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Abstract. We examine a test for weak stationarity against alternatives that covers both local-stationarity

and break point models. A key feature of the test is that its asymptotic distribution is a functional

of the standard Brownian bridge sheet in [0, 1]2, so that it does not depend on any unknown quantity.

The test has non-trivial power against local alternatives converging to the null hypothesis at a T−1/2

rate, where T is the sample size. We also examine an easy-to-implement bootstrap analogue and present

the finite sample performance in a Monte Carlo experiment. Finally, we implement the methodology to

assess the stability of inflation dynamics in the United States and on a set of neuroscience tremor data.

1. INTRODUCTION

Weak stationarity, the property whereby the structure of the data in their first two moments is inde-

pendent of time, plays an important and key role when invoking asymptotic arguments, making inferences

on a time series sequence or making accurate predictions of future values. However, the assumption of

weak stationarity is difficult to justify a priori, and it could be possible that some sequences exhibit

nonstationary behavior. In economics, a well-known example is Lucas’s (1976) critique. The justification

is the belief that the parameters of macroeconometric models may depend implicitly on agents’ expec-

tations and thus are unlikely to remain stable as policymakers change their behavior. In addition, the

possibility of data exhibiting nonstationary behavior is not constrained to economic data sets, see exam-

ples in Paparoditis (2009) or Dahlhaus (2009). Thus, the purpose of this paper is to present a test for

weak stationarity that is easy to implement. We are not concerned, however, with the situation in which

the possible change in the dynamics is due to a random variable as in SETAR, threshold or Markov

switching models. These latter models are regarded as nonlinear, and within these types of models, one

is often more concerned with testing for linearity.

Testing for weak stationarity is not a new endeavour. There are two main approaches. The first one,

focusing on change points, assumes that the practitioner knows the parametric model that generates

the data. See, for example, Picard (1985), Davis et al. (1995), and the surveys by Perron (2006) or

Aue and Horvath (2013). The second, and more recent, approach describes testing procedures when the

practitioner does not have a parametric model in mind or she is not confident about one. See, among

others, Paparoditis (2009) or, under Gaussianity, Preuß et al. (2013) in the context of the so-called local-

stationary models or evolutionary spectra introduced by Priestley (1965). However, their approaches are

quite different. Paparoditis (2009), using ideas of Härdle and Mammen (1993) for model specification,

employs a direct comparison of two different nonparametric fits of the spectral density function, one

under the null hypothesis and a second one under the alternative. By contrast, the approach of Preuß

et al. (2013) is based on the empirical spectral distribution function, similar to Dahlhaus and Polonik

(2009); see Grenander and Rosenblatt (1957) for earlier ideas.
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In this paper, the primary interest is to present and examine testing procedures for the hypothesis of

weak or covariance stationarity when the practitioner does not have a parametric model in mind. The

methodology exploits the well-known property that under weak stationarity, the periodograms at two

different Fourier frequencies are asymptotically independent, and hence, our approach parallels Dwivedi

and Subba Rao (2011) and Jentsch and Subba Rao (2015), who rely on a similar result but for the discrete

Fourier transform. Although the implementation of the test by Dwivedi and Subba Rao (2011) differs

substantially from ours (see Section 2 for details), the common feature among all of these papers is that

the asymptotic distribution does not depend on the second-order dependence of the sequence, contrary

to the works mentioned in the previous paragraph.

However, there are some differences between the methodology in the aforementioned papers and ours.

First, implementing our test only requires the choice of one bandwidth parameter, which appears to be

a minimal requirement, as we do not specify any parametric model even under the null hypothesis. This

is in contrast, for instance, to the approaches of Paparoditis (2009) and Dwivedi and Subba Rao (2011),

which require the choice of 3 or even 4 different bandwidth parameters for their implementation. Thus,

our methodology appears easier to implement, and reduces the possible sensitivity of the bandwidth

parameter choice to the size and/or power of the test in small samples. Second, our test detects local

alternatives of order T−1/2, with T being the sample size. Hence, our tests are more efficient than those

that only detect local alternatives of order T−α for some α < 1/2, as is the case using Härdle and

Mammen’s (1993) methodology. On the other hand, it is worth mentioning that Jentsch and Subba Rao

(2015) allow for nonlinear structures, whereas our approach assumes that the model has a linear one,

see Condition C1 below. Whether our methodology can be extended to nonlinear sequences, under a

condition similar to Assumption 3.1 of Jentsch and Subba Rao (2015), is worth exploring but it is beyond

the scope of the paper.

A second goal of the paper is to describe and examine a bootstrap analogue of the test. The motivation

comes from the fact that our Monte Carlo experiment suggests that the asymptotic distribution seems

not to provide a good approximation for the finite sample distribution. One feature of our bootstrap

is that it does not require the choice of any additional bandwidth parameter for its implementation, in

contrast to the methodology suggested by Dwivedi and Subba Rao (2011) or more recently by Preuß et al.

(2013). Our bootstrap algorithm echoes the approaches of Hidalgo (2007) and Hidalgo and Seo (2015)

for lattice data exhibiting long memory dependence, which it is well-known not to be strong mixing,

see Ibragimov and Rozanov (1978). As a by-product, we present a very simple estimator of the fourth

cumulant, although we do not pursue its comparison to that of Grenander and Rosenblatt (1957) or

its time domain analogue examined by Fragkeskou and Paparoditis (2016). Such efforts are beyond the

scope of this paper.

The remainder of the paper is organized as follows. The next section describes and examines the test

for the null hypothesis of covariance stationarity, the asymptotic behavior of which does not depend on

any unknown quantity nor, in particular, on the spectral density function. We also discuss an alternative

test, the asymptotic distribution of which only depends on the fourth cumulant of the innovations. Section

3 presents a valid bootstrap algorithm for our testing methodology. Section 4 presents a Monte Carlo

experiment to shed light on the finite sample performance of the test. The Monte Carlo experiment seems

to indicate that our test has better performance (both in terms of size and power) across data generating

processes than other comparable tests, such as that suggested by Preuß et al. (2013). We also implement

the test with two real data sets. Section 5 is the conclusion, with the proofs given in the Appendix.
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2. THE TEST AND REGULARITY CONDITIONS

We are interested in testing the null hypothesis, H0, that the observed process {xt}t∈Z is covariance

stationary against the alternative that the covariance of the sequence changes over time. For that purpose,

we assume that under the null hypothesis the process {xt}t∈Z has a MA (∞) representation. That is,

Condition C1:

(2.1) xt =

∞∑
j=0

β (j) εt−j , β (0) = 1,

∞∑
j=0

j |β (j)| <∞,

where {εt}t∈Z is an independent and identically distributed (iid) sequence with E (εt) = 0,

E
(
ε2t
)

= σ2
ε and finite 8th moments. We denote the fourth cumulant of εt/σε as κ4. In addition

the modulus of

(2.2) B (z) =

∞∑
j=0

β (j) e−ijz

is bounded away from zero for all z ∈ [−π, π].

Condition C1 is standard and very mild. It implies that the sequence is weakly or covariance stationary,

e.g.

(2.3) E (xtxt+`) = γ (|`|) ;

∞∑
`=0

` |γ (`)| <∞.

That is, {γ (`)}`∈Z is independent of time. Also Condition C1, i.e. (2.1) and (2.3), implies that the

sequence {xt}t∈Z has a spectral density function,

f (λ) =
1

2π

∞∑
`=−∞

γ (`) ei`λ =:
σ2
ε

2π
|B (λ)|2 , λ ∈ [0, π] ,

which is also independent of time. So we can formulate our null hypothesis, H0, as the spectral den-

sity function of the sequence {xt}t∈Z does not vary with time. It is worth noting that using the

autoregressive representation xt −
∑∞
j=1 α (j)xt−j = εt we can write the spectral density function as

f (λ) = σ2
ε |A (λ)|−2 /2π, where B−1 (z) =: A (z) = 1−

∑∞
j=1 α (j) e−ijz.

Finally, it appears that we may relax Condition C1 to allow the conditions stated by Dalla, Giraitis

and Hidalgo (2005). For instance, at the expense of complicating the technical apparatus, we can drop

the assumption of independence of {εt}t∈Z to allow for martingale difference sequences in its first and

second moments, meaning that C1 would become similar to Assumption A1 of Dwivedi and Subba Rao

(2011).

We introduce some notation before describing and motivating the test. We take a stretch of data

{xt}Tt=1, where T denotes the sample size, and divide it into B blocks, each of length n, that is, B = T/n.

Thus, the b-th block is based on the observations
{
xt+(b−1)n

}n
t=1

. Then, denote the periodogram of the

b-th block of observations
{
xt+(b−1)n

}n
t=1

by

(2.4) Ix,b (j) =
1

n

∣∣∣∣∣
n∑
t=1

xt+(b−1)ne
−itλj

∣∣∣∣∣
2

, b = 1, ...,B,

where λj = 2πj/n, j = 1, ..., [n/2] =: ñ, and where we abbreviate in what follows g (λj) by g (j)

for a generic function g (λ). Similarly, the periodogram of
{
εt+(b−1)n

}n
t=1

, b = 1, ...,B, is given by

Iε,b (j) = n−1
∣∣∑n

t=1 εt+(b−1)ne
−itλj

∣∣2. We have the following condition on B and/or n.
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Condition C2 : n is such that as T increases to infinity, T
n2 + n3

T 2 → 0 and B = T/n.

Our definition of the periodogram in (2.4) is similar to that of Dahlhaus (1997), i.e.

Ix,b (j) =
1

n

∣∣∣∣∣
ñ∑

t=−ñ+1

xt+(b−1)ne
−itλj

∣∣∣∣∣
2

,

which has the interpretation of being the periodogram over a segment of length n with its midpoint at

t+ (b− 1)n. There is no difference between this and our definition from an asymptotic perspective, and

we prefer (2.4) for notational simplicity.

We now describe and motivate the test. Suppose that we were interested in the null hypothesis H0,

but only for a specific frequency λj , j = 1, ..., ñ. That is, the spectral density function of {xt}t∈Z at

λj , f (j), does not depend on time. Then, since Bartlett’s decomposition, see e.g. Brockwell and Davis

(1991), implies that, for all b = 1, ...,B, Ix,b (j) /f (j) ' Iε,b (j) /σ2
ε , and

{(
Iε,b (j) /σ2

ε

)
− 1
}B
b=1

behaves

as a sequence of uncorrelated centered χ2
2 random variables, it suggests then to employ the CUSUM

statistic

Tn,B
(
b∗

B
; j

)
=

1

B

b∗∑
b=1

{
Ix,b (j)

f̂ (j)
− 1

}
, b∗ = 2, ...,B,

where

(2.5) f̂ (j) =
1

B

B∑
v=1

Ix,v (j) .

The estimator of the spectral density function f (j) proposed by Welch (1967), f̂ (j), appears to be a

natural estimator in our context.

The previous arguments were given for a particular frequency λj . However since for all b1, b2 = 1, ...,B,

Cov(Iε,b1 (j) ; Iε,b2 (k)) = 0 if j 6= k, extending the previous arguments to [0, π], we might suggest a test

for H0 based on

(2.6) Tn,B
(
b∗

B
;
j∗

ñ

)
=

1

ñ

j∗∑
j=1

Tn,B
(
b∗

B
; j

)
, j∗ = 1, ..., ñ.

As noted in the introduction, the statistic (2.6), or (2.7) given below, has some similarities to that

given by Dwivedi and Subba Rao (2011); see also Jentsch and Subba Rao (2015), and Bandyopadhy et al.

(2017). Specifically, denote ωk = 2πk/T and Jx (ωk) = T−1/2
∑T
t=1 xte

−itωk , k = 1, ...T , and compute

ĉT (r) =
1

T

T∑
k=1

Jx (ωk)Jx (ωk+r)

f̂1/2 (ωk) f̂1/2 (ωk+r)
, r = 1, ...,m,

for some finite chosen m, with f̂ (ωk) being the weighted average periodogram estimator. Then, using

the fact that under H0,
{
T 1/2ĉT (r)

}[T/2]
r=1

behaves as a sequence of independent random variables, they

propose a test based on

DSRT (m) = T

m∑
r=1

{
|ĉT (r)|2 / (1 + κ̂4 (ωr))

1/2
}

,

where 1+κ̂4 (ωr) is an estimator of the second moment of T |ĉT (r)|2. The difference between Tn,B
(

b∗

B ; j∗

ñ

)
and DSRT (m) bears some similarities to those that exist between the goodness-of-fit test of Grenander

and Rosenblatt (1957) and Portmanteau tests. This is the case after we observe that the Cramér-von-

Mises statistic based on Tn,B
(

b∗

B ; j∗

ñ

)
is a weighted version of DSRT (m) with m = [T/2], as the test
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of Grenander and Rosenblatt (1957) is a weighted version of the Portmanteau test with m = [T/2]. See

also Delgado, Hidalgo and Velasco’s (2005) Section 3 for details.

However, the asymptotic distribution of Tn,B
(

b∗

B ; j∗

ñ

)
depends on κ4, and hence, it is not pivotal; see

Proposition 2 below. We then propose the following statistic:

(2.7) T Pn,B
(
b∗

B
;
j∗

ñ

)
=

1

ñ

j∗∑
j=1

T Pn,B
(
b∗

B
; j

)
, j∗ = 1, ..., ñ

as the basis to test for H0, where

T Pn,B
(
b∗

B
; j

)
=

1

B

b∗∑
b=1

{
Ix,b (j) /σ̂2

ε (b)
1
B

∑B
v=1 (Ix,v (j) /σ̂2

ε (v))
− 1

}
, b∗ = 2, ...,B

and

(2.8) σ̂2
ε (b) =

1

n

n∑
t=1

ε̂2t+(b−1)n, b = 1, ...,B

is an estimator of the variance of εt in the b-th block, and ε̂t is given in (2.15) below. The motivation comes

after observing, see e.g. Anderson and Walker (1964), that for linear processes, such as those considered

in this paper, the asymptotic distribution of the estimator of the correlation coefficient depends only

on the first two moments. This is in contrast with the estimator of the covariance that depends on

the fourth cumulant. It is worth mentioning that these properties depend crucially on the validity of

Bartlett’s decomposition which assumes a linear process.

Because the implementation of T Pn,B
(

b∗

B ; j∗

ñ

)
in (2.7), as is the case with our estimator of κ4 and

the bootstrap, requires obtaining {εt}t∈Z, we first provide a simple method to obtain the innovations εt.

For this purpose, given a generic sequence {zt}Tt=1, we denote the discrete Fourier transform (DFT ) of{
zt+(b−1)n

}n
t=1

by

(2.9) Jz,b (j) =
1

n1/2

n∑
t=1

zt+(b−1)ne
−itλj , j = 1, . . . , ñ, b = 1, ...,B.

It is well known, see expression (10.3.12) of Brockwell and Davis (1991), that under H0 and Condition

C1, the DFT s of
{
εt+(b−1)n

}n
t=1

and
{
xt+(b−1)n

}n
t=1

satisfy the following relationship

(2.10) Jx,b (j) = B (−j)Jε,b (j) + Yn,b (j; 0) , b = 1, ...,B,

where B (j) =: B (λj) given in (2.2) and

(2.11) Yn,b (j; a) =

∞∑
`=a

β (`) e−i`λj

(
1

n1/2

{
n−∑̀
t=1−`

−
n∑
t=1

}
εt+(b−1)ne

−itλj

)
.

Next, using the inverse transformation of the DFT,

zt+(b−1)n =
1

n1/2

n∑
j=1

Jz,b (j) eitλj , t = 1, . . . , n,
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and noting that Yn,b (j; a) is negligible compared to B (−j)Jε,b (j) in (2.10), Condition C1 and H0 imply

that

εt+(b−1)n ' 1

n1/2

n∑
j=1

eitλjA (−j)Jx,b (j)

=
1

n1/2

n∑
j=1

eitλjB−1 (−j)Jx,b (j) , t = 1, ..., n; b = 1, ...,B,

where “≈” should be read as “approximately.” Recall our definition of A (j) after expression (2.2).

Thus, to compute
{
ε̂t+(b−1)n

}n
t=1

, it suffices to provide an estimator of A (j). To that end, we employ

the canonical spectral decomposition of f (λ); see Brillinger (1981, p. 78− 79) or Hannan (1970). Indeed,

observing that f (λ) = σ2
ε |A (λ)|−2, where A (λ) = exp

{
−
∑∞
r=1 cre

irλ
}

with

(2.12) cr =
1

π

∫ π

0

log f (λ) cos (rλ) dλ, r = 0, 1, ...,

we then estimate A (j) by

Â (j) = exp

−
[ñ/2]∑
r=1

ĉre
irλj

 , j = 1, ..., ñ(2.13)

Â (j) = Â (n− j) , j = ñ+ 1, ..., n− 1

ĉr =
1

ñ

ñ∑
`=1

log f̂ (`) cos rλ`, r = 0, ..., ñ,(2.14)

where f̂ (`) is the estimator given in (2.5). Note that σ̂2
ε = exp (ĉ0). From here, we compute

{
ε̂t+(b−1)n

}n
t=1

as

(2.15) ε̂t+(b−1)n =
1

n1/2

n∑
j=1

eitλj Â (−j)Jx,b (j) , b = 1, ...,B.

We finish the section by providing an estimator of κ4. Given {ε̂t}Tt=1 in (2.15), we compute our

estimator of κ4 as

(2.16) κ̂4 =
1

T

T∑
t=1

(
ε̂4t
σ̂4
ε

− 3

)
,

where either σ̂2
ε = exp (ĉ0) or σ̂2

ε = B−1
∑B
b=1 σ̂

2
ε (b), with σ̂2

ε (b) defined in (2.8). Notice the latter

estimator yields σ̂2
ε = T−1

∑T
t=1 ε̂

2
t .

