ψ(x) := εe−2αx/α

λ(x) := −2αmx

.

For a quick illustration of the perturbation, we consider the hitting from above

problem. W.l.o.g., we let a = 0 (general a ∈ R can be solved by using the affine
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transformation) and I = (0,+∞). According to Proposition 2.1, the drift function

h(x) = e−2αx − c, x ∈ I

and its derivative are bounded and therefore the perturbation series converges. Similar

as in the previous subsection, in the proposition below we provide the first order

truncated result. Under a special case c = 0, a recursion solution of higher order

ODEs and the inverse transforms can be found in [33, Appendix 6.A, pp. 124-127].

Proposition 3.3. (First Order Perturbed FPTD of the Exponential-Shiryaev Pro-

cess.) The first order perturbed downward FPTD of {Xt}t≥0 is given by

p(1)τ (t) =

(
1 + ε(cx+

(
1− e−2αx

)
(αt− x)

2αx
)

)
x√
2πt3

e−
x2

2t

− εα
4

(
1− e−2αx

)
eαx(

αt
2x+1)Erfc

(
x√
2t

+ α

√
t

2

)
, (31)

where Erfc(·) is the complementary error function.

Proof. Please refer to the proof of Proposition 6.4.1, pp. 108-109 in [33]. �

3.4. Hyperbolic Ornstein-Uhlenbeck Process

In the following two subsections, we consider two special processes from the hyperge-

ometric diffusion class [8]. The name of the ‘hypergeometric diffusion’ comes from the

fact that the LTs of their FPTs to a constant level are connected to the hypergeometric

functions. Refer to [8, Eq. (4.1)], the hypergeometric diffusion is defined as

dZt =

(
(ν +

1

2
)c coth(cZt)−

ρ

c
tanh(cZt)

)
dt+ dWt, Z0 > 0, (32)

with ν ≥ − 1
2 , ρ ≥ 0, c ≥ 0.

Note that, the hypergeometric diffusion can be regarded as generalisations to other

familiar stochastic processes. For example, let c ↓ 0 with ν 6= − 1
2 and ρ 6= 0, we then

have the radial OU process. Also, keep c ↓ 0, ν 6= − 1
2 , but ρ = 0, we get the Bessel

process. Similarly, for c ↓ 0, ρ 6= 0, but ν = − 1
2 , the OU process is acquired.

In this subsection, we focus on the case of c > 0 and ν = − 1
2 . Let ρ = ε > 0 and

further consider θ ∈ R, we define the hyperbolic OU process as follows

dXt = ε(θ − tanh(cXt)

c
)dt+ dWt, X0 ∈ R. (33)
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The drift function of {Xt}t≥0 is correspondingly given by

h(x) = θ − tanh(cx)

c
, x ∈ R. (34)

Again, for the simplicity of presentation, we demonstrate only the hitting from above

case. The hitting from below case can be retrieved by using the symmetry of tanh(·).

Let a > 0 be the hitting level and I = (a,+∞), after tedious calculations, we have the

following LT of the true FPTD (solution to the original BVP problem):

f(x, β) =
L(x, β)

L(a, β)
, (35)

where

L(x, β) :=
(tanh (cx)− 1)

1
2 (A1+A2+ε(1+θc)/c

2)

(tanh (cx) + 1)
ε θ c+c2+ε

2c2

(
2F1(A1, B1;C1; 1)2F1(A2, B2;C2;Z(x)) (2 tanh (cx) + 2)

1
2C2 4C1−1

− 2F1(A2, B2;C2; 1)2F1(A1, B1;C1;Z(x)) (2 tanh (cx) + 2)
1
2C1

)
,

with 

A1 :=

√
(cθ−1)2ε2+2 β c2−2 ε+

√
(cθ+1)2ε2+2 β c2

2c2

A2 :=

√
(cθ−1)2ε2+2 β c2−2 ε−

√
(cθ+1)2ε2+2 β c2

2c2

B1 := 1 + 2ε
c2 +A1

B2 := 1 + 2ε
c2 +A2

C1 := 1 +

√
(cθ+1)2ε2+2 β c2

c2

C2 := 2− C1

Z(x) := 1
2 tanh (cx) + 1

2

and 2F1(·, ·; ·; ·) to be the Gauss hypergeometric function.

