
On the Equivalence of the Bidirected and Hypergraphic
Relaxations for Steiner Tree

Andreas Emil Feldmann∗2, Jochen Könemann∗1, Neil Olver†3, and Laura Sanità∗1

1Department of Combinatorics and Optimization, University of Waterloo
{jochen,laura.sanita}@uwaterloo.ca

2SZTAKI, Hungarian Academy of Sciences & KAM, Charles University in Prague
feldmann.a.e@gmail.com

3Vrije Universiteit Amsterdam & CWI
n.olver@vu.nl

Abstract
The bottleneck of the currently best (ln(4) + ε)-approximation algorithm for the NP-hard Steiner

tree problem is the solution of its large, so called hypergraphic, linear programming relaxation (HYP).
Hypergraphic LPs are strongly NP-hard to solve exactly, and it is a formidable computational task
to even approximate them sufficiently well.

We focus on another well-studied but poorly understood LP relaxation of the problem: the
bidirected cut relaxation (BCR). This LP is compact, and can therefore be solved efficiently. Its
integrality gap is known to be greater than 1.16, and while this is widely conjectured to be close to
the real answer, only a (trivial) upper bound of 2 is known.

In this article, we give an efficient constructive proof that BCR and HYP are polyhedrally
equivalent in instances that do not have an (edge-induced) claw on Steiner vertices, i.e., they do not
contain a Steiner vertex with three Steiner neighbours. This implies faster ln(4)-approximations for
these graphs, and is a significant step forward from the previously known equivalence for (so called
quasi-bipartite) instances in which Steiner vertices form an independent set. We complement our
results by showing that even restricting to instances where Steiner vertices induce one single star,
determining whether the two relaxations are equivalent is NP-hard.

1 Introduction
In an instance of the well-studied, NP-hard [5, 15] Steiner tree problem one is given an undirected graph
G = (V,E), a non-negative cost cost(e) for each edge e ∈ E, and a set of terminals R ⊆ V . The goal
is to find a minimum-cost tree in G spanning R. Steiner trees arise in a host of practical applications
(e.g., see the survey [13] and the recent DIMACS implementation challenge [8]), and therefore have been
extensively studied in the network design community.

In this article, we focus on the problem’s efficient approximability. It is well-known that computing a
minimum spanning tree in the metric closure of the graph gives a 2-approximation [10, 26]. A number of
papers give algorithms with improved running times while maintaining this approximation ratio [18, 20, 25,
28, 30]. Later the approximation ratio was improved in a sequence of papers [16, 22, 24, 31], culminating
in the recent breakthrough by Byrka et al. [2] who present the currently best (ln(4) + ε)-approximation
algorithm for the problem. The algorithm crucially relies on the repeated solution of a large, so called
hypergraphic LP relaxation (henceforth abbreviated by HYP) for the problem. It was later shown by
Goemans et al. [12] that it is possible to achieve the same approximation guarantee while only solving
HYP once. However, solving hypergraphic Steiner tree relaxations is challenging: Goemans et al. [12]
also showed that solving them exactly is strongly NP-hard, and known approaches to obtain a good
approximation require solving LPs with more than |R|k variables and constraints (where k is a constant
that needs to be ∼ 100 in order to yield an approximation to HYP of sufficient quality).

Another well-known formulation for the Steiner tree problem is the bidirected cut relaxation (BCR)
[6, 29]. BCR is an appealing relaxation as its compactness implies efficient solvability. As one way of
∗Supported by an NSERC Discovery grant.
†Supported by an NWO Veni grant.

1

obtaining a faster approximation algorithm for the Steiner tree problem, we therefore propose to first
compute a solution to HYP from a solution to BCR. Then, we apply the algorithm of Goemans et al. [12]
in order to compute a Steiner tree with cost at most ln(4) times that of the given HYP solution. It is
known that HYP is in general a strictly stronger formulation than BCR, so we cannot hope to always
compute a solution to HYP of the same cost as the optimum BCR solution. We therefore ask when these
two LPs have the same strength.

A second motivation for considering this question is that the integrality gap of BCR is not well
understood. It is known to be at least 36/31 ≈ 1.16 [2], and while the latter number is widely conjectured
to be close to the truth, the only upper bound known is an almost trivial bound of 2. HYP on the other
hand has an integrality gap of at least 8/7 ≈ 1.14 [17] and at most ln(4) ≈ 1.39 [12]. Hence bounding the
integrality gap of BCR in terms of the smaller gap of HYP can help to better understand the former gap.

Previously it was known that BCR and HYP are equally strong for quasi-bipartite instances where
no two Steiner vertices (the vertices in V \R) are connected by an edge [4, 9, 12]. For these graphs the
Steiner tree problem remains NP-hard [23]. In this article we significantly extend the class of instances
where the two relaxations are equivalent. In our main result, we show that as long as the input graph G
has no Steiner vertex with three Steiner neighbours (we will refer to this as a Steiner claw), BCR and
HYP are polyhedrally equivalent. Specifically, we will provide an efficiently computable cost-preserving
map between feasible solutions to BCR and those of HYP. We will also show that our results are nearly
best possible by exhibiting instances with a single star on Steiner vertices for which it is NP-hard to
decide whether BCR and HYP have the same integrality gap.

In the following we describe the relaxations BCR and HYP in more detail before formally stating our
contributions.

1.1 Bidirected and hypergraphic LPs for Steiner trees
In the bidirected cut relaxation one usually considers a directed auxiliary graph that has two arcs (u, v)
and (v, u) of cost cost(uv) for each original edge uv ∈ E. The LP, which we will refer to as BCR*, has a
variable for each of these arcs, and its constraints force at least one arc to cross each directed cut that
separates a chosen root r ∈ R from at least one other terminal (see [6, 29]). More concretely, if the set ~E
contains the directed arcs (u, v) and (v, u) for all edges uv ∈ E, δ+(S) := {(u, v) ∈ ~E | u ∈ S, v /∈ S} is
the set of arcs crossing a set S ⊆ V , and z(A) =

∑
a∈A za, the LP is

min
∑
a∈~E

za cost(a) s.t. (BCR*)

z(δ+(S)) ≥ 1 ∀S ⊆ V \ {r}, S ∩R 6= ∅
z ≥ 0

In this article, we importantly choose to work with an equivalent undirected formulation (see [11])
which we will refer to as BCR. We state this LP below, where we associate a variable ze with each
(undirected) edge e ∈ E, and a variable yv with each vertex v ∈ V . For brevity we use E(S) for the
collection of edges with both ends in S ⊆ V , z(E′) =

∑
e∈E′ ze, y(S) =

∑
v∈S yv, and ymax(S) as a

shorthand for maxv∈S yv.

min
∑
e∈E

ze cost(e) s.t. (BCR)

z(E(S)) ≤ y(S)− ymax(S) ∀S ⊆ V
z(E) = y(V)− 1
yt = 1 ∀t ∈ R

y, z ≥ 0

We note that the LP becomes Edmonds’ famous subtour formulation for the spanning tree polyhed-
ron [7] when y is replaced by the vector of ones, i.e. R = V . In a feasible integral solution, yv denotes
whether vertex v is part of the Steiner tree or not. Note that in any feasible fractional solution, yv ≤ 1 for
every v ∈ V , just by considering the constraint for S = V , which would otherwise contradict the equality
constraint. So yv intuitively represents “how much” node v is in the fractional solution.

BCR can be solved efficiently: simply compute a solution to a compact flow formulation of its directed
counterpart BCR*, and observe that it can be mapped to a solution of the same value for BCR (see [11]).

2

The value ze for an edge in BCR is given by the sum of the corresponding two arc values in BCR*. For
v ∈ V \R, set yv in BCR to the sum of outgoing arc values from v ∈ V \ {r} in BCR* (this corresponds
to the amount of flow that v can send to the root).

Hypergraphic LPs are inspired by the observation that the Steiner tree problem can be equivalently
phrased as that of computing a minimum-cost spanning tree in an appropriately defined hypergraph on
the terminals. There are multiple equivalent, directed and undirected forms of HYP [4]. Corresponding to
our undirected choice of BCR, we will henceforth focus on the hypergraphic subtour relaxation introduced
in [27]. The LP has one variable for each component of the instance. A component is a tree in G
containing at least one terminal, and in which every terminal contained in the tree is a leaf. We let K be
the set of all components of the instance. The cost of a component is equal to the sum of the cost of its
edges. In the following hypergraphic subtour formulation we use (a)+ as shorthand for max{0, a}, and
use R(C) to denote the set of terminals included in the component C.

min
∑
C∈K

xC cost(C) s.t. (HYP)∑
C∈K

xC(|R(C) ∩ S| − 1)+ ≤ |S| − 1 ∀S ⊆ R,S 6= ∅∑
C∈K

xC(|R(C)| − 1)+ = |R| − 1

x ≥ 0

To interpret this LP, we should first note that it is usually defined using a smaller set than K: normally
only full components, which are components where in addition every leaf is a terminal, are used. Observe
that there is always an optimal solution to HYP supported only on full components, since any component
can be replaced by a full component containing the same set of terminals, which will only decrease the
cost without affecting any of the constraints. We allow these non-minimal components for convenience in
the definition of the algorithm, and to obtain a clean polyhedral correspondence. This will be discussed
later; for now, it may be helpful to think only about full components.

A feasible integral solution x to HYP corresponds to the Steiner tree T obtained by taking the union
of all edges in components C with xC = 1 (these components will be edge-disjoint in any optimal integral
feasible solution). Any Steiner tree can be uniquely described in this way, by its decomposition into
components. The coefficients (|R(C) ∩ S| − 1)+ can be interpreted as the amount of connectivity that
component C contributes to the set S ⊆ R. The main constraint can then be seen as saying that if one
considers just a set S ⊆ R, the total amount of connectivity should be at most |S| − 1. The equality
constraint simply says that in addition, the terminal set itself is connected by the components. Also notice
that if all components contain at most two terminals, this collapses to just the standard formulation of
the spanning tree polytope.