A major difference between our estimator κ̂4 and the rival estimators proposed by Grenander and

Rosenblatt (1957) or, more recently, by Paparoditis (2009) and its time domain analogue by Fragkeskou

and Paparoditis (2016) is that the latter estimators require for their implementation the choice of at least 2

extra bandwidth parameters, as they depend on the correlation structure of the sequences
{
x2t+(b−1)n

}n
t=1

and
{
xt+(b−1)n

}n
t=1

. However, ours does not require the choice of any extra bandwidth parameter in its

computation.

Proposition 1. Under H0 and assuming C1 and C2, we have that κ̂4 →P κ4.

Proof. The proof of this proposition, and any other result, is given in the Appendix. �

2.1. Asymptotic properties of (2.7).
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We begin by introducing some regularity conditions in a general format which will encompass the

assumptions of xt under the null hypothesis but also the type of models for which the test based on the

statistic (2.7) has non-trivial power. In particular we consider, under the alternative hypothesis, the class

of locally stationary processes which is a class of processes that can be approximated at a local level by a

stationary time series. These processes are introduced by Dahlhaus (1996) where we observe {xt,T }Tt=1 in

an increasing finer grid. Following Dahlhaus and Polonik (2006), {xt,T }Tt=1 is said to have a time-varying

MA (∞) representation if it satisfies the following condition:

Condition C1’ : {xt,T }Tt=1, T ∈ N+, is a sequence of random variables defined as

(2.17) xt,T =

∞∑
j=0

βt,T (j) εt−j , with βt,T (0) = 1,

such that supt |βt,T (j)| < υ (j),
∑∞
j=0 jυ (j) <∞ and where {εt}t∈Z satisfies the same conditions

as in C1. In addition,

(2.18) Bt,T (λ) = Bt,T (−λ) =

∞∑
j=0

βt,T (j) e−ijλ

with a denoting the conjugate of the complex number a, satisfies that |Bt,T (λ)| is bounded away

from zero for all λ ∈ [0, π].

Condition C1′ implies that the sequence is weakly dependent, although not necessarily stationary,

because βt,T (j) may depend on t. Model (2.17) also allows for breaks in some (or all) of the coefficients

βt,T (j), say βt,T (j) = δ (j) I (t < t0) + β (j) with δ (j) 6= 0 where I (·) denotes the indicator function.

Observe that the null hypothesis means that the coefficients βt,T (j) in model (2.17) become just β (j),

that is

βt,T (j) = β (j) for all j ∈ N+ and t = 1, ..., T , T ∈ N+.

Next, following Dahlhaus (1997), we have that (2.17) has the (time-varying) spectral representation

(2.19) xt,T =
1

(2π)
1/2

∫ π

−π
Bt,T (λ) exp (iλt) dξ (λ) ,

where Bt,T (λ) is given in (2.18).

Under Condition C2′ below, we can approximate (2.18) by

(2.20) B (u;λ) =

∞∑
j=0

β (u; j) e−itλ, u ∈ [0, 1] ; λ ∈ [0, π] ,

in the sense that

(2.21) sup
λ∈[0,π],1≤t≤T

∣∣∣∣Bt,T (λ)− B
(
t

T
;λ

)∣∣∣∣ = O

(
1

T

)
,

and thus following Dahlhaus (1997), we can define the “time-varying” spectral density function of

{xt,T }Tt=1, T ∈ N+, by

(2.22) f (u;λ) =
σ2
ε

2π
|B (u;λ)|2 u ∈ [0, 1] ; λ ∈ [0, π] .

For instance, for the tvARMA model

xt,T −
P∑
p=1

α

(
t

T
; p

)
xt−p,T =

Q∑
q=0

β

(
t

T
; q

)
εt−q,
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we have that

B (u;λ) =

∑Q
q=0 β (u; q) exp (−iλq)

1−
∑P
p=1 α (u; p) exp (−iλp)

,

whereas for the AR (1) model, xt,T = α (t)xt−1,T + εt, where

α (t) = α1I (t < t0) + α2I (t ≥ t0) ; α1 6= α2; |α1| , |α2| < 1,

we have that B (u;λ) =: (1− α1 exp (−iλ))
−1

when u = t/T < u0 = t0/T and =: (1− α2 exp (−iλ))
−1

when u ≥ u0. Note that Condition C1′ implies that the sequence {xt,T }Tt=1 admits an autoregressive

representation as Dahlhaus (1996) demonstrates. In fact, if we replace (2.17) with

(2.23) xt,T =

∞∑
j=0

β

(
t

T
; j

)
εt−j ; β

(
t

T
; 0

)
= 1,

the tvAR model

xt,T =

P∑
p=1

α

(
t

T
; p

)
xt−p,T + εt,

under standard regularity conditions on {α (u; j)}j≥0 for all u ∈ [0, 1], does not have a representation as

in (2.23). Under H0, the latter displayed model collapses to the standard AR (P ) model.

Recalling that alternatively in the spectral domain, we denote the null hypothesis as that the spectral

density function of the process is not time varying, then expression (2.22) suggests that we may write

the hypothesis testing as

(2.24) H0 : f (u;λ) = f (λ) for all u ∈ [0, 1] ,

where f (λ) corresponds to the spectral density function of the process xt given in Condition C1 and

where the alternative hypothesis, Ha, is the negation of the null, e.g. denoting by µ (·) the Lebesgue

measure,

(2.25) Ha : µ (U ,Λ) > 0,

where (U ,Λ) = {u ∈ [0, 1] ;λ ∈ [0, π] : f (u;λ) 6= f (λ)}. At the end of Section 2.2, we demonstrate that

the test based on T Pn,B
(

b∗

B ; j∗

ñ

)
is also consistent against heteroskedastic alternatives, for instance

xt,T = σt,T εt with σt,T = σ(t/T ).

Condition C2’ : βt,T (j) satisfies that

(2.26) sup
1≤t≤T

∣∣∣∣βt,T (j)− β
(
t

T
; j

)∣∣∣∣ ≤ C

T
υ (j)

∞∑
j=0

jυ (j) <∞.

Condition C2′ indicates that βt,T (j) can be well approximated (locally) by a smooth function β (u; j)

and that observations that are close in time are regarded as stationary. The bound sequence υ (j) does

not need to be the same as that in Condition C1′. However, we keep it for notational simplicity, as both

satisfy the upper bound υ (j) = O
(
j−2−δ

)
for some δ > 0. Another implication of Condition C2′ is that

Bt,T (λ) and B (u;λ) given in (2.18)− (2.20) satisfy (2.21). Under H0, (2.26) holds trivially.

Note that under Condition C1′, (2.10) becomes

(2.27) Jx,b (j) = B
(
n (b− 1)

T
;−j

)
Jε,b (j) + Y̌n,b (j; 0) + Ÿn,b (j) ,
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where B
(
n(b−1)
T ; j

)
=: B

(
n(b−1)
T ; eiλj

)
was given in (2.20) and

(2.28) Y̌n,b+1 (j; a) =

∞∑
`=a

β

(
nb

T
; `

)
e−i`λj

(
1

n1/2

{
n−∑̀
t=1−`

−
n∑
t=1

}
εt+bne

−itλj

)
,

Ÿn,b+1 (j) =
1

n1/2

n∑
t=1

{( ∞∑
`=0

(
β

(
t+ nb

T
; `

)
− β

(
nb

T
; `

))
εt+bn−`

)
eitλj

+

( ∞∑
`=0

(
βt+bn,T (`)− β

(
t+ nb

T
; `

))
εt+bn−`

)
eitλj

}
.(2.29)

For reasons that will become clear, it is convenient and useful to examine first the behavior of

T̆n,B
(
b∗

B
;
j∗

ñ

)
=

1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

 Ix,b (j) /
∣∣B (nbT ;j

)∣∣2
B−1

∑B
v=1

{
Ix,v (j) /

∣∣B (nvT ;j
)∣∣2} − 1


for b∗ = 2, ...,B and j∗ = 1, ..., ñ. Observe that under H0, T̆n,B

(
b∗

B ; j∗

ñ

)
=: Tn,B

(
b∗

B ; j∗

ñ

)
as
∣∣B (nbT ;j

)∣∣2
becomes |B (j)|2. We have the following result.

Proposition 2. Assuming C1′, C2′ and C2, we have that as T →∞,

[T/2]
1/2 T̆n,B

(
b∗

B
;
j∗

ñ

)
weakly⇒ BS

(
[0, 1]

2
;κ4

)
,

where BS
(

[0, 1]
2

;κ4

)
is a Gaussian process in [0, 1]

2
with covariance structure

(2.30) C (ω∗1 , ω
∗
2 ; υ∗1 , υ

∗
2) = ω∗1 (1− ω∗2)

[
υ∗1 +

1

2
υ∗1υ

∗
2κ4

]
,

{
0 ≤ ω∗1 ≤ ω∗2 ≤ 1

0 ≤ υ∗1 ≤ υ∗2 ≤ 1.

We have the following corollary.

Corollary 1. Let ϕ (·, ·) be a continuous functional in [0, 1]
2 → R+. Then, under H0 and assuming

Conditions C1 and C2, we have that

ϕ

(
[T/2]

1/2 Tn,B
(
b∗

B
;
j∗

ñ

))
distribution⇒ ϕ

(
BS
(

[0, 1]
2

;κ4

))
.

Proof. The proof is an immediate consequence of Proposition 2 and the continuous mapping theorem,

and thus, is omitted. �

The first conclusion that we draw from Proposition 2 is that under Gaussianity, we have that C (ω∗1 , ω
∗
2 ; υ∗1 , υ

∗
2) =

ω∗1 (1− ω∗2) υ∗1 , which can be regarded as the covariance structure of the “product” of a standard Brown-

ian bridge and a Brownian motion, and hence, [T/2]
1/2 Tn,B

(
b∗

B ; j∗

ñ

)
is pivotal. This is a major difference

with the test proposed by Dette et al. (2011), the covariance structure of which depends on f (λ).

However, as the Gaussianity assumption is difficult to justify with many data sets, one route to

implement the test would be to employ κ̂4, and from there compute the (asymptotic) critical values.

This could be achieved by simulating the critical values of ϕ
(
BS
(

[0, 1]
2

;κ4

))
for a meshM of possible

values of κ4, denoted by cr (κ4). Then, given a particular data set, we use as critical values cr (κ̂4). A

second route is to see whether the statistic T Pn,B
(

b∗

B ; j∗

ñ

)
in (2.7) depends on κ4. A third route is to

compute valid asymptotic critical values via bootstrap algorithms. The next theorem shows that, indeed,

the asymptotic distribution of T Pn,B
(

b∗

B ; j∗

ñ

)
does not depend on κ4.
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Theorem 1. Let ϕ (·, ·) be a continuous functional in [0, 1]
2 → R+. Then, under H0 and assuming

Conditions C1 and C2, we have that

(a) [T/2]
1/2 T Pn,B

(
b∗

B
;
j∗

ñ

)
weakly⇒ WB

(
[0, 1]

2
)
,

(b) ϕ

(
[T/2]

1/2 T Pn,B
(
b∗

B
;
j∗

ñ

))
d⇒ ϕ

(
WB

(
[0, 1]

2
))

where WB
(

[0, 1]
2
)
is a Brownian bridge sheet in [0, 1]

2
with covariance structure

(2.31) C (ω∗1 , ω
∗
2 ; υ∗1 , υ

∗
2) = ω∗1 (1− ω∗2) υ∗1 (1− υ∗2) .

Standard functionals ϕ (·, ·) are the Kolmogorov-Smirnov and the Cramér-von-Mises given, respec-

tively, as

(2.32) KSn,B = max
j∗=1,...,ñ;b∗=1,...B

∣∣∣∣[T/2]
1/2 T Pn,B

(
b∗

B
;
j∗

ñ

)∣∣∣∣
(2.33) CvMn,B =

1

[T/2]

ñ∑
j∗=1

B∑
b∗=1

∣∣∣∣[T/2]
1/2 T Pn,B

(
b∗

B
;
j∗

ñ

)∣∣∣∣2 .

2.2. Local Alternatives and Consistency.

We finish by describing the local alternatives for which the test has non-trivial power. For illustra-

tion purposes, we show that Tn,B
(

b∗

B ; j∗

ñ

)
will have a mean different from zero under the alternative

hypothesis. Indeed, under Conditions C1′, C2′, and C2, we have that

f̂ (j) =:
1

B

B∑
b=1

Ix,b (j)
P→ lim

B→∞

1

B

B∑
b=1

f

(
b

B
; j

)
'
∫ 1

0

f (u;λ (j)) du,

where λ (j) = limn(T )→∞ λj . Thus, as the set (U ,Λ) given after expression (2.25) has positive Lebesgue

measure, the last displayed expression suggests that

Tn,B
(
b∗

B
;
j∗

ñ

)
' 1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

{
Íx,b (j)

1
B

∑B
v=1 Íx,v (j)

− 1

}

+
1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

{
f
(
b
B ; j

)∫ 1

0
f (u;λ (j)) du

− 1

}
(1 + op (1)) ,

where Íx,b (j) = Ix,b (j)− f
(
b
B ; j

)
. The first term on the right of the last displayed expression is op (1),

proceeding similarly as with the proof of Proposition 2, whereas the second term on the right develops a

“mean” different from zero since f
(
b
B ; j

)
/
∫ 1

0
f (u;λ (j)) du 6= 1.

Specifically, consider the local alternatives

Hl : f (u;λ) = f (λ)

(
1 +

1

[T/2]
1/2

g (u;λ)

)
,

where g
(
t
T ;λ

)
is different than zero in the set (U ,Λ). It is worth observing that when Hl corresponds to

an abrupt change at some point in time, t0, we have that g
(
t
T ;λ

)
= g (λ) if t > t0, and we could allow

C/T 1/2 < t0/T < 1−C/T 1/2 for some finite positive constant C. Let us introduce the function d (·; ·),
defined as

d (ω∗;πυ) =

∫ ω∗

0

g (v; υ) dv − ω∗
∫ 1

0

g (v; υ) dv, ω∗ ∈ [0, 1] ; υ ∈ [0, 1] .
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It is obvious that d (ω∗;πυ) is different from zero unless f (ω∗; υ) =: f (υ) a.e. in υ ∈ [0, π] and ω∗ ∈ [0, 1].

That is, given υ, g (ω∗;πυ) = 0 for all ω∗ ∈ [0, 1] if f (ω∗; υ) =: f (υ), i.e. it is constant in the argument

ω∗ ∈ [0, 1].

Proposition 3. Under Hl and assuming C1′, C2′, and C2, we have that

(a) [T/2]
1/2 Tn,B

(
b∗

B
;
j∗

ñ

)
weakly⇒ D (ω∗; υ∗) + BS

(
[0, 1]

2
;κ4

)
,

(b) [T/2]
1/2 T Pn,B

(
b∗

B
;
j∗

ñ

)
weakly⇒ 1

σ2
ε

D (ω∗; υ∗) +WB
(

[0, 1]
2
)
,

where υ∗ = limn=n(T )→∞
j∗

ñ and ω∗ = limB=B(T )→∞
b∗

B , j
∗ = 1, ..., ñ; b∗ = 1, ...,B and D (ω∗; υ∗) =∫ υ∗

0
d (ω∗;πυ) dυ.

The conclusion from Proposition 3 is that the test has power comparable to its parametric counterparts.

The consistency of the tests is standard as the “drift” function D (ω∗; υ∗) is different than zero in a set

with positive Lebesgue measure. Thus, our tests have non-trivial power when the alternative converges

to the null at the rate T 1/2, which is faster than the T 1/4 obtained elsewhere by Dette et al. (2011) or

when using nonparametric fits, although it is the same rate as that of Preuß et al. (2013). However, the

latter depends on the assumption that the sequence {εt}t∈Z is Gaussian.

We conclude this section by demonstrating that our tests are able to detect departures from weak

stationarity due to heteroskedasticity. Indeed, for illustration purposes, we consider the example given

by Dwivedi and Subba Rao (2011), that is, xt,T = σt,T εt, where σt,T = σ (t/T ). In this case, standard

algebra implies that EIx,b (j) = 1
n

∑n
t=1 σ

2 ((t+ bn) /T ) and

1

B

B∑
b=1

Ix,b (j)
P→ lim

T→∞

1

B

B∑
b=1

1

n

n∑
t=1

σ2 ((t+ bn) /T )

= lim
T→∞

1

B

B∑
b=1

σ2 (b/B)
(
1 +O

(
B−1

))
=

∫ 1

0

σ2 (v) dv

because, assuming the continuous differentiability of σ2 (·),

(2.34) σ2 ((t+ bn) /T )− σ2 (b/B) = O
(
B−1

)
, b = 1, ...,B.

From here, it is standard to conclude that Tn,B
(

b∗

B ; j
)

will have a mean given by

1

B

b∗∑
b=1

{
1
n

∑n
t=1 σ

2 ((t+ bn) /T )∫ 1

0
σ2 (v) dv

− 1

}
' 1

B

b∗∑
b=1

σ2 (b/B)∫ 1

0
σ2 (v) dv

− 1 b∗ = 2, ...,B

which is clearly different from zero unless σ2
t = σ2, for all t = 1, ..., T . The consequence is that the test

based on T Pn,B
(

b∗

B ; j∗

ñ

)
is consistent against this type of alternative. Note that (2.34) suggests that

Ix,b (j) is an unbiased estimator of σ2 (b/B) for all j = 1, ..., ñ.

3. BOOTSTRAP

We now focus on the bootstrap approach for our testing procedure based on T Pn,B
(

b∗

B ; j∗

ñ

)
and

as a by-product of Tn,B
(

b∗

B ; j∗

ñ

)
. The motivation comes from the observation that our Monte Carlo

experiment suggests that the asymptotic critical values may not provide a good approximation for the

finite sample values. In those circumstances, the practitioner hopes that bootstrap algorithms will provide

better finite sample approximations. Thus, the main aim of this section is to present a bootstrap algorithm
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and examine its validity. As usual, E∗ and Pr∗ {·} indicate the expectation and the probability in the

bootstrap sense, respectively.