The LT in (35) is different to which is shown in [8, Section 6]. The latter one in fact

only gives the LT of the reflecting hyperbolic OU process with a special case θ = 0.

From those equations above, we can see that the LT of the hyperbolic OU FPTD is

The case a < 0 can be solved as well. However, it involves different series representation in the

perturbed density. For the simplicity of presentation we skip the negative part, but the result can be

provided upon request.
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already complicated enough. It can be imagined that finding the explicit inverse would

be even more difficult or not even be possible. Therefore, we provide the first order

perturbed FPTD below as an asymptotic to the original density (note that, the drift

function in (34) and its derivative are bounded in R, and according to Proposition 2.1

the perturbed series converges).

Proposition 3.4. (First Order Perturbed FPTD of the Hyperbolic OU Process.) The

first order perturbed downward FPTD of the hyperbolic OU process is given by

p(1)τ (t) =

(
1 + ε(x− a)(

1

c
− θ)

)
x− a√

2πt3
e−

(x−a)2
2t − ε

c
T (t), (36)

where

T (t) :=(A(x)−A(a))

√
2

π
t−

5
2

(
(x− a)2 − t

)
e−

(x−a)2
2t

+

∞∑
n=1

[
(B(x, n)−B(a, n))

(
1√
2π

(
(x− a)t−

3
2

2
− cnt− 1

2

)
e−

(x−a)2
2t

+
c2n2

2
ecn(x−a)+

c2n2t
2 Erfc

(
(x− a)√

2t
+
cn√

2

√
t

))
− (C(x, n)− C(a, n))

(√
2

π
t−

3
2

(
(x− a)2

t
− 1− cn(x− a) + c2n2t

)
e−

(x−a)2
2t

− c3n3ecn(x−a)+ c2n2t
2 Erfc

(
(x− a)√

2t
+
cn√

2

√
t

))]
,

given that 
A(x) := 2ecx arctan(ecx)

c2 − ln((ecx)2+1)
c2 − πecx

c2 + 2x
c

B(x, n) := (−1)n e−2ncx

cn(2n+1)

C(x, n) := (−1)n e−2ncx

c2n(2n+1)

.

Proof. Please refer to Appendix B. �

Remark 3.4. Refer to the proof in Appendix B, we can find that the series repre-

sentation of the perturbed density is from the expansion of the arctan-function (Eqs.

(44) and (45)). In fact, the series converges very fast, especially by noticing that [39,
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7.1.23, p. 298]

ecn(x−a)+
c2n2t

2 Erfc

(
(x− a)√

2t
+
cn√

2

√
t

)
∼ecn(x−a)+ c2n2t

2
e
−( (x−a)√

2t
+ cn√

2

√
t)2

( (x−a)√
2t

+ cn√
2

√
t)
√
π

=
e−

(x−a)2
2t

( (x−a)√
2t

+ cn√
2

√
t)
√
π
, n ↑ +∞.

3.5. Hyperbolic Bessel Process

Recall (32), by letting ν = − 1
2 + ε with ε > 0 we have the hyperbolic Bessel process:

dXt = εc coth(cXt)dt+ dWt, X0 > 0. (37)

From [9, No. 33, p. 70], it can be seen that the hyperbolic Bessel process is used

in the path decomposition of the drifted Brownian motion (with a non-negative drift)

conditioning on not hitting 0. More detailed discussions and transition densities of the

hyperbolic Bessel process can be found in [8, Section 5].

In this subsection, we consider the hitting from above case. Let a > 0 and I =

(a,+∞). The h-function of {Xt}t≥0 is given by

h(x) = c coth(cx), x > 0 (38)

and which together with its derivative are bounded in I. Again, by Proposition 2.1 we

know that the perturbation series converges.

Refer to [8, Eqs. (1.3), (4.3), (4.4)], the original LT of the downward FPTD is given

by

f(x, β) =
cosh2α(ca)2F1(α, α+ 1

2 ; 2α− ε+ 1; 1− tanh2(cx))

cosh2α(cx)2F1(α, α+ 1
2 ; 2α− ε+ 1; 1− tanh2(ca))

, (39)

where

α =

√
ε2 + 2β

c2 + ε

2
.