As mentioned, solving HYP exactly is strongly NP-hard [12]. However, restricting K to full components
spanning at most k terminals (for some fixed k) renders the LP polynomial-time solvable, and it can be
shown that its optimal value increases by at most a factor of (1 + 1/blog kc) [1]. We may therefore choose
k = k(ε) appropriately to obtain a 1 + ε approximation to HYP, for any ε > 0. The number of variables
and constraints will consequently be more than |R|21/ε , i.e., doubly exponential in 1/ε.

1.2 Our contributions
We call a Steiner tree instance Steiner claw-free if the graph G has no Steiner vertex with at least three
Steiner neighbours. In other words, the subgraph induced by the Steiner nodes does not contain K1,3 as
a subgraph; we emphasize that this is different from saying that this graph is “claw-free” in the usual
sense, which only prohibits K1,3 as an induced subgraph. Our main result is the following, which implies
faster ln(4)-approximations for Steiner claw-free graphs. In particular, our running time is dominated by
solving BCR, which in its compact flow formulation has O(|R| · |E|) variables and constraints.

Theorem 1. In a Steiner claw-free instance, any solution to BCR can be efficiently converted to a
solution to HYP of equal cost.

Our proof also shows a polyhedral result. Let PBCR ⊆ RV ∪̇E+ and PHYP ⊆ RK+ be the polytopes of
feasible solutions to BCR and HYP respectively. There is a natural projection map π from RK+ to RV ∪̇E+

3

defined by
π(x)t = 1 ∀t ∈ R

π(x)v =
∑

C∈K:v∈V (C)

xC ∀v ∈ V \R

π(x)e =
∑

C∈K:e∈E(C)

xC ∀e ∈ E.

(1)

Clearly π preserves the cost, i.e.,
∑
C∈K xC cost(C) =

∑
e∈E π(x)e cost(e). We will show that our proof

of Theorem 1 yields the following.

Theorem 2. For any Steiner claw-free instance, π(PHYP) = PBCR.

Figure 1: Example instance with
π(PHYP) 6= PBCR. Terminals are
squares, Steiner vertices are circles.
All edges have unit cost. BCR
admits a solution of cost 5.5: let
ze = 1 for the thick edge, and ze =
1/2 otherwise. All white vertices
v in the figure have yv = 1, and
others have yv = 1/2.

As an immediate consequence of Theorem 1, we obtain an integrality
gap bound of ln(4) ≈ 1.39 for BCR in Steiner claw-free instances via [12],
improving the previously known bound of 2. The only class of Steiner
tree instances where BCR was previously known to exhibit an integrality
gap smaller than 2 is that of quasi-bipartite graphs. Previous work
in [3, 12] showed that their integrality gap is at most 73/60 ≈ 1.216.

Theorem 1 implies that BCR and HYP are equivalent in every
instance of the Steiner tree problem where Steiner vertices induce
subgraphs in which the maximum degree of each vertex is 2 (i.e., paths
and cycles). On the other hand, Figure 1 shows an instance with 4
Steiner vertices inducing a subgraph with only one vertex of degree 3
where BCR and HYP are not equivalent. The optimum Steiner tree has
cost 6 and this is also the value of HYP; the BCR optimum (shown)
has cost 5.5. We prove a larger gap of 8/7 in Section 6.

At a high level, our algorithmic proof of Theorem 1 follows the
greedy approach taken in [9, 12] for quasi-bipartite instances. Roughly,
these papers first solve the directed version BCR* of BCR, and convert
it into a solution for a directed version of HYP, commonly referred to as the directed component relaxation
(see [21]). This directed formulation is equivalent to HYP [4], and we will refer to it as HYP*. For HYP*,
each component is directed, i.e., it is an in-arborescence to one of its terminals, called its head. We call
the set of all directed components ~K. By ∆+(S) we denote all components C ∈ ~K for which the head lies
outside S, while some other terminal of C lies inside. Also let x(∆+(S)) =

∑
C∈∆+(S) xC . Given a root

r ∈ R, the directed hypergraphic relaxation then is:

min
∑
C∈~K

xC cost(C) s.t. (HYP*)

x(∆+(S)) ≥ 1 ∀S ⊆ R \ {r}, S 6= ∅
x ≥ 0

2
2

2 3

3

1

1

3

3

1

1 a
b

a,b

a,b a

b

b
r r

(a) Edge costs.
(b) Decomposable: one

component is marked a, the
other b, each with value 1/2.

(c) Not decomposable.

Figure 2: An instance with edge costs as given in (a). Some optimal solutions to BCR* are decomposable (b)
into a HYP* solution, and others (c) are not (we omit the proof). In the BCR* solutions the root is marked r,
bold arcs have capacity ze = 1, and the others ze = 1/2.

4

The approach of [9, 12] is to iteratively and greedily shave off fractional capacity uniformly from
the arcs of a directed component in the support of the given directed BCR* solution. In the case of
quasi-bipartite instances, this approach works and yields a feasible solution for HYP* of the same cost as
the original BCR* solution. As soon as Steiner vertices are allowed to have Steiner neighbours, the above
strategy runs into problems, however. Figure 2(a) shows a Steiner claw-free instance, and two optimal
solutions to BCR* in Figure 2(b) and 2(c). One can show that there is no HYP* solution whose canonical
projection (the directed analogue of the map π discussed earlier) yields the BCR* solution in 2(c). Hence
the outlined greedy strategy taken in [9, 12] will not work here. On the other hand, the solution given
in 2(b) is the projection of a feasible solution to HYP*. The difficulty is that BCR* and HYP* have
many extreme points that do not correspond to extreme points in their undirected counterparts. Indeed,
the polytope described by BCR* is simply the standard relaxation of the directed Steiner tree problem
(which is known to have a large gap [32]); the additional fact that opposing arcs have equal cost must
be put in “by hand” in the objective function. So while the solutions Figure 2(b) and 2(c) are different
solutions to BCR*, and in fact both are extreme point solutions, they project to the same undirected
solution of BCR.

The results for the quasi-bipartite case [4, 9, 12] at their heart rely on the property that tight sets that
intersect in terminals can be uncrossed. To move beyond the quasi-bipartite case, however, we require a
deeper understanding of the interaction of tight sets, including those that are not terminal-intersecting.
A more general uncrossing lemma will be a key technical tool in our analysis.

Theorem 2 shows that the property of being Steiner claw-free, which is polynomially checkable, is a
sufficient condition for equivalence of BCR and HYP. We also show that there is no good characterization
of this equivalence, even if we try to go very slightly beyond the Steiner claw-free case.

Theorem 3. It is NP-hard to decide for a given Steiner tree instance whether BCR has the same optimum
value as HYP, even if we restrict to instances where the Steiner vertices induce a single star.

Outline of the article. We first describe our algorithm for turning a solution of BCR into a solution
of HYP in Section 2. We then prove correctness of this algorithm in Section 3, and its efficiency in
Section 4. The proof of Theorem 3 can be found in Section 5, and the 8/7 lower bound instance between
BCR and HYP is in Section 6. Finally we end with some concluding remarks in Section 7.

2 A constructive map between BCR and HYP
In this section, we will give a detailed description of an algorithm that converts a minimal feasible BCR
solution into a solution for HYP. At a high level, the arguments are structured similarly to those used
in [9, 12]. Crucially, however, we will be using the undirected relaxations BCR and HYP introduced in
Section 1 instead of their directed analogs.

Our algorithm begins by computing a solution to BCR. It then gradually transforms this into a
solution to HYP, by repeatedly picking components to “extract”. To facilitate the discussion of this
process, we define the following “mixed LP” MIX, which is a hybrid of BCR and HYP.

min
∑
e∈E

ze cost(e) +
∑
C∈K

xC cost(C) s.t. (MIX)

z(E(S)) +
∑
C∈K

xC(|R(C) ∩ S| − 1)+ ≤ y(S)− ymax(S) ∀S ⊆ V (2)

z(E) +
∑
C∈K

xC(|R(C)| − 1)+ = y(V)− 1 (3)

yv = 1 ∀v ∈ R (4)
x, y, z ≥ 0.

Note that if for a feasible solution (x, y, z) to this LP, z = 0 and yv = 0 for all v ∈ V \R, then x is a
solution to HYP. On the other hand, if x = 0, then (y, z) is a solution to BCR. Hence we want to begin
with a feasible solution to MIX with x = 0, and end with one where z = 0 and y = χ(R), where χ(R) is
the characteristic vector of the terminal set.

The high level algorithm is described in Algorithm 1. The first step is to transfer any edges with
non-zero z-value and directly connecting terminals, since they are already components. This does not
affect the feasibility or cost of our solution, and it will be convenient in what follows that every edge in

5

Algorithm 1 Converting a BCR solution to a HYP solution.
1: Start with a solution (x, y, z) feasible for MIX with x = 0.
2: For any zvw > 0 with v, w ∈ R, move all weight to x{v,w}.
3: while y 6= χ(R) do
4: Apply FindComponent(x, y, z) to compute a component C∗.
5: Choose ε > 0 maximally such that (x(ε), y(ε), z(ε)) remains feasible for MIX.
6: Replace (x, y, z) with (x(ε), y(ε), z(ε)).
7: end while
8: Output x feasible for HYP.

the support of z is adjacent to at least one Steiner node. The main part of the algorithm proceeds by
repeatedly identifying a component C∗ in the support of (y, z). We delay for now the description of how
C∗ is chosen. For a carefully chosen ε > 0, we then decrease ze for e ∈ E(C∗) and yv for v ∈ V (C∗) \R
by ε, and simultaneously increase xC∗ by ε. The notation (x(ε), y(ε), z(ε)) refers to the result of this
modification; we call this extracting the component C∗, and ε is the amount extracted. (We do not
explicitly indicate the component being extracted in the notation (x(ε), y(ε), z(ε)), but it will always be
denoted by C∗.) The value ε is chosen to be as large as possible while maintaining a feasible solution
to MIX. Note that this extraction procedure does not change the cost of the solution.