We now describe the bootstrap. To that end, we recall that the asymptotic distribution of [T/2]
1/2 T Pn,B

(
b∗

B ; j∗

ñ

)
is independent of the underlying dependence of xt. That is, the behavior of [T/2]

1/2 T Pn,B
(

b∗

B ; j∗

ñ

)
and

[T/2]
1/2 Tn,B

(
b∗

B ; j∗

ñ

)
are exactly the same (asymptotically) as if we were using εt instead of xt in their

computation. So the trick of the bootstrap will not be a question of capturing or mimicking the serial

dependence of the observations, but of preserving the statistical properties of the innovations. Thus, our

bootstrap algorithm is based on two steps.

STEP 1 : Compute
{
ε̂t+(b−1)n

}n
t=1

, b = 1, ...,B, as in (2.15) to obtain
{
ε̃t =

(
ε̂t − ε̂

)
/σ̂ε

}T
t=1

,

where

ε̂ =
1

T

T∑
t=1

ε̂t; σ̂2
ε =

1

T

T∑
t=1

(
ε̂t − ε̂

)2
.

STEP 2 : Obtain a random sample of size T from the empirical distribution function of {ε̃t}Tt=1.

Denote the sample as {ε∗t }
T
t=1, and compute the bootstrap statistic

T P∗n,B
(
b∗

B
;
j∗

ñ

)
=

1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

(
Iε∗,b (j) /σ̂2

ε∗ (b)

B−1
∑B
v=1 {Iε∗,v (j) /σ̂2

ε∗ (v)}
− 1

)
,

where j∗ = 1, . . . , ñ and

Iε∗,b (j) = |Jε∗,b (j)|2 , σ̂2
ε∗ (b) =

1

n

n∑
t=1

ε∗2t+(b−1)n; b = 1, ...,B

and Jε∗,b (j) as defined in (2.9) with zt being replaced by ε∗t there. Then, compute the bootstrap

analogues of (2.32) and (2.33), replacing T Pn,B
(

b∗

B ; j∗

ñ

)
with T P∗n,B

(
b∗

B ,
j∗

ñ

)
there.

Remark 1. (a) We can replace ε̃t with ε̂t in Step 2. The reason is that
∑n
t=1 ε̂e

itλj = 0, and

Iε∗,b (j) /B−1
∑B
b=1 Iε∗,b (j) is invariant to multiplicative constants.

(b) We may also compute
{
ε̃t+(b−1)n =

(
ε̂t+(b−1)n − ε̂b

)
/σ̂ε,b

}n
t=1

with

ε̂b =
1

n

n∑
t=1

ε̂t+(b−1)n; σ̂2
ε,b =

1

n

n∑
t=1

(
ε̂t+(b−1)n − ε̂b

)2
, b = 1, ...,B,

and obtain {ε∗t }
T
t=1 =

{{
ε∗t+(b−1)n

}n
t=1

; b = 1, ...,B
}
, where

{
ε∗t+(b−1)n

}n
t=1

is a random sample from

the empirical distribution of
{
ε̃t+(b−1)n

}n
t=1

as in Step 2 but with random sampling within each “block”

b = 1, ..,B.

We can also compute the bootstrap analogue of Tn,B
(

b∗

B ; j∗

ñ

)
as

T ∗n,B
(
b∗

B
;
j∗

ñ

)
=

1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

(
Iε∗,b (j)

B−1
∑B
v=1 Iε∗,v (j)

− 1

)
.

We now have the following result on the validity of the bootstrap.

Theorem 2. Assuming C1 and C2, we have that

(a) [T/2]
1/2 T ∗n,B

(
b∗

B
;
j∗

ñ

)
weakly⇒ BS

(
[0, 1]

2
;κ4

)
(in probability)

(b) [T/2]
1/2 T P∗n,B

(
b∗

B
;
j∗

ñ

)
weakly⇒ WB

(
[0, 1]

2
)

(in probability).
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From Theorem 2 and the continuous mapping theorem we have that for any continuous functional

ϕ (·),

(a) ϕ

(
[T/2]

1/2 T ∗n,B
(
b∗

B
;
j∗

ñ

))
weakly⇒ ϕ

(
BS
(

[0, 1]
2

;κ4

))
(in probability)

(b) ϕ

(
[T/2]

1/2 T P∗n,B
(
b∗

B
;
j∗

ñ

))
weakly⇒ ϕ

(
WB

(
[0, 1]

2
))

(in probability).

We finish the section indicating that Theorem 2 part (b) holds true under Conditions C1′, C2′ and C2.

On the other hand, part (a) holds true except that the bootstrap statistic will converge in probability to

BS
(

[0, 1]
2

;κ†4

)
, where κ†4 = p limT→∞ κ̂4 with κ̂4 given in (2.16).

4. MONTE CARLO EXPERIMENT: EMPIRICAL EXAMPLES

The purpose of this section is to present a Monte Carlo experiment to shed some light on the finite

sample performance of the bootstrapped version of our preferred test T Pn,B. We consider sample sizes

of T = 256, 512 and 1024. For each combination of T , n and models considered in the experiment, we

conduct 1,000 simulation runs. To save computational time, for each run, we compute only one bootstrap

counterpart. The bootstrapped distribution is obtained by stacking those statistics across iterations, and

then used to construct critical values and confidence regions at the desired levels. This is the idea behind

the WARP algorithm of Giacomini et al. (2013).

4.1. Level considerations and choice of block sizes.

We study the nominal level of the bootstrapped modified statistic, given in equation (b) of Theorem

3, with the following ARMA(2, 1) model. We simulate

(4.1) xt,T = φ1xt−1,T + φ2xt−2,T + εt,T + θεt−1,T

for several combinations of the parameter vector (φ1, φ2, θ). In all specifications, εt ∼ NID(0, 1). Model

(4.1) nests models (4.2)-(4.4) considered by Dette et al. (2011) and implemented as models (4.2)-(4.3)

by Preuß et al. (2013). For the sake of comparison, their tests are also replicated here.

The AR (1) model corresponds to φ2 = θ = 0. The results for various φ1 are reported in Table 1.1

Even for small sample sizes such as T = 256, the rejection probabilities are close to the 5% and 10%

values. As T increases, the size distortions become very small, especially when |φ1| is close to zero.

The behavior of the Cramér-von-Mises (CvM) and Komolgorov-Smirnov (KS) functionals appear to be

similar. While neither statistic clearly dominates the other, the latter emerges slightly more robust for

small values of the parameters.2 Since the choice of block size is an inherent aspect of the test,3 we

examine the sensitivity of the test to that choice by computing the test for a grid of values for n. For

that purpose, we consider three values of n for each sample size T .4 It seems that the best performance

for T = 256 is n = 32; for T = 512, n = 32; and finally for T = 1024, n = 128. For the sake of clarity, in

the tables that follow, we have marked those pairs with the “.” sign. It appears that the test is not too

sensitive to the choice of n.5

1Table 4 in the appendix presents rejection probabilities of the null hypothesis of weak stationarity of the non-bootstrapped
statistics.
2We also present the distribution of the non-bootstrapped statistics in Table 4. As previously mentioned, at small sample

sizes, the asymptotic distribution does not provide a reasonable approximation.
3For example, Dette et al. (2011, p. 1118) remark that “(...) any statistical inference in locally stationary process depend

on the choice of [the parameters] in the definition of the local periodogram.”
4In all cases, we limit ourselves to sample and block sizes with length of powers of 2. This allows more efficient computation

of fast Fourier transform algorithms.
5Block size n can also be chosen by minimizing the integrated mean squared error or, alternatively, by cross-validation.
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Table 2 reports rejection probabilities for different values of the parameters of model (4.1). Assuming

φ1 = φ2 = 0.3 and θ = 0, we obtain an autoregressive process with real roots; the process at parameters

φ1 = 0.4, φ2 = −0.3 and θ = 0 exhibits complex roots. The remaining cases contemplate two ARMA(1, 1)

and one ARMA(2, 1) processes. Size is again well-approximated at small sample sizes, block sizes and

parameter values.

Overall, the Monte Carlo results show that size distortions for the CvM and KS tests are quite small

and they have comparable performance. We observe, however, very significant size distortions by Preuß

et al. (2013) at the set of parameters (φ1, φ2, θ) = (0.4,−0.7, 0), (0.5, 0, 0.5) and (0.3, 0.3, 0.5).

4.2. Power considerations.

We study the power performance of the test with recourse to the following five data-generating pro-

cesses (DGPs)

xt,T =

0.2xt−1,T + et,T , t = 2, . . . , T2

0.7xt−1,T + et,T , t = T
2 + 1, . . . , T

(4.2)

xt,T =

0.4xt−1,T − 0.7xt−2,T + et,T , t = 2, . . . , T2

0.3xt−1,T + 0.3xt−2,T + et,T , t = T
2 + 1, . . . , T

(4.3)

xt,T =

0.3xt−1,T + 0.3xt−2,T + et,T , t = 2, . . . , T2

0.8xt−1,T + et,T , t = T
2 + 1, . . . , T

(4.4)

xt,T = 0.6 sin (4πt/T )xt−1,T + et,T(4.5)

xt,T = 1.1 cos (1.5− cos(4πt/T )) et−1,T + et,T(4.6)

The first DGP is a break of the AR(1) coefficient. The break in the second DGP is such that the roots

switch from complex to real. The third model considers a change in the order of the autoregressive model.

Finally, the fourth and fifth models have changing coefficients with t and originating from Dette et al.

(2011), equations (4.6) and (4.7).

In Table 3, we observe that deviation from the null hypothesis is detected at a reasonable frequency,

which increases quickly as T grows. For T = 2048, the rejection probabilities are either very close to one

or the rejection of the null is obtained in every simulation run. At smaller sample sizes, power is naturally

higher for those DGPs that impose a large change in the spectral density functions, particularly (4.3).

The KS functional shows slightly higher power than CvM in small sample sizes, particularly DGPs (4.2)

and (4.4).

For data generated according to DGP (4.2), Dette et al. (2011) achieves comparable power relative

to CvM, followed by the KS functional; Preuß et al. (2013) obtains higher power at small sample

sizes. A similar pattern is observed in DGP (4.4). The ordering, however, appears inverted for DGP

(4.3) and approximately so for (4.5) and (4.6). We note that our test achieves reasonable power for all

data-generating processes and more stable results compared to the tests above.

We summarize the size and power simulation results in Figure 1. The complete set of results is shown

in Appendix Tables 1-3.

4.3. Empirical examples. We implement the proposed test to check the stability of the dynamics on

two real data sets. In our first application, we present evidence that inflation dynamics are not constant

over time in the United States. We use data on the baseline Consumer Price Index (CPI) obtained
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Figure 1. Rejection probabilities for CvM, KS, Dette et al. (2011) and Preuss et al.
(2013) statistics
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(4.3) (4.4) (4.5) (4.6) (4.7)

Note: Rejection probabilities for several combinations of T and n, represented by the notation T/n. DGPs implemented

for size assessments are grayed out, and DGPs (4.3)-(4.7) for power assessments are individually labelled.

by the U.S. Bureau of Labour Statistics, between September 1959 and August 2015, for a total of 768

observations.

Our second application replicates the neuroscience example of Dette et al. (2011), also used by von

Sachs and Neumann (2000) and Paparoditis (2009).6 The authors analyze a data set of tremor activities

recorded in the Cognitive Neuroscience Laboratory of the University of Quebec at Montreal from subjects

with Parkinson’s Disease. The aim is to compare different regions of patients’ brain activity. The data

has 3, 072 observations.

To guarantee weak stationarity for both sequences, we take first differences ∆xt,T = xt,T − xt−1,T .

Figure 2 presents the smoothed spectral density estimate

f̂(u;λ) =
2π

n

n∑
j=1

1

k
K

(
λ− λj
k

)
Ix,b(j),

6We thank Efstathios Paparoditis for sharing these data.
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Figure 2. Estimates of local spectral density for Consumer Price Index (left) and tremor
data (right)
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Note: Consumer Price Index, sourced from the Bureau of Labor Statistics (available at

https://www.bls.gov/cpi/). Tremor data from Dette et al. (2011). We present time-series plots of both

series in Figure 3 in Appendix I.

where K(·) denotes the Bartlett-Priestley kernel. A similar approach is introduced by Dette et al. (2011)

and Paparoditis (2009). For the CPI application, we choose n = 64 and k = 0.01, whereas for the

neuroscience data, we employ n = 256 and k = 0.18.7 The figures strongly suggest that the spectral

densities vary over time, especially at lower frequencies.

In Table 5 we present the Cramér-von-Mises (CvM) and Kolmogorov-Smirnov (KS) test statistics for

the CPI data, along with the bootstrapped 10%, 5% and 1% critical values.8 The block sizes considered

are in line with simulations presented in the previous subsection. In all cases, the null hypothesis is

rejected at the 1% level, with the outcome of the test not being sensitive to the choice of the bandwidth

parameter and the p-value being clearly less than 1%.

For the neuroscience application, in line with Dette et al. (2011) and others, we reject the null

hypothesis at the 1% level. Bootstrapped critical values and test statistics are presented in Table 6.

5. CONCLUSION

In this paper, we describe and examine a simple test for the hypothesis of stable dynamics without

assuming any parametric family under the null hypothesis. One interesting aspect of the test is that,

even without knowledge of the spectral density function under the null hypothesis, there is no need to

choose any bandwidth or smoothing parameter for its implementation, besides the choice of the length of

the block size n. A second interesting aspect of the test is that its asymptotic distribution is pivotal. We

also describe a modification of the test such that its asymptotic behavior only depends on κ4. Based on

the canonical decomposition of the spectral density function as given by Whittle (1963), see also Hannan

(1970) or Brillinger (1981), we examine a consistent estimator of κ4. In addition, the test does not

require any type of “bias” adjustments for its implementation, and it is able to detect local alternatives

converging to the null hypothesis at the parametric rate T−1/2.

7Again, this is done following Dette et al. (2011) and Paparoditis (2009).
8We use 500 iterations in each case.
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APPENDIX I: TABLES AND FIGURES

Table 1. Rejection probabilities (size), model (4.1) with φ2 = θ = 0

φ1 = −0.5 φ1 = −0.25 φ1 = 0 φ1 = 0.25 φ1 = 0.5
T n 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

CvM
256 16 0.064 0.117 0.050 0.124 0.053 0.136 0.054 0.133 0.073 0.130

. 256 32 0.071 0.123 0.068 0.114 0.064 0.124 0.051 0.104 0.046 0.078
256 64 0.068 0.112 0.042 0.095 0.050 0.109 0.048 0.109 0.046 0.095

. 512 32 0.088 0.140 0.052 0.095 0.055 0.094 0.060 0.116 0.038 0.077
512 64 0.052 0.098 0.066 0.115 0.036 0.071 0.068 0.109 0.053 0.091
512 128 0.033 0.080 0.057 0.095 0.046 0.105 0.042 0.091 0.054 0.099

1024 32 0.108 0.176 0.071 0.125 0.045 0.081 0.069 0.134 0.031 0.081
. 1024 64 0.053 0.103 0.050 0.108 0.044 0.103 0.056 0.104 0.047 0.076

1024 128 0.042 0.091 0.046 0.083 0.053 0.094 0.064 0.107 0.041 0.081

KS
256 16 0.040 0.106 0.054 0.096 0.061 0.101 0.051 0.107 0.063 0.111

. 256 32 0.047 0.098 0.058 0.112 0.050 0.106 0.048 0.108 0.043 0.102
256 64 0.050 0.128 0.052 0.115 0.057 0.114 0.048 0.091 0.036 0.077

. 512 32 0.047 0.092 0.042 0.079 0.047 0.109 0.055 0.091 0.042 0.088
512 64 0.086 0.137 0.045 0.109 0.082 0.145 0.039 0.072 0.052 0.099
512 128 0.038 0.079 0.050 0.093 0.060 0.119 0.040 0.092 0.040 0.090

1024 32 0.054 0.108 0.032 0.086 0.047 0.086 0.075 0.104 0.033 0.073
. 1024 64 0.050 0.105 0.046 0.098 0.060 0.101 0.060 0.104 0.048 0.080

1024 128 0.063 0.114 0.047 0.087 0.060 0.091 0.058 0.121 0.044 0.084

Dette et al. (2011)

256 16 0.040 0.143 0.043 0.147 0.052 0.105 0.044 0.086 0.066 0.108
256 32 0.042 0.102 0.041 0.110 0.045 0.088 0.047 0.091 0.063 0.103
256 64 0.044 0.111 0.039 0.086 0.051 0.090 0.039 0.079 0.069 0.123

512 32 0.043 0.132 0.050 0.126 0.043 0.107 0.056 0.098 0.057 0.105
512 64 0.038 0.092 0.047 0.085 0.049 0.102 0.060 0.109 0.077 0.126
512 128 0.051 0.109 0.049 0.088 0.048 0.092 0.043 0.093 0.049 0.108

1024 32 0.136 0.276 0.105 0.223 0.065 0.144 0.046 0.102 0.055 0.092
1024 64 0.051 0.129 0.047 0.099 0.070 0.116 0.041 0.083 0.054 0.093
1024 128 0.031 0.084 0.054 0.096 0.044 0.094 0.045 0.084 0.051 0.089

Preuß et al. (2013)

256 16 0.007 0.049 0.045 0.077 0.042 0.092 0.025 0.081 0.029 0.055
256 32 0.026 0.050 0.034 0.074 0.035 0.077 0.036 0.079 0.010 0.057
256 64 0.021 0.064 0.043 0.078 0.046 0.094 0.023 0.062 0.019 0.050

512 32 0.032 0.096 0.043 0.079 0.038 0.089 0.054 0.094 0.024 0.057
512 64 0.040 0.071 0.027 0.085 0.039 0.088 0.045 0.092 0.019 0.063
512 128 0.023 0.068 0.056 0.108 0.037 0.082 0.046 0.109 0.029 0.088