Similar to the hyperbolic OU FPTD, regarding the complex structure of the LT, it

seems to be not an easy task of finding the explicit inverse of (39). In the next

proposition, as an alternative, we provide the first order perturbed FPTD.

Proposition 3.5. (First Order Perturbed FPTD of the Hyperbolic Bessel Process.)

The first order perturbed downward FPTD of the hyperbolic Bessel process is given by

p(1)τ (t) = (1− εc(x− a))
x− a√

2πt3
e−

(x−a)2
2t + εT̃ (t), (40)
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where

T̃ (t) :=(Ã(x)− Ã(a))

√
2

π
t−

5
2

(
(x− a)2 − t

)
e−

(x−a)2
2t

+

∞∑
n=1

[
(B̃(x, n)− B̃(a, n))

(
1√
2π

(
(x− a)t−

3
2

2
− cnt− 1

2

)
e−

(x−a)2
2t

+
c2n2

2
ecn(x−a)+

c2n2t
2 Erfc

(
(x− a)√

2t
+
cn√

2

√
t

))
− (C̃(x, n)− C̃(a, n))

(√
2

π
t−

3
2

(
(x− a)2

t
− 1− cn(x− a) + c2n2t

)
e−

(x−a)2
2t

− c3n3ecn(x−a)+ c2n2t
2 Erfc

(
(x− a)√

2t
+
cn√

2

√
t

))]
,

and 
Ã(x) := − 1−ecx

c ln(1− e−cx)− 1+ecx

c ln(1 + e−cx)

B̃(x, n) := e−2ncx

n(2n+1)

C̃(x, n) := e−2ncx

nc(2n+1)

.

Proof. Please refer to Appendix B. �

Remark 3.5. Those two T -functions in the above proposition and Proposition 3.4 are

very similar (the convergence in Proposition 3.5 is guaranteed by referring to Remark

3.4), apart from that the series functions A, B, C and Ã, B̃, C̃ are different. In fact,

the series functions are representations of integrals involving ln- (cf. Eqs. (52) and

(53)) and arctan-functions respectively, while the inverse LT in those two problems are

the same. Instead of using the series representation, one can also refer to the proof in

Appendix B to derive an integral form. We leave this to the reader.

Remark 3.6. Propositions 3.4 and 3.5 also provide building blocks for the perturbed

FPTD of the hyperbolic radial OU process (Hyp-ROU). If we define h1 and h2 to

be the drift functions (cf. Eqs. (34), (38)) of the hyperbolic OU (Hyp-OU) and the

hyperbolic Bessel (Hyp-Bes) processes respectively, then the h-function of the Hyp-

ROU is given by h = h1 + h2. Refer to the recursion formula in Remark 2.1, the first

order perturbed LT of the Hyp-ROU is

fHyp−ROU1 (x, β) = fHyp−OU1 (x, β) + fHyp−Bes1 (x, β),

where fHyp−OU1 , fHyp−Bes1 are the first order perturbed LTs of the Hyp-OU and the

Hyp-Bes (cf. Eqs. (49) and (54)). Then by re-organising the proofs in Appendix B,



Explicit Asymptotics on FPTs of Diffusion Processes 19

the first order perturbed FPTD of the Hyp-ROU is given by

p(1), Hyp−OUτ =

(
1 + ε(x− a)(

1

c
− θ − c)

)
x− a√

2πt3
e−

(x−a)2
2t + ε

(
T̃ (t)− T (t)

c

)
.

Similar result can be acquired for the radial OU process (ROU, cf. Sections 3.1 and

3.2):

p(1), ROUτ (t) =

(
1 + ε(

1

2
(x− a)2 − θ(x− a) +

1

2
t+

1

2
ln(

a

x
))

)
x− a√

2πt3
e−

(x−a)2
2t

+
ε(x− a)√

2πt

∫ ∞
(x−a)2

1

2t(
√
y − x+ 3a)(

√
y + x+ a)

e−
y
2t dy.

4. Numerical Examples

In this section, we demonstrate 6 numerical examples (Figure 1) of the comparisons

between the first order perturbed FPTDs (cf. Propositions 3.1-3.5) and other well-

studied methods. The perturbation parameter in all examples is chosen to be ε = 0.1,

and other parameters of different diffusions are listed in captions under Figures 1a-1f.