Observe that at the end of the algorithm, y = χ(R) and also z = 0. This is because for every edge uv
with v /∈ R, Constraint (2) on the set S = {u, v} implies zuv ≤ yv = 0. Moreover, we explicitly moved all
z-value from edges between terminals. Hence if the algorithm succeeds, it computes a solution to HYP of
the same cost as the solution to BCR we started from.

We also see immediately that if the algorithm always succeeds on Steiner claw-free instances, then
Theorem 2 holds. With the projection π as defined in (1), the definition of extraction ensures that
π(x) + (y, z) remains unchanged in each iteration. Hence π(PHYP) ⊆ PBCR. But the reverse containment
PBCR ⊆ π(PHYP) also holds, since it is well-known that HYP is always at least as strong as BCR [21].

Let us now investigate the effect of extracting some component C∗, and see why extreme care will
be needed in choosing this component. In order to demonstrate that some given C∗ is satisfactory, the
key thing we must show is that some strictly positive amount of C∗ can be extracted while maintaining
feasibility. Once we know that we make some progress towards shifting the weight from (y, z) to x in
each iteration, it is a small further step to show that the number of iterations is finite and hence the
algorithm terminates in a feasible solution to HYP.

The component C∗ will always be chosen within the support of the current solution, so (x(ε), y(ε), z(ε))
will be non-negative for sufficiently small ε > 0. Furthermore, extracting C∗ does not change the value of
yv for any terminal v ∈ R, and so (4) remains satisfied. So only (2) and (3) are of concern.

Define the slack of a vertex set S ⊆ V with respect to some solution (x, y, z) of MIX as

sl(S) := y(S)− ymax(S)− z(E(S))−
∑
C∈K

xC(|R(C) ∩ S| − 1)+.

Note that a solution (x, y, z) to MIX is feasible precisely if sl(S) ≥ 0 for all S ⊆ V , and sl(V) = 0. We
will call a set S tight if sl(S) = 0. The slack of a set S ⊆ V depends linearly, and so certainly continuously,
on the solution (x, y, z). Moreover, it turns out that the slack of a set can only decrease (or stay the
same) upon extracting a component. This is natural, since HYP is always at least as strong as BCR
(see the proof of Lemma 8 in Section 3 for a formal argument). In particular, the slack of V can never
become positive. So if it is impossible to extract any strictly positive amount of C∗ while remaining
feasible, the reason must be that the slack of some currently tight set would immediately become negative.
Understanding the structure of tight sets, and choosing C∗ in a way that interacts well with them, is
thus crucial.

We denote by C∗[S] the subgraph of C∗ induced by the vertices in S ∩ V (C∗). We say that C∗ is
connected in S if C∗[S] is connected. Let H be the support graph of (y, z), where V (H) = {v ∈ V : yv > 0}
and E(H) = {e ∈ E : ze > 0}. The algorithm FindComponent that we use to compute C∗ is described
in Algorithm 2. It greedily adds vertices to C∗ as long as the component is still connected in all tight
sets. Importantly, it first adds as many Steiner vertices as possible to C∗ before adding terminals.

In order to show that our proposed algorithm works correctly and efficiently, we must answer the
following:

1. Why can we extract a positive amount of the component C∗ in each iteration?

6

2. Why does the algorithm terminate, and moreover, involve only polynomially many iterations?

3. How do we efficiently implement FindComponent, and compute the amount of C∗ to extract in
each iteration?

We will proceed to answer these questions in the following sections, first showing that the algorithm
is correct in Section 3, and then that it can be implemented efficiently in Section 4.

3 Correctness of the algorithm
3.1 Some properties of tight sets

Figure 3: Partial uncross-
ing of two tight sets S and S′.
S \ S′ can be partitioned
into U1 ∪ U2 such that S \
U2 contains vertex v with
yv = ymax(S), and solution
(x, y, z) does not shortcut U1
and U2. Then sets S\U2 and
S′ ∪ U2 are tight as well.

A partial uncrossing lemma. It is well known that if S and S′ are two
tight sets in some solution to BCR which are terminal-intersecting, meaning
that S ∩ S′ contains a terminal, then S and S′ can be uncrossed: S ∪ S′ and
S ∩ S′ will both be tight sets. This is already a very useful result; as we
will see later, uncrossing terminal-intersecting tight sets is already enough
to give a proof of the equivalence in the quasi-bipartite setting using the
undirected BCR and HYP formulations. (Recall that the previous proofs
of this result [9, 12] work with the directed formulations.) We will then
build on this observation to show that the same is true for Steiner-claw free
graphs. To show our main result for these instances however, it will not be
sufficient to only uncross terminal-intersecting tight sets. Here we prove a
more general uncrossing result for sets which do not necessarily contain any
common terminals. Unlike standard uncrossing results, this lemma may only
partially uncross sets. That is, it implies the tightness of two sets that are
smaller than the union and larger than the intersection, respectively. (see
Figure 3).

Before stating our main lemma, we introduce some useful terminology.

Definition 4. Let S, T be two subsets of V . We say that an edge e shortcuts
S and T if it has one endpoint in S \ T and the other in T \ S. We say that
a component C shortcuts S and T if R(C) ∩ S 6= ∅ and R(C) ∩ T 6= ∅, but
R(C) ∩ S ∩ T = ∅. Given a solution (x, y, z) to MIX, we say that the solution shortcuts S and T if there
is an edge in the support of z or a component in the support of x that shortcuts S and T .

Lemma 5. For any feasible solution (x, y, z) to MIX, suppose S and S′ are tight sets, such that S \ S′
can be partitioned into two sets U1 and U2 with the following properties:

1. there is a vertex v ∈ S \ U2 with yv = ymax(S), and

2. (x, y, z) does not shortcut U1 and U2.

Then

(i) both S \ U2 and S′ ∪ U2 are tight sets, and

(ii) (x, y, z) does not shortcut S \ U1 and S′.

Proof. We will use JXK to denote the indicator function of the predicate X, and supp(x) to denote
the support of a vector x. Observing that (|R(C) ∩ S| − 1)+ = |R(C) ∩ S| − JR(C) ∩ S 6= ∅K, and

Algorithm 2 FindComponent(x, y, z).
1: Choose an arbitrary Steiner vertex ` ∈ V (H) and let V (C∗) = {`}.
2: As long as there is a Steiner vertex v neighbouring a vertex w ∈ V (C∗) in H for which C∗ ∪ {vw} is

still connected in every tight set, add the edge vw to C∗.
3: As long as there is a terminal t neighbouring a Steiner vertex w ∈ V (C∗) in H for which C∗ ∪ {tw}

is still connected in every tight set, add the edge tw to C∗.
4: Return C∗.

7

Je ∈ E(S)K = |e ∩ S| − Je ∩ S 6= ∅K, we can rewrite the slack function as

sl(S) = y(S)−
∑

e∈E(H)

ze|e ∩ S| −
∑

C∈supp(x)

xC |R(C) ∩ S|

︸ ︷︷ ︸
g(S)

−ymax(S) +
∑

e∈E(H)

zeJe ∩ S 6= ∅K +
∑

C∈supp(x)

xCJR(C) ∩ S 6= ∅K

︸ ︷︷ ︸
h(S)

.

We now claim that g is modular; i.e., for any A,B ⊆ V (H), we have g(A) + g(B) = g(A∩B) + g(A∪B).
To see that this is true, note that y(A) + y(B) = y(A ∩ B) + y(A ∪ B). Furthermore, edge e ∈ E(H)
contributes the same amounts to |e ∩A|+ |e ∩B| as it does to |e ∩ (A ∪B)|+ |e ∩ (A ∩B)|. Finally,

|R(C) ∩A|+ |R(C) ∩B| = |R(C) ∩ (A ∪B)|+ |R(C) ∩ (A ∪B)|,

for any C ∈ supp(x), and therefore g(S \ U2) + g(S′ ∪ U2) = g(S) + g(S′). Since ymax(S \ U2) = ymax(S)
by assumption, and ymax(S′ ∪U2) ≥ ymax(S′), clearly ymax(S \U2) + ymax(S′ ∪U2) ≥ ymax(S) + ymax(S′).

It remains to show that h(S \ U2) + h(S′ ∪ U2) ≤ h(S) + h(S′), with equality only if (x, y, z) does not
shortcut S′ \ S and U2. We will then obtain

sl(S \ U2) + sl(S′ ∪ U2) ≤ sl(S) + sl(S′) = 0,

so that (by feasibility) indeed S \ U2 and S′ ∪ U2 are tight, and condition (ii) holds.

Claim. For any two sets A,B, h(A ∪B) + h(A ∩B) ≤ h(A) + h(B), with equality if and only if (x, y, z)
does not shortcut A and B.

Proof. Consider the contribution of any component C ∈ supp(x) to both sides of the claimed inequality.
If R(C)∩ (S ∪T) = ∅, then it does not contribute at all. If R(C)∩S ∩T 6= ∅, then it contributes exactly 2
to both sides. If R(C) ∩ S ∩ T = ∅ and R(C) ∩ (S ∪ T) 6= ∅, then certainly R(C) intersects at least one
of S and T . Moreover if C does not shortcut S and T , then it intersects exactly one of S and T . The
argument for the contribution of an edge e ∈ supp(y) is similar.