1024 32 0.055 0.097 0.038 0.104 0.046 0.075 0.044 0.081 0.025 0.075
1024 64 0.045 0.098 0.036 0.106 0.037 0.086 0.035 0.081 0.028 0.064
1024 128 0.047 0.095 0.063 0.109 0.060 0.107 0.035 0.078 0.039 0.086
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Table 2. Rejection probabilities (size), model (4.1), various parameters

φ1 = 0.3 φ1 = 0.4 φ1 = 0.5 φ1 = −0.5 φ1 = 0.3
φ2 = 0.3 φ2 = −0.7 φ2 = 0 φ2 = 0 φ2 = 0.3
θ = 0 θ = 0 θ = 0.5 θ = 0.5 θ = 0.5

T n 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

CvM
256 16 0.094 0.152 0.187 0.325 0.061 0.112 0.057 0.113 0.087 0.140

. 256 32 0.027 0.081 0.076 0.140 0.036 0.095 0.065 0.114 0.032 0.078
256 64 0.042 0.089 0.055 0.108 0.068 0.126 0.035 0.082 0.033 0.092

. 512 32 0.028 0.070 0.111 0.162 0.030 0.063 0.086 0.143 0.040 0.088
512 64 0.037 0.082 0.113 0.171 0.026 0.093 0.049 0.106 0.035 0.077
512 128 0.040 0.083 0.088 0.155 0.039 0.080 0.036 0.094 0.038 0.092

1024 32 0.047 0.096 0.145 0.232 0.032 0.069 0.056 0.102 0.098 0.133
. 1024 64 0.033 0.067 0.086 0.164 0.047 0.096 0.053 0.095 0.071 0.133

1024 128 0.040 0.087 0.077 0.129 0.054 0.094 0.053 0.105 0.051 0.092

KS
256 16 0.099 0.167 0.131 0.211 0.041 0.084 0.047 0.091 0.094 0.147

. 256 32 0.041 0.086 0.057 0.122 0.049 0.097 0.050 0.099 0.034 0.086
256 64 0.047 0.107 0.065 0.109 0.039 0.088 0.040 0.097 0.036 0.069

. 512 32 0.041 0.084 0.098 0.166 0.030 0.071 0.029 0.069 0.044 0.078
512 64 0.040 0.085 0.079 0.124 0.035 0.072 0.048 0.097 0.053 0.109
512 128 0.047 0.104 0.051 0.118 0.049 0.103 0.056 0.106 0.063 0.121

1024 32 0.055 0.095 0.076 0.117 0.057 0.087 0.036 0.066 0.071 0.112
. 1024 64 0.043 0.092 0.058 0.115 0.026 0.071 0.065 0.121 0.082 0.092

1024 128 0.043 0.091 0.046 0.096 0.036 0.080 0.049 0.088 0.020 0.112

Dette et al. (2011)

256 16 0.043 0.076 0.078 0.116 0.072 0.130 0.044 0.102 0.066 0.110
256 32 0.068 0.099 0.076 0.126 0.073 0.122 0.061 0.113 0.086 0.131
256 64 0.051 0.097 0.070 0.107 0.075 0.125 0.055 0.095 0.070 0.121

512 32 0.070 0.101 0.066 0.115 0.076 0.133 0.045 0.101 0.078 0.127
512 64 0.063 0.106 0.075 0.110 0.070 0.117 0.044 0.107 0.065 0.112
512 128 0.062 0.109 0.061 0.116 0.055 0.103 0.045 0.104 0.061 0.098

1024 32 0.058 0.093 0.058 0.099 0.063 0.112 0.062 0.134 0.057 0.099
1024 64 0.063 0.096 0.079 0.129 0.060 0.100 0.044 0.100 0.059 0.104
1024 128 0.076 0.124 0.069 0.131 0.066 0.099 0.054 0.111 0.064 0.111

Preuß et al. (2013)

256 16 0.026 0.067 0.218 0.384 1.000 1.000 0.021 0.066 0.155 0.317
256 32 0.024 0.064 0.203 0.443 1.000 1.000 0.040 0.073 0.088 0.216
256 64 0.015 0.061 0.182 0.367 1.000 1.000 0.051 0.097 0.039 0.104

512 32 0.049 0.081 0.588 0.082 1.000 1.000 0.038 0.084 0.179 0.293
512 64 0.053 0.098 0.654 0.868 1.000 1.000 0.043 0.088 0.111 0.244
512 128 0.046 0.091 0.586 0.764 1.000 1.000 0.039 0.080 0.094 0.238

1024 32 0.054 0.124 0.979 1.000 1.000 1.000 0.060 0.114 0.281 0.453
1024 64 0.048 0.095 0.921 0.996 1.000 1.000 0.041 0.070 0.229 0.352
1024 128 0.071 0.131 0.980 1.000 1.000 1.000 0.057 0.102 0.155 0.247
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Table 3. Rejection probabilities (power), models (4.2)- (4.6)

(4.2) (4.3) (4.4) (4.5) (4.6)
T n 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

CvM
256 16 0.075 0.164 0.425 0.571 0.213 0.297 0.129 0.192 0.196 0.303

. 256 32 0.018 0.053 0.212 0.311 0.043 0.127 0.097 0.167 0.204 0.359
256 64 0.053 0.112 0.082 0.149 0.085 0.188 0.051 0.121 0.068 0.125

. 512 32 0.003 0.050 0.499 0.683 0.056 0.150 0.089 0.193 0.448 0.628
512 64 0.093 0.227 0.335 0.539 0.167 0.297 0.112 0.216 0.350 0.563
512 128 0.321 0.488 0.331 0.573 0.226 0.421 0.096 0.223 0.160 0.361

1024 32 0.012 0.136 0.981 0.991 0.084 0.326 0.508 0.700 0.960 0.987
. 1024 64 0.211 0.396 0.945 0.996 0.385 0.591 0.664 0.770 0.973 0.997

1024 128 0.581 0.827 0.957 0.998 0.565 0.762 0.579 0.775 0.967 0.992

. 2048 64 0.691 0.937 1.000 1.000 0.642 0.844 0.995 0.998 1.000 1.000
2048 128 0.972 0.997 1.000 1.000 0.772 0.964 0.986 1.000 1.000 1.000
2048 256 0.997 1.000 1.000 1.000 0.974 0.996 0.987 0.998 1.000 1.000

KS
256 16 0.169 0.252 0.398 0.585 0.288 0.415 0.071 0.204 0.220 0.424

. 256 32 0.064 0.118 0.232 0.378 0.154 0.252 0.102 0.206 0.223 0.441
256 64 0.153 0.241 0.082 0.156 0.164 0.266 0.114 0.246 0.182 0.350

. 512 32 0.117 0.232 0.542 0.736 0.248 0.374 0.128 0.288 0.464 0.665
512 64 0.167 0.349 0.263 0.551 0.372 0.530 0.262 0.394 0.579 0.714
512 128 0.360 0.551 0.316 0.549 0.403 0.584 0.103 0.254 0.259 0.496

1024 32 0.162 0.441 0.985 1.000 0.416 0.651 0.712 0.881 0.986 0.997
. 1024 64 0.498 0.718 0.959 0.998 0.638 0.800 0.711 0.903 0.998 1.000

1024 128 0.750 0.907 0.989 1.000 0.679 0.831 0.651 0.797 0.984 0.998

. 2048 64 0.799 0.948 1.000 1.000 0.978 0.994 0.995 1.000 1.000 1.000
2048 128 0.978 1.000 1.000 1.000 0.982 1.000 1.000 1.000 1.000 1.000
2048 256 0.998 1.000 1.000 1.000 0.990 1.000 1.000 1.000 1.000 1.000

Dette et al. (2011)

256 16 0.022 0.107 0.452 0.710 0.026 0.085 0.631 0.817 0.837 0.919
256 32 0.029 0.125 0.466 0.736 0.021 0.066 0.508 0.714 0.752 0.862
256 64 0.051 0.172 0.535 0.759 0.020 0.071 0.294 0.489 0.487 0.675

512 32 0.144 0.354 0.907 0.976 0.038 0.142 0.941 0.973 0.990 0.998
512 64 0.186 0.388 0.916 0.997 0.035 0.119 0.851 0.932 0.970 0.986
512 128 0.244 0.460 0.911 0.978 0.047 0.147 0.328 0.514 0.440 0.600

1024 32 0.485 0.705 0.990 1.000 0.086 0.227 0.999 1.000 1.000 1.000
1024 64 0.562 0.772 1.000 1.000 0.115 0.285 1.000 1.000 1.000 1.000
1024 128 0.611 0.796 0.996 1.000 0.129 0.294 0.990 1.000 1.000 1.000

Preuß et al. (2013)

256 16 0.049 0.160 0.000 0.020 0.020 0.028 0.095 0.187 0.155 0.210
256 32 0.238 0.433 0.000 0.000 0.021 0.154 0.072 0.134 0.094 0.177
256 64 0.420 0.590 0.000 0.000 0.060 0.190 0.075 0.126 0.063 0.138

512 32 0.781 0.890 0.000 0.060 0.279 0.583 0.113 0.234 0.172 0.307
512 64 0.907 0.949 0.000 0.000 0.603 0.754 0.125 0.203 0.197 0.310
512 128 0.959 0.984 0.000 0.012 0.671 0.853 0.131 0.225 0.123 0.219

1024 32 0.995 0.999 0.012 0.243 0.940 0.972 0.357 0.539 0.807 0.884
1024 64 0.999 0.999 0.005 0.178 0.984 0.995 0.474 0.626 0.811 0.931
1024 128 1.000 1.000 0.032 0.224 0.990 0.994 0.483 0.739 0.800 0.900
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Table 4. Rejection probabilities (size), non-bootstrapped CvM and KS statistics,
model (4.1) with φ2 = θ = 0

φ1 = −0.5 φ1 = −0.25 φ1 = 0 φ1 = 0.25 φ1 = 0.5
T n 5% 10% 5% 10% 5% 10% 5% 10% 5% 10%

CvM
256 32 0.029 0.045 0.030 0.040 0.039 0.049 0.029 0.045 0.035 0.047
256 64 0.030 0.040 0.017 0.022 0.021 0.026 0.018 0.023 0.020 0.026
256 128 0.008 0.017 0.014 0.021 0.012 0.016 0.014 0.021 0.016 0.020

512 64 0.069 0.098 0.099 0.119 0.077 0.104 0.092 0.122 0.092 0.125
512 128 0.056 0.081 0.053 0.069 0.071 0.087 0.054 0.069 0.053 0.070
512 256 0.034 0.047 0.037 0.043 0.030 0.043 0.038 0.043 0.039 0.046

1024 128 0.167 0.213 0.184 0.232 0.167 0.197 0.183 0.234 0.186 0.236
1024 256 0.132 0.163 0.135 0.162 0.133 0.162 0.138 0.159 0.136 0.167
1024 512 0.079 0.097 0.083 0.099 0.094 0.111 0.086 0.103 0.086 0.101

KS
256 16 0.057 0.118 0.046 0.098 0.046 0.092 0.048 0.098 0.060 0.114
256 32 0.023 0.049 0.021 0.043 0.027 0.061 0.020 0.039 0.020 0.047
256 64 0.012 0.035 0.014 0.031 0.013 0.024 0.015 0.031 0.018 0.033

512 32 0.066 0.117 0.057 0.107 0.045 0.090 0.063 0.112 0.064 0.123
512 64 0.025 0.065 0.025 0.062 0.026 0.061 0.023 0.058 0.026 0.058
512 128 0.008 0.028 0.008 0.029 0.007 0.026 0.011 0.032 0.013 0.033

1024 64 0.070 0.159 0.059 0.141 0.062 0.128 0.063 0.136 0.074 0.143
1024 128 0.051 0.105 0.048 0.095 0.054 0.107 0.044 0.106 0.052 0.110
1024 256 0.033 0.073 0.035 0.071 0.031 0.067 0.037 0.070 0.031 0.069

Figure 3. CPI (left) and tremor data (right)

cp
i

1950 1960 1970 1980 1990 2000 2010

−
0.

01
0.

00
0.

01
0.

02

0 500 1000 1500 2000 2500 3000

−
0.

20
−

0.
15

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

tr
em

or

Table 5. U.S. Inflation Rate

n TS p-value 10% 5% 1%

CvM 32 2.958 < 0.002 1.043 1.147 1.340
CvM 64 3.363 < 0.002 1.137 1.246 1.501
CvM 128 3.264 < 0.002 1.057 1.144 1.315
KS 32 29.055 < 0.002 2.510 2.958 5.281
KS 64 39.683 < 0.002 3.227 4.361 6.802
KS 128 35.676 < 0.002 3.023 3.904 6.067
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Table 6. Neuroscience Data

n TS p-value 10% 5% 1%

CvM 64 2.059 < 0.002 1.279 1.345 1.597
CvM 128 1.980 0.012 1.556 1.712 1.985
CvM 256 1.830 < 0.002 1.224 1.329 1.550
CvM 512 1.368 0.008 0.986 1.145 1.332
KS 64 23.547 < 0.002 7.505 8.966 12.824
KS 128 20.775 < 0.002 11.276 14.389 18.939
KS 256 19.390 < 0.002 6.390 7.482 10.234
KS 512 14.781 < 0.002 6.651 8.557 10.397
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APPENDIX II: PROOF OF MAIN RESULTS

We introduce some notation. In what follows, we denote

I̊x,b (j) =
Ix,b (j)∣∣∣B (n(b−1)T ; j

)∣∣∣2 ; I̊x (j) =
1

B

B∑
b=1

I̊x,b (j)

Rn,b (j) = I̊x,b (j)− Iε,b (j) ; Rn (j) =
1

B

B∑
b=1

Rn,b (j)

I̊ε,b (j) = Iε,b (j)− 1; I̊ε (j) =
1

B

B∑
b=1

I̊ε,b (j)(5.1)

R̆n,b (j) = Rn,b (j)− E (Rn,b (j)) ; R̆n (j) =
1

B

B∑
b=1

R̆n,b (j) .

Observe that under H0, we have that I̊x,b (j) = f−1 (j) Ix,b (j). In addition, for notational simplicity, we

assume that σ2
ε = 1 without loss of generality.

We also introduce the following definition: We say that a process Xn,B

(
b∗

B ; j∗

ñ

)
satisfies Condition

BW if

sup
j∗=1,...,ñ;b∗=1,...,B

∣∣∣∣Xn,B

(
b∗

B
;
j∗

ñ

)∣∣∣∣ = op

(
T−1/2

)
.

Recall that according to Bickel and Wichura (1972), a sufficient condition for BW is that for some α ≥ 1

and δ > 0,

E
∣∣∣∣Xn,B

(
b∗2
B

;
j∗2
ñ

)
−Xn,B

(
b∗1
B

;
j∗2
ñ

)
−Xn,B

(
b∗2
B

;
j∗1
ñ

)
+ Xn,B

(
b∗1
B

;
j∗1
ñ

)∣∣∣∣α

(5.2) = o

(
1

Tα/2

(
j∗2 − j∗1
ñ

)1+δ (
b∗2 − b∗1

B

)1+δ
)

.

Finally, recall that T̆n,B
(

b∗

B ; j∗

ñ

)
≡ Tn,B

(
b∗

B ; j∗

ñ

)
under H0.

5.1. Proof of Proposition 1.

We begin by demonstrating the statistical properties of σ̂2
ε . Recall that is σ̂2

ε = B−1
∑B
b=1 σ̂

2
ε (b),

where σ̂2
ε (b) is given in (2.8). Now, we have that

(5.3) σ̂2
ε (b)− 1 =:

1

n

n∑
t=1

(
ε2t+(b−1)n − 1

)
+
(
σ̂2
ε (b)− σ̃2

ε (b)
)

,

recall that we assumed σ2
ε = 1 for notational simplicity, where

(5.4) σ̃2
ε (b) =

1

n

n∑
t=1

ε2t+(b−1)n; b = 1, ...,B.

From here and Lemma 7, it is obvious that σ̂2
ε − σ2

ε = op (1). Further,

1

T

T∑
t=1

ε̂4t =
1

B

B∑
b=1

1

n

n∑
t=1

(
ε̂4t+(b−1)n − ε

4
t+(b−1)n

)
+

1

B

B∑
b=1

1

n

n∑
t=1

ε4t+(b−1)n.

Now, the first term on the right side of the last displayed expression converges to zero in probability by

Lemma 8, whereas by Condition C1 and the weak law of large numbers, the second term converges to

3σ4
ε + κ4 in probability. Now, standard arguments conclude that κ̂4 − κ4 = op (1). �

5.2. Proof of Proposition 2.
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Using Taylor’s expansion around 1 of I̊x (j)
−1

, we obtain the following decomposition for T̆n,B
(

b∗

B ; j∗

ñ

)
,

1

ñ

j∗∑
j=1

{
1

B

b∗∑
b=1

{
I̊x,b (j)− I̊x (j)

} 2∑
k=0

(−1)
k

k!

(
I̊x (j)− 1

)k}

+
1

ñ

j∗∑
j=1

 1

B

b∗∑
b=1

{
I̊x,b (j)− I̊x (j)

} (
I̊x (j)− 1

)3
(1− α) + αI̊x (j)

 ,(5.5)

where α =: α (j) ∈ (0, 1). Notice that Lemma 4 and the well-known inequalities supj

∣∣∣I̊ε (j)
∣∣∣ =

Op
(
n1/4B−1/2

)
, and thus, by C2, this implies that

(
infj

∣∣∣I̊x (j)
∣∣∣)−1 < C for some finite positive constant

C; hence,

(5.6) sup
j

(
(1− α) + αI̊x (j)

)−1
= Op (1) .

We first examine the second term of (5.5) and in particular

1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

{
I̊x,b (j)− 1

} (
I̊x (j)− 1

)3
(1− α) + αI̊x (j)

(5.7)

=
1

ñ

j∗∑
j=1

1

B

(
b∗∑
b=1

Rn,b (j) +

b∗∑
b=1

I̊ε,b (j)

) (
I̊x (j)− 1

)3
(1− α) + αI̊x (j)

.