Computing times of different methods are reported in Table 1 and deviation statistics

of each method to the true values are reported in Table 2.

Among those 6 figures, two of them (Figures 1a and 1b) illustrate the FPTDs of the

OU process. In Figure 1a, we consider a special case θ = a and the explicit density

formula is given in [20]; the comparison is made among the perturbation/inverse LT

(ILT, cf. the Talbot approach in [1]), the explicit density, spectral decomposition, and

3-dimensional Brownian bridge simulation (BB-simulation) approaches (cf. [2] and

[25], respectively). Figure 1b presents a general scenario where θ 6= a. Note that in

this case there is no closed-form FPTD found yet.

In Figure 1c, the Bessel process with a non-integer order n = 1.1 is studied. Different

to other examples, the starting point and the hitting level are chosen as x = 0.7 and

a = 0.1. The reason of not selecting large levels (e.g. x = 2 and a = 1.2) is because

that the Bessel process behaves very akin to the Brownian motion when Xt >> 0. In

this example, we include the explicit density function (cf. Eq. (26)) as the benchmark

for the perturbation and the Talbot inverse algorithm.

Figures 1d to 1f are similar in their presentation formats. We consider respectively

the FPTDs of the exponential-Shiryaev, the hyperbolic-OU, and the hyperbolic-Bessel



20 Angelos Dassios and Luting Li

(a) OU: θ = 1.2, x = 2, a = 1.2 (b) OU: θ = 0.3, x = 2, a = 1.2

(c) Bes: x = 0.7, a = 0.1 (d) Exp-S: α = 2, c = 0.7, x = 2, a = 1.2

(e) Hyp-OU: c = 0.5, θ = 0.5, x = 2, a = 1.2 (f) Hyp-Bes: c = 0.5, x = 2, a = 1.2

Figure 1: First order perturbed FPTDs and comparisons with ε = 0.1

processes. Apart from providing their perturbed and ILT FPTDs, we also include the

The ILT in Figure 1d is from the Talbot algorithm while computations in Figures 1e and 1f are
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Perturbation ILT M.C. Explicit Spectral* BB-Sim*

OU Benchmark 9.16e-4 1.08 n.a. 1.08e-3 n.a. n.a.

OU General 9.53e-4 1.74 n.a. n.a. 3.27e3 1.16e3

Bessel 0.10 0.03 n.a. 3.04e2 n.a. n.a.

Exp-Shiryaev 2.46e-3 0.18 3.38 n.a. n.a. n.a.

Hyp-OU 0.09 0.15 3.53 n.a. n.a. n.a.

Hyp-Bessel 0.08 0.13 3.48 n.a. n.a. n.a.

Table 1: Computing times (seconds) of density curves in Figure 1

brute-force Monte Carlo simulation (M.C.) and the standard Brownian motion (BM )

FPTDs. Note that, the black dashed curves in the last three graphs are the same since

the BM FPTD is only determined by the starting point and the hitting level.

The results from Figure 1 show that the first order perturbation works well for

all diffusion processes discussed above. Also, Figures 1d-1f indicate that, even for

small ε, one cannot use the BM FPTD to acquire the desired approximation to the

FPTDs of structurally different diffusions (although we do not provide the graphs for

the OU and the Bessel processes, this is also the case); the M.C. approach cannot give

accurate estimations either. On the other hand, by checking the computing times in

Table 1 (note that, times of Spectral* and BB-Sim* are scaling-up estimates from those

10 density points in Figure 1b), one may realise that the perturbation possesses the

fastest computing speed in almost all scenarios (apart from that is is slower than the

ILT in the Bessel FPTD).

In Table 2, we further compare deviations of each methods to the true values (explicit

solutions wherever applicable). All statistics are calculated in absolute manners but

note that for the spectral decomposition and the BB-simulation, there are only 10

density points (v.s. 100 density points in other methods). The table shows that the

ILT produces more accurate results than our perturbation method in both processes.