By the claim, and assumption 2,

h(S) + h(S \ (U1 ∪ U2)) = h(S \ U1) + h(S \ U2). (5)

Again by the claim,
h(S′ ∪ U2) + h(S ∩ S′) ≤ h(S \ U1) + h(S′), (6)

with equality only if (x, y, z) does not shortcut S\U1 and S′. Subtracting (5) from (6) (using S\(U1∪U2) =
S ∩ S′) and rearranging, we obtain

h(S′ ∪ U2) + h(S \ U2) ≤ h(S′) + h(S),

with equality under the same conditions. This completes the proof.

We obtain the following corollary immediately by choosing U1 = ∅ in Lemma 5.

Corollary 6. For any feasible solution (x, y, z) to MIX, suppose S and S′ are tight sets such that
ymax(S ∩ S′) = ymax(S). Then S ∩ S′ and S ∪ S′ are both tight, and (x, y, z) does not shortcut S and S′.

This corollary in turn is a generalization of the standard uncrossing of terminal-intersecting tight sets
referred to earlier, since if S ∩ S′ contains a terminal, then ymax(S ∩ S′) = ymax(S) = 1.

Connectivity of tight sets. We continue with one further useful observation about tight sets.

Lemma 7. Let S be a tight set of a feasible solution (x, y, z) to MIX, and let H be the support graph
of (y, z). If S ∩R 6= ∅, then every connected component of H[S] contains a terminal. If S ∩R = ∅, then
H[S] is connected.

Proof. Assume the statement is false. Regardless of whether S contains terminals or not, there must then
be a connected component in H[S] with vertex set U1, such that U1 ∩R = ∅ and U2 := V (H[S]) \ U1 is

8

non-empty. In particular, E(S) = E(U1) ∪E(U2), |R(C) ∩ U1| = 0 for every full component C ∈ K, and
ymax(U2) > 0. Thus,

sl(U1 ∪ U2) = y(S)− ymax(S)− z(E(S))−
∑
C∈K

xC(|R(C) ∩ S| − 1)+

= y(U1) + y(U2)− ymax(U1 ∪ U2)− z(E(U1))− z(E(U2))−
∑
C∈K

xC(|R(C) ∩ U2| − 1)+

> y(U1)− ymax(U1)− z(E(U1))−
∑
C∈K

xC(|R(C) ∩ U1| − 1)+

+ y(U2)− ymax(U2)− z(E(U2))−
∑
C∈K

xC(|R(C) ∩ U2| − 1)+

= sl(U1) + sl(U2).

By feasibility of U1 and U2, U1 ∪ U2 cannot be tight, a contradiction to S being tight.

3.2 Tight sets and feasibility of extraction
We begin by characterizing when a tight set S will remain feasible upon extracting some small amount of
a component C∗. If S does not intersect V (C∗), then clearly sl(S) is unchanged. Otherwise we have the
following.

Lemma 8. Let S ⊆ V be tight in a feasible solution (x, y, z) to MIX and C∗ a component in the
support graph H of (y, z) with V (C∗) ∩ S 6= ∅. Then there exists some ε > 0 such that S is feasible in
(x(ε), y(ε), z(ε)) if and only if

(i) C∗[S] is connected, and

(ii) {v ∈ S : yv = ymax(S)} ⊆ V (C∗) if S ∩R = ∅, or R(C∗) ∩ S 6= ∅ if S ∩R 6= ∅.

Moreover, S remains tight in (x(ε), y(ε), z(ε)).

Proof. First consider the case when S ∩ R = ∅. Let Sm = {v ∈ S : yv = ymax(S)}. We will use JXK to
denote the indicator function of the predicate X. We use slε(S) for the slack of set S in (x(ε), y(ε), z(ε)),
and obtain

slε(S) = sl(S) + ε
(
−|V (C∗[S])|+ JSm ⊆ V (C∗)K + |E(C∗[S])| − (|R(C∗) ∩ S| − 1)+)

= sl(S) + ε
(
−|V (C∗[S])|+ JSm ⊆ V (C∗)K + |E(C∗[S])|

)
.

But since C∗[S] is a forest, |E(C∗[S])| ≤ |V (C∗[S])| − 1, with equality only if C∗[S] is connected. The
result follows.

Now consider the case where S∩R 6= ∅. Since ymax(S) = 1 (and this remains true after extracting C∗),
we obtain

slε(S) = sl(S) + ε
(
−|V (C∗[S \R])|+ |E(C∗[S])| − (|R(C∗) ∩ S| − 1)+).

Thus S stays feasible if and only if |V (C∗[S \R])|+ (|R(C∗) ∩ S| − 1)+ ≤ |E(C∗[S])|. Then, simplifying
further, S stays feasible if and only if |V (C∗[S])| − JR(C∗)∩ S 6= ∅K ≤ |E(C∗[S])|. Again since C∗[S] is a
forest, |V (C∗[S])| ≥ |E(C∗[S])|+ 1, with equality if and only if C∗[S] is connected. So the inequality is
satisfied if and only if C∗[S] is connected and R(C∗)∩S 6= ∅, in which case it is satisfied with equality.

The goal is now to apply Lemma 8 to show that (x(ε), y(ε), z(ε)) satisfies (2) for some ε > 0 whenever
there is no Steiner claw. By construction (see Algorithm 2), C∗[S] is connected for all tight sets S ⊆ V .
Thus we can shift ε > 0 of the value of the y and z variables associated with C∗ to xC∗ , unless there
is a tight set violating the second condition of Lemma 8. Such a set “demands” that at least one of its
vertices maximizing y be included in C∗ if it is to remain feasible.

Definition 9. A tight set S for which V (C∗) ∩ S 6= ∅ is called a demanding set if R(C∗) ∩ S = ∅ in case
S contains a terminal, or if there is some vertex v ∈ S \ V (C∗) for which yv = ymax(S) in case S has no
terminals.

9

Our goal is now to show that there are no demanding sets. This has two consequences: First, it
implies that we can feasibly shift a positive amount of the value of y and z variables associated with C∗ to
xC∗ . Second, it will imply that C∗ contains at least one terminal. For consider the set V ; by the equality
constraint of MIX, it is certainly tight. But for it not to be a demanding set, C∗ must contain a terminal.

As a warmup, let us consider the quasi-bipartite special case. Then V (C∗) \R consists of only a single
element `. Suppose for a contradiction that S is a demanding set for C∗. Then S contains no terminals
of C∗, but intersects C∗, so ` ∈ S. The set S contains more than just ` so that its maximizer is outside
of C∗, and it is connected in H by Lemma 7. Hence S contains at least one terminal t adjacent to `.
Since we did not include t during the execution of Algorithm 2, it must be that some other tight set S′
prevented its addition. So S′ is disconnected in C∗ ∪ {`t}, but not in C∗; hence t ∈ S′ but ` /∈ S′, and at
least one other terminal t′ of R(C∗) adjacent to ` is in S′. Since S and S′ are terminal-intersecting, we
can uncross them due to Corollary 6, and so in particular no edge in H shortcuts S and S′. But the edge
t′` shortcuts S and S′, which is a contradiction.

The proof for the general Steiner claw-free case proceeds along similar lines, but we will need the
more general partial uncrossing lemma in order to handle sets that are not terminal-intersecting.

Suppose for a contradiction that there exists at least one demanding set, and let S be an inclusion-wise
minimal example. Again, we know that S ∩ V (C∗) 6= ∅ and that C∗[S] is connected. Consider a path P
in H[S] that connects S ∩ V (C∗) to some vertex u ∈ S \ V (C∗) with yu = ymax(S) (e.g., a terminal). By
Lemma 7 this path exists, whether or not S contains terminals. Traversing the path from u, let b be the
first vertex of C∗, and let a be its immediate predecessor (see Figure 4). Note that b must be a Steiner
vertex, otherwise S would not be a demanding set.

Definition 10. Given an edge vw ∈ E(H) with v ∈ V (C∗) \R and w /∈ V (C∗), we say that a set S′ ⊆ V
blocks vw if S′ is tight and C∗ ∪ {vw} is disconnected, and we then call S′ a blocking set.

Figure 4: Interaction of a
demanding set S and a block-
ing set S′.

A blocking set provides a reason that a certain edge was not added to C∗
by Algorithm 2. Since a was not added, there must be some tight set S′ that
blocks ab. Note that S′ contains a, not b, but some other vertex c ∈ V (C∗).

The following lemma applied to the blocking set S′ shows in particular
that a is a Steiner vertex.

Lemma 11. For the inclusion-wise minimal demanding set S and any
blocking set S̄, ymax(S ∩ S̄) < ymax(S).

Proof. Assume for a contradiction that there exists a vertex v ∈ S ∩ S̄ with
yv = ymax(S). Consider the case when S and S̄ do not intersect in V (C∗).
Note however that both sets contain vertices of V (C∗). Let U1 = S ∩ V (C∗)
and U2 = S̄ ∩ V (C∗). Since δH(S \ S̄, S̄ \ S) = ∅ by Corollary 6, no vertex in
U1 is adjacent to a vertex in U2. But by the same lemma S ∪ S̄ is a tight set in which C∗ is disconnected.
This contradicts our construction of C∗.

Hence it must be that S ∩ S̄ ∩ V (C∗) 6= ∅. In this case we consider the set S ∩ S̄, which we know
is tight by Corollary 6. We also know that one of the vertices incident to the edge that S̄ blocks is not
in S̄, i.e., there is a vertex b ∈ S such that b /∈ S ∩ S̄. Hence S ∩ S̄ is a strict subset of S, which contains
no terminal of C∗. However it does contain the vertex v with yv = ymax(S) = ymax(S ∩ S̄) and a vertex
from V (C∗), and is therefore a demanding set, whether or not S contains terminals. This contradicts the
minimality of S.

Figure 5: Finding the
Steiner-claw given a demand-
ing set.

Now we exploit the fact that Algorithm 2 first adds as many Steiner nodes
to C∗ as possible before attempting to add terminals. Since a is a Steiner
vertex, it follows that S′ was a blocking set in Step 2 of the algorithm, i.e.,
even before any terminals were added to C∗. Thus S′ ∩ V (C∗) contains at
least one Steiner node. Relabelling if necessary, we may thus assume that
c is a Steiner node.