Now, because (5.6), we have that the contribution due to
∑b∗

b=1Rn,b (j) on the right side of (5.7) is∣∣∣∣∣∣ 1ñ
j∗∑
j=1

(
1

B

b∗∑
b=1

Rn,b (j)

) (
Rn (j)

)3
(1− α) + αI̊x (j)

∣∣∣∣∣∣
= Op (1)

 1

ñ

j∗∑
j=1

∣∣∣∣∣ 1

B

b∗∑
b=1

Rn,b (j)

∣∣∣∣∣ ∣∣Rn (j)
∣∣3

and hence Lemma 4 and Condition C2 imply that the second factor on the right side of the last displayed

equality satisfies (5.2) with α = 1 there and, hence, Condition BW . Similarly, the contribution due to∑b∗

b=1 I̊ε,b (j) on the right side of (5.7) is

Op (1)

 1

ñ

j∗∑
j=1

∣∣∣∣∣ 1

B

b∗∑
b=1

I̊ε,b (j)

∣∣∣∣∣ ∣∣∣I̊ε,b (j)
∣∣∣3


which satisfies (5.2) and, hence, Condition BW because

1

ñ

j∗2∑
j=j∗1+1

∣∣∣∣∣∣ 1

B

b∗
2∑

b=b∗
1+1

I̊ε,b (j)

∣∣∣∣∣∣
∣∣∣I̊ε,b (j)

∣∣∣3

≤ 4
1

ñ

j∗2∑
j=j∗1+1

∣∣∣∣∣∣ 1

B

b∗
2∑

b=b∗
1+1

I̊ε,b (j)

∣∣∣∣∣∣
4

+ 4
1

ñ

j∗2∑
j=j∗1+1

∣∣∣∣∣∣ 1

B

b∗
2∑

b=b∗
1+1

I̊ε,b (j)

∣∣∣∣∣∣
∣∣∣∣∣∣ 1

B

b∗
2∑

b 6=b∗
1+1

I̊ε,b (j)

∣∣∣∣∣∣
3

.

From here, the proof is standard after observing that I̊ε,b (j) and I̊ε,v (j) are independent if b 6= v, and

C2 implies that B−2 = o
(
B−1/2T−1/2

)
.
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Next, the first term of (5.5), which is

1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

{
R̆n,b (j)− R̆n (j)

} 2∑
k=0

(−1)
k

k!

(
I̊x (j)− 1

)k
(5.8)

+
1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

{
I̊ε,b (j)− I̊ε (j)

} 2∑
k=1

(−1)
k

k!

(
I̊x (j)− 1

)k

+
1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

{
I̊ε,b (j)− I̊ε (j)

}
since E

(
I̊x (j)

)
= E

(
I̊x,b (j)

)
and I̊x,b (j)− E

(
I̊x,b (j)

)
= R̆n,b (j) + I̊ε,b (j).

We first show the first term of (5.8) satisfies Condition BW . Indeed, by Lemmas 4 and 5, we have

that the contribution due to
∑2
k=1 R̆

k

n (j) in the term satisfies Condition BW . Thus, noticing that

I̊x (j)− 1 = R̆n (j) + E (Rn,b (j)) + I̊ε (j), it suffices to show that

(5.9)
1

ñ

j∗2∑
j=j∗1+1

 1

B

b∗
2∑

b=b∗
1+1

R̆n,b (j)

 2∑
k=0

(−1)
k

k!
I̊
k

ε (j) ,

satisfies (5.2). When k = 0, this is a direct consequence of Lemma 5. Next, because C1′ implies

that E
(
I̊ε (j)

2k
)

= O
(
B−k

)
, the Cauchy-Schwarz inequality, and then Lemma 5, indicates that the

contribution of the first absolute moment of the terms due to k = 2 in (5.9) is bounded by

1

Bñ

j∗2∑
j=j∗1+1

E
 1

B

b∗
2∑

b=b∗
1+1

R̆n,b (j)

2


1/2

=
C

T 1/2B

(
j∗2 − j∗1
ñ

)(
b∗2 − b∗1

B

)1/2

.

Thus, it satisfies (5.2) because C2 implies that for some δ > 0, B−1/2 ≤ T−δñ−δ.
To finish demonstrating that the first term of (5.8) satisfies Condition BW , it remains to do so for

(5.9) when k = 1, that is,

1

ñ

j∗2∑
j=j∗1+1

 1

B

b∗
2∑

b=b∗
1+1

R̆n,b (j)

 I̊ε (j) .

To that end, using (5.29) but with (2.27), (2.28) and (2.29) instead of (2.10) and (2.11) there, it suffices

to examine that

1

ñ

j∗2∑
j=j∗1+1

I̊ε (j)
1

B

b∗
2∑

b=b∗
1+1

(∣∣∣Ẏn,b (j; 0)
∣∣∣2 − E ∣∣∣Ẏn,b (j; 0)

∣∣∣2)(5.10)

1

ñ

j∗2∑
j=j∗1+1

I̊ε (j) Ĩε

(
j, n1/2

)
+

1

ñ

j∗2∑
j=j∗1+1

I̊ε (j)
(
Ĩε (j, 0)− Ĩε

(
j, n1/2

))
,(5.11)

satisfy Condition BW , where Ẏn,b (j; 0) = Y̌n,b (j; 0) + Ÿn,b (j) and

Ĩε (j; q) =
1

B

b∗
2∑

b=b∗
1+1

(
Jε,b (j) Ẏn,b (−j; q)− E

(
Jε,b (j) Ẏn,b (−j; q)

))
.
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Because ∣∣∣β̇t+bn,T (`)
∣∣∣ =

∣∣∣∣βt+bn,T (`)− β
(
nb

T
; `

)∣∣∣∣ = O
(
T−1 |υ (`)|

)
(5.12) ∣∣∣∣β̈( t+ nb

T
; `

)∣∣∣∣ =

∣∣∣∣β( t+ nb

T
; `

)
− β

(
nb

T
; `

)∣∣∣∣ ≤ Cυ (`) /n−1/2

it standard to conclude that the contribution to (5.10) or (5.11) of Ÿn,b (j) satisfies the sufficient condition

(5.2). Thus, it suffices to examine the behavior of (5.10) or (5.11) with Ẏn,b (j; 0) replaced with Y̌n,b (j; 0).

Now, standard inequalities yield that the first absolute moment of (5.10) is bounded by

1

ñ

j∗2∑
j=j∗1+1

E (I̊2ε (j)

)
E

∣∣∣∣∣∣ 1

B

b∗
2∑

b=b∗
1+1

∣∣Y̌n,b (j; 0)
∣∣2 − E ∣∣Y̌n,b (j; 0)

∣∣2∣∣∣∣∣∣
2


1/2

= O

(
1

B1/2ñ

(
j∗2 − j∗1
ñ

)(
b∗2 − b∗1

B

))
,

see (5.34) and (5.35) in Lemma 4. Therefore, Conditions C2′ and C2 imply that (5.10) satisfies Condition

BW .

Next, (5.11), with Ẏn,b (j; 0) replaced by Y̌n,b (j; 0). The second moment of the first term is

1

ñ2

j∗2∑
j,k=j∗1+1

E
(
I̊ε (j) I̊ε (k) Ĩε

(
j, n1/2

)
Ĩε

(
k, n1/2

))
= o

(
1

T

(
j∗2 − j∗1
ñ

)2(
b∗2 − b∗1

B

)2
)

using that
∑∞
`=n1/2 |β (u; `)| = o

(
n−1/2

)
by C1′ and the independence of the sequence {εt}t∈Z. Thus,

the first term of (5.11) satisfies Condition BW . Finally, consider the second term of (5.11). Using the

definition of Y̌n,b (j; a) in (2.28), it suffices to consider

1

ñ

j∗∑
j=1

I̊ε (j)B
(
u; e−iλj

) 1

B

b∗
2∑

b=b∗
1+1

(
Jε,b (j) Ýn,b

(
−j;n1/2

)
− EJ ε,b (j) Ýn,b

(
−j;n1/2

))
,

where Ýn,b

(
−j;n1/2

)
= n−1/2

∑n1/2

`=1 `
1/2β (u; `) e−i`λj

(
`−1/2

∑n
t=n−` εt+(b−1)ne

−itλj
)
. However,

E
∣∣∣Ýn,b

(
−j;n1/2

)∣∣∣2 = o
(
n−1

)
, and thus, the second moment of the last displayed expression is

O

((
j∗2−j

∗
1

n

)2 (
b∗

2−b
∗
1

B

)
/B2n

)
, and hence, it satisfies Condition BW by Condition C2. This completes

the proof that the first term of (5.8) satisfies Condition BW .

Next, the second term of (5.8), i.e.,

1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

{
I̊ε,b (j)− I̊ε (j)

} 2∑
k=1

(−1)
k

k!

(
R̆n (j) + E (Rn,b (j)) + I̊ε (j)

)k
.

Proceeding as with the first term of (5.8), the contribution due to R̆n (j)+E (Rn,b (j)) satisfies Condition

BW . Thus, we only need to examine

(5.13)
1

ñ

j∗∑
j=1

(
1

B

b∗∑
b=1

I̊ε,b (j)− b∗

B
I̊ε (j)

)
2∑
k=1

(−1)
k

k!
I̊
k

ε (j) .
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The contribution due to k = 2 is op
(
T−1/2

)
uniformly in j∗ and b∗ because supj∗

∣∣∣∑j∗

j=1 aj

∣∣∣ ≤∑ñ
j=1 |aj |,

E
(∑b∗

2

b=b∗
1+1 I̊ε,b (j)

)2k
= O

(
(b∗2 − b∗1)

k
)

, and then Condition C2 implies that

E

sup
j∗

1

ñ

∣∣∣∣∣∣
j∗∑
j=1

1

B

b∗
2∑

b=b∗
1+1

I̊ε,b (j) I̊
2

ε (j)

∣∣∣∣∣∣


≤ 1

ñ

ñ∑
j=1

E

∣∣∣∣∣∣ 1

B

b∗
2∑

b=b∗
1+1

I̊ε,b (j) I̊
2

ε (j)

∣∣∣∣∣∣
 = o

(
1

T 1/2

(
b∗2 − b∗1

B

)1+δ
)

.

Next, the contribution due to k = 1 in (5.13), which is

1

ñ

j∗∑
j=1

1

B

(
b∗∑
b=1

I̊ε,b (j) I̊ε (j)− b∗

B

(
1 +

κ4
n

))

−b∗

B

1

ñ

j∗∑
j=1

{
I̊
2

ε (j)− 1

B

(
1 +

κ4
n

)}

after we realize that E
(∑b∗

b=1 I̊ε,b (j) I̊ε (j)
)

= b∗E
(
I̊
2

ε (j)

)
=
(
1 + κ4

n

)
b∗/B. Thus, it suffices to

examine the behavior of

E

 1

ñ

j∗2∑
j=j∗1+1

 1

B

b∗
2∑

b=b∗
1+1

I̊ε,b (j) I̊ε (j)− (b∗2 − b∗1)

B2

(
1 +

κ4
n

)
2

which is

1

ñ2


j∗2∑

j,k=j∗1+1

E

 1

B

b∗
2∑

b=b∗
1+1

I̊ε,b (j) I̊ε (k)

 E
 1

B

b∗
2∑

b=b∗
1+1

I̊ε,b (k) I̊ε (j)


+

j∗2∑
j,k=j∗1+1

E

 1

B

b∗
2∑

b=b∗
1+1

I̊ε,b (j)
1

B

b∗
2∑

b=b∗
1+1

I̊ε,b (k)

 E (I̊ε (j) I̊ε (k)
)

+

j∗2∑
j,k=j∗1+1

1

B2

b∗
2∑

b,v=b∗
1+1

Cum
(
I̊ε,b (j) ; I̊ε,v (k) ; I̊ε (j) ; I̊ε (k)

)
= O

(
(j∗2 − j∗1) (b∗2 − b∗1) /B3n2

)
using Brillinger’s (1980) Theorems 2.3.2 and 4.3.1., and in particular expressions in (2.3.7) and (4.3.15)),

as (5.55) and

j∗2∑
j,k=j∗1+1

b∗
2∑

b=b∗
1+1

Cum (Iε,b (j) ; Iε,b (j) ; Iε,b (k) ; Iε,b (k)) = O ((b∗2 − b∗1) (j∗2 − j∗1)) .

Recall that C1′ implies that I̊ε,b1 (j) and I̊ε,b2 (k) are independent for all j, k if b1 6= b2.

Therefore, we conclude that uniformly in j∗ and b∗, the first and second terms of (5.8) satisfy Condition

BW , and hence, (5.5) is

1

ñ

j∗∑
j=1

1

B

b∗∑
p=1

{
I̊ε,b (j)− I̊ε (j)

}
+ op

(
1

T 1/2

)
,
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as we showed above that the second term of (5.5) satisfied (5.2). Thus, the proof is completed if we show

that the first term of the last displayed expression

(5.14)
1

(ñB)
1/2


j∗∑
j=1

b∗∑
b=1

I̊ε,b (j)−
(
b∗

B

) j∗∑
j=1

B∑
b=1

I̊ε,b (j)

⇒ BS ([0, 1]
2
)

.

To that end, it is standard to show that

1

ñB
E

 j∗1∑
j=1

b∗
1∑

b=1

I̊ε,b (j)

j∗2∑
k=1

b∗
2∑

v=1

I̊ε,v (k)

 =
b∗1
B

[(
j∗1
ñ

)
+

(
j∗1
ñ

)(
j∗2
ñ

)
κ4

]
,

where we have assumed without loss of generality that j∗1 ≤ j∗2 and b∗1 ≤ b∗2 and the independence of

I̊ε,b (j) and I̊ε,v (j) for b 6= v by Condition C1′. Thus, the covariance structure of (5.14) is, after standard

algebra, given by (2.30).

From here, the proof concludes by standard arguments if we show that

1

(ñB)
1/2

j∗∑
j=1

b∗∑
b=1

I̊ε,b (j) =
1

(ñB)
1/2

b∗∑
b=1

j∗∑
j=1

I̊ε,b (j)

converges in distribution to a normal random variable. However, this is the case, as ñ−1/2
∑j∗

j=1 I̊ε,b (j)

is a triangular array of independent identically distributed random variables with finite second moments.

This completes the proof. �

5.3. Proof of Theorem 1.

We shall look at part (a) only, as part (b) follows by part (a) and the continuous mapping theorem.

To that end, it suffices to examine the difference

(5.15)
1

ñ

j∗∑
j=1

{
T Pn,B

(
b∗

B
; j

)
− Tn,B

(
b∗

B
; j

)}
.

To that end, we first examine

(5.16)
1

ñB

j∗∑
j=1

b∗∑
b=1

Ix,b (j)

f (j)

{
1

σ̂2
ε (b)

− 1

}
=

3∑
`=1

Φn,` (j∗,b∗) + op

(
T−1/2

)
,

where the right side is due to Taylor’s expansion because Theorem 1 and C2 imply that E
{
σ̂2
ε (b)− 1

}4
=

O
(
B−2

)
= o

(
T−1/2

)
and supb=1,...,B

∣∣σ̂2
ε (b)− 1

∣∣2 = op (B/n) then yields that op
(
T−1/2

)
is uniformly

in j∗ and b∗, and where

Φn,1 (j∗,b∗) =
j∗

ñB

b∗∑
b=1

3∑
k=1

(−1)
k

k!

{
σ̂2
ε (b)− 1

}k
(5.17)

Φn,2 (j∗,b∗) =
1

ñB

j∗∑
j=1

b∗∑
b=1

Rn,b (j)

3∑
k=1

(−1)
k

k!

{
σ̂2
ε (b)− 1

}k
(5.18)

Φn,3 (j∗,b∗) =
1

ñB

j∗∑
j=1

b∗∑
b=1

I̊ε,b (j)

3∑
k=1

(−1)
k

k!

{
σ̂2
ε (b)− 1

}k
.(5.19)
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First we examine (5.19). The contribution due to the terms when k = 2, 3 is easily shown to satisfy

(5.2) and hence Condition BW , and thus, we will only consider k = 1, which is

(5.20)
1

ñB

b∗∑
b=1

{
σ̃2
ε (b)− σ̂2

ε (b)
} j∗∑
j=1

I̊ε,b (j)− 1

ñB

b∗∑
b=1

{
σ̃2
ε (b)− 1

} j∗∑
j=1

I̊ε,b (j)

using the notation in (5.3).

Next, because E
(
σ̃2
ε (b)− 1

)4
= O

(
n−2

)
, the second term of (5.20) satisfies Condition BW because

E

∣∣∣∣∣∣ 1

ñB

b∗
2∑

b=b∗
1+1

{
σ̃2
ε (b)− 1

} j∗2∑
j=j∗1+1

I̊ε,b (j)

∣∣∣∣∣∣
2

≤ b∗2 − b∗1
B2n2

b∗
2∑

b=b∗
1+1

E

∣∣∣∣∣∣{σ̃2
ε (b)− 1

} j∗2∑
j=j∗1+1

I̊ε,b (j)

∣∣∣∣∣∣
2

= op

(
1

T

(
j∗2 − j∗1
ñ

)1+δ (
b∗2 − b∗1

B

)2
)

,

by the Cauchy-Schwarz inequality and then Condition C2.

Now, due to Lemma 7, the first term of (5.20) is

(5.21)
dn
ñB

b∗∑
b=1

(
1

n

n∑
p=1

ψ̆b,n (p) +
1

B

)
j∗∑
j=1

I̊ε,b (j) +
Ψn,1

ñB

b∗∑
b=1

Ψn,2 (b)

∣∣∣∣∣∣
j∗∑
j=1

I̊ε,b (j)

∣∣∣∣∣∣ ,
where using notation before Lemma 6,

(5.22) ψ̆b,n (p) = A−1 (p)ψ1,n (p) I̊ε,b (p) .