The average deviation shows that the errors of the perturbation are at the magnitude

of 10e-4 though, at the total variation level, the perturbation generates about 3%-

from the Gaver-Stehfest algorithm [1]. The change in those two hypergeometric diffusions is due to

the restriction of Python in computing the hypergeometric functions with complex numbers.
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Perturbation ILT Spectral* BB-Sim*

Total-Deviation 0.03 3.76e-3 1.09 3.29e-4

OU Benchmark Max-Deviation 7.02e-4 3.67e-4 1.07 6.03e-5

(Fig. 1a) Avg.-Deviation 3.49e-4 3.80e-5 0.11 3.29e-5

Total-Deviation 0.05 3.04e-3 n.a. n.a.

Bes Benchmark Max-Deviation 2.35e-3 4.69e-4 n.a. n.a.

(Fig. 1c) Avg.-Deviation 5.09e-4 3.07e-5 n.a. n.a.

Table 2: Statistics of absolute deviations in Figure 1

5% error. However, considering that the purpose of the current paper is to produce

the density curve instead of the probability curve, we would not consider the total

deviation here as a major benchmark. On the other hand, as can be found in [2],

the spectral decomposition has a convergence issue when t is small and this explains

its large deviations we observed in Table 2. The BB-simulation produces the smallest

error among four methods, but by referring to Table 1 we see that it is based on the

cost of an extremely slow computation speed.

Another potential question is about the error behaviour on different model param-

eters. In [33, Chapters 4, 5, 6], we have demonstrated perturbation error functions for

different diffusion processes. But unfortunately, a uniform error bound has not been

found yet. In general, by referring to Proposition 2.2 we know for sure that the smaller

the ε, the smaller the error. Apart from tuning ε, based on observations we also found

that smaller t and smaller ratios of x/a would also generate smaller errors. Taking

the benchmark OU process (benchmark cases where θ = a = 1.2) as an example, by

choosing larger ε, smaller ratio of x/a, smaller t (ε = 1.2, x = 1.3, t ≤ 1), the average

deviation reported in Table 2 becomes 7.00e-3; and by choosing smaller ε, larger ratio

of x/a, larger t ( ε = 0.3, x = 9, t ≤ 5), the average deviation increases to 3.26e-2.

Apparently there is a complicated relation among ε, x, θ, and a. But to understand it

better a more serious study should be conducted. We leave this in the future work.

As a last remark of this section, we highlight a few findings in higher order OU

In principle, the probability curve can be retrieved using the perturbation on different BVPs. We

will leave this in future works.
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N = 1 N = 3 N = 5 N = 7 N = 9

ε = 0.1 Avg.-Deviation 1.09e-3 5.78e-5 4.11e-6 3.35e-7 2.96e-8

Large-t-Deviation 2.04e-3 2.31e-4 2.48e-5 2.68e-6 2.92e-7

ε = 0.3 Avg.-Deviation 1.21e-2 6.52e-3 4.58e-3 3.58e-3 2.96e-3

Large-t-Deviation 1.80e-2 2.25e-2 2.47e-2 2.60e-2 2.70e-2

Table 3: OU benchmark deviations with different perturbation orders

perturbations. Recall in Remark 3.1, we have mentioned that the higher order OU

perturbations diverge on the right tail with tN−
3
2 . But this does not necessarily mean

that the higher order densities diverge for large t (at least not large enough to appear

the divergence); in fact, depending on the choices of ε and other parameters, higher

order densities may also produce more accurate results. Using parameters x = 2, θ =

a = 1.2 again, in Table 3 we report average deviations and large t deviations (t=10

years) for perturbed density curves compared to the true values given ε ∈ {0.1, 0.3}.

The time range is chosen to be t ∈ [0, 10]. Results show for ε = 0.1, the perturbation

converges up to t=10, but which slowly diverges for ε = 0.3.

5. Conclusion

In this paper, we provide a systematic approach for solving the closed-form FPTD

asymptotics of diffusion processes. We show a sufficient condition for the convergence

of the perturbation series and derive a probabilistic representation for the error. The

perturbation resulted closed-form solution does not only increase the computational

efficiency, but also provides analytical tractability in understanding the FPTDs at

extreme times. Using the framework we demonstrate valid approximations to FPTDs

of various diffusion processes. Potential applications of this paper could be found in

survival analysis, financial mathematics, and many others. Further works could be

done in exploring the perturbed FPTDs of other diffusion processes, analysing error

behaviours with different model parameters, and finding FPTD via simulations using

the probabilistic representation in Proposition 2.2, etc.
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Appendix A. Recursive Structure in the OU Perturbation