Observe that already, we can deduce that b has at least two Steiner
neighbours in H; a, and the node adjacent to b on the path from b to c in C∗.

Lemma 12. There is a path P ′ in H[S \ S′] from b to a vertex u with
yu = ymax(S).

10

Before giving the proof, let us see how the existence of a Steiner claw follows from this. Since S
is a demanding set, along the path P ′ there must be a blocked edge a′b′, where a′ ∈ S \ V (C∗) and
b′ ∈ S ∩ V (C∗) (see Figure 5). Analogous to a and b, we can argue that also a′ and b′ are Steiner vertices
due to Lemma 11 and the fact that a′ was not added to C∗ by Algorithm 2. Furthermore, a 6= a′ since P ′
lies outside of S′. Starting from b, we can assume that a′ is the first vertex not in C∗ on P ′. Hence we
get a path P ′′ from a to b and then along P ′ to a′, that only consists of Steiner vertices. Again since P ′
lies outside of S′, we know that c ∈ V (C∗) ∩ S′ is not part of P ′′. But there is a path of Steiner vertices
from c to P ′′ in C∗, which ends at a vertex w different from a and a′. This Steiner vertex w therefore
has three Steiner neighbours, and Theorem 1 follows.

Proof of Lemma 12. The proof of this lemma roughly follows the same lines as the proof of Lemma 11,
but uses Lemma 5 instead of Corollary 6.

Assume the claim is false, and there is no path in H[S \ S′] from b to any vertex of M := {u ∈ S :
yu = ymax(S)}. Let U2 contain the vertices of the connected component of H[S \ S′] that includes b, and
let U1 contain all other vertices of S \ S′. By Lemma 11, M ∩ S′ = ∅. Hence U1 must contain a vertex
v ∈M . Since U2 does not contain any vertex of M , it also does not contain any terminals. Thus there
cannot be any full component C ∈ K for which R(C) ∩ U2 6= ∅. We conclude that all conditions listed in
Lemma 5 are fulfilled by U1 and U2.

Consider the case when S and S′ do not intersect in V (C∗). Note however that both sets contain
vertices of V (C∗). Let W1 = S′ ∩ V (C∗) and W2 = S ∩ V (C∗). Since b ∈ U2 ∩ V (C∗) and all vertices of
C∗ are connected in the tight set S, W2 ⊆ U2. On the other hand, W1 ⊆ S′ \ S. Since δH(S′ \ S,U2) = ∅
by Lemma 5, no vertex in W1 is adjacent to a vertex in W2. But by the same lemma S′ ∪ U2 is a tight
set in which C∗ is disconnected. This contradicts our construction of C∗.

Hence it must be that S ∩ S′ ∩ V (C∗) 6= ∅. In this case we consider the set S \ U2, which we know is
tight by Lemma 5. We also know that b ∈ U2, which means that S \ U2 is a strict subset of S, which
contains no terminal of C∗. However S \ U2 contains v where yv = ymax(S) = ymax(S \ U2), and it
contains some vertex of C∗ since S ∩ S′ ∩ V (C∗) 6= ∅ and U2 ∩ S′ = ∅. Thus (whether or not S contains
terminals) S \ U2 is a demanding set, which contradicts the minimality of S.

Finally, we observe that in each iteration, either an edge is removed from the support of the current
solution y, or a new set becomes tight. By Lemma 8, once a set becomes tight it remains so for the
remainder of the algorithm. This yields an exponential bound on the number of iterations, which is
sufficient to complete the demonstration of the correctness of the algorithm. A more refined analysis in
Section 4 provides a polynomial bound.

4 Efficiency of the algorithm
In order to show that Algorithm 1 can be implemented efficiently, we need to show that (i) the number
of iterations of the algorithm is polynomial, and (ii) that we can compute the correct choice of C∗ in
each iteration, and the amount that we should extract.

4.1 Bounding the number of iterations
We prove the following:

Theorem 13. Given a Steiner tree instance with n nodes, and m edges, the number of iterations of
Algorithm 1 is at most n2 +m.

Let the Steiner tree instance be described by G = (V,E) and terminal set R. Let (y0, z0) be the
initial solution to BCR, which we extend to a solution (x0, y0, z0) of HYP with x0 = 0. Let (xi, yi, zi)
denote the solution obtained after i iterations, i.e., i components have been maximally extracted. Let
imax denote the index of the final iteration, so yimax = χ(R) and zimax = 0.

Each iteration ends because a constraint (which was not tight at the beginning of the iteration)
becomes tight. There are two types of constraints that we need to consider: those corresponding to (2),
and nonnegativity constraints for z. We need not consider the nonnegativity constraints for y, because in
any feasible solution to MIX, yv = 0 if and only if z(δ({v}) = 0.

By Lemma 8, if a set S ⊆ V is tight in some iteration i, then it remains tight in all subsequent
iterations. It is also clear that if zie = 0 then zje = 0 for all j ≥ i. At the end of each iteration, a
new constraint must become tight, and this constraint must be independent of, i.e. not implied by, the

11

previously tight constraints. So in order to bound the number of iteration, it is enough to show that
the number of independent tight constraints can never be too large. This we will show via standard
combinatorial uncrossing arguments, in particular following an argument of Jain [14], albeit with some
technicalities.

Let K′ = {C ∈ K : ximax
C > 0}; all other components have zero value throughout the execution of the

algorithm, and can be ignored. So from now on, we think of the columns of the constraint matrix of MIX
as being indexed by V ∪ E ∪ K′. We may index the constraints (2), unpacked as

z(E(S)) +
∑
C∈K′

xC(|R(C) ∩ S| − 1)+ ≤ y(S − {v}) ∀S ⊆ V, v ∈ S,

by a pair (v, S) where v ∈ S. So we may index the relevant rows (including the nonnegativity constraints
for z) of the constraint matrix with

R := {(v, S) : S ⊆ V, v ∈ S} ∪ E.

Let Γ` denote the row vector of the constraint matrix indexed by row ` ∈ R.
From now on, fix some arbitrary iteration i ∈ [imax]. Let T ⊆ R be the set of constraints for which

(xi, yi, zi) is tight. Note that (v, S) ∈ T precisely when S is tight and yv = ymax(S). Also let E0 := T ∩E
be the tight nonnegativity constraints, and Tv := {(v, S) : (v, S) ∈ T } be the tight constraints involving a
given v ∈ V . We will use span(S) to denote the vector space spanned by the row vectors Γ` for all ` ∈ S.
Our goal is to show that

dim span(T) ≤ n2 +m.

Since this dimension must increase by at least one in each iteration, this suffices to prove the theorem.
We first note that tight constraints in Tv can be uncrossed, roughly maintaining their span.

Lemma 14. For any v ∈ V , S1, S2 ⊆ V with (v, S1) ∈ T and (v, S2) ∈ T , we have (v, S1 ∪ S2) ∈ T and
(v, S1 ∩ S2) ∈ T , and moreover

Γv,S1 + Γv,S2 − Γv,S1∪S2 − Γv,S1∩S2 ∈ span(E0).

Proof. We have that S1 and S2 are tight, with yv = ymax(S1) = ymax(S2). Hence by Corollary 6 S1 ∪ S2
and S1 ∩ S2 are tight, and of course yv = ymax(S1 ∪ S2) = ymax(S1 ∩ S2). So indeed (v, S1 ∪ S2) and
(v, S1 ∩ S2) are in T .

To show the required relation between the rows, we consider in turn the columns corresponding to
xC for C ∈ K′, ze for e ∈ E, and yv for v ∈ V . Since S1 and S2 remain tight in the final iteration, and
ximax
C > 0 for all C ∈ K′, we may deduce from Corollary 6 applied to (ximax , yimax , zimax) that there are no

components in the support of x that shortcut S1 and S2. It follows that for any C ∈ K′,

fC(S1) + fC(S2) = fC(S1 ∪ S2) + fC(S1 ∩ S2),

where fC(S) := (|R(C)∩S|−1)+ = |R(C)∩S|− JR(C)∩S 6= ∅K is the coefficient of xC for the constraint
corresponding to S in MIX (recall that JXK denotes the indicator of predicate X).

Let F = δ(S1 \ S2, S2 \ S1) ∩E0. Corollary 6, this time applied to (xi, yi, zi), implies that zi(δ(S1 \
S2, S2 \ S1)) = 0. Hence

χ(E(S1)) + χ(E(S2)) = χ(E(S1 ∪ S2)) + χ(E(S1 ∩ S2)) + χ(F).

Finally since χ(S1) + χ(S2) = χ(S1 ∪ S2) + χ(S1 ∩ S2), we have the required dependency between the
rows, and the lemma follows.

Lemma 15. Fix any v ∈ V . Then there exists Sv ⊆ Tv with |Sv| ≤ n and for which

span(Sv ∪ E0) = span(Tv ∪ E0).

Proof. Let S1 ⊂ S2 ⊂ · · · ⊂ St be a maximal chain in {S : (v, S) ∈ Tv}. Let Sv := {(v, Si) : i ∈ [t]}. We
will show that this satisfies the requirements of the lemma.

Clearly |Sv| ≤ n. Suppose for a contradiction that there is some U ⊆ V such that Γv,U ∈ span(Tv∪E0),
but Γv,U /∈ span(Sv ∪ E0). Choose U so that it crosses the fewest number of sets in the chain, i.e., so
that |{i : Si 6⊆ U and Si 6⊇ U}| is as small as possible. Because of the maximality of the chain, U must
certainly cross at least one, say Si. Now it can easily be shown that U ∩ Si crosses fewer sets in the
chain [14], so Γv,U∩Si ∈ span(S ∪ E0) by our choice of U . Similarly, Γv,U∪Si ∈ span(Sv ∪ E0). But then
Lemma 14 implies that Γv,U ∈ span(Sv ∪ E0), a contradiction.