Because EΨ2
n,2 (b) = O

(
B−3 + n−2

)
,

(5.23) sup
j∗,b∗

∣∣∣∣∣∣ 1

(ñB)
1/2

b∗∑
b=1

j∗∑
j=1

I̊ε,b (j)

∣∣∣∣∣∣ = Op (1) ; sup
j∗

∣∣∣∣∣∣ 1

ñ1/2

j∗∑
j=1

I̊ε,b (j)

∣∣∣∣∣∣ = Op (1)

we can conclude then by C2 that the first term of (5.20) satisfies condition BW if the first term of (5.21)

does. Therefore, we need to examine the behavior of

(5.24)
1

n

ñ∑
p=1

A−1 (p) ξ(1) (p, j) +
1

n

ñ∑
p=1

A−1 (p) ξ(2) (p, j) ,

where

ξ(1) (p, j) =

n∑
`=1

ς`p

 1

B

b∗
2∑

v=b∗
1+1

I̊ε,v (`)

 1

ñB

b∗
2∑

b=b∗
1+1

I̊ε,b (p)

j∗2∑
j=j∗1+1

I̊ε,b (j)


ξ(2) (p, j) =

n∑
`=1

ς`p

 1

B

b∗
2∑

v 6=b∗
1+1

I̊ε,v (`)

 1

ñB

b∗
2∑

b=b∗
1+1

I̊ε,b (p)

j∗2∑
j=j∗1+1

I̊ε,b (j)

 .
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The second moment of ξ(2) (p, j) is

n∑
`1,`2=1

ς`1pς`2p

 1

B2

b∗
2∑

v 6=b∗
1+1

E
(
I̊ε,v (`1) I̊ε,v (`2)

)
× 1

(ñB)
2 E


b∗

2∑
b=b∗

1+1

I̊ε,b (p)

j∗2∑
j=j∗1+1

I̊ε,b (j)

b∗
2∑

b=b∗
1+1

I̊ε,b (p)

j∗2∑
j=j∗1+1

I̊ε,b (j)


= O

(
log2 n

nB2

(
b∗2 − b∗1

B

)2(
j∗2 − j∗1
ñ

))
by Condition C1 and using (5.55) in Lemma 7. However, ξ(1) (p, j) is

1

ñB2

b∗
2∑

v=b∗
1+1

(
n∑
`=1

ς`pI̊ε,v (`) I̊ε,v (p)

)
j∗2∑

j=j∗1+1

I̊ε,v (j)


+

1

ñB2

b∗
2∑

v 6=b=b∗
1+1

(
n∑
`=1

ς`pI̊ε,v (`) I̊ε,b (p)

)
j∗2∑

j=j∗1+1

I̊ε,b (j)

 .

The first term of the last displayed expression satisfies Condition BW by a routine use of the Cauchy-

Schwarz inequality, whereas Condition C1 implies that the second moment of the second term is

1

ñ2B4

n∑
`1,`2=1

ς`1pς`2p


b∗

2∑
v=b∗

1+1

E
(
I̊ε,v (`1) I̊ε,v (`2)

)

×

 b∗
2∑

b1,b2=b∗
1+1

b1,b2 6=v

E

I̊ε,b1 (p) I̊ε,b2 (p)


j∗2∑

j=j∗1+1

I̊ε,b1 (j)




j∗2∑
j=j∗1+1

I̊ε,b2 (j)






=
b∗2 − b∗1
ñ2B4


n∑

`1,`2=1

ς`1pς`2p

(
I (`1 = `2) +

κ4
n

)
×


 b∗

2∑
b=b∗

1+1

E

I̊ε,b (p)

j∗2∑
j=j∗1+1

I̊ε,b (j)

2

+

b∗
2∑

b=b∗
1+1

E
(
I̊2ε,b (p)

)
E

 j∗2∑
j=j∗1+1

I̊ε,b (j)

2

+

b∗
2∑

b=b∗
1+1

j∗2∑
j,k=j∗1+1

cum
(
I̊ε,b (p) ; I̊ε,b (p) ; I̊ε,b (j) ; I̊ε,b (k)

) .

From here and a standard used of (5.55) of Lemma 7, it follows that it satisfies Condition BW . Thus,

this demonstrates that (5.24) and hence that the first term of (5.20) satisfies (5.2), i.e., Condition BW .

Next, (5.18). As with (5.19), the contribution due to the terms when k = 2, 3 satisfies (5.2) with α = 1

there and, hence, Condition BW . Thus, we examine

1

ñB

j∗∑
j=1

b∗∑
b=1

Rn,b (j)
(
σ̂2
ε (b)− 1

)
.

Using (5.29) and the definition in (5.31), we have that it suffices to show (5.2) for

1

ñB

j∗∑
j=1

b∗∑
b=1

Z
(1)
n,b (−j)

(
σ̂2
ε (b)− 1

)
.
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because E |Yn,b (j; 0)|4 +E
∣∣∣Z(2)
n,b (−j)

∣∣∣2 = O
(
n−2

)
and then Theorem 1 and Condition C2. Now, because

EZ
(1)
n,b (−j) = O

(
n−1

)
, it implies that it suffices to show that

1

ñB

j∗∑
j=1

b∗∑
b=1

(
Z
(1)
n,b (−j)− EZ

(1)
n,b (−j)

) (
σ̂2
ε (b)− σ̃2

ε (b)
)

+
1

ñB

j∗∑
j=1

b∗∑
b=1

(
Z
(1)
n,b (−j)− EZ

(1)
n,b (−j)

) (
σ̃2
ε (b)− 1

)
satisfies (5.2) and hence Condition BW . Clearly, the second term of the last displayed expression satisfies

(5.2) using Lemma 1 part (a) and that E
(
σ̃2
ε (b)− 1

)2
= O

(
n−1

)
, whereas the first term proceeding as

with (5.21) is

1

ñB

j∗∑
j=1

b∗∑
b=1

(
Z
(1)
n,b (−j)− EZ

(1)
n,b (−j)

) 1

n

n∑
p=1

ψ̆b,n (p) + op

(
T−1/2

)
uniformly in j∗ and b∗. Then, proceed step by step as with (5.24) but with I̊ε,b (j) replaced with

Z
(1)
n,b (−j)− EZ

(1)
n,b (−j).

Thus, it remains to examine the behavior of (5.17), which is

(5.25)
j∗

ñB

b∗∑
b=1

{
σ̂2
ε (b)− 1

}
+

j∗

ñB

b∗∑
b=1

3∑
k=2

(−1)
k

k!

{
σ̂2
ε (b)− 1

}k
We first examine the second term of (5.25). The contribution due to σ̃2

ε (b)− 1 is op
(
T−1/2

)
, uniformly

in j∗ and b∗ because

E sup
j∗;b∗

∣∣∣∣∣ j∗ñB
b∗∑
b=1

3∑
k=2

{
σ̃2
ε (b)− 1

}k∣∣∣∣∣ ≤ 1

B

B∑
b=1

3∑
k=2

E
∣∣σ̃2
ε (b)− 1

∣∣k
= O

(
n−1

)
= o

(
T−1/2

)
,

and thus, it is the contribution due to
d2,n
B + Ψn,1Ψn,2 (b) because by Lemma 7, E

∣∣∣d2,nB + Ψn,2 (b)
∣∣∣k =

op
(
T−1/2

)
and Ψn,1 = Op (1). Next, the contribution due to 1

n

∑n
p=1 ψ̆b,n (p), that is,

j∗

ñB

b∗∑
b=1

3∑
k=2

(−1)
k

k!

(
1

n

n∑
p=1

A−1 (p)ψ1,n (p) I̊ε,b (p)

)k
.
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Now,

E sup
j∗;b∗

∣∣∣∣∣∣ j
∗

ñB

b∗∑
b=1

3∑
k=2

{
1

n

n∑
p=1

A−1 (p)ψ1,n (p) I̊ε,b (p)

}k∣∣∣∣∣∣
=

C

B

B∑
b=1

E
(

1

n

n∑
p=1

A−1 (p)ψ1,n (p) I̊ε,b (p)

)2

+
1

n

n∑
p=1

E
(
|ψ1,n (p)|3

∣∣∣I̊ε,b (p)
∣∣∣3)


≤ C

B

B∑
b=1

E
 1

nB

n∑
p=1

A−1 (p) I̊ε,b (p)

n∑
`=1

ς`p
∑
v 6=b

I̊ε,v (`)

2


+
C

B

B∑
b=1

E
(

1

nB

n∑
p=1

A−1 (p) I̊ε,b (p)

n∑
`=1

ς`pI̊ε,b (`)

)2
+O

(
1

B3/2

)
= op

(
T−1/2

)
because B−3/2 = o

(
T−1/2

)
by C2 and using (5.55). Thus, we have that the second term of (5.25) satisfies

Condition BW .

Next, the first term of (5.25), which is using (5.22)

j∗

ñB

b∗∑
b=1

{
σ̃2
ε (b)− 1

}
+

j∗

ñB

b∗∑
b=1

1

n

n∑
j=1

ψ̆b,n (j) +
j∗b∗

ñB

(
d2,n
B

)
+ op

(
1

T 1/2

)
.

by Lemma 7. The second term is

j∗

ñB

b∗∑
b=1

1

n

n∑
j=1

n∑
p=1

ςjp

 1

B

∑
v 6=b

I̊ε,v (p)

 I̊ε,b (j)

+
j∗

ñB

n∑
p=1

ςjp
1

nB

n∑
j=1

b∗∑
b=1

I̊ε,b (j) I̊ε,b (p) .

Again, because  1

nB

n∑
j=1

b∗∑
b=1

I̊ε,b (j) I̊ε,b (p)

2

= O
(
T−1/2

)
,

it suffices to examine

1

B

b∗∑
b=1

1

n

n∑
j=1

n∑
p=1

ςjp

 1

B

∑
v 6=b

I̊ε,v (p)

 I̊ε,b (j)

from our comments made after (5.19). The second moments are

1

B4

1

n2

n∑
j1,j2=1

n∑
p1,p2=1

ςj1p1ςj2p2

b∗∑
b=1

E (I̊ε,b (j1) I̊ε,b (j2)
)∑
v 6=b

E
(
I̊ε,v (p1) I̊ε,v (p2)

) .

Now, use (5.55) to conclude that it is o
(
T−1/2

)
.

We have obtained that, uniformly in b∗ and j∗, (5.16) is

(5.26)
j∗

ñ

1

B

b∗∑
b=1

(
σ̃2
ε (b)− 1

)
+

j∗b∗

ñB

(
d2,n
B

)
+ op

(
1

T 1/2

)
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and hence, (5.15) becomes

j∗

ñ

{
1

B

b∗∑
b=1

(
σ̃2
ε (b)− 1

)
− b∗

B

1

B

B∑
b=1

(
σ̃2
ε (b)− 1

)}
+ op

(
1

T 1/2

)
proceeding as in the proof of Proposition 1 and because the second term of (5.26) is independent of b.

From here, we then conclude that

[T/2] T Pn,B
(
j∗

ñ
,
b∗

B

)
=

1

(ñB)
1/2

j∗∑
j=1

b∗∑
b=1

{
I̊ε,b (j)− 1

n

n∑
t=1

(
ε2t+(b−1)n − 1

)

−

(
I̊ε (j)− 1

T

T∑
t=1

(
ε2t − 1

))}
+ op (1)

using the proof of Proposition 1

However, standard algebra indicates that

E

(
I̊ε,b (j)− 1

n

n∑
t=1

(
ε2t+(b−1)n − 1

)
; I̊ε,b (−k)− 1

n

n∑
t=1

(
ε2t+(b−1)n − 1

))

=
1

n2

∑
t1 6=s1;t2 6=s2

E (εt1εs1εt2εs2) ei(t1−s1)λj−i(t2−s2)λk

= I (j = k)− 2

n
.

The proof now follows by routine arguments, and thus, they are omitted. �

5.4. Proof of Proposition 3.

We examine part (a), and part (b) follows identically using Theorem 1 and σ2
ε (b) = σ2

ε . The proof

is similar to that of Proposition 2 but we employ Lemmas 4 and 5 instead of Lemmas 2 and 3 when

needed. Abbreviating f́
(
bn
T ; j

)
/fB (j) as f̈

(
bn
T ; j

)
, where f́

(
bn
T ; j

)
=
(

1 + g (bn/T ; j) / [T/2]
1/2
)

and

fB (j) = B−1
∑B
b=1 f́

(
bn
T ; j

)
, we easily seethat Tn,B

(
b∗

B ; j∗

ñ

)
is

1

ñ

j∗∑
j=1

{
1

B

b∗∑
b=1

(
f̈
(
bn
T ; j

)
I̊ε,b (j) + f̈

(
bn
T ; j

)
B−1

∑B
b=1 f̈

(
bn
T ; j

)
I̊ε,b (j) + 1

− 1

)}
1 + op

(
T−1/2

)
.

Now, using Taylor’s expansion of x−1 around 1 and the arguments in the proof of Proposition 1 , we

have that
1

B−1
∑B
b=1 f̈

(
bn
T ; j

)
I̊ε,b (j) + 1

asym
' 1− υn (j) + υ2n (j) ,

where υn (j) = B−1
∑B
b=1 f̈

(
bn
T ; j

)
I̊ε,b (j) and “

asym
' ” denotes that the left and right sides are asymptot-

ically equivalent.

Therefore, the asymptotic behavior of [T/2]
1/2 Tn,B

(
b∗

B ; j∗

ñ

)
is governed by

[T/2]
1/2 1

ñ

j∗∑
j=1

{
1

B

b∗∑
b=1

{(
f̈

(
bn

T
; j

)
I̊ε,b (j)− υn (j)

)
+

(
f̈

(
bn

T
; j

)
− 1

)}
×
(
1− υn (j) + υ2n (j)

)}
.
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Now, except the terms of smaller orders of magnitude, the expectation of the last displayed expression

is

[T/2]
1/2 1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

(
f̈

(
bn

T
; j

)
− 1

)

=
1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

{
g

(
bn

T
; j

)
− 1

B

B∑
b=1

g

(
bn

T
; j

)}
→

T ,n↗∞
d (ω∗; υ∗)

using the definition of f̈
(
bn
T ; j

)
under Hl. Now, the proof of the proposition proceeds as that of Propo-

sition 2 and is thus omitted. �

Let us introduce some notation. In what follows, we denote

I̊ε∗,b (j) = Iε∗,b (j)− 1; Iε∗ (j) =
1

B

B∑
b=1

Iε∗,b (j)

I̊ε∗ (j) =
1

B

B∑
b=1

I̊ε∗,b (j) .

Notice that E∗
(
I̊ε∗,b (j)

)
= 0. Moreover {Hn}n≥1 is a sequence of strictly positive Op (1) random

variables.

5.5. Proof of Theorem 2.

We will address only part (a), as part (b) follows similarly. We need to show that

[T/2]
1/2 T ∗n,B

(
b∗

B
;
j∗

ñ

)
weakly⇒ BS

(
[0, 1]

2
)

(in probability),

Now, using Taylor’s expansion of I
−1
ε∗ (j) around 1, we obtain the following decomposition of T ∗n,B

(
j∗

ñ ,
b∗

B

)
1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

(
I̊ε∗,b (j)− I̊ε∗ (j)

)
I̊
3

ε∗ (j)Op∗ (1)

+
1

ñ

j∗∑
j=1

(
1

B

b∗∑
b=1

{
I̊ε∗,b (j)− I̊ε∗ (j)

}) 2∑
k=0

(−1)
k

k!
I̊
k

ε∗ (j) .

Notice that Lemma 9 yields that
(

supj I̊ε∗ (j)
)4
≤
∑ñ
j=1 I̊

4

ε∗ (j) = op∗ (1) by C1, such that I
−1
ε∗ (j) < Hn.

Thus, proceeding as in the proof of Proposition 1but using now Lemma 9, we easily conclude that

T ∗n,B
(

j∗

ñ ,
b∗

B

)
is governed by

(5.27)
1

ñB

j∗∑
j=1

b∗∑
b=1

{
I̊ε∗,b (j)− I̊ε∗ (j)

} 2∑
k=0

(−1)
k

k!
I̊
k

ε∗ (j) .

Next, we examine the contribution due to k = 1, 2 in (5.27) and in particular

(5.28)
1

ñ

j∗∑
j=1

(
1

B

b∗∑
b=1

I̊ε∗,b (j)

)
2∑
k=1

I̊
k

ε∗ (j) .
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To that end, we write

1

B

B∑
b=1

I̊ε∗,b (j) =
1

B


b∗

1∑
b=1

+

B∑
b=b∗

2+1

 I̊ε∗,b (j) +
1

B

b∗
2∑

b=b∗
1+1

I̊ε∗,b (j)

= : İε∗ (j) + Ïε∗ (j) .

Now, because I̊ε∗,b1 (j) and I̊ε∗,b2 (k) are independent for all j, k when b1 6= b2, we have that

E∗
(
I̊ε∗,b1 (j) I̊ε∗,b2 (k)

)
= 0 if b1 6= b2

E∗
(
I̊ε∗,b (j) I̊ε∗,b (k)

)
= σ̂2

ε (b) I (j = k) +
1

n
Cum∗ (ε∗t ; ε

∗
t ; ε
∗
t ; ε
∗
t ) ,

by standard arguments. Thus, the latter two displayed expressions imply that İε∗ (j) and Ïε∗ (k) are

independent and hence

E∗
 1

ñ

j∗2∑
j=j∗1+1

Ïε∗ (j)

2∑
k=1

İ
k

ε∗ (j)

2

=
1

ñ2

j∗2∑
j,k=j∗1+1

 1

B2

b∗
2∑

b=b∗
1+1

E∗
(
I̊ε∗,b (j) I̊ε∗,b (k)

) E∗( 2∑
k=1

İ
k

ε∗ (j)

)(
2∑
k=1

İ
k

ε∗ (k)

)

= o

(
T−1

(
b∗2 − b∗1

B

)2(
j∗2 − j∗1
ñ

)2
)
Hn.