Result A.1. (Decomposition Structure I.) For i = 1 and i = 2,
{
c
(i,j)
k

}
is explicitly

given by

i = 1 :

 c
(1,2)
0 = 1

2

c
(1,1)
0 = 1

2 ; c
(1,1)
1 = −1

, i = 2 :



c
(2,4)
0 = 1

8

c
(2,3)
0 = 1

12 ; c
(2,3)
1 = − 1

2

c
(2,2)
0 = − 1

8 ; c
(2,2)
1 = 0; c

(2,2)
2 = 1

2

c
(2,1)
0 = − 1

8 ; c
(2,1)
1 = 1

2 ; c
(2,1)
2 = − 1

2

.
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Result A.2. (Decomposition Structure II.) For i ≥ 3,
{
c
(i,j)
k

}
is recursively deter-

mined by



j = 2i : c
(i,2i)
0 =

c
(i−1,2i−2)
0

2i

j = 2i− 1 :

c
(i,2i−1)
0 = 1

(2i−1)c
(i−1,2i−3)
0 − 2i−3

2(2i−1)c
(i−1,2i−2)
0

c
(i,2i−1)
1 = 1

(2i−1)

(
c
(i−1,2i−3)
1 − c(i−1,2i−2)0

)

2 < j < 2i− 1 :



k = (2i− j) ∧ i :



j > i : c
(i,j)
2i−j = 1

j

(
c
(i−1,j−2)
2i−j − c(i−1,j−1)2i−j−1

)
j = i : c

(i,i)
i = − 1

i c
(i−1,i−1)
i−1

j < i : c
(i,j)
i = 1

2 (j + 1)c
(i,j+1)
i

− 1
j c

(i−1,j−1)
i−1 + c

(i−1,j)
i−1

0 < k < (2i− j) ∧ i : c
(i,j)
k = 1

2 (j + 1)c
(i,j+1)
k + 1

j c
(i−1,j−2)
k

− j−1j c
(i−1,j−1)
k − 1

j c
(i−1,j−1)
k−1 + c

(i−1,j)
k−1

k = 0 : c
(i,j)
0 = 1

2 (j + 1)c
(i,j+1)
0 + 1

j c
(i−1,j−2)
0 − j−1

j c
(i−1,j−1)
0

j = 2 :


k = i : c

(i,2)
i = 3

2c
(i,3)
i − 1

2c
(i−1,1)
i−1 + c

(i−1,2)
i−1

0 < k < i : c
(i,2)
k = 3

2c
(i,3)
k − 1

2c
(i−1,1)
k − 1

2c
(i−1,1)
k−1 + c

(i−1,2)
k−1

k = 0 : c
(i,2)
0 = 3

2c
(i,3)
0 − 1

2c
(i−1,1)
0

j = 1 :


k = i : c

(i,1)
i = c

(i,2)
i + c

(i−1,1)
i−1

0 < k < i : c
(i,1)
k = c

(i,2)
k + c

(i−1,1)
k−1

k = 0 : c
(i,1)
0 = c

(i,2)
0

.
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Appendix B. Proofs of Propositions 3.4 and 3.5

Proof. Part I (Hyperbolic OU Perturbed LT). We first consider a simplified

version of (34). Let h(x) = tanh(cx) and denote by γ :=
√

2β. According to the

formula in Remark 2.1, the first order solution is

f̃1 = f0

[∫ x

a

2e2γy
(
γ

∫ y

a

tanh(cz)e−2γzdz + C1

)
dy + C2

]
. (41)

Rewrite

γ

∫ y

a

tanh(cz)e−2γzdz = γ

∫ y

a

tanh(cz)e−czecz−2γzdz, (42)

and note that∫
tanh(cz)e−czdz = − sinh (cz)

c
+ 2

arctan (ecz)

c
+

cosh (cz)

c
.