12

We can now bound the dimension of span(T). Choose Sv for each v ∈ V as per the above lemma.
Then

span(T) = span
(⋃
v∈V
Sv ∪ E0

)
,

so
dim span(T) ≤

∑
v∈V
|Sv| + |E0| ≤ n2 +m.

4.2 Determining the minimal tight sets, and the duration of each iteration
The main observation here will be that checking if a solution (x, y, z) is feasible for MIX, as well as
checking for tight sets under certain constraints, can be reduced to solving certain maximum flow problems.
This will allow for the efficient determination of the component C∗ for each iteration, as well as for the
bounding of the duration of each iteration using parametric search methods. The construction extends
one for HYP described in [12] (as well as classical results for separation over the forest polytope); no
major new ideas are needed, though for convenience some aspects of the construction are different.

We construct the directed graph D = (W,A) with capacities ξ as follows. Let W = V ∪ {rC : C ∈
K, xC > 0} ∪ {s, t}, where rC is a new vertex for each component C, and s and t will be source and sink
vertices. Let M =

∑
C∈K xC . For each e with ze > 0, add both orientations of the edge to A, giving both

arcs capacity 1
2z(e); for each rC ∈W \ V , add an arc of capacity xC from rC to t, and infinite capacity

arcs from each terminal in R(C) to rC . For each v ∈ V , add the arc sv with capacity M + 1
2z(δ(v)), and

the arc vt with capacity M + yv −
∑
C∈K:v∈R(C) xC . The role of M is solely to ensure that all capacities

are nonnegative.

Theorem 16. Let S, T be two disjoint subsets of V , with S nonempty and satisfying maxw∈S yw =
maxw∈V \T yw. Given a (feasible or infeasible) solution (x, y, z) to MIX, a set U∗ ⊆ V is of minimal slack
under the constraint S ⊆ U∗ ⊆ (V \ T) if and only if U∗ ∪ {rC ∈W \ V : R(C) ∩ S 6= ∅} is a minimum
capacity ({s} ∪ S)-({t} ∪ T)-cut in D.

Note that, for example, in order to find an overall minimal slack set U∗, one may first guess w ∈ V
s.t. yw = ymax(U∗). Then apply the above theorem with T = {v ∈ V : yv > yw} and S = {w}. Trying
all possibilities for w, U∗ can be found with n maximum flow computations.

Proof. Observe that if Q is an ({s} ∪ S)-({t} ∪ T)-cut in D, but with rC /∈ Q for some C ∈ K where
R(C) ∩Q 6= ∅, then ξ(δ+

D(Q)) =∞. Conversely, if rC ∈ Q but R(C) ∩Q = ∅, then removing rC from Q
yields a cut of strictly smaller capacity.

So consider any ({s} ∪ S)-({t} ∪ T)-cut Q satisfying {C ∈ K : rC ∈ Q} = {C ∈ K : R(C) ∩Q 6= ∅}.
Let U = Q ∩ V . Then

ξ(δ+
D(Q)) =

∑
v∈U

(
M + yv −

∑
C∈K:v∈R(C)

xC

)
+ 1

2z(δG(U))

+
∑

v∈V \U

(
M + 1

2z(δG({v}))
)

+
∑

C∈K:C∩R(U)6=∅

xC

= M · |V |+ y(U) + z(E)− z(E(U))−
∑
C∈K

xC(|R(C) ∩ U | − 1)+

= sl(U) +M · |V |+ ymax(U) + z(E).

By the conditions on S and T , ymax(U) = maxw∈S yw. Thus all terms in the above aside from sl(U) are
independent of U . The result follows.

Choosing C∗. Given a solution (x, y, z) to MIX and any Steiner vertex ` with y` > 0, we will now
show how the choice of C∗ described in Section 2 can be efficiently computed.

Suppose we are considering adding v ∈ V to our current C∗, with zvu > 0 and u ∈ V (C∗) \R. (Here,
v could be either a Steiner node, if we are in step 2, or a terminal if we are in step 3.) Let C ′ be the
component obtained by adding v and vu to C∗. The only reason to not add v is that there is some tight
set U for which C ′ would be disconnected in U . By assumption, C∗ is connected in U . Thus u /∈ U ,
and v ∈ U . By trying all possibilities for w which might be a maximizer of y in U , and hence applying
Theorem 16 with S = {w, v} and T = {u} ∪ {v′ ∈ V : yv′ > yw}, we can determine whether such a tight
set U exists or not, and hence whether v should be added to C∗.

13

Figure 6: The graph Gϕ for ϕ ≡ (θ̄1 ∨ θ2 ∨ θ̄3)∧ (θ̄1 ∨ θ̄2 ∨ θ3). Bold edges have cost b− 1 and thin edges cost 1.

The choice of ε in an iteration. What remains is to determine what value ε should take in a
particular iteration. Let (x, y, z) denote the solution at the start of the iteration, and let (x(ε), y(ε), z(ε))
denote the solution after an amount ε of the current component C∗ has been extracted. As before, let
slε(S) denote the slack of set S in (x(ε), y(ε), z(ε)).

It is of course easy to determine the maximum value of ε such that all nonnegativity constraints
remain satisfied. So the main challenge is to determine ε such that a new tight set U forms (which would
then be violated if a larger value of ε was chosen). It is clearly sufficient to compute, for each w ∈ V , the
maximum value of ε such that minU⊆V :yw=ymax(U) slε(U) ≥ 0. (We may then simply take the minimum
over all the values of ε obtained).

The maximum flow instance we have constructed has capacities that are linear functions of (x, y, z).
Moreover, (x(ε), y(ε), z(ε)) is a linear function of ε. Thus a parametric maximum flow algorithm can be
applied [19].

5 Deciding equivalence of BCR and HYP
Our main result of this article shows that the property of being Steiner claw-free, which is polynomially
checkable, is a sufficient condition for equivalence of the two relaxations. We show here that there is no
good characterization for equivalence. Even if we restrict to instances where the Steiner vertices induce a
single star (or alternatively, by splitting Steiner vertices and adding zero-cost edges, a single binary tree),
deciding equivalence is NP-hard (Theorem 3).

In this section we consider the equivalent [4, 11] directed versions of BCR and HYP called BCR* and
HYP*, as introduced in Section 1. The reduction is from the NP-hard 3-SAT problem (see Figure 6).
Given a 3-SAT formula ϕ with a variables and b clauses we construct the following Steiner tree instance Gϕ.
We introduce a root terminal r and a Steiner vertex h which we call the hub of the instance. The hub h is
connected to the root r via an edge of cost b− 1. For every variable θ of the 3-SAT formula we introduce
two Steiner vertices vθ and vθ̄, one for each possible literal of θ. Each vertex vθ and vθ̄ is connected to
the hub h by an edge of cost 1. Additionally we introduce a terminal tθ for variable θ and connect the
Steiner vertices vθ and vθ̄ to tθ by an edge of cost b− 1 each. For every clause Γ of the 3-SAT formula we
introduce a terminal tΓ which is connected by an edge to each of its literal Steiner vertices. That is, if
λ ∈ Γ then there is an edge between tΓ and vλ. Each such edge has cost b− 1.

We claim that the optimum solution to BCR* is equal to the optimum of HYP* for Gϕ if and only if ϕ
is satisfiable. We first analyze the optimum solution to BCR* in Gϕ regardless of whether ϕ is satisfiable
or not. For this we need the dual of BCR* which has a variable βS for each set S ⊆ V \ {r} containing at
least one terminal.

max
∑

S⊆V \{r}:S∩R 6=∅

βS s.t. (BCR*-dual)

∑
S⊆V \{r}:S∩R 6=∅∧a∈δ+(S)

βS ≤ cost(a) ∀a ∈ ~E

β ≥ 0

Lemma 17. Let ϕ be a 3-SAT formula with a variables and b clauses. The optimum solution to BCR*
of Gϕ has value ab+ b2 − 1.

14

Proof. We give a primal and dual solution to BCR*, each of value ab+ b2 − 1. The primal solution is
given by setting the arc variable as follows.
• (h, r) to 1.

• (tθ, vλ) and (vλ, h) to 1/2 for each variable θ of ϕ and each literal λ of θ.

• (tΓ, vλ) to 1/3 for each clause Γ and each literal λ ∈ Γ.
The dual solution to BCR*-dual is given by setting the variables of the sets as follows.
• {tθ} and {tΓ} to b− 1 for each clause Γ and variable θ of ϕ.

• {tθ, vθ, vθ̄} to 1 for each variable θ of ϕ.

• V \ {r} to b− 1.
It is easy to see that both these solutions are feasible and have the claimed value.

In case ϕ is satisfiable we now show that the integer solution has the same value as the solution to
BCR*. From this it also follows that the solution to HYP* has the same value, since HYP* is stronger
than BCR*.
Lemma 18. Let ϕ be a satisfiable 3-SAT formula with a variables and b clauses. The optimum integer
solution of Gϕ has value ab+ b2 − 1.
Proof. Fix a satisfying assignment for ϕ. We pick the arc hr to be part of the integer solution. For any
variable θ the assignment sets one of its literals λ to true. We include the edges tθvλ and vλh in our
solution. Since the assignment is satisfying, for any clause Γ of ϕ one of its literals λ is set to true. We
include the arc tΓvλ in the solution. It is easy to see that the value of this solution is as claimed.

In case ϕ is unsatisfiable we provide a dual solution to HYP* which gives a lower bound on the
optimum value. The dual has a variable αS for each set S ⊆ R \ {r} that is non-empty.

max
∑

S⊆R\{r}:S 6=∅

αS s.t. (HYP*-dual)

∑
S⊆R\{r}:C∈∆+(S)

αS ≤ cost(C) ∀C ∈ ~K (7)

α ≥ 0

Lemma 19. Let ϕ be an unsatisfiable 3-SAT formula with a variables and b clauses. The optimum
solution to HYP* for Gϕ has value at least ab+ b2.
Proof. The dual solution is given by setting the variables of each singleton set {tθ} and {tΓ} to b for each
variable θ and clause Γ of ϕ. It is easy to see that the solution has the claimed value. We still need to
argue its feasibility.