Moreover we have that E∗
(∑j∗2

j=j∗1+1 Ï
2

ε∗ (j) İε∗ (j)

)2

= 0.

Next, to finish the contribution due to k = 1, 2 in (5.27), we need to examine

E∗
 1

ñ

j∗2∑
j=j∗1+1

Ïε∗ (j)

2∑
k=1

Ï
k

ε∗ (j)

2

= E∗
 2∑
k=1

1

ñ

j∗2∑
j=j∗1+1

Ï
k+1

ε∗ (j)

2

= E∗
 1

ñ

j∗2∑
j=j∗1+1

Ï
2

ε∗ (j)

2

+ o

(
T−1

(
b∗2 − b∗1

B

)2(
j∗2 − j∗1
ñ

)2
)
Hn

because by Condition C2, B−3 = o
(
T−1

)
and Lemma 9. However, by Lemma 9 and standard arguments,

the right side of the last displayed expression is

1

B2

(
b∗2 − b∗1

B

)2(
j∗2 − j∗1
ñ

)2

E∗I2ε∗ (j) + o

(
T−1

(
b∗2 − b∗1

B

)2(
j∗2 − j∗1
ñ

)2
)
Hn.

Now, proceeding similarly with

1

ñ

j∗∑
j=1

(
b∗

B
I̊ε∗,b (j)

) 2∑
k=1

I̊
k

ε∗ (j)

we have that its second moments are

1

B2

(
b∗2 − b∗1

B

)2(
j∗2 − j∗1
ñ

)2

E∗I2ε∗ (j) + o

(
T−1

(
b∗2 − b∗1

B

)2(
j∗2 − j∗1
ñ

)2
)
Hn
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and hence, (5.27) is

1

ñB

j∗∑
j=1

b∗∑
b=1

{
I̊ε∗,b (j)− I̊ε∗ (j)

}
+ o

(
T−1

(
b∗2 − b∗1

B

)2(
j∗2 − j∗1
ñ

)2
)
Hn,

which implies that

[T/2]
1/2 T ∗n,B

(
b∗

B
;
j∗

ñ

)
=

1

[T/2]
1/2

j∗∑
j=1

b∗∑
b=1

{
I̊ε∗,b (j)− I̊ε∗ (j)

}
+ op∗ (1) .

The proof is then completed if

T̆ ∗n,B
(
b∗

B
;
j∗

ñ

)
=

1

ñ

j∗∑
j=1

1

B

b∗∑
b=1

I̊ε∗,b (j)
weakly
=⇒ BW

(
[0, 1]

2
)

(in probability).

Now, E∗T̆ ∗n,B
(

b∗

B ; j∗

ñ

)
= 0, whereas by the independence of the sequence

{
I̊ε∗,b (j)

}B

b=1
,

[T/2] E∗
(
T̆ ∗n,B

(
b∗1
B

;
j∗1
ñ

)
T̆ ∗n,B

(
b∗2
B

;
j∗2
ñ

))

=
(b∗1 ∧ b∗2)

[T/2]

j∗1∑
j=1

j∗2∑
k=1

(
E∗
(
ε∗2t
)
I (j = k) +

1

n
Cum∗ (ε∗t ; ε

∗
t ; ε
∗
t ; ε
∗
t )

)
P→ (ω∗1 ∧ ω∗2)

(
υ∗1 +

1

2
υ∗1υ

∗
2κ4

)
.

Finally, the tightness of [T/2]
1/2 T̆ ∗n,B

(
b∗

B ; j∗

ñ

)
, for which a sufficient condition is that

[T/2]
2 E∗

(
T̆ ∗4n,B

(
(j∗2 − j∗1)

ñ
,

(b∗2 − b∗1)

B

))
= (ω∗1 − ω∗2)

1+δ
(υ∗1 − υ∗2)

1+δ
Hn.

However, this proceeds by Lemma 7 in a standard way. �

APPENDIX III: AUXILIARY LEMMAS

Before we present our lemmas, it is useful to introduce some notation. First from (2.10) and (2.11),

we have that

(5.29) Rn,b (j) =
B (−j)
|B (−j)|2

Jε,b (j) Yn,b (−j; 0) +
B (j)

|B (j)|2
Jε,b (−j) Yn,b (j; 0) + |Yn,b (j; 0)|2 ,

where

(5.30) Yn,b (j; 0) = Y
(1)
n,b (j) + Y

(2)
n,b (j)

with Un`,b (j) =
{∑n−`

t=1−`−
∑n
t=1

}
εt+(b−1)ne

itλj ,

Y
(1)
n,b (j) =

1

n1/2

n∑
`=0

β (`) e−i`λjUn`,b (j) ; Y
(2)
n,b (j) =

1

n1/2

∞∑
`=n+1

β (`) e−i`λjUn`,b (j) .

Further, we denote

(5.31) Z
(k)
n,b (−j) = Jε,b (j) Y

(k)
n,b (−j) , k = 1, 2.
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Lemma 1. Assuming C1 and C2 , we have that

(a)

∣∣∣∣∣E
(

4∏
q=1

Z
(1)
n,b (jq)

)∣∣∣∣∣ =
d

n2

{
1

n2
+ I (j1 = j2) I (j3 = j4)

}
; d <∞

(b)
∣∣∣E (Z

(1)
n,b (j1) Z

(1)
n,b (j2)

)∣∣∣ =
d

n

{
1

n
+ I (j1 = j2)

}

(c)

∣∣∣∣∣E
(

2p∏
q=1

Z
(2)
n,b (jq)

)∣∣∣∣∣ = o
(
n−2p

)
, p = 1, 2.

Proof. We begin with part (c). We consider p = 2, as the case for p = 1 is addressed similarly. Because∑∞
`=n+1 |β (`)| = o

(
n−1

)
by C1 and the definition of Z

(2)
n,b (−j), we have that the left side of the expression

is bounded by

∞∑
`1,...,`4=n+1

∣∣∣∣∣
4∏
q=1

β (`q)

∣∣∣∣∣
∣∣∣∣∣E
(

4∏
q=1

Jε,b (jq)
1

n1/2
Un`1,b (jq)

)∣∣∣∣∣
= o

(
n−4

)
E

∣∣∣∣∣
4∏
q=1

Jε,b (jq)
1

n1/2

{
n−∑̀
t=1−`

−
n∑
t=1

}
εt+(b−1)ne

itλjq

∣∣∣∣∣
= o

(
n−4

)
,

because
∑n
`=0 ` |β (`)| <∞ by C1. The next part (a), which by definition is

1

n2

n∑
`1,...,`4=0

∣∣∣∣∣
4∏
q=1

β (`q)

∣∣∣∣∣
∣∣∣∣∣E
(

4∏
q=1

Un`1,b (jq)Jε,b (jq)

)∣∣∣∣∣
=

d

n2

n∑
`1,...,`4=0

∣∣∣∣∣
4∏
q=1

β (`q) `q

∣∣∣∣∣
{

1

n2
+

∣∣∣∣∣E
(

4∏
q=1

Jε,b (jq)

)∣∣∣∣∣
}

,

since Un`,b (j) =
{∑0

t=1−`−
∑n
t=n−`+1

}
εt+(b−1)ne

itλj when ` ≤ n, meaning that E (Un`,b (jq)Jε,b (jq)) =

O
(
`/n1/2

)
. Now, we conclude because

∑n
`=0 ` |β (`)| < ∞. Finally, the proof of part (b) proceeds

similarly. �

Lemma 2. Assuming C1 and C2 , we have that q = 1, 2,

E

 1

B

b∗
2∑

b=b∗
1+1

Rn,b (j)

2q

= O

((
b∗2 − b∗1
B2n

)q
+

(
b∗2 − b∗1

Bn

)2q
)

(5.32)

E sup
j

∣∣∣∣∣∣ 1

B

b∗
2∑

b=b∗
1+1

Rn,b (j)

∣∣∣∣∣∣ = O

(
(b∗2 − b∗1)

1
2

B
+

b∗2 − b∗1
Bn

)
(5.33)

Proof. Because Brockwell and Davis’s (1991) Theorem 10.3.1 and then C1 andH0 imply that E (Rn,b (j)) =

O
(
n−1

)
and E |Yn,b (j; 0)|4q = O

(
n−2q

)
, (5.32) and (5.33) hold true if

(5.34) E

 1

B

b∗
2∑

b=b∗
1+1

(
Z
(k)
n,b (−j)− EZ

(k)
n,b (−j)

)2q

= O

(
b∗2 − b∗1
B2n

)q
k = 1, 2; q = 1, 2

(5.35) sup
1≤j≤ñ

∣∣∣∣∣∣ 1

B

b∗
2∑

b=b∗
1+1

(
Z
(k)
n,b (−j)− EZ

(k)
n,b (−j)

)∣∣∣∣∣∣ = Op

((
b∗2 − b∗1

B2

)1/2
)

, k = 1, 2.
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Recall that C−1 < |B (λ)|2 < C for some positive finite constant C. However, (5.34) follows by Lemma

1 and Z
(1)
n,b1

(j) and Z
(1)
n,b2

(−k) are independent if b1 6= b2 by Condition C1.

Next, we examine (5.35), which follows easily because its second moment is bounded by

ñ∑
j=1

E

∣∣∣∣∣∣ 1

B

b∗
2∑

b=b∗
1+1

(
Z
(k)
n,b (−j; 0)− EZ

(k)
n,b (−j; 0)

)∣∣∣∣∣∣
2

k = 1, 2.

This completes the proof of the lemma. �

Lemma 3. Assuming C1 and C2 , we have that for q = 1, 2,

(5.36) E

 1

ñ

j∗2∑
j=j∗1+1

1

B

b∗
2∑

b=b∗
1+1

R̆n,b (j)

2q

= O

(
1

n2q

(
j∗2 − j∗1
ñ

)1+δ (
b∗2 − b∗1

B

)1+δ
)
.

Proof. We examine q = 1, and the proof for q = 2 proceeds similarly. By (5.29), (5.36) holds true if it

also does for the second moments of

1

ñ

j∗2∑
j=j∗1+1

1

B

b∗
2∑

b=b∗
1+1

(
|Yn,b (j; 0)|2 − E |Yn,b (j; 0)|2

)
(5.37)

1

ñ

j∗2∑
j=j∗1+1

1

B

b∗
2∑

b=b∗
1+1

(
Z
(k)
n,b (−j; 0)− EZ

(k)
n,b (−j; 0)

)
(5.38)

for k = 1, 2. Following Brockwell and Davis’s (1991) Theorem 10.3.2., the second moment of (5.37)

satisfies the right side of (5.36) with δ = 1 there. Next, (5.38) when k = 2. Because
∑∞
`=n |β (`)| = o

(
n−1

)
by Condition C1 and that

1

(ñB)
1/2

j∗2∑
j=j∗1+1

b∗
2∑

b=b∗
1+1

(
Jε,b (j)

1

n1/2

n∑
t=1

εt+(b−1)ne
−itλj − E (·)

)

converge to a Gaussian process, we have that (5.38) satisfies the right side of (5.36). Observe that the

sequence is uniform integrable; by Serfling (1980), we have that the second moment of the sequence

converges to that of the limiting distribution.

Finally, (5.37) when k = 1. Because
∑∞
`=1 ` |β (`)| < C, it suffices to show that

E

 1

ñ3/2B

j∗2∑
j=j∗1+1

b∗
2∑

b=b∗
1+1

(
Jε,b (j) J̃ε,b (j, `)− E

(
Jε,b (j) J̃ε,b (j, `)

))2

,

where J̃ε,b (j, `) = `−1
∑n
t=n−` εt+(b−1)ne

−itλj satisfies the right side of (5.36). However, using Lemma 1

part (b), we have that it is

O

(
j∗2 − j∗1
ñ3

b∗2 − b∗1
B2`

)
+O

(
(j∗2 − j∗1)

2

ñ4
b∗2 − b∗1

B2

)

= O

(
1

n2

(
j∗2 − j∗1
ñ

)1+δ (
b∗2 − b∗1

B

)1+δ
)

,

for some δ > 0. �
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Lemma 4. Assuming C1 ′, C2′and C2 , we have that, q = 1, 2,

E

 1

B

b∗
2∑

b=b∗
1+1

Rn,b (j)

2q

= O

((
b∗2 − b∗1
B2n

)q
+

(
b∗2 − b∗1

Bn

)2q
)

(5.39)

sup
1≤j≤ñ

∣∣∣∣∣∣ 1

B

b∗
2∑

b=b∗
1+1

Rn,b (j)

∣∣∣∣∣∣ = O

((
b∗2 − b∗1

B2

)1/2

+
b∗2 − b∗1

Bn

)
(5.40)

Proof. We examine q = 1, as the proof for q = 2 proceeds similarly. First, recall our decomposition in

(2.27), that is,

(5.41) Jx,b (j) = B
(
n (b− 1)

T
;−j

)
Jε,b (j) + Y̌n,b (j; 0) + Ÿn,b (j) .

Now, by definition, i.e., (2.29), and using (5.12) we have that

Ÿn,b+1 (j) =
1

n1/2

n∑
t=1

∞∑
`=0

(
β̇t+bn,T (`) + β̈

(
t+ nb

T
; `

))
εt+bn−`e

itλj ,

and thus its contribution to (5.39) and (5.40) satisfies their right sides.

Proceeding as in the proof of Lemma 2 but with f (j) replaced with
∣∣∣B (n(b−1)T ; j

)∣∣∣2 and B (u; j) given

in (2.20), we have that the contribution due to the second term on the right side of (5.41) satisfies the

statement of the lemma. Notice that there is no difference whether we have that the MA representation

of the process has weights β (u; `) or β (`), as both sequences satisfy the same qualitative condition∑∞
`=0 ` |β (u; `)| <∞. �

Lemma 5. Assuming C1 ′, C2′and C2 , we have that for q = 1, 2,

E

 1

ñ

j∗2∑
j=j∗1+1

1

B

b∗
2∑

b=b∗
1+1

R̆n,b (j)

2q

= O

(
1

n2q

(
j∗2 − j∗1
ñ

)1+δ (
b∗2 − b∗1

B

)1+δ
)
.

Proof. We examine q = 1, as the proof for q = 2 proceeds similarly. In view of (5.41) and the comments

in Lemma 4, it suffices to show that

(5.42) E

 1

ñ

j∗2∑
j=j∗1+1

1

B

b∗
2∑

b=b∗
1+1

R̈n,b (j; 0,∞)

2

= O

(
1

n2

(
j∗2 − j∗1
ñ

)1+δ (
b∗2 − b∗1

B

)1+δ
)

,

where

R̈n,b (j; q1, q2) =

∣∣∣∣∣∣ 1

n1/2

n∑
t=1

 q2∑
`=q1

β̇t,T (`) εt+(b−1)n−`

 eitλj

∣∣∣∣∣∣
2

−E

∣∣∣∣∣∣ 1

n1/2

n∑
t=1

 q2∑
`=q1

β̇t,T (`) εt+(b−1)n−`

 eitλj

∣∣∣∣∣∣
2

.

By standard inequalities, the left side of (5.42) is bounded by

E

 1

ñ

j∗2∑
j=j∗1+1

1

B

b∗
2∑

b=b∗
1+1

R̈n,b (j; 0, n)

2

+ E

 1

ñ

j∗2∑
j=j∗1+1

1

B

b∗
2∑

b=b∗
1+1

R̈n,b (j;n,∞)

2

.

≤ j∗2 − j∗1
ñ2

j∗2∑
j=j∗1+1

E
 1

B

b∗
2∑

b=b∗
1+1

R̈n,b (j; 0, n)

2

+ E

 1

B

b∗
2∑

b=b∗
1+1

R̈n,b (j;n,∞)

2
 .
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Now, the proof proceeds straightforwardly after noticing that if b1 6= b2, we have that

E
(
R̈n,b1 (j; 0, n) R̈n,b2 (j; 0, n)

)
= 0,

∑
`>n υ (`) < Cn−1 and

∣∣∣β̇t,T (`)
∣∣∣ ≤ Cυ (`) /n−1/2 by (5.12). Details

are omitted. �

Let |p|+ = max {1, |p|} and denote

ψk,n (j) = :

ñ∑
p=1

ςpj I̊
k

ε (p) , ϕk,n (j) =:

ñ∑
p=1

ςpjR
k

n (p) k = 1, 2, 3

Ξn (j) =

3∑
k=1

(−1)
k

k!
(ψk,n (j) + ϕk,n (j)) + Φn,1Φn,2 (j) ,

where ςpj =
(
|p− j|−1+ + |p+ j|−1

)
, Φn,1 is a sequence of Op (1) r.v. independent of j∗ and b∗ and

EΦ2
n,2 (j) = O

(
B−2

)
. Moreover,

An (j) =: exp

{
ñ∑
`=1

c`,ne
−i`λj

}
; c`,n =

1

ñ

ñ∑
p=1

log f (p) cos (`λp) .

Lemma 6. Assuming C1 and C2 , under H0, we have that

(a) Â (j)−An (j) = A (j) Ξn (j) +
1

2
|A (j)|2 (Ξn (j))

2
(5.43)

(b) An (j)−A (j) = A (j)
log f (0)

ñ

ñ∑
`=1

e−i`λj +O
(
n−2

)
.(5.44)

Proof. First because Taylor’s expansion of log z yields that

ĉ` − c`,n =
1

ñ

ñ∑
p=1

3∑
k=1

(−1)
k

k!

(
f̂ (p)− f (p)

f (p)

)k
cos (`λp)

+
1

4!ñ

ñ∑
p=1

(
f̂ (p)− f (p)

κf (p) + (1− κ) f̂ (p)

)4

cos (`λp) ,(5.45)

where κ =: κ (p) ∈ (0, 1), meaning that

log
(
Â (j) /An (j)

)
=

3∑
k=1

(−1)
k

k!

ñ∑
p=1

ςpj

(
f̂ (p)− f (p)

f (p)

)k

+
1

4!