Then integral by parts of (42) yields

γ

∫ y

a

tanh(cz)e−czecz−2γzdz = −γ(c− 2γ)

∫ y

a

2
arctan (ecz)

c
ecz−2γzdz

+ γ

(
− sinh (cz)

c
+ 2

arctan (ecz)

c
+

cosh (cz)

c

)
ecz−2γz

∣∣∣∣y
z=a

− γ(c− 2γ)
(− cosh (cz) + sinh (cz)) ecz−2 γ z

2γ c

∣∣∣∣y
z=a

. (43)

The first term on the right-hand side needs special care. Note that, for m > 1,

arctan(m) =
π

2
−
∞∑
n=0

(−1)n
1

(2n+ 1)m2n+1
. (44)

Substitute (44) into (43), and after tedious calculations, we get

γ

∫ y

a

tanh(cz)e−2γzdz = I1(y)− I1(a), (45)

where

I1(y) =γ

(
− sinh (cy)

c
+ 2

arctan (ecy)

c
+

cosh (cy)

c

)
ecy−2γy

− γ(c− 2γ)

[
(− cosh (cy) + sinh (cy)) ecy−2 γ y

2γ c

+
2

c2

(
πecy(−

2γ
c +1)

2(− 2γ
c + 1)

−
∞∑
n=0

(−1)n
e−(2n+

2γ
c )cy

(2n+ 1)(−2n− 2γ
c )

)]
.
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Now substitute (45) into (41) and let C1 = I1(a), then∫ x

a

2e2γy
(
γ

∫ y

a

tanh(cz)e−2γzdz + C1

)
dy =

∫ x

a

2e2γyγI1(y)dy

=2γ

∫ x

a

(
− sinh (cy)

c
+ 2

arctan (ecy)

c
+

cosh (cy)

c

)
ecy

− (c− 2γ)

[
(− cosh (cy) + sinh (cy)) ecy

2γ c

+
2

c2

(
πecy

2(− 2γ
c + 1)

−
∞∑
n=0

(−1)n
e−2ncy

(2n+ 1)(−2n− 2γ
c )

)]
dy.

The integrals of each of the terms on the right-hand side can be easily calculated. Let

C2 = 0, and by summarising the results of calculations, we get the first order solution

as

f̃1(x, β) = f0(x, β)(g1(x, β)− g1(a, β)), (46)

where

g1(x, β) =2
√

2β

2
ecx arctan (ecx)

c2
−

ln
(

(ecx)
2

+ 1
)

c2
− πecx

c2

+ x

− 4
√

2β(c− 2
√

2β)

c2

(
cx

2
√

2β
−
∞∑
n=1

(−1)n+1 e−2ncx

c2n(2n+ 1)(−2n− 2
√
2β
c )

)
.

Note that, (46) is not yet the LT to be inverted. It corresponds to the drift function

h(x) = tanh(cx) while what we want is h(x) = θ − tanh(cx)
c . But we are almost there.

According to the linearity of the perturbed ODE solution (cf. Remark 2.1), the first

order solution of h(x) = − tanh(cx)
c is given by

−f0(x, β)
g1(x, β)− g1(a, β)

c
. (47)

On the other hand, by solving the first order solution of a drifted Brownian motion

with h(x) = θ, we have

f̂1(x, β) = −f0(x, β)θ(x− a). (48)

Using the linearity property again, and combining Eqs. (47), (48), the final first order

solution of the hyperbolic OU process in (33) is written as

f1(x, β) = f0(x, β)(−g1(x, β)− g1(a, β)

c
− θ(x− a)). (49)

Part II (Hyperbolic Bessel Perturbed LT). Similar as in Part I, we first

consider the simplified drift function h(x) = coth(cx) and then generalise the result
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to h(x) = c coth(cx). Using the equation in Remark 2.1 again, for the drift function

h(x) = coth(cx), we have

f̃1 = f0

[∫ x

a

2e2γy
(
γ

∫ y

a

coth(cz)e−2γzdz + C1

)
dy + C2

]
. (50)

Repeating the same trick as in (42), and applying the integral by parts, we then get

γ

∫ y

a

coth(cz)e−2γzdz = γ

(
e−cz + ln(1− e−cz)− ln(1 + e−cz)

c

)
ecz−2γz

∣∣∣∣y
z=a

− γ(c− 2γ)

∫ y

a

(
e−cz + ln(1− e−cz)− ln(1 + e−cz)

c

)
ecz−2γzdz. (51)

For the second term on the right-hand side, we consider the expansions

ln(1− e−cz) = −
∞∑
n=1

e−ncz

n
, ln(1 + e−cz) =

∞∑
n=1

(−1)n+1 e
−ncz

n
. (52)

Substituting the expansions into (51) and repeating the same calculations as in Part

I, we find

γ

∫ y

a

coth(cz)e−2γzdz = I2(y)− I2(a) (53)

with

I2(y) =γ

(
e−cy + ln(1− e−cy)− ln(1 + e−cy)

c

)
ecy−2γy

− γ(c− 2γ)

c

(
−e
−2γy

2γ
+ 2

∞∑
n=0

e−(2nc+2γ)y

(2n+ 1)(2nc+ 2γ)

)
.