Let C ∈ ~K be a component of Gϕ that does not contain the hub h. It must be a star with one
Steiner vertex vλ as the center which corresponds to some literal λ. All other vertices of C are terminals.
Moreover at most one of the terminals of C corresponds to a variable θ of ϕ (λ is a literal of θ), while all
others correspond to clauses. It cannot be that all clauses of ϕ contain the literal λ since otherwise ϕ
would be satisfiable, and thus |R(C)| ≤ b. Since one of these terminals is going to be the root of C, the
dual on C (i.e. the left-hand side of (7)) is (|R(C)| − 1)b. The cost of C is |R(C)|(b− 1), which is at least
the dual for |R(C)| ≤ b, so that (7) is satisfied.

Now let C be a component of Gϕ that contains the hub h, and let Vλ(C) = V (C) \ (R ∪ {h}) denote
the literal Steiner vertices of C. Each literal Steiner vertex must be connected to the hub with an edge of
cost 1. Hence the cost of C is |R(C)|(b− 1) + |Vλ(C)|. Let RΓ and Rθ denote the set of clause terminals
and variable terminals of Gϕ, respectively. Recalling that JXK denotes the indicator of predicate X, the
dual on C is at most (|RΓ(C)|+ |Rθ(C)|+ Jr ∈ V (C)K− 1)b, since one of the terminals of C is its head.

First consider the case when |RΓ(C)| ≤ b− 1. Note that each variable terminal needs a literal Steiner
vertex to connect to the hub, while a literal Steiner vertex can be used by at most one variable terminal
for this purpose. Hence |Vλ(C)| ≥ |Rθ(C)| and we can lower-bound the cost of C by

|R(C)|(b− 1) + |Rθ(C)| =
(|RΓ(C)|+ |Rθ(C)|+ Jr ∈ V (C)K)(b− 1) + |Rθ(C)| =

(|RΓ(C)|+ |Rθ(C)|+ Jr ∈ V (C)K− 1)b+ (b− 1)− |RΓ(C)|+ 1− Jr ∈ V (C)K.

15

Since |RΓ(C)| ≤ b− 1 and Jr ∈ V (C)K ≤ 1, the cost is lower-bounded by the dual on C.
Finally consider the case when |RΓ(C)| = b, i.e. all clause terminals are in C. Each clause terminal

connects to the hub through a literal Steiner vertex in C. If C would contain at most one of the literal
Steiner vertices vθ and vθ̄ for each variable θ, then the literals of C would induce an assignment of the
variables of ϕ. Since C contains all clause terminals and they connect through the literal Steiner vertices,
this assignment would satisfy ϕ. This contradiction means that for some variable θ both literal Steiner
vertices vθ and vθ̄ are part of C. As before, each variable terminal needs a literal Steiner vertex to connect
to the hub, while a literal Steiner vertex can be used by at most one variable terminal for this purpose.
That is, tθ (if it is part of C) can only use one of the vertices vθ and vθ̄. Therefore |Vλ(C)| ≥ |Rθ(C)|+ 1
and we can lower-bound the cost of C by

|R(C)|(b− 1) + |Rθ(C)|+ 1 =
(|RΓ(C)|+ |Rθ(C)|+ Jr ∈ V (C)K)(b− 1) + |Rθ(C)|+ 1 =

(|RΓ(C)|+ |Rθ(C)|+ Jr ∈ V (C)K− 1)b+ b− |RΓ(C)|+ 1− Jr ∈ V (C)K.

Since |RΓ(C)| = b and Jr ∈ V (C)K ≤ 1, the cost is lower-bounded by the dual on C.

From the above lemmas it follows that the optimum solution to BCR* of Gϕ is equal to the optimum
solution to HYP* if and only if ϕ is satisfiable. This proves Theorem 3.

6 An 8/7 lower bound example
Figure 1 gives a lower bound of 12/11 ≈ 1.09 on the worst-case ratio between the optima of BCR and
HYP. In this section we present a more involved example that gives a ratio of 8/7 ≈ 1.14. It is based on
the example given by Byrka et al. [2], which bounds the integrality gap of BCR* by 36/31 ≈ 1.16. The
idea is to modify this example so that the optimum solution to HYP* is equal to the integer solution.
Byrka et al. [2] use a recursive construction based on Skutella’s graph [17]. We will base our construction
on the topology of the graph given in Figure 1 instead, which essentially is a smaller version of Skutella’s
graph. We leave it as an open question whether Skutella’s graph can also be used in order to obtain a
stronger lower bound.

For any nonnegative integer p, define the graph G̃p as follows. The graph will have p+ 2 “levels”; the
nodes at level j (for any 1 ≤ j ≤ p+ 1) are labelled by the elements of {1, 2, 3}j . Nodes at level p+ 1 are
all terminals, and nodes at level j ∈ {1, 2, . . . , p} are all Steiner nodes. At level 0, there is one Steiner
node h called the hub node, and also an adjacent terminal node r connected only to h. All nodes at
level 1 are connected to h. For any t ∈ {1, 2, 3}, let b(t) denote the binary representation of t, considered
as a vector in {0, 1}2. There is an edge between a node v = (v1, . . . vi) on level i ∈ {1, . . . , p} and a node
u = (u1, . . . , ui+1) on level i+ 1, if vj = uj for all j ∈ {1, . . . i− 1} and b(vi) · b(ui) ≡2 1. All edges of G̃p
have unit cost.

Now define Gp to be the graph obtained from G̃p by removing all terminals v = (v1, v2, . . . , vp+1) at
level p+ 1 for which vp+1 6= 1. These instances (taking a limit over p) will provide the lower bound. Note
that G1 is precisely the graph depicted in Figure 1. An important difference between our construction
and the one of Byrka et al. [2] is the additional edge between the hub and the root. This edge essentially
forces the optimum solution of HYP* to be equal to the optimum integer solution.

It is easy to see that a feasible solution to BCR* for Gp is to direct all arcs upwards towards the root,
and install the following capacities on the arcs (see also [2]): z(h,r) = 1 on the arc between the hub h and
the root r, za = 1/2 for all arcs a = (v, h) between Steiner vertices v of level 1 and the hub h, za = 1/2
for all arcs a = (u, v) between terminals u on level p+ 1 and Steiner vertices v on level p, and za = 1/4
on all remaining arcs a = (u, v) between Steiner vertices of level i+ 1 and i for all i ∈ {1, . . . , p− 1}. In
the support graph of this solution the out-degree of any vertex on level i ∈ {2, . . . , p + 1} is 2. Hence
the contributed cost of the arcs incident to terminals on level p+ 1 is 2 · 3p/2, and for arcs having some
Steiner vertex on level i ∈ {2, . . . , p} as their tail the contribution is 2 · 3i/4. The arcs connecting the
Steiner vertices on level 1 to the hub contribute 3/2, and the arc from the hub to the root adds a cost
of 1. Hence the total cost of the solution is

3p +
p∑
i=2

3i

2 + 3
2 + 1 = 7

4 · 3
p + 1

4 .

We go on to show that the optimum solution to HYP* has cost at least 2 · 3p (in fact this is also the
cost of an optimum integral solution; cf. [2]). Letting p tend to infinity, the ratio between the optimum

16

values of BCR* and HYP* is thus 8/7, as claimed. We prove the lower bound on the optimum of HYP*
by considering the following solution to HYP*-dual: α{v} = 2 for all v ∈ R \ {r}, and αS = 0 for all other
subsets. Clearly this solution has cost 2 · 3p. We need to show feasibility, which we do by proving that
constraint (7) is valid.

Since all edge costs of Gp are 1, constraint (7) is valid if and only if any directed full component
~C ∈ ~K contains at least as many arcs as the total dual on ~C given by the suggested solution. The only
relevance of the orientation of ~C is that the head does not contribute to the dual. So it is sufficient to
show that for any undirected component C of Gp, |E(C)| ≥ 2|R(C)| − 2.

We prove the following strengthened claim by induction. Applying this claim to a component C of
Gp (where we think of Gp as a subgraph of G̃p), and placing 2 tokens on each terminal of C, yields the
required inequality.

Claim. Let p be a nonnegative integer, and C a connected subgraph of G̃p. Suppose tokens are assigned
to the terminals of C, with the property that: i) each v ∈ R(C) receives 0, 1 or 2 tokens, and ii)
the total number of tokens assigned to {(v1, . . . , vp, i) ∈ R(C) : i ∈ {1, 2, 3}} is at most 3, for any
v1, . . . , vp ∈ {1, 2, 3}. Then there are at most |E(C)|+ 2 tokens in total.

Proof. The base case p = 0 is straightforward to verify directly. So assume p ≥ 1 and that the claim
holds inductively for p− 1.

Notice that deleting all nodes of G̃p at level p+ 1, and promoting all nodes at level p to terminals,
yields G̃p−1.

Begin with H = C. We will modify H until it becomes a connected subgraph of G̃p−1, at the same
time redistributing all tokens at level p+ 1 either to level p, or to deleted edges. This will ensure that the
difference between the number of tokens and the number of edges of H never decreases.

Consider each choice of v1, . . . , vp−1 ∈ {1, 2, 3} in turn. Let

S = {(v1, . . . , vp−1, i) : i ∈ {1, 2, 3}} ∪ {(v1, . . . , vp−1, i, j) : i, j ∈ {1, 2, 3}},

which consists of 3 level p nodes and their 9 adjacent level p+ 1 nodes. Let H be the set of connected
components of H[S]. For each K ∈ H, we do the following:

1. Pick an arbitrary level p node vK from K.

2. Collect all the tokens on K; for each edge of K, discard one token. If any tokens remain, assign
them all to vK .

3. Remove all edges of K and nodes of level p+ 1 from H.

4. For every level p node u 6= vK in K and adjacent level p− 1 node w, if uw ∈ E(H) then replace it
with the edge vKw and discard u. This ensures that H remains connected.

h r

1 3 2

11 13 12
31 33 32

21 23 22

4

3

2

1

0

Figure 7: The graph G3. Notice that removing all level 4 nodes, and promoting those on level 3 to terminals,
yields G̃2.

17

Let us check that after applying this procedure to all connected components in H, the newly placed
tokens on H[S] at level p satisfy the required properties i) and ii). To do this, we will show that for
each K ∈ H, the number of tokens collected and placed at vK is at most min{φ(K), 2}, where φ(K)
denotes the number of nodes of K which started with two tokens. The properties then follow immediately:
i) trivially, and ii) because

∑
K∈H φ(K) ≤ 3 by the distribution properties that the tokens had on the

level p+ 1 nodes.
So consider any K ∈ H. For any node w of K at level p+ 1, charge as many of the tokens at w as

possible to the edges of K adjacent to w. So w can have at most one extra token remaining, and only
if w started with two tokens and had only one adjacent edge. Hence vK collects at most φ(K) tokens,
and the only case when vK could potentially collect more than 2 tokens is when K contains three such
vertices (which, due to property ii), is the maximum possible). By the topology of G̃p (cf. Figure 7)
and the connectedness of K, there must be a level p+ 1 vertex in K with at least two adjacent edges.
Furthermore, due to property i) this vertex has at most one token. This provides a further edge to charge
against, so indeed vK collects at most min{φ(K), 2} tokens.

Hence we end up with a connected subgraph H of G̃p−1, as well as an assignment of tokens to the
terminals of H satisfying properties i) and ii). Thus by our inductive assumption, there are at most
|E(H)|+ 2 tokens remaining at this point. The number of tokens we discarded is at most |E(C)|− |E(H)|.
So we started with at most |E(C)|+ 2 tokens, as required.

7 Final remarks
We have shown that for Steiner-claw-free instances, the bidirected cut and hypergraphic relaxations are
polyhedrally equivalent, and that there is an efficient map between them. This implies that BCR has an
integrality gap of at most ln(4) ≈ 1.39 on such instances. Equivalence does not hold in general, but it
remains plausible that the gap between BCR and HYP is small. In particular, a positive answer to the
following question would immediately yield a better-than-2 bound on the integrality gap of BCR.

Question. Is the ratio between the optimal HYP solution and the optimal BCR solution of a given
instance always bounded by a constant strictly smaller than 2/ ln 4?

We believe that our techniques may be helpful in attacking this question. Consider, for instance,
the example given in Figure 1, for which the optimal BCR solution is strictly cheaper than the optimal
HYP solution. Our algorithm can in fact be used, if we start with a slightly suboptimal solution to BCR.
Namely, we adjust the solution given in Figure 1 by setting yv = 1 for any one of the gray Steiner
vertices v, and also setting ze = 1 for the edge e connecting v to the white Steiner vertex. This yields a
feasible solution to BCR that costs 6 rather than 5.5, but our algorithm succeeds when applied to this
solution, yielding a solution of HYP of the same cost. In general, one approach would be to to let our
algorithm extract components (chosen in the way described) until it gets stuck, i.e., a demanding set
is identified. At this point it might be possible to adjust the current solution to MIX by augmenting
(cheaply) some of the y and z values, in such a way that the demanding set disappears. The algorithm
could then be resumed. If this can always be done so that the total augmentation cost is sufficiently
small, this would give a positive answer to the above question.

References
[1] A. Borchers and D. Du. The k-Steiner ratio in graphs. SIAM Journal on Computing, 26(3):857–869,

1997.

[2] J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità. Steiner tree approximation via iterative randomized
rounding. Journal of the ACM, 60(1):6:1–6:33, 2013.

[3] D. Chakrabarty, J. Könemann, and D. Pritchard. Integrality gap of the hypergraphic relaxation of
Steiner trees: A short proof of a 1.55 upper bound. Operations Research Letters, pages 567–570,
2010.

[4] D. Chakrabarty, J. Könemann, and D. Pritchard. Hypergraphic LP relaxations for Steiner trees. In
International Conference on Integer Programming and Combinatorial Optimization (IPCO), pages
383–396, 2010.

18

[5] M. Chlebík and J. Chlebíková. Approximation hardness of the Steiner tree problem on graphs. In
Proceedings, Scandinavian Workshop on Algorithm Theory, pages 170–179, 2002.

[6] J. Edmonds. Optimum branchings. Journal of Research of the National Bureau of Standards B, 71B:
233–240, 1967.

[7] J. Edmonds. Matroids and the greedy algorithm. Math. Programming, 1:127–136, 1971.

[8] DIMACS Center for Discrete Mathematics and Theoretical Computer Science. 11th DIMACS
implementation challenge in collaboration with ICERM: Steiner tree problems. http://dimacs11.
cs.princeton.edu/, 2014.

[9] I. Fung, K. Georgiou, J. Könemann, and M. Sharpe. Efficient algorithms for solving hypergraphic
Steiner tree relaxations in quasi-bipartite instances. CoRR, abs/1202.5049, 2012.

[10] E. N. Gilbert and H. O. Pollak. Steiner minimal trees. SIAM Journal on Applied Mathematics, 16
(1):1–29, 1968.

[11] M. X. Goemans and Y. Myung. A catalog of Steiner tree formulations. Networks, 23(1):19–28, 1993.

[12] M. X. Goemans, N. Olver, T. Rothvoß, and R. Zenklusen. Matroids and integrality gaps for
hypergraphic steiner tree relaxations. In Proceedings of the 44th Annual ACM Symposium on Theory
of Computing (STOC), pages 1161–11762, 2012.

[13] F.K. Hwang, D.S. Richards, and P. Winter. The Steiner tree problem. Monograph in Annals of
Discrete Mathematics, 53. Elsevier, 1992.

[14] K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem. In IEEE
Symposium on Foundations of Computer Science (FOCS), pages 448–457, 1998.

[15] R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer Computations,
pages 85–103. Plenum Press, NY, 1972.

[16] M. Karpinski and A. Zelikovsky. New approximation algorithms for the Steiner tree problem. Journal
of Combinatorial Optimization, 1(1):47–65, 1997.

[17] J. Könemann, D. Pritchard, and K. Tan. A partition-based relaxation for Steiner trees. Math.
Programming, 127(2):345–370, 2011.

[18] L. Kou, G. Markowsky, and L. Berman. A fast algorithm for Steiner trees. Acta informatica, 15(2):
141–145, 1981.

[19] N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms. Journal
of the ACM, 30(4):852–865, 1983. doi: 10.1145/2157.322410. URL http://doi.acm.org/10.1145/
2157.322410.

[20] K. Mehlhorn. A faster approximation algorithm for the Steiner problem in graphs. Information
Processing Letters, 27(3):125–128, 1988.

[21] T. Polzin and S. Vahdati-Daneshmand. On Steiner trees and minimum spanning trees in hypergraphs.
Operations Research Letters, 31(1):12–20, 2003.

[22] H. J. Prömel and A. Steger. A new approximation algorithm for the Steiner tree problem with
performance ratio 5/3. Journal of Algorithms, 36:89–101, 2000.

[23] S. Rajagopalan and V. V. Vazirani. On the bidirected cut relaxation for the metric Steiner tree
problem. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 742–751, 1999.

[24] G. Robins and A. Zelikovsky. Tighter bounds for graph Steiner tree approximation. SIAM Journal
on Discrete Mathematics, 19(1):122–134, 2005.

[25] H. Takahashi and A. Matsuyama. An approximate solution for the Steiner problem in graphs. Math.
Japonica, 24(6):573–577, 1980.

[26] V. V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.

19

http://dimacs11.cs.princeton.edu/
http://dimacs11.cs.princeton.edu/
http://doi.acm.org/10.1145/2157.322410
http://doi.acm.org/10.1145/2157.322410

[27] D. Warme. Spanning Trees in Hypergraphs with Applications to Steiner Trees. PhD thesis, 1998.

[28] P. Widmayer. On approximation algorithms for Steiner’s problem in graphs. In Graph-Theoretic
Concepts in Computer Science, volume 246, pages 17–28, 1987.

[29] R. T. Wong. A dual ascent approach for Steiner tree problems on a directed graph. Math. Programming,
28:271–287, 1984.

[30] Y.-F. Wu, P. Widmayer, and C.-K. Wong. A faster approximation algorithm for the Steiner problem
in graphs. Acta informatica, 23(2):223–229, 1986.

[31] A. Zelikovsky. An 11/6-approximation algorithm for the network Steiner problem. Algorithmica, 9:
463–470, 1993.

[32] Leonid Zosin and Samir Khuller. On directed Steiner trees. In Proceedings of the Thirteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 59–63, Philadelphia, PA, USA, 2002. Society
for Industrial and Applied Mathematics. ISBN 0-89871-513-X. URL http://dl.acm.org/citation.
cfm?id=545381.545388.

20

http://dl.acm.org/citation.cfm?id=545381.545388
http://dl.acm.org/citation.cfm?id=545381.545388

	Introduction
	Bidirected and hypergraphic LPs for Steiner trees
	Our contributions

	A constructive map between BCR and HYP
	Correctness of the algorithm
	Some properties of tight sets
	Tight sets and feasibility of extraction

	Efficiency of the algorithm
	Bounding the number of iterations
	Determining the minimal tight sets, and the duration of each iteration

	Deciding equivalence of BCR and HYP
	An 8/7 lower bound example
	Final remarks