ñ∑
p=1

(
f̂ (p)− f (p)

κf (p) + (1− κ) f̂ (p)

)4

(5.46)

because
∑ñ
`=1 cos (`λp) e

−i`λj = ñςpj . The second term on the left side of (5.46) is Φn,1Φn,2 (j), where

Φn,1 = Op (1) and E |Φn,2 (j)|2 = O
(
B−3

)
uniformly in j. Indeed, Lemma 2 and supp=1,...,ñ |ap| ≤(∑ñ

p=1 |ap|
q
)1/q

imply that

E sup
p=1,...,ñ

∣∣∣∣∣ f̂ (p)− f (p)

f (p)

∣∣∣∣∣ ≤
(

ñ∑
p=1

E
∣∣Rn (p)

∣∣4)1/4

+

(
ñ∑
p=1

E
(
I̊ε,b (p)

)4)1/4

= O
(
B−1/2n1/4

)
= o (1)(5.47)

by Condition C2 and E
(
f−1 (p) f̂ (p)− 1

)4
= O

(
B−2

)
by the standard arguments. Next, regarding the

first term we have that because, say, E
∣∣∣I̊ε (p)Rn (p)

∣∣∣2 = O
(
B−2T−1/2

)
= o

(
B−3

)
by Lemma 2 and C2
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and that supp

{∣∣∣I̊ε (p)
∣∣∣+
∣∣Rn (p)

∣∣} = op (1), we obtain that it is Ξn (j). Now, we conclude the proof of

part (a) by Taylor’s expansion of exp z.

Next, we address part (b). To that end, because log f (λ) is three times continuously differentiable,

exercise 1.7.14, part (b) in Brillinger (1981) implies that c`,n − c` = log f(0)
ñ + O

(
n−3

)
, and then we

conclude that, uniformly in j,

log (An (j) /A (j)) =

ñ∑
`=1

(c`,n − c`) e−i`λj −
ñ∑

`=ñ+1

c`e
−i`λj

=
log f (0)

ñ

ñ∑
`=1

e−i`λj +O
(
n−2

)
.(5.48)

Now, using (5.48) we obtain part (b). This concludes the proof. �

Lemma 7. Assuming C1 and C2 , we have that under H0 for all b = 1, ...,B,

(5.49) σ̂2
ε (b)− σ̃2

ε (b) =
d1,n
n

n∑
j=1

A−1 (j)ψ1,n (j) I̊ε,b (j) +
d2,n
B

+ Ψn,1Ψn,2 (b) ,

where Ψn,1 d1,n and d2,n are independent of b such that Ψn,1 = Op(1), E
(
d22,n

)
< C and E |Ψn,2 (b)|2 =

O
(
B−3 + n−2

)
with σ̃2

ε (b) given in (5.4).

Proof. First, by standard algebra, we have that

(5.50) σ̂2
ε (b)− σ̃2

ε (b) =
1

n

n∑
t=1

υ2t,b +
2

n

n∑
t=1

εt+(b−1)nυt,b,

where υt,b =: ε̂t+(b−1)n − εt+(b−1)n, and it is

υt,b =
1

n1/2

n∑
j=1

eitλj

(
Â (j)A−1 (j)− 1

)
A (j) Yn,b (j; 0)

+
1

n1/2

n∑
j=1

eitλj

(
Â (j)A−1 (j)− 1

)
Jε,b (j)(5.51)

+
1

n

n∑
j=1

eitλjA (j)

n∑
s=1

xs+(b−1)ne
−isλj − εt+(b−1)n.

Using (2.10) and because A (j) =
∑∞
q=0 α (q) e−iqλj and

∑n
j=1 e

−i`λj = nI (` = 0, n, ...), we obtain that

the third term of (5.51), with b = 1 for notational simplicity, is

∞∑
q=0

α (q)

n∑
s=1

xs
1

n

n∑
j=1

ei(t−q−s)λj − εt

=

∞∑
`=1

t−1∑
q=1

α (q + `n)xt−q +

{
t−1∑
q=1

α (q)xt−q − εt

}
,(5.52)

the second moment of which is o
(

(t log (t+ 1))
−2
)

. Thus, the contribution due to the third term of

(5.51) into (5.50) is such that its second moment is O
(
n−2

)
.
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Now, the contribution due to the first two terms on the right side of (5.51) to σ̂2
ε (b)− σ̃2

ε (b) is

1

n

n∑
j=1

(
Â (j)−A (j)

)2
|Yn,b (j; 0)|2

+
2

n

n∑
j=1

(
Â (j)−A (j)

)(
A−1 (j) +

1

2

)
Jε,b (−j) Yn,b (j; 0)(5.53)

+
1

n

n∑
j=1


(
Â (j)−A (j)

)2
|A (j)|2

+
(
Â (j)−A (j)

)
A−1 (j)

 Iε,b (j) .

The contribution due to Φn,1Φn,2 (j) to the first term of (5.53) is

Φ2
n,1

1

n

n∑
j=1

Φ2
n,2 (j) |Yn,b (j; 0)|2 .

Now, we identify Φ2
n,1 supj Φn,2 (j) with Ψn,1 and

Ψn,2 (b) =:
1

n

n∑
j=1

|Φn,2 (j)| |Yn,b (j; 0)|2

noticing that EΨ2
n,2 (b) = O

(
T−2

)
= o

(
n−2 + B−3

)
because E |Yn,b (j; 0)|2p = O (n−p) and Cauchy-

Schwarz’s inequality. Next, we address the contribution due to ψk,n (j) + ϕk,n (j), for k = 1, 2, 3. Now,

since (a+ b)
4 ≤ 8

(
a4 + b4

)
and E |ψk,n (j)|2 + E |ϕk,n (j)|2 = O

(
B−k

)
, we have that this contribution is

also Ψn,1Ψn,2 (b). Recall again that supj |ψk,n (j)| = op (1) and supj |ϕk,n (j)| = op (1).

Next we examine the behavior of the second term of (5.53). To that end and using (5.31), we first

notice that Condition C1 implies that E
∣∣∣Z(k)
n,b (−j)

∣∣∣2 = O
(
n−1

)
, for k = 1, 2, and hence that

E

∣∣∣∣∣∣ log f (0)

ñ

1

n

n∑
j=1

Z
(k)
n,b (−j)

ñ∑
`=1

e−i`λj

∣∣∣∣∣∣
2

= O

(
log2 n

n3

)
by standard arguments. Next, because supj |ψk,n (j)| = op (1) and supj |ϕk,n (j)| = op (1), we have that

ψ4
k,n (j) = ξn,1ξn,2, where ξn,1 = Op (1) and E (ξn,2)

2
= O

(
B−3

)
, we then have that the second term of

(5.53), except the multiplicative constants, is

1

n

n∑
j=1

ψ1,n (j)
(

Z
(1)
n,b (−j) + Z

(2)
n,b (−j)

)
+ Ψn,1Ψn,2 (b)

=
1

n

n∑
j=1

ψ1,n (j) Z
(1)
n,b (−j) + Ψn,1Ψn,2 (b) ,(5.54)

as E
(
ϕ2
k,n (j)

)
= O

(
T−k

)
. Now, proceeding as with the proof of Lemma 2 and using the definition of

ψ1,n (j), it suffices to examine the behavior of

1

n1/2B

1

n

n∑
j=1

I̊ε,b (j)Jε,b (−j) 1

`1/2

n∑
t=n−`+1

εt+(b−1)ne
itλj

+
1

n1/2
1

n

n∑
j=1

 1

B

B∑
b1 6=b

I̊ε,b1 (j)

(Jε,b (−j) 1

`1/2

n∑
t=n−`+1

εt+(b−1)ne
itλj

)
.
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The second moment of the first term of the last displayed expression is clearly O
(
n−1B−2

)
, whereas the

second term is O
(
n−2B−1

)
because the first factor in parentheses is independent of the second factor

and

(5.55) E
(
I̊ε,b1 (j) I̊ε,b2 (k)

)
= I (b1 = b2)

(
I (j = k) + n−1κ4

)
.

To complete the proof of the lemma, we now examine the third term of (5.53). First, using (5.43) and

that E |ψk,n (j)|2p + E |ϕk,n (j)|2p = O
(
B−3

)
when p+ k ≥ 3, the third term of (5.53) is

(5.56)
1

n

n∑
j=1

{
2∑
k=1

dk,n
A (j)

(ψk,n (j) + ϕk,n (j)) + d
(
ψ2
1,n (j) + ϕ2

1,n (j)
)}

Iε,b (j) + Ψn,

d1,n and d2,n independent of b and finite second moments and d ≥ |A (j)|−2 finite. Now, because

E |Bψ2,n (j)| = O (1), we have that

1

n

n∑
j=1

1

A (j)
ψ2,n (j) Iε,b (j) =

d2,n
B

+
1

n

n∑
j=1

A−1 (j)ψ2,n (j) I̊ε,b (j)

=
d2,n
B

+ Ψn,(5.57)

as we now show. Indeed, the second term on the right side of (5.57) is

1

B2n

n∑
j=1

A−1 (j)

ñ∑
p=1

ςpj I̊
2
ε,b (p) I̊ε,b (j)

+
1

n

n∑
j=1

A−1 (j)

ñ∑
p=1

ςpj

 1

B

B∑
b1 6=b

I̊ε,b1 (p)

2

I̊ε,b (j)(5.58)

+
2

Bn

n∑
j=1

A−1 (j)

ñ∑
p=1

ςpj

 1

B

B∑
b1 6=b

I̊ε,b1 (p)

 I̊ε,b (p) I̊ε,b (j) .

The second moment of the first term of (5.58) is O
(
B−4

)
, whereas the second moment of the third

term is O
(
B−3

)
, as E

(
I̊ε,b1 (p) I̊ε,b (j)

)
= 0 for all b1 6= b. Thus, we are left to examine the second

term of (5.58). However, its second moment is clearly O
(
B−3

)
, as by the independence of I̊ε,b (j) and(

1
B

∑B
b1 6=b I̊ε,b1 (p)

)2
and (5.55), we have that the second moment is

d

B2n2

n∑
j=1

ñ∑
p=1

ς2pj |A (j)|−2 = o
(
B−3

)
by Condition C2.

Next, we examine the contribution to (5.56), i.e., the third term of (5.53), due to

1

n

n∑
j=1

A−1 (j)ϕ2,n (j) Iε,b (j) =
d2,n
B

+
1

n

n∑
j=1

A−1 (j)ϕ2,n (j) I̊ε,b (j)

=
d2,n
B

+ Ψn,(5.59)
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because Eϕ2
2,n (j) = O

(
T−1

)
= o

(
B−2

)
by Condition C2. Regarding Ψn, by definition of ϕ2,n (j), we

need to examine

2∑
`=1

1

n

n∑
j=1

A−1 (j) I̊ε,b (j)

ñ∑
p=1

ςpj

(
1

B

B∑
b=1

Z
(`)
n,b (−p)

)2

+
1

n

n∑
j=1

A−1 (j) I̊ε,b (j)

ñ∑
p=1

ςpj

(
1

B

B∑
b=1

|Yn,b (p; 0)|2
)2

.

However, it is clear that the second moment is O
(
B−3 + n−2

)
because E |Yn,b (j; 0)|4 = O

(
n−2

)
,

E

(
1

B

B∑
b=1

Z
(2)
n,b (−j)

)4

= O
(
n−4

)
; E

(
1

B

B∑
b=1

Z
(1)
n,b (−j)

)4

= O
(
n−2

)
by simple inspection of the definition of Yn,b (j; 0), Z

(1)
n,b (j) and Z

(2)
n,b (j), respectively.

Next, we examine the contribution to (5.56), i.e., the third term of (5.53), due to

1

n

n∑
j=1

ψ2
1,n (j) + ϕ2

1,n (j)

|A (j)|2
I̊ε,b (j) =

1

n

n∑
j=1

I̊ε,b (j)

|A (j)|2

(
ñ∑
p=1

ςpj I̊ε (p)

)2

+
1

n

n∑
j=1

I̊ε,b (j)

|A (j)|2

(
ñ∑
p=1

ςpjRn (p)

)2

.(5.60)

The first term on the right side of (5.60) is

1

n

n∑
j=1

I̊ε,b (j)

|A (j)|2

 ñ∑
p=1

ςpj
1

B

B∑
b1 6=b

I̊ε,b1 (p)

2

+
1

B2n

n∑
j=1

I̊ε,b (j)

|A (j)|2

(
ñ∑
p=1

ςpj I̊ε,b (p)

)2

+
2

Bn

n∑
j=1

I̊ε,b (j)

|A (j)|2
ñ∑

p1,p2=1

ςp1jςp2j I̊ε,b (p2)

 1

B

B∑
b1 6=b

I̊ε,b1 (p1)

 .

Clearly, the second moments of the second and third terms are O
(
B−4 + B−3

)
, whereas the second

moment of the first term is, by the independence of I̊ε,b1 (p) and I̊ε,b (p) if b1 6= b, and (5.55) is easy

to observe that is O
(
B−2n−1

)
. Next, the second term on the right side of (5.60) also satisfies that its

second moment is O
(
B−3 + n−2

)
using Lemma 3. To complete the proof, it remains to examine the

behavior of

1

n

n∑
j=1

ϕ1,n (j)
I̊ε,b (j)

A (j)
(5.61)

1

n

n∑
j=1

A−1 (j) (ψ1,n (j) + ϕ1,n (j)) .(5.62)
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Now, (5.61) is

1

n

ñ∑
p=1

(
1

B

B∑
b=1

Z
(1)
n,b (−j)

)
n∑
j=1

A−1 (j) ςpj I̊ε,b (j)

+
1

n

ñ∑
p=1

(
1

B

B∑
b=1

Z
(2)
n,b (−j)

)
n∑
j=1

A−1 (j) ςpj I̊ε,b (j)

+
1

n

ñ∑
p=1

(
1

B

B∑
b=1

|Yn,b (j; 0)|2
)

n∑
j=1

A−1 (j) ςpj I̊ε,b (j) .

The second and third terms of the last displayed expression have second moments O
(
n−2

)
, whereas the

first term proceeding similarly to (5.54) has a second moment O
(
B−3 + n−2

)
. Finally, we have (5.62),

which is

1

n

ñ∑
p=1

(
1

B

B∑
b=1

I̊ε,b (p)

)
+

(
1

B

B∑
b=1

Rn,b (p)

)
n∑
j=1

ςpjA−1 (j) .

By (5.55), the first term has second moment proportional to

1

Bn2

ñ∑
p=1

n∑
j1,j2=1

|ςpj1ςpj2 |= O
(

log2 n

T

)
= O

(
B−2

)
,

whereas by Lemma 2 and Condition C2, the second term is also O
(
B−2

)
. This concludes the proof of

the lemma. �

Lemma 8. Assuming C1 ′, C2′and C2 , we have that for all b = 1, ...,B and uniformly in t, υt,b =

Op

(
(t log (t+ 1))

−1
+ n1/2B−1

)
.

Proof. By (5.51) and (5.52), it suffices to examine

1

n1/2

n∑
j=1

eitλj

(
Â (j)A−1 (j)− 1

)
A (j) Yn,b (j; 0)

+
1

n1/2

n∑
j=1

eitλj

(
Â (j)A−1 (j)− 1

)
Jε,b (j) .

(5.43) and (5.44) imply that the first term of the last displayed expression is Op
(
B−1/2

)
uniformly in t

as E
(
f−1 (`) f̂ (`)− 1

)2
= O

(
B−1

)
and Cauchy-Schwarz’s inequality, whereas the second term is

1

n1/2

n∑
j=1

eitλjψ1,n (j)Jε,b (j) +Op

(
n1/2B−1

)
=

1

n1/2

n∑
j=1

eitλj I̊ε (j)Jε,b (j) +Op

(
n1/2B−1 + B−1/2

)
again uniformly in t, proceeding with arguments in Lemma 7 and Lemma 2. Now, the first term on the

right is

1

n1/2

n∑
j=1

eitλj

 1

B

B∑
b1 6=b

I̊ε,b1 (j)

Jε,b (j) +
1

B

1

n1/2

n∑
j=1

eitλj I̊ε,b (j)Jε,b (j) .

However, it is easy to see that the fourth moment of the first term is O
(
B−2

)
, whereas the second term

has a second moment of order O
(
B−2

)
. Thus, using that sup`=1,...,ñ |a`|

q ≤
∑
` |a`|

q
, for q ≥ 1, we

conclude that the last displayed expression is O
(
nB−2

)
uniformly in t. �
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Lemma 9. Assuming C1 ′ and C2 , we have that

(5.63) E∗
 b∗

2∑
b=b∗

1+1

I̊ε∗,b (j)

2`

= (b∗2 − b∗1)
`
Hn, ` ≥ 1,

{Hn}n≥1 being a sequence of strictly positive Op (1) random variables

Proof. Because I̊ε∗,b1 (j) and I̊ε∗,b2 (j) are independent for b1 6= b2, we have that the left side of (5.63) is

bounded by

b∗
2∑

b=b∗
1+1

E∗
(
I̊ε∗,b (j)

)2`
+

(
2`

2

) b∗
2∑

b1 6=b2=b∗
1+1

E∗
(
I̊ε∗,b1 (j)

)2
E∗
(
I̊ε∗,b2 (j)

)2`−2

+...+

(
2`

`

) b∗
2∑

b1 6=... 6=b`=b∗
1+1

(∏̀
p=1

E∗
(
I̊ε∗,bp (j)

)2)
.

However, E∗
(
I̊ε∗,b (j)

)2χ
= Hn because for all integers χ ≥ 1,

E∗
(

1

n

n∑
t=1

ε∗χt+(n−1)b

)
=

1

T

n∑
t=1

ε̂χt

and by Theorem 1 and then C1′, we have that

1

T

n∑
t=1

(ε̂χt − ε
χ
t ) = op (1) ;

1

T

n∑
t=1

(εχt − Eε
χ
t ) = Op

(
1

T 1/2

)
.

This completes the proof of the lemma. �
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