The rest calculations follow the same routines as in Part I: substituting (53) into

(50), letting C1 = I2(a), and continuing the outer-integral calculations; setting C2 = 0

and using again the linearity of the perturbed LT. In the end, for the drift function

h(x) = c coth(cx), the first order solution is given by

f1(x, β) = f0(x, β)(g1(x, β)− g1(a, β)), (54)

where g1(x, β) is redefined as

g1(x, β) =2γ

(
− x− 1− ecx

c
ln
(
1− e−cx

)
− 1 + ecx

c
ln
(
1 + e−cx

)
+ (c− 2γ)

(
− x

2γ
+

∞∑
n=1

e−2ncx

nc(2n+ 1)(2nc+ 2γ)

))
.
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Part III (Explicit Inverse of Perturbed LTs). Recall in (6), the first order

perturbed LT is

f (1) = f0 + εf1, (55)

where depending on the underlying processes, f1 is given by Eqs. (49) and (54),

respectively.

Refer to the g1-functions in (49) and (54), one can easily find that the LT parameter

β involved in the equation above belongs to the following structures (recall that f0 =

(x− a)/
√

2πt3e−(x−a)
2/2/t):

e−
√
β
√
α, e−

√
β
√
α
√
β, e−

√
β
√
α

√
β√

β + ξ
, e−

√
β
√
α β√

β + ξ
,

where α = 2(x−a)2 and ξ = cn√
2

are constant variables in the inverse transform. Refer

to [6, Section 5.6, Eqs. (1), (5), (15), (13)], we have

L−1
{
e−
√
β
√
α
}

(t) =
|x− a|√

2π
t−

3
2 e−

(x−a)2
2t ; (56)

L−1
{
e−
√
β
√
α
√
β
}

(t) =
t−

5
2

2
√
π

(
(x− a)2 − t

)
e−

(x−a)2
2t ; (57)

L−1
{
e−
√
β
√
α

√
β√

β + ξ

}
(t) =

1√
2π

(
|x− a|t− 3

2

2
− cnt− 1

2

)
e−

(x−a)2
2t

+
c2n2

2
ecn|x−a|+

c2n2t
2 Erfc

(
|x− a|√

2t
+
cn√

2

√
t

)
; (58)

and

L−1
{
e−
√
β
√
α β√

β + ξ

}
(t) =

t−
3
2

2
√
π

(
(x− a)2

t
− 1− cn|x− a|+ c2n2t

)
e−

(x−a)2
2t

− c3n3

2
√

2
ecn|x−a|+

c2n2t
2 Erfc

(
|x− a|√

2t
+
cn√

2

√
t

)
. (59)

Finally, substituting Eqs. (56) to (59) into the inverse of (55) with the corresponding

f1-functions in either (49) or (54) and summarising the results, one will find the

perturbed density functions in Propositions 3.4 and 3.5. We leave the calculations

to the reader and conclude the proof by here. �
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[5] Paolo Baldi, Lucia Caramellino, and Maria Gabriella Iovino. Pricing general

barrier options: a numerical approach using sharp large deviations. Mathematical

Finance, 9(4):293–321, 1999.

[6] Harry Bateman. Tables of integral transforms [volumes I & II], volume 1. McGraw-

Hill Book Company, 1954.

[7] Ian Blake and William Lindsey. Level-crossing problems for random processes.

IEEE transactions on information theory, 19(3):295–315, 1973.

[8] AN Borodin. Hypergeometric diffusion. Journal of Mathematical Sciences,

159(3):295–304, 2009.

[9] Andrei N Borodin and Paavo Salminen. Handbook of Brownian motion-facts and

formulae. Birkhäuser, 2012.
